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Abstract  

 

We present a formalism for the analysis of sensitivity of nuclear magnetic resonance pulse 

sequences to variations of pulse sequence parameters, such as radiofrequency pulses, gradient 

pulses or evolution delays. The formalism enables the calculation of compact, analytic 

expressions for the derivatives of the density matrix and the observed signal with respect to the 

parameters varied. The analysis is based on two constructs computed in the course of modified 

density-matrix simulations: the error interrogation operators and error commutators. The 

approach presented is consequently named the Error Commutator Formalism (ECF). It is used to 

evaluate the sensitivity of the density matrix to parameter variation based on the simulations 

carried out for the ideal parameters, obviating the need for finite-difference calculations of signal 

errors. The ECF analysis therefore carries a computational cost comparable to a single density-

matrix or product-operator simulation. Its application is illustrated using a number of examples 

from basic NMR spectroscopy. We show that the strength of the ECF is its ability to provide 

analytic insights into the propagation of errors through pulse sequences and the behaviour of 

signal errors under phase cycling. Furthermore, the approach is algorithmic and easily amenable 

to implementation in the form of a programming code. It is envisaged that it could be 

incorporated into standard NMR product-operator simulation packages.  
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INTRODUCTION  

 

Recently Kuprov and Rodgers presented an analytic formalism for the evaluation of derivatives 

of NMR spin density matrix (DM) with respect to pulse sequence and spin system parameters 

[1]. They specifically identified two scenarios where the knowledge of DM derivatives is 

advantageous: (1) spectral fitting and (2) pulse sequence design using optimal control theory. 

The knowledge of DM derivatives also enables the analysis of sensitivity of NMR measurements 

to miscalibration of pulse sequence parameters, which is useful for the evaluation of robustness 

of quantitative NMR measurements of diffusion coefficients, spin relaxation rates and similar 

properties.  

 

Kuprov and Rodgers’ formalism is exact, in that the evolution of the spin system in it includes 

both reversible Hamiltonian dynamics and irreversible dynamics such as spin relaxation and 

chemical kinetics. Because of its exact nature, DM derivatives in that formalism can be difficult 

to obtain in closed analytic form. In this work, we present a simplified approach to the 

calculation of DM derivatives that neglects spin relaxation and kinetics. The simplified approach 

is named the Error Commutator Formalism (ECF), owing to the fact that the derivatives of the 

DM are computed as commutators of the appropriate operators with the spin density matrix. The 

ECF is amenable to non-numerical analysis and yields compact analytic expressions for DM 

derivatives. The approach is also intuitive in that it can be used to analyse the contributions to 

DM derivatives arising from different coherence transfer pathways. The relationship of the ECF 

to the exact formalism by Kuprov and Rodgers can be compared to the relationship between the 

simplified Product-Operator and the exact Density-Matrix treatments of NMR experiments. In 

this respect the ECF is complementary to Kuprov and Rodgers’ formalism.  

 

In this paper we use the ECF to explore the behaviour of errors of the DM and the observed 

signal in various experimental NMR scenarios. The “errors” are defined, in general, in the sense 

of the Taylor expansion truncated to the appropriate number of terms. The Theory section of the 

paper presents the basics of the ECF, including specific equations for the evaluation of DM 

derivatives with respect to RF pulse flip angles, resonance offsets and RF pulse phase errors. In 

Results and Discussion we illustrate application of the ECF using a number of examples from 

practical NMR spectroscopy. We show that the ECF can provide analytic insights into the 

propagation of errors through pulse sequences and the behaviour of errors under phase cycling.  
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THEORY  

 

Consider a NMR experiment represented by a sequence of RF pulses, gradient pulses and delays 

(to which we shall collectively refer as “intervals”), as illustrated in Fig. 1. If the rotating-frame 

spin Hamiltonian during each interval is constant, then, following the standard NMR density 

matrix (DM) formalism [2], the evolution of the spin density matrix during the k-th interval can 

be represented by the unitary evolution operator:  

 

 k kiH
kU e θ=  (1) 

 
Here, Hk is the dimensionless spin Hamiltonian containing only the appropriate spin operators. 

The amplitude of the respective interaction (ωk) is incorporated in the parameter θk = ωk tk, which 

we refer to as the dimensionless generalised time. For example, if the interval k is an RF pulse, 

then θk = γB1tk, where tk is the physical duration of the pulse, and Hk = Ix or Iy. The generalised 

times θk therefore have the meaning of rotation angles. The operator Hk need not be a “simple” 

spin operator and may itself contain non-commuting terms, such as the dipolar-coupling or the 

strong scalar-coupling Hamiltonians.  

 

Neglecting spin relaxation and chemical kinetics, the effect of the entire pulse sequence on the 

spin density matrix can be represented as a unitary transformation  

 

  0n U U+ρ = ρ  (2) 
 

where ρ0 = Iz is the initial DM; ρn is the DM at the end of the pulse sequence; and  

 

 1 1 2 2

1

... n n

n
iHiH iH

k
k

U e e e Uθθ θ

=

= ⋅ = ∏  (3) 

 

The central question considered in the present work is the following: What is the effect of a mis-

set generalised time θk on the signal detected at the end of the pulse sequence? The first 

derivative of ρn with respect to θk can be generally written as:  

 

 1 1 1 1 1 1 1 1
0 0...( ) ... ... ... ... ( )...n n k k n n n n k k n niH iH iH iH iH iHiH iH iH iHn

k k
k

e iH e e e e e e e e iH e− θ − θ θ − θ θ θ− θ θ − θ θ∂ρ
= − ρ + ρ

∂θ
 (4) 
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In order to make Eq. (4) amenable to interpretation, we introduce the following identity 

operators:  

 

 
1̂

1̂

k k k k

k k k k

iH iH
k k k

iH iH
k k k

U U e e

U U e e

θ − θ+

− θ θ+ +

= = ⋅

= = ⋅
 (5) 

 
Sequentially inserting the identity operators from 1k+1 to 1n between Uk and Hk in Eq. (4):  
 

1 1 1 1

2 2 2 2

1 0 1... ... ( )...
                       
                  
                           
                     
                                

 

k k k k

k k k k

n k k n

iH iH

iH iH

U U U U iH U

e e

e e

+ + + +

+ + + +

+ +

θ − θ

θ − θ

⋅ρ ⋅ ⋅
∧

⋅
∧

⋅
∧

ˆ                          ...etc. up to 1n

     (6) 

 
we obtain:  
 

  ( )*
1 1, ... ... , 1:n

n n k k k n n k
k

i U U H U U i H k n+ +
+ +

∂ρ ⎡ ⎤ ⎡ ⎤= ⋅ ρ ⋅ ⋅ ≡ ⋅ ρ +⎣ ⎦ ⎣ ⎦∂ θ
 (7) 

 

where Hk*(k+1:n) is the unitary-transformed spin Hamiltonian Hk:  

 

  ( )*
1 11: ... ...k n k k k nH k n U U H U U+ +
+ ++ = ⋅ ⋅  (8) 

 

In the following, we refer to the operator Hk
*(k+1:n) as the error interrogation operator: As is 

evident from Eq. (7), it determines whether ∂ρn/∂θk is non-zero. The coherences contained in 

∂ρn/∂θk determine whether a non-zero derivative of the DM leads to a variation of the observable 

signal.  

 

The error commutator formalism (ECF) encompassed by Eqs. (4) – (8) is similar to the 

formalism recently presented by Kuprov and Rodgers [1]. The difference between the two 

approaches is that ECF neglects the irreversible dynamics of spins (such as spin relaxation and 

chemical reactions). As will be seen below, the strength of the ECF lies in its ability to provide 

analytic insights into the propagation of errors arising from individual elements of the pulse 

sequence through the pulse sequence, as well as the behaviour of errors under phase cycling. 
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ECF is complementary to the approach by Kuprov and Rodgers, whose strength is in the exact 

numerical treatment of the errors, including the effects of relaxation and kinetics. In this respect 

ECF relates to the latter approach in the way similar to the relationship between the simplified 

product-operator formalism and the exact density-matrix formalism.  

 

Similar to Eq. (6), the operators from 1+
k−1 to 11

+ can be inserted on the inside of k kiHe± θ in Eq. (4)

. This enables the variation of ρn to be expressed via the initial DM:  

 ( )*
1 0 1( ... ) [ , 1:1 ] ( ... )n

n k n
k

i U U H k U U+ +∂ρ
= ⋅ ρ − ⋅

∂ θ
 (9) 

 
where Hk*(k−1:1) is the reverse-transformed dimensionless Hamiltonian Hk:  
 
  ( )*

1 1 1 11:1 ... ...k k k kH k U U H U U+ +
− −− = ⋅ ⋅  (10) 

 
 

Selection rules. The DM derivative given by Eq. (7) can contain both observable and non-

observable terms. The relationship between the derivative of the final density matrix (ρn) and the 

derivative of the complex observed signal (S) is  

  n

k k

S Tr I +
−

⎡ ⎤∂ρ∂
= ⋅⎢ ⎥∂ θ ∂θ⎣ ⎦

 (11) 

 

where I−+ = I+ is the Hermitian conjugate of the observable operator I−. The observable operator 

in Eq. (11) needs to be taken as the Hermitian conjugate because the complex operator I− is used 

as the observable rather than the real operators Ix, Iy; this is readily apparent from the example of 

a single spin-1/2 and ρn = I−: in this simple case, Tr[I−+⋅I−] = 1 while Tr[I−⋅I−] = 0.  

 

In order for the first derivative of the detected signal in Eq. (11) to be non-zero, two selection 

rules need to be satisfied:  

Selection Rule 1: the error commutator [ρn, Hk*(k+1:n)] needs to be non-zero; and  

Selection Rule 2: the error commutator [ρn, Hk*(k+1:n)] needs to contain an I_ component. This 

means that ρn must contain the coherence order −1 + p(Hk*(k+1:n)), where p(Hk*(k+1:n)) is the 

coherence order of the operator Hk*(k+1:n) [or one of its coherence orders if Hk*(k+1:n) contains 

multiple coherences]. Therefore, when computing the error commutator on the right-hand side 
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(RHS) of Eq. (7), the density matrix ρn must include all coherences (including non-observable 

coherences) present at time point n.  

 

The need for the full density matrix ρn to be used in Eq. (7) can be understood intuitively in the 

following terms. The coherences present during the interval k can in general lead to both 

observable and non-observable coherences in the final density matrix ρn. Only the observable 

coherences in ∂ρn/∂θk contribute to the first derivative of the signal, ∂S/∂θk. However, ∂ρn/∂θk 

depends on the entire deterministic evolution of the DM from the beginning of interval k to the 

end of interval n. This evolution is reflected in the past history of the full density matrix ρn, 

which includes its non-observable coherences. The amplitudes of the observable coherences in 

∂ρn/∂θk are therefore dependent on the full matrix ρn, and non-observable coherences of ρn must 

be taken into account when computing the error commutator [ρn, Hk*(k+1:n)].  

 

Phase cycling. Equations (7) and (9) are especially useful when considering the behaviour of 

errors under phase cycling. Two cases are possible when treating the error resulting from 

variation of the generalised time θk:  

1) If θk is an RF pulse, the phase cycle may apply to the interval k. In this case, the derivative 

∂ρn/∂θk is cycled with respect to the phase of Hk;  

2) The phase cycling may be performed on an RF pulse m distinct from θk: m ≠ k. In this case the 

interval θk need not be an RF pulse, and ∂ρn/∂θk needs to be phase-cycled with respect to Hm 

rather than Hk.  

 

In the following, we consider these two cases separately.  

 

Phase cycling on the mis-set RF pulse. Suppose that the RF pulse θk and the receiver are phase 

cycled with the phase increments ∆φk and ∆φR, respectively. Then only the coherence transfer 

pathways (CTPs) satisfying the condition ∆pk ∆φk + ∆φR = 0 survive the phase cycle (where ∆pk 

is the change of the coherence order in the given CTP during tk) [3]. Phase cycling can therefore 

be expected to restrict the number of the CTPs contributing to signal error (the number of error 

pathways).  

 

In Appendix A we consider the behaviour of the first derivative of the signal under phase cycling 

and identify the CTPs that contribute to ∂S/∂θk phase-cycled on the RF pulse θk. In the absence 
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of phase cycling the error commutator [ρn, Hk*(k+1:n)] has to take into account the full final 

density matrix ρn. As seen from Appendix A, phase-cycling allows the components of ρn arising 

from certain CTPs to be excluded from consideration:  

Selection Rule 3: Only the CTPs satisfying the condition ∆φR = ∆φk (1 − ∆pk) + 2πj  [Eq. (37) in 

Appendix A] make a non-zero contribution to the first derivative of the phase-cycled signal;   

Selection Rule 4: the contributions to the first derivative of the signal from the CTPs selected by 

the phase cycle (which satisfy the condition ∆φR = −∆pk ∆φk) are cancelled out by the phase 

cycle.  

 

Besides Selection Rules 3 and 4, selection rules 1 and 2 introduced above apply. Rules 1 and 2 

are independent of phase cycling: they must be satisfied in order for ∂S/∂θk to be non-0 prior to 

any phase cycling. Application of these results is illustrated in the Results and Discussion section 

using the example of the two-pulse magnitude COSY experiment.  

 

Phase cycling on a pulse not misset. The case of phase cycling on an RF pulse distinct from the 

misset generalised time θk is considered in Appendix B. The problem of finding the phase-cycled 

derivative of the signal can in this case be reduced to calculating the average reverse-

transformed observable operator, I−*+(n:k+1)PC, given by Eq. (45) in Appendix B. The 

derivative of the phase-cycled signal can be calculated according to Eq. (46) in Appendix B. 

Application of these results is illustrated in the Results and Discussion section using the example 

of the three-pulse DQF COSY experiment.  

 

Pulse phase errors. The RF evolution operator describing the RF pulse of phase φ has the form:  

 
 (cos sin )k x y ki I I iHU e e φθ φ⋅ + φ⋅ θ= =  (12) 
 

Consider the effect of mis-setting the phase φ. Unlike θk, φ is not a generalised timing parameter. 

Therefore, the differentiation of ρn with respect to φ differs from the approach used to derive 

Eqs. (7) and (9). Nevertheless, it is convenient to proceed in a way similar to Eq. (4) and 

represent the derivative of the DM in the form Un
+...(−iRk)Uk

+...U1
+ρ0U1...Un + 

Un
+...U1

+ρ0U1...Uk(iRk)...Un. The appropriate form of the operator Rk can be found by computing 

the explicit derivative ∂U/∂φ in the matrix form and multiplying it on the left by U−1:  
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2

2

[ sin sin sin cos 2 sin ]
2

[ sin sin sin cos 2 sin ]
2

k

k

iH k
k x k y z

iHk
k x k y z

U e i I i I i I

U i I i I i I e

φ

φ

θ

+
− θ

θ∂
= ⋅ − θ φ⋅ + θ φ⋅ + ⋅

∂φ

θ∂
= θ φ⋅ − θ φ⋅ − ⋅ ⋅

∂φ

 (13) 

 
The derivative of the DM can therefore be represented in a form of Eq. (7), but with a different 

error interrogation operator:  

 

 *
1 1[ , ... ... ] [ , ( 1: )]n

n n k k k n n k
k

d i U U R U U i R k n
d

+ +
+ +

ρ
= ⋅ ρ ⋅ ⋅ = ⋅ ρ +

φ
 (14) 

 

where the error interrogation operator Rk is given by  

 2sin [ , ] 2sin
2

k
k k z k zR i I H Iφ

θ
= − θ ⋅ +  (15) 

 
Equations (13) − (15) hold for S = ½ as well as higher spins. Equation (14) can be manipulated in 

the same ways as Eq. (7), and the derivative dρn/dφ can be expressed via ρ0 [analogous to Eq. (9)

] or ρk [analogous to Eq. (33)]. This approach is also applicable to systems of coupled spins 

provided that the RF pulses are short so that the coupling can be assumed to be “switched off” 

during the RF pulse. Application of these results is illustrated in the Results and Discussion 

section using the example of the Jeener-Broekaert experiment.  

 

Resonance offset errors. A similar approach can be used to evaluate the errors resulting from a 

resonance offset. For an RF excitation pulse of phase φ, amplitude ω1 and resonance offset ∆ω, 

the rotating-frame RF excitation Hamiltonian is given by  

 

 ( ) ( ) (cos sin )RF z
k k k x y zH H H I I I1= φ + ∆ω = ω ⋅ φ⋅ + φ⋅ + ∆ω⋅  (16) 

 

Following the steps leading to Eqs. (13) − (15), we obtain the error interrogation operator valid 

for (∆ω/ω1)2 << 1:  

 

 ( )2 1
1

1 1

2 1sin [ , ] sin
2

RFk
k z k k z

tiR I H t Iω⎛ ⎞= ⋅ + ω ⋅⎜ ⎟ω ω⎝ ⎠
 (17) 

 

where tk is the physical duration of the RF pulse. In Results and Discussion we present an 

analysis of the effect of phase cycling on off-resonance errors in the Spin Echo pulse sequence.  
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Higher-order derivatives. The derivation of the second-order derivative of the final DM is 

presented in Appendix C. Generalising that derivation, the z-th derivative of ρn with respect to θk 

is easily obtained:  

 

 * * *, ( 1: ) , ( 1: ) ,... ( 1: )
z

zn
n k k kz

k

d i H k n H k n H k n
d
ρ ⎡ ⎤⎡ ⎤⎡ ⎤= ρ + + +⎣ ⎦⎣ ⎦⎣ ⎦θ

 (18) 

 
where the commutator has the depth z. Two basic cases can be distinguished here:  

1) The error commutator [ρn, Hk*(k+1:n)] in Eq. (18) is an identical zero. This situation can arise 

when, down to a constant multiplier, ρn equals Hk*(k+1:n), any power of Hk*(k+1:n), or a linear 

combination thereof. In this case, the derivatives of the detected signal ∂mS/∂θk
m are equal to zero 

for all m ≥ 1, and the signal is completely insensitive to θk. [We note that the case Hk*(k+1:n) = 0 

is not physically possible because the unitary transformation in Eq. (8) preserves the determinant 

of Hk.]  

2) The error commutator [ρn, Hk*(k+1:n)] and ∂ρn/∂θk are not identical zeros. In this case, all 

higher derivatives of the DM, ∂mρn/∂θk
m, are generally non-zero. The derivatives of the observed 

signal are determined by the coherence orders present in the respective commutators: e.g., if the 

m-th-order commutator does not contain any coherences of the order −1, then ∂mS/∂θk
m = 0. This 

does not preclude the signal derivatives of other orders from being non-zero, provided that the 

respective commutators contain coherences of the order −1.  

 

Degenerate timing parameters. A generalised timing parameter shared by several intervals in a 

pulse sequence may be mis-set equally in the intervals concerned. This situation arises very 

commonly in NMR spectroscopy: e.g., when the durations of hard RF pulses are linked to the 

calibrated duration of the π/2 pulse, or when the durations of evolution delays are set based on 

the value of a coupling constant. For several generalised times sharing a common value, θk1 = θk2 

= ... = θkq = θ, it is easily shown that the cumulative derivative of the DM with respect to θ is 

given by:  

 

 
1 i

ki

q
n n

i k

d
d =

θ =θ

ρ ∂ρ
=

θ ∂θ∑  (19) 
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It should be noted that the summation terms on the RHS of Eq. (19) are generally not equal, even 

if the Hamiltonians Hi are. The error interrogation operator Hk*(k+1:n) is the result of the unitary 

transformation Uk+1...Un, while the operator Hm*(m+1:n) is obtained from the unitary 

transformation Um+1...Un. If these two unitary transformations are not equal, then the transformed 

operators Hk*(k+1:n) and Hm*(m+1:n) are not identical, and each term in the summation must be 

computed individually.  

 

Higher-order derivatives of ρn with respect to a degenerate generalised time θ, ∂zρn/∂θz, can be 

expressed via multiple commutators similar to that shown in Eq. (18). For z ≥ 2, the respective 

summation contains diagonal terms of the type [[[ρn, Hi*], Hi*],...] as well as cross-terms [[[ρn, 

Hi*], Hj*],...]. Because of the cross-terms, the cumulative higher-order derivatives ∂zρn/∂θz are 

not simple sums of the q terms ∂zρn/∂θk
z representing the derivatives with respect to the 

individual parameters [as was the case in Eq. (19)]. For the case of M degenerate generalised 

times {θk1, θk2,..., θkM} and derivative of the order z, there are Mz possible commutators of depth 

z. Of these, CM−1
z+M−1 = (z+M−1)!/z!(M−1)! commutators are distinct. The expression for the z-th 

derivative is given by the following summation of depth z:  

 

 
1 21

( )
* * *... , , ,...

, ,...,
M M M

M

z k k k
zn

n i j mz
k k ki k j i m l

Md i H H H
p p pd = = =

⎛ ⎞ρ ⎡ ⎤⎡ ⎤⎡ ⎤= ρ⎜ ⎟ ⎣ ⎦⎣ ⎦⎣ ⎦θ ⎝ ⎠
∑∑ ∑  (20) 

 
 
where pk1, pk2, etc. are the number of times the parameters k1, k2,... occur in the respective z-fold 

commutator. The coefficients in front of the commutators are multinomial coefficients:  

 

 
1 2 1 2

!
, ,..., ! !... !

M Mk k k k k k

M M
p p p p p p

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 (21) 

 

which have the meaning of the number of distinct permutations of the set of indices of length z, 

{i, j,..., m}. The treatment of degenerate derivatives is illustrated in Results and Discussion using 

the example of Carr – Purcell and Carr – Purcell – Meiboom – Gill experiments.  
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NUMERICAL SIMULATIONS  

 

The analytic predictions of the error commutator formalism were verified using numerical DM 

simulations. Several NMR pulse sequences were investigated, as described in Results and 

Discussion: Carr – Purcell [4] and Carr – Purcell – Meiboom – Gill [5]; spin echo [6]; two-pulse 

(magnitude) COSY [7]; double-quantum filtered three-pulse COSY [8]; and the Jeener-

Broekaert [9] experiments.  

 

For each pulse sequence investigated, two types of simulations were performed:  

1) Conventional DM simulations based on the standard NMR DM formalism [3,10,11]. In these 

simulations, the parameter varied was kept in the symbolic form; all other simulation parameters 

were given numerical values. The observed signal was calculated as S = Tr[I−+⋅ρn]. The detected 

signal S was therefore a function of the symbolic parameter varied. The derivatives of the signal 

were computed by explicit differentiation.  

2) Simulations of the DM and signal errors based on the error commutator formalism. In these 

simulations, the standard DM formalism was augmented to compute the error interrogation 

operators [Eqs. (8) and (15)], reverse-transformed observable operators [Eq. (44)] and error 

commutators [Eqs. (7), (9), (34), (18) and (14)], as required. This, in turn, was used to compute 

the first and higher derivatives of the DM and the observed signal with respect to the mis-set 

parameter. The derivatives of the observed signal were calculated according to Eq. (11) and the 

equivalent expressions for the higher derivatives. In the ECF, the information about signal 

variation under mis-set parameters is contained in the error commutators computed using the 

ideal pulse sequence parameters; therefore, ECF simulations allowed all-numerical parameters to 

be used in the evaluation of derivatives. Analytic expressions for error interrogation operators, 

error commutators and derivatives were also computed in selected cases in order to illustrate the 

compactness of the ECF analysis.  

 

The DM and signal derivatives obtained using the error commutator formalism and the 

conventional DM simulations were compared; the two sets of results were found to be always 

identical within the rounding error.  
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RESULTS AND DISCUSSION  

 

Execution of NMR experiments usually requires that the pulse sequence parameters be set to 

their “correct” values. This includes, for example, calibration of the flip angle of RF pulses, or 

setting evolution delays on the basis of a coupling constant (e.g., 1/2J in the case of scalar 

couplings). However, it is usually not possible to set pulse sequence parameters to their exact 

ideal values, and the acquired signal can contain systematic errors arising either from unwanted 

CTPs or from an incomplete conversion between a set of coherences. Some of the general 

approaches to dealing with this problem include CTP selection by means of phase cycling [12-

15] or pulsed field gradients [3,16,17] and the design of robust pulses [18-25] or pulse sequences 

[26-34]. While these approaches significantly alleviate the effects of non-ideality of pulse 

sequences, they usually cannot eliminate the errors altogether. It is therefore useful to be able to 

analyse the sensitivity of a pulse sequence to variations of its parameters.  

 

The Error Commutator Formalism (ECF) is an intuitive and easy-to-use tool for such analysis. 

Here we present an ECF analysis of several NMR experiments in order to illustrate the approach 

described in the Theory section. We follow the standard NMR sign conventions [35,36]:  
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 (22) 

 

where both θ and ω0 are taken as positive quantities: ω0 = +γħB0 and θ = +γħB1t; ωRF is the 

precession frequency of the rotating frame; and the permutation α → β is “clockwise”.  

 

Mis-set RF pulse durations: Carr-Purcell vs Carr-Purcell-Meiboom-Gill experiment. In order 

to demonstrate the basics of the error commutator formalism, we consider two well-understood 

experiments: Carr-Purcell (CP) and Carr-Purcell-Meiboom-Gill (CPMG). The two experiments 

are closely related and essentially share the same pulse sequence (shown in Fig. 2); the 

difference between them is in the phase of the refocusing π RF pulses: α = x for CP and α = y for 

CPMG. A well-known feature of CPMG is the relative insensitivity of its even echoes to 
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miscalibration of the refocusing π RF pulse. Here we demonstrate the basis for the relative 

robustness of CPMG using a single spin-1/2 as an example.  

 

The Hamiltonians effective during different intervals are shown in Table 1, along with the ideal 

DM at the top of the echoes. Transforming the operator Ix, we obtain the error interrogation 

operator of the k-th refocusing pulse at the n-th CP echo:  

 

 *( ) cos( ) ( 1) sin( )n k
k x yH n I I−= − ωτ + − ωτ  (23) 

 

The equivalent error interrogation operator for the CPMG sequence is  

 

 *( ) ( 1) sin( ) cos( )n k
k x yH n I I−= − − ωτ − ωτ  (24) 

 

Assuming that the pulse sequence contains n refocusing π pulses of equal durations, the duration 

of the refocusing pulse can be considered an n-fold-degenerate generalised time. At the n-th echo 

there will be n error interrogation operators corresponding to pulses from 1 to n; these operators 

are  given by Eqs. (23) (CP) and (24) (CPMG). Cumulative first-order derivatives of the DM can 

be calculated using Eq. (19). Cumulative higher derivatives are calculated using Eq. (20). The z-

th derivative includes ((z+n−1)!/z!(n−1)! − n) cross-terms as well as n diagonal terms. Analytic 

expressions for the cumulative first- and second-order DM derivatives at the n-th echo are 

summarised in Table 2. The expressions for z ≥ 3 are also obtained easily in a compact form but 

not shown here for the sake of brevity. It is worth noting that non-zero derivatives of the DM do 

not always correspond to non-zero derivatives of the observable signal. For instance, the first-

order DM derivatives in both CP and CPMG contain no transverse components and, on their 

own, do not result in signal errors. However, the error commutators [ρn, Hk*(k+1:n)] ∝ Iz lead to  

Ix and Iy terms in the second-order commutators; as a result, the non-observable first-order DM 

errors are manifest in higher-order derivatives of the observable signal.  

 

Two significant points are evident from Table 2. First, the CPMG errors grow more slowly with 

n than the CP errors. The first derivative of the CP echo grows linearly with n. The 

corresponding CPMG derivative is constant for all odd echoes and never exceeds the order-of-

magnitude of the smallest CP derivative. The second-order derivative grows as O(n2) for CP 

echoes but only as O(n) for CPMG echoes. Second, at even echoes certain terms in the CPMG 
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derivatives turn exactly to zero: namely, the entire first-order derivative and the Iy term of the 

second-order derivative. Therefore, the detected (transverse) magnetisation at even CPMG 

echoes is subject to errors of the order of n(δθ)2, which can be expected to be significantly 

smaller than the CP errors under equivalent conditions. Figure 3 shows representative plots of 

the Ix, Iy and Iz components of the DM errors in the two experiments as a function of n. The 

errors plotted were obtained using the error commutator formalism. For comparison, “exact” 

errors were also computed by explicitly simulating the evolution of the DM under non-ideal 

refocusing pulses (not shown). For the situation considered (ωτ = 2, δθ = −π/18, spin relaxation 

neglected), the ECF errors converged rapidly: for both CP and CPMG, the ECF errors matched 

the “exact” errors to within 4%, 0.1% and 0.001% of M0 upon the inclusion of the first two, four 

and six derivatives, respectively.  

 

Figure 3 demonstrates the well-known robustness of the CPMG pulse sequence, compared to CP, 

with respect to miscalibration of the refocusing π pulse. But more importantly, the ECF-derived 

expressions shown in Eqs. (23) and (24) and Table 2 enable a detailed understanding of how the 

errors arising from individual RF pulses propagate through the pulse sequence. The intuitive and 

general nature of ECF can be used to advantage in the analysis of performance of NMR pulse 

sequences and pulse sequence design.  

 

One more advantageous feature of the ECF is worth emphasising. In order to investigate the 

sensitivity of NMR experiments with respect to non-ideal RF pulses, only the DM corresponding 

to the ideal (π/2 and π) RF pulses needs to be computed. (We note that this also applies to 

Kuprov and Rodgers’ approach [1].) The DM for θ ≠ π need not be computed in order to obtain 

the derivatives shown in Table 2 because these derivatives are implicit in the ideal (θ = π) 

density matrix. This can provide a significant computational advantage (compared to finite-

difference methods) when the ECF is used for complicated pulse sequences.  

 

Spin-echo pulse sequence: off-resonance errors under phase cycling. Equation (17) can be 

used to analyse the phase-cycling behaviour of errors resulting from off-resonance RF pulses. 

Here we consider the spin-echo experiment (Fig. 4) and evaluate the DM errors arising from an 

off-resonance refocusing π pulse. The errors are computed at the top of the echo (t4 = t2). For the 

sake of simplicity, a single spin-1/2 is considered; the phase cycle used is the four-step 

EXORCYCLE [12]. Table 3 shows the ideal DM at the top of the echo (the end of interval t4), as 
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well as the first two derivatives of the DM with respect to the resonance offset, ∆ω. The 

derivatives include the effects of off-resonance evolution during the echo time as well as off-

resonance evolution during the π pulse per se. It is noteworthy that the steps of the phase cycle 

are not equivalent in terms of sensitivity to ∆ω: the first-order error of the DM is zero in steps 1 

and 3 (φ = ±x) but non-zero in steps 2 and 4 (φ = ±y). The first-order error contains no transverse 

coherences and therefore does not affect the signal detected at the echo. However, it can be of 

consequence when the spin-echo sequence is used to prepare magnetisation for further 

manipulation (as is done, e.g., in INEPT). The ECF analysis can therefore inform the choice of 

RF pulse phases in complex NMR pulse sequences. The first-order error is cancelled out in the 

two-step phase cycle (πy, π−y) (column 6 of Table 3). The second-order error completely survives 

both the two-step and the four-step EXORCYCLE (Table 3, columns 6 and 7, respectively).  

 

Spin-echo pulse sequence: phase errors of the π pulse under phase cycling. Here we analyse 

the DM errors arising from a phase error of the refocusing π pulse in the spin-echo experiment. 

The setup of the experiment and the phase cycle are as described in the previous paragraph (t4 = 

t2; single spin-1/2; four-step EXORCYCLE phase cycle). The general phase-cycling behaviour 

of the signal errors is presented in Eq. (41) in Appendix A. Because the RF pulse in question is a 

π pulse, only the second term of Eq. (41) contributes to the error even before phase cycling. The 

results are presented in Table 4. The first-order error of the acquired signal is identical in each 

step of the four-step EXORCYCLE. This corresponds to a simple phasing error of the acquired 

echo signal resulting from an effective phase offset of the rotating frame. The error-free signal in 

this case can be reconstructed by zeroth- and first-order rephasing of the frequency domain data.  

 

Two-pulse COSY experiment. Consider the two-pulse COSY experiment (“magnitude COSY”, 

Fig. 5) [7] as an example of the effect of phase-cycling the mis-set RF pulse. For the sake of 

simplicity, consider the two-step phase cycle: the phases of the first RF pulse and the receiver are 

kept at +x; the phase of the second RF pulse is alternated between +x and −x [8]. We assume a 

strongly coupled homonuclear system of two spins-1/2 and are interested in the derivative of the 

signal with respect to the duration of the mis-set pulse: ∂S/∂θ3.  

 

The dimensionless Hamiltonians effective during different intervals of the pulse sequence are:  
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A symbolic analysis provides insights into the behaviour of signal errors under phase cycling. It 

also enables the identification of the specific components of the DM contributing to the error of 

the detected signal. The appropriate error interrogation operator has the form  

 

  ( ) ( ) ( )( ) ( )1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2( ) ( )*
3 1 24 : 4 z z z z z z z zi AI BI CI I D I I I I i AI BI CI I D I I I I

x xH e I I e+ − − + + − − +− + + + + + + + += ± +  (26) 
 

It is clear that H3*(4:4) contains only coherences of the orders +1 and −1. This enables us to 

restrict, using the following reasoning, the number of CTPs that have the capacity to contribute 

to signal error:  

1) According to Eq. (36), the operator U4
+[ρ3, H3]U4 needs to contain terms with coherence order 

p = −1 in order for the misset θ3 to lead to a signal error;  

2) But the transformation U4 preserves the coherence order; therefore, it is the operator [ρ3, H3] 

that needs to contain terms with p = −1;  

3) p([ρ3, H3]) = p(ρ3) + p(H3). Because p(ρ3) = p(ρ4), only the components of ρ4 that satisfy the 

condition p(ρ4) + p(H3) = −1 lead to signal error;  

4) As seen from Eq. (26), p(H3) = ±1;  

5) Therefore, even prior to phase cycling, the only components of ρ4 capable of contributing to 

signal error are those with the coherence orders p4 = −1 ± 1 = 0 or −2.  

 

Error contributions that survive the phase cycle can be identified using Eq. (37). Only the CTPs 

with ∆p3 = 1, −1 and −3 lead to signal errors that survive the phase cycle (where ∆p3 is the 

coherence order change during the second RF pulse). These CTPs are shown in Fig. 5b as dotted 

lines.  

 

We have analysed the contributions of individual CTPs to the signal and its error using both the 

ECF [Eq. (7)] and explicit density-matrix simulations with a symbolic θ3. A summary of the 

results is presented in Table 5. The main observations are as follows:  
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1) Of the possible 3 x 5 = 15 CTPs, only four contributed to the signal error: (−1, −2), (−1, 0), (1, 

−2) and (1, 0). These CTPs (shown as the dotted lines in Fig. 5b) satisfy the selection rules p4 = 0 

or −2 and ∆p3 = 1, −1 and −3 discussed above;  

2) The contributions to the signal error from the two selected CTPs, (−1, −1) and (1, −1), were 

zero in each step of the phase cycle. This is consistent with the selection rule for p4;  

3) The phases of the errors arising from each of the “dotted” CTPs of Fig. 5b were identical in 

the two steps of the phase cycle, and a given CTP therefore contributed identical amounts to the 

signal error in steps 1 and 2. This is consistent with Eq. (37);  

4) Using explicit DM formalism, analytic signal derivatives were computed for each of the 

selected CTPs, (−1, −1) and (1, −1). The derivative of the signal filtered through (−1, −1) was 

identically equal to the sum of the ECF-computed derivatives contributed by the CTPs (−1, −2) 

and (−1, 0). Likewise, the derivative of the signal filtered through (1, −1) was identical to the 

sum of ECF-computed derivatives from (1, −2) and (1, 0). Generally, the derivative of the 

observed signal filtered through a coherence order pk is given by the error commutator of Eq. (7) 

where ρn includes the contributions (both observable and non-observable) from all the CTPs 

containing pk.  

 

Double-quantum filtered COSY. We now consider the double quantum-filtered (DQF) COSY 

experiment (Fig. 6) [8] as an example of phase-cycling on an RF pulse different from the pulse 

mis-set. We assume a homonuclear AX system of two spins-1/2 and use the 4-step phase cycle 

shown in Table 6.  

 

First, let us show that the derivative of the phase-cycled signal with respect to the duration of the 

second RF pulse, dSPC/dθ3, is zero. This can be shown analytically by phase-cycling the reverse-

transformed observable operator given by Eq. (44), Appendix B. This approach takes advantage 

of the fact that all the phase cycling here occurs after the pulse mis-set (interval t3). Therefore, 

the error of the phase-cycled detected signal can be calculated using Eq. (46), where the 

commutator [ρ3, H3] is left unchanged in all steps of the phase cycle, while the reverse-

transformed observable operator I+
*(5:4) is phase-cycled.  

 

It is easily shown that the phase-cycled observable operator is given by  

 

 *
1 2 1 2(5 : 4)PCI AI I AI I+ + + − −= −  (27) 



 20

 

where A is a complex coefficient dependent on t5, J and ωi. The Hamiltonian H3 (identical in 

each step of the phase cycle) has the form  

 

 3 1 2
ˆ

x xH I I= +  (28) 

 
The form of the (non-transformed) density matrix ρ3 can be gleaned from the following 

considerations:  

1) Tr[ρ3] = 0;  

2) Because ρ3 is Hermitian, the amplitudes of coherences that are Hermitian conjugates of each 

other must be complex-conjugates of each other. That is, if the amplitude of I1+I2− in ρ3 is B, then 

the amplitude of I1−I2+ is B*, etc.;  

3) The second RF pulse creates the Cartesian coherences I1zI2y, I1yI2z with real amplitudes and no 

coherences I1zI2x, I1xI2z. Because Iy = (I+ − I−)/2i, the amplitudes of the antiphase single-quantum 

(SQ) coherences I1zI2± and I1±I2z in ρ3 must be purely imaginary.  

 

Only DQ terms of the commutator [ρ3, H3] contribute to error of the phase-cycled signal because 

the phase-cycled observable operator I+
*(5:4) [Eq. (27)] contains only DQ coherences. Taking 

into account the restrictions on the form of ρ3 discussed in the previous paragraph, the DQ part 

of the commutator has the form:  

 

 ( )3 3 1 2 1 2[ , ]DQH i C I I I I+ + − −ρ = +  (29) 
 

where C is a real coefficient. The error of the phase-cycled observed signal is easily seen to be 

zero because A is complex and C is real:  

 

 [ ]1 2 1 2 1 2 1 2
3

( ) ( ) 0
PC

d S i Tr A I I I I i C I I I I
d + + − − + + − −

⎛ ⎞
= ⋅ ⋅ − ⋅ + =⎜ ⎟θ⎝ ⎠

 (30) 

 

Therefore, the phase cycle used eliminates the first-order signal error arising from variation of 

the second π/2 RF pulse. We also note that the signal errors in the individual steps of the phase 

cycle are not necessarily zero because I+
*(5:4) is not restricted to DQ coherences in individual 

steps of the phase cycle.  
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Similar error analysis can be carried out using the original approach, where the error 

interrogation operator is forward-transformed according to Eq. (8). In this approach, the phase 

cycling affects both the observable operator (which is phase-cycled according to Table 6) and the 

transformed error interrogation operator (which varies between the steps of the phase cycle 

because the unitary operator U4 depends on the phase-cycled H4). This analysis also shows that 

the phase-cycled dS/dθ3 = 0. We have carried out this analysis for every individual CTP; the key 

results are summarised in Table 7. The following additional observations can be made from the 

CTP-selective error analysis:  

1) In steps 1 and 3 of the phase cycle, the error interrogation operator H3
*(4:5) contains only 

zero-quantum (ZQ) coherences. Consequently, only the CTPs with p4 = −1 contribute to the 

signal error in these steps. This is consistent with Eq. (11);  

2) In steps 2 and 4 the operator H3
*(4:5) contains only SQ coherences: p[H3

*(4:5)] = ±1. In these 

steps, only the CTPs with p4 = 0 or −2 contribute to signal error;  

3) The signal errors computed using the ECF were verified using explicit DM simulations. In 

each step of the phase cycle, the total DM-computed signal derivative was equal to the sum of 

the ECF-computed contributions from all CTPs;  

4) The total signal error is non-zero in steps 1 and 3 but zero in steps 2 and 4;  

5) The error contributions from the selected CTPs cancel out between steps 1 and 3 and also 

between steps 2 and 4. Only CTPs that are not selected by the phase cycle contribute a non-zero 

error to the phase-cycled signal;  

6) The total error of the phase-cycled signal (i.e. the sum of the phase-cycled contributions from 

the individual CTPs) is zero.   

 

The utility of the analysis shown for the two COSY experiments lies in its capacity to identify 

specific contributions to signal error, or “error coherence transfer pathways”. The knowledge of 

“error CTPs” makes possible the elimination of some of the error contributions and provides 

general, analytic insights into the behaviour of signal errors under phase cycling. ECF analysis 

can therefore inform the development of phase cycling schemes aimed at minimising the number 

of surviving error CTPs. It can also inform the engineering of robust NMR experiments 

insensitive to RF pulse imperfections.  

 

RF pulse phase errors: the Jeener-Broekaert experiment. The Jeener-Broekaert experiment is 

used for selective observation of orientationally ordered quadrupolar nuclei [9,37]. Its spin-echo 
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implementation (Fig. 7) includes a spin-echo block (π/2 – τ/2 – π – τ/2) and a ZQ filter (two π/4 

RF pulses, the second of which is phase-cycled according to Table 8). The ZQ filter selects the 

signal from quadrupolar nuclei in partially aligned environments but suppresses (after the phase 

cycle) the signal from nuclei in isotropic environments. The perfect selectivity requires that the 

phases of the π/2 pulse and the first π/4 RF pulse be orthogonal. Here, we illustrate the effect of 

mis-setting the relative phases of these pulses. The relevant DM derivative and the error 

interrogation operator are given by Eqs. (14) and (15), respectively.  

 

We considered the phase-cycled Jeener-Broekaert signal from an ensemble of single spins-1, of 

which 60% resided in a partially aligned and the remaining 40% in an isotropic environment. 

The aligned environment was assumed to be axially symmetric, and its free-evolution spin 

Hamiltonian was:  

 

 ( )2
0 3 2z Q zH I I= −ω + ω −  (31) 

 

The free-evolution Hamiltonian of the “isotropic” nuclei contained only the Zeeman term:  

 

 0 zH I= −ω  (32) 
 

The effect of RF phase errors on the spectra was simulated numerically using both the standard 

DM formalism and the ECF. The key simulation parameters were: ω0 = 1113 Hz; ωQ = 2000 Hz; 

t2 = t4 = 10 ms; T2 = 6 ms; dwell time 100 µs; 8192 complex FID points. Figure 8a shows the 

DM-simulated phase-cycled Jeener-Broekaert spectrum obtained with the perfect RF phases 

(Table 8). Figure 8b shows the DM-simulated spectrum obtained with a misset phase P3 (0.48π 

instead of π/2). Figure 8c is the difference between the spectra 8b and 8a. Figure 8d shows the 

difference spectrum computed using the error commutator formalism [Eq. (14)]. The latter 

matches the difference spectrum calculated from explicit density-matrix simulations, providing a 

validation of the theory presented in “Pulse phase errors” in the Theory section.  

 

General remarks and conclusions.  Analytic approaches to evaluation of derivatives of the 

NMR signal with respect to pulse sequence parameters have been presented in the past [1,38-40]. 

In a distinct but closely related work in NMR optimal-control theory, Khaneja et al calculated 

the derivatives of the expectation value of an arbitrary target operator with respect to control 
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amplitudes [34]. An experimental example also exists where the derivative of the NMR signal 

with respect to a parameter of the pulse sequence was linked to the signal from a second pulse 

sequence [41]. The error commutator formalism presented here is a simple but powerful 

approach for analytic evaluation of NMR density matrix derivatives with respect to pulse 

sequence parameters.  It can be applied to any situation amenable either to Density-Matrix or 

Product-Operator (PO) treatment, provided that spin relaxation and chemical kinetics can be 

neglected. The calculation of transformed error interrogation operators [Eqs. (8) and (10)] and 

reverse-transformed observable operators [Eq. (44)] is conceptually identical to calculation of 

the evolution of the spin density matrix or product operators in NMR pulse sequences. When the 

PO approximation is appropriate, the transformed error interrogation operators and reverse-

transformed observable operators can be computed using the standard PO rules [2].  

 

The calculation of signal errors using the commutator approach imposes little additional cost 

compared to calculating the evolution of the spin DM for a pulse sequence with the ideal RF 

pulses and delays. Information about signal variation under mis-set pulse sequence parameters is 

implicitly contained in the density matrix computed for the ideal parameters. The error 

commutator formalism enables the extraction of this implicit information.  

 

The approach presented is algorithmic and easily amenable to implementation in the form of a 

programming code. The expressions arising in the ECF are computationally similar to the 

standard PO or DM formalisms. It is therefore envisaged that error commutator analysis could be 

incorporated into standard NMR product-operator simulation packages such as POMA [42].  

 

The principal application of this approach envisaged by the authors is the analysis of sensitivity 

of NMR pulse sequences to variations of the pulse sequence parameters. The “robust” pulse 

sequences are those in which the lower derivatives of the DM with respect to a perturbed 

parameter are zero. The error commutator formalism provides for facile identification of such 

pulse sequences. Its distinct advantage is that it enables error analysis at the level of individual 

CTPs (“error coherence transfer pathways”), making it possible to analyse individual 

contributions to the error of the final DM. The error commutator formalism is especially well-

suited for the analysis of the behaviour of errors under phase cycling, and it is envisaged that it 

can become a useful tool in phase cycle design.  
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A promising generalisation of the error commutator analysis is the use of group theory for the 

identification of zero and non-zero error contributions. Group theory has been invaluable in 

quantum chemistry and chemical spectroscopy for identifying selection rules pertaining to 

molecular-orbital integrals or interactions of molecules with radiation. Its use in the error 

commutator analysis may simplify the identification of CTPs that make a zero contribution to 

signal error.  

 

It is also envisaged that the error commutator formalism can become a useful tool in the 

development of NMR and EPR quantum computing applications, where both precise 

manipulation of spin qubits and error correction are required.    
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 Appendix A:  The effect of phase cycling on the errors arising from a mis-set RF pulse  

 
Consider the effect of phase-cycling the misset RF pulse (θk) on the error of the detected signal 

(∂S/∂θk). In order to find the phase-cycled ∂ρn/∂θk, it is convenient to modify Eq. (7):  

 
*

1 1 1 1

1 1

[ , ( 1: )] [ ... ... , ... ... ]

       ... [ , ] ...

n
n k n k k k n n k k k n

k

n k k k k n

i H k n i U U U U U U H U U

i U U H U U

+ + + +
+ + + +

+ +
+ +

∂ρ
= ρ + = ⋅ρ ⋅ ⋅ ⋅

∂ θ

= ⋅ ⋅ ρ ⋅

 (33) 

 

If the phase cycling is performed solely on θk, then none of the unitary operators Uk+1 ... Un are 

phase-cycled. Therefore, direct effects of the phase cycle are confined to the commutator [ρk, Hk] 

in Eq. (33). The phase of the receiver may also be cycled, but this does not affect the density 

matrix ρn. Assuming the phase increments of the RF pulse and the receiver to be ∆φk and ∆φR, 

respectively, consider a DM component that undergoes coherence order change ∆pk during the 

pulse k. Depending on the values of ∆φk and ∆φR, the CTP in question may or may not be 

selected by the phase cycle. Phase cycling the RF pulse k modulates the phases of the operators 

in Eq. (33) as follows:  

 
( 1)[ , ] [ , ]

k

k k

k k

im
k k

im p
k k

im p
k k k k

H H e

e

H H e

φ

φ

φ

∆

− ∆ ∆

− ∆ − ∆

→

ρ →ρ

ρ → ρ

               (34) 

 

where m is the step of the phase cycle. The cycling of the receiver increments the phase of the 

observable operator:  

 RimI I e− ∆φ+ +
− −→  (35) 

 

Therefore, the error of the detected signal is cycled as:  

 R( ( 1) )
1( [ , ] ) ( [ , ] ) k kim p

k k k k stepTr I U H U Tr I U H U e φ− ∆ + ∆ − ∆φ+ + + +
− −⋅ ρ → ⋅ ρ  (36) 

 

where U = Uk+1...Un. Although the operator U is not phase cycled, it needs to be kept on the RHS 

of Eq. (36) because it can affect whether the phase-cycled commutator contains detectable 

coherences. Equation (36) yields the condition for the survival of error in the phase cycle:   

 

 R (1 ) 2k kp jπ∆φ = ∆φ ⋅ − ∆ +  (37) 
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The signal error from any CTPs that fail to satisfy Eq. (37) is cancelled out by the phase cycle. 

Equation (37) implies that any CTP selected by the phase cycle must have a zero contribution to 

the error of the phase-cycled signal: If the coherence order change ∆pk is selected by the pulse 

sequence, then  

 

 R k kp∆φ = −∆ ∆φ  (38) 
 

and Eq. (36) takes the form  

 

 [ ]
1 1( [ , ] ) ( [ , ] )k k k k k kim im

k k step k k stepTr I U H U e Tr I U H U e− −∆ρ ∆φ +∆ρ ∆φ −∆φ ∆φ+ + + +
− −⋅ ρ = ⋅ ρ  (39) 

 

It can immediately be seen that a full phase cycle zeroes out the signal error from any CTP that is 

selected. In general, for an M-step phase cycle on pulse k incrementing the phase of Hk by ∆φk 

and the phase of the receiver by ∆φR, the contribution to the error of the phase-cycled signal is  

 

 
R

R

[ ( 1) ]

[ ( 1) ]
1

1

k k

k k

iM p

i p
k kcycled step 1

d S S e
d e

− ∆φ + ∆ − ∆φ

− ∆φ + ∆ − ∆φ

⎛ ⎞ ⎛ ⎞∂ −
= ⋅⎜ ⎟ ⎜ ⎟θ ∂θ −⎝ ⎠ ⎝ ⎠

 (40) 

   

A similar approach can be employed for the analysis of the phase-cycling behaviour of the errors 

arising from a mis-set phase of RF pulses. The appropriate error interrogation operator for a 

misset RF phase is shown in Eq. (15). Following the derivation similar to Eqs. (33) − (36), it is 

easy to see that the phase-cycling behaviour of RF phase errors can be presented as  

 

 R R[ ( 1) ] ( )2( [ , ] ) sin 2 sin
2

k k k kim p im pk
k k kTr I U R U i A e B eφ φ− ∆ + ∆ − ∆φ − ∆ +∆ ∆φ+ +

−

θ
⋅ ρ =− θ ⋅ + ⋅  (41) 

 

where A = Tr(I−+⋅[ρk, [Iz, Hkφ]]step 1) and B = Tr(I−+⋅[ρk, Iz]step 1). The first term in Eq. (41) is zero 

when the RF pulse in question is a RF π pulse; the survival of the RF phase error in this case is 

determined by the phase-cycling behaviour of the second term only. The second term in Eq. (41) 

is generally non-zero for both π/2 and π RF pulses. The survival rules are therefore different for 

these two situations. An example is considered in the Results and Discussion section (“Spin-echo 

pulse sequence: phase errors of the π pulse under phase cycling”).  
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Appendix B:  Phase cycling on an RF pulse other than the pulse mis-set  

 
Phase cycling can also involve an RF pulse (θm) different from the interval varied (θk). Here we 

analyse ∂S/∂θk for the case when the pulse cycled (m) occurs after the “mis-set” interval (k). The 

situation where m precedes k can be handled in a similar manner. In order to gain insight into the 

behaviour of the phase-cycled ∂S/∂θk, we employ a reverse unitary transformation where the 

detected signal is transformed to the time point k. Consider the derivative of the signal in the first 

step of the phase cycle:   

 

 ( )1 1[ , ... ... ]n n k k k n
k

S iTr I U U H U U+ + +
− + +

∂
= ⋅ ρ ⋅ ⋅

∂ θ
 (42) 

 

Because the trace of an operator is invariant to a unitary transformation, the expression within 

the Tr() in Eq. (42) can be restated as:  

 

 
{ }

{ }
1 1 1 1

*

... [ , ... ... ] ...

( : 1) [ , ]

k n n n k k k n n k
k

k k

S iTr U U I U U H U U U U
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+ + + + +
+ − + + +

+
−

∂
= ⋅ ⋅ ρ ⋅ ⋅ ⋅

∂ θ

= ⋅ + ⋅ ρ
 (43) 

 

where the following reverse-transformed observable operator is used:  

 

 *
1 1( : 1) ... ...k n n kI n k U U I U U+ + + +

− + − ++ = ⋅ ⋅  (44) 
 

The effect of phase cycling the RF pulse m > k on the derivative in Eq. (43) is solely to modify 

the operator I−*+(n : k+1). The commutator [ρk, Hk] is unchanged because none of the operators 

preceding the time point k are phase cycled. Therefore, the calculation of the phase-cycled ∂S/∂θk 

is reduced to the calculation of the average value of the operator I−*+(n : k+1) over the phase 

cycle. For phase cycling performed on the pulse m, this is given by  

 

 R*
1 1( : 1) ... ... ... ...iq

PC k mq n n mq k
q

I n k u u u I e u u u− ∆φ+ + + + +
− + − ++ = ⋅ ⋅∑  (45) 

 
We call the operator given by Eq. (45) the phase-cycled reverse-transformed observable 

operator. The error of the phase-cycled signal is:  
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 { }* ( : 1) [ , ]PC k k
k PC

d S i Tr I n k H
d

+
−

⎛ ⎞
= ⋅ + ⋅ ρ⎜ ⎟θ⎝ ⎠

 (46) 
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Appendix C:  Second-order derivative of the final DM.  

 
The formalism of Eq. (4) can be used to obtain an analytic expression for the second derivative 

of the final DM. Differentiating Eq. (4) one more time, we obtain  
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 (47) 

 
Terms 2 and 3 in Eq. (47) are identical but will be kept separate for the purposes of the 

derivation. Manipulation of the four terms yields:  
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 (48) 

 

Addition of  Terms 1 and 2 yields  

 

 * *T1 T2 ( 1: ) [ , ( 1: )]k n ki H k n i H k n+ = − ⋅ + ⋅ ρ +  (49) 
 
Similarly, addition of Terms 3 and 4 gives  

 
 * *T3 T4 [ , ( 1: )] ( 1: )n k ki H k n iH k n+ = ρ + ⋅ +  (50) 
 
The analytic expression for the second DM derivative is obtained by combining Eqs. (49) and 

(50); this is shown in Eq. (18) in the main text.  
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Table 1.  Hamiltonians effective during different intervals of the CP and CPMG pulse sequences 

and the ideal density matrix at the n-th echo.  

 

 CP  CPMG  

Hamiltonian during π pulses  Ix  Iy 

Hamiltonian during τ intervals  Iz Iz 

DM at the n-th echo  (−1)n Iy Iy 
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Table 2.  Analytic cumulative first- and second-order derivatives of the DM at the n-th CP and 

CPMG echo with respect to the duration of the refocusing RF pulse, θ (nominal θ = π).   

 

 ∂ρn/∂θ ∂2ρn/∂θ2  

CP  ( 1) cos( )n
zn I− − ⋅ ωτ  2sin(2 ) cos(2 ) 1( 1) ( 1)

2 2
n n

x yn I n Iωτ ωτ +
− − ⋅ − − ⋅  

Odd n  sin( )zI− ωτ  sin(2 ) 1 cos(2 )( 1)
2 2

n
x yn I Iωτ − ωτ

− − ⋅ −  
CPMG  

Even n 0 
sin(2 )( 1)

2
n

xn I ωτ
− − ⋅  
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Table 3.  The effect of EXORCYCLE phase cycling on the density matrix errors arising from an 

off-resonance π pulse in the spin-echo experiment. ρ4 is the density matrix at the top of the echo; 

∆ω is the resonance offset. The errors shown include the effects of both the off-resonance 

refocusing pulse and off-resonance evolution during the echo time. The phase-cycled quantities 

are: (Step 1) + (Step 3) after the 2-step cycle and (Step 1) − (Step 2) + (Step 3) − (Step 4) after 

the 4-step cycle (corresponding to the receiver cycled as +x, −x, +x, −x). The first derivative is 

zeroed out under the two-step phase cycle, but the second derivative survives the four-step phase 

cycle. The derivatives are shown down to the constant multiplier.  

 

Step 1  Step 2 Step 3 Step 4 Phase of the 
π pulse 

x y −x −y 

After 2-step 
phase cycle 

After 4-step 
phase cycle 

ρ4 +Iy −Iy +Iy −Iy +2Iy  +4Iy 

∂ρ4/∂∆ω 0 −Iz 0 Iz 0  0 

∂2ρ4/∂∆ω2 −Iy +Iy −Iy +Iy −2Iy −4Iy 
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Table 4.  The effect of EXORCYCLE on the signal errors (∆S) arising from a phase error of the 

refocusing π pulse in the spin-echo experiment. ρ3 is the density matrix immediately after the π 

pulse. The signal error ∆S is identical in each step of the four-step phase cycle, corresponding to 

a constant phasing error of the acquired signal.  

 

Phase 
cycle step  Step 1  Step 2 Step 3 Step 4 

H3 +Ix +Iy −Ix −Iy 

R3 2Iz 2Iz 2Iz 2Iz 

ρ3 Ixsinθ2 − Iycosθ2 −Ixsinθ2 + Iycosθ2 Ixsinθ2 − Iycosθ2 −Ixsinθ2 + Iycosθ2 

[ρ3, R3] −i(Ixsinθ2 + Iycosθ2) i(Ixsinθ2 + Iycosθ2) −i(Ixsinθ2 + Iycosθ2) i(Ixsinθ2 + Iycosθ2) 

I−+ I+ −I+ I+ −I+ 

∆S +∆ +∆ +∆ +∆ 
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Table 5. Analysis of the contributions from individual CTPs to the signal error in the 

magnitude COSY experiment. The derivative values (∂S/∂θ3) were obtained using the ECF [Eq. 

(7)] and verified using explicit density-matrix simulations as explained in text. The signal values 

(S) were obtained using explicit DM simulations. For the CTPs not shown here, both the signal 

and ∂S/∂θ3 were identically equal to zero in each step of the phase cycle. The following 

parameters were used: ν1 = 101.37 Hz, ν2 = 250.59 Hz, J = 7.3 Hz, t2 = 23.7 ms, t4 = 57.31 ms. 

With these simulation parameters, the values of S and ∂S/∂θ3 were as follows: a = 74.0733 − 

2.85898 i; b = −32.3254 + 54.4154 i; c = 5.35607 − 0.206726 i; d = −68.7172 + 2.65225 i; e = 

−2.73754 + 4.60826 i; f = −35.0629 + 59.0236 i. S0 was taken as 1000 arbitrary units. In each 

step of the phase cycle p(H3) = ±1.  

 

Step 1  Step 2 After phase cycle 
p2 p3 

S ∂S/∂θ3 S ∂S/∂θ3 S ∂S/∂θ3 

−1 −2 0 c 0 c  0 2c  

−1 −1 a 0 a   0 2a  0 

−1 0 0 d 0 d   2d  

1 −2 0 e  0 e  0 2e  

1 −1 b 0 b 0 2b  0 

1 0 0 f  0 f  0 2f  
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Table 6.  The phase cycle of the DQF COSY pulse sequence shown in Fig. 6. In text we 

consider the effect on the signal of varying the duration of the second RF pulse (which is not 

phase-cycled): ∂S/∂θ3.  

 

 

P1 P2 P3 AQ 

y x y x 

y x −x −y 

y x −y −x 

y x x y 
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Table 7. Analysis of the contributions from individual CTPs to the signal error in the DQF 

COSY experiment. The signal and signal errors were simulated as in Table 5 with the following 

parameters: ν1 = 101.37 Hz, ν2 = 250.59 Hz, J = 7.3 Hz, t2 = 23.7 ms, t5 = 57.31 ms. The results 

were verified using explicit density-matrix simulations as explained in text. For the CTPs not 

shown, both the signal and the signal error were identically equal to zero in each step of the 

phase cycle. With the simulation parameters shown above the signal and error values were as 

follows: a = 2.67803 − 0.103363 i, b = 1.22276 + 31.6806 i, c = −31.6806 + 1.22276 i, d = 

68.7172 − 2.65225 i, e = 1.36877 − 2.30413 i, f = 31.8159 + 18.9002 i, g = −18.9002 + 31.8159 

i, h = −35.0629 + 59.0236 i, aa = −1.3390 + 0.0516816 i, bb = −0.103363 − 2.67803 i, cc = 

4.01705 − 0.155045 i, dd = −2.67803 + 0.103363 i, ee = 31.6806 − 1.22276 i, ff = −34.3586 + 

1.32613 i, gg = −2.65225 − 68.7172 i, hh = −0.684384 + 1.15207 i, ii = −2.30413 − 1.36877 i, jj 

= 2.05315 − 3.45620 i, kk = 1.36877 − 2.30413 i, ll = 18.9002 − 31.8159 i, mm = −17.5315 + 

29.5118 i, nn = 59.02363 + 35.0629 i. S0 = 1000 (arbitrary units); pj is the coherence order at the 

end of interval j.  
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Step 1: 
p[H3*(4:5)] 
= 0 

Step 2: 
p[H3*(4:5)] = 
±1 

Step 3: 
p[H3*(4:5)] = 
0 

Step 4: 
p[H3*(4:5)] = 
±1 

Phase-cycled 
p2 p3 p4 

S ∂S/∂θ3 S ∂S/∂θ3 S ∂S/∂θ3 S ∂S/∂θ3 S ∂S/∂θ3 
−1 −2 −2 0 0 0 aa 0 0 0 −aa 0 0 
−1 −2 −1 a bb a 0 a −bb a 0 4a 0 
−1 −2 0 0 0 0 cc 0 0 0 −cc 0 0 
−1 −1 −2 0 0 0 dd 0 0 0 dd 0 2dd 
−1 −1 −1 b ee c 0 −b ee −c 0 0 2ee 
−1 −1 0 0 0 0 ff 0 0 0 ff 0 2ff 
−1 0 −1 d gg −d 0 d −gg −d 0 0 0 
−1 1 −2 0 0 0 −dd 0 0 0 −dd 0 −2dd 
−1 1 −1 −b −ee c 0 b −ee −c 0 0 −2ee 
−1 1 0 0 0 0 −ff 0 0 0 −ff 0 −2ff 
−1 2 −2 0 0 0 −aa 0 0 0 aa 0 0 
−1 2 −1 a bb a 0 a −bb a 0 4a 0 
−1 2 0 0 0 0 −cc 0 0 0 cc 0 0 
1 −2 −2 0 0 0 hh 0 0 0 −hh 0 0 
1 −2 −1 e ii e 0 e −ii e 0 4e 0 
1 −2 0 0 0 0 jj 0 0 0 −jj 0 0 
1 −1 −2 0 0 0 kk 0 0 0 kk 0 2kk 
1 −1 −1 f ll g 0 −f ll −g 0 0 2ll 
1 −1 0 0 0 0 mm 0 0 0 mm 0 2mm 
1 0 −1 h nn −h 0 h −nn −h 0 0 0 
1 1 −2 0 0 0 −kk 0 0 0 −kk 0 −2kk 
1 1 −1 −f −ll g 0 f −ll −g 0 0 −2ll 
1 1 0 0 0 0 −mm 0 0 0 −mm 0 −2mm 
1 2 −2 0 0 0 −hh 0 0 0 hh 0 0 
1 2 −1 e ii e 0 e −ii e 0 4e 0 
1 2 0 0 0 0 −jj 0 0 0 jj 0 0 
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Table 8.  The phase cycle of the Jeener-Broekaert pulse sequence shown in Fig. 7.  

 

 

P1 P2 P3 P4 AQ 

x x y x x 

x x y y y 

x x y −x −x 

x x y −y −y 
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Figure Captions  
 

 

 

Fig. 1  A general representation of an NMR pulse sequence and the notation used in the present 

work. The intervals t1, t2,... can represent RF pulses, gradient pulses and evolution delays. The 

generalised times θk and the spin Hamiltonians Hk are both dimensionless, as explained in text. 

The rotating-frame spin Hamiltonian within each  interval is assumed to be constant.   

 

 

 

Fig. 2  The Carr-Purcell (CP) and Carr-Purcell-Meiboom-Gill (CPMG) experiments. The two 

experiments differ by the phase of the refocusing π pulses: α = x for CP and α = y for CPMG. 

Vertical arrows indicate the echoes. In Results and Discussion, the effects of mis-setting the 

duration of the refocusing pulses are considered.  

 

 

 

Fig. 3  The Ix, Iy and Iz components of the DM errors of CP and CPMG echoes as a function of n. 

The errors plotted are the Taylor expansions around θ = π truncated at the sixth-order derivative. 

The derivatives were obtained using the error commutator formalism. Parameters used: ωτ = 2, 

miscalibration of the refocusing π pulse δθ = −π/18, spin relaxation was neglected. The errors 

are shown as a fraction of the equilibrium magnetisation, M0. In both plots, the dashed, the solid 

and the dotted lines represent the relative errors of Ix, Iy and Iz, respectively. The ECF errors were 

compared to the “exact” errors computed by explicitly simulating the evolution of the DM under 

mis-set refocusing pulses (not shown) and matched the latter to within 0.001% of M0 for both CP 

and CPMG.  

 

 

 

Fig. 4  Spin Echo pulse sequence: θ1 = π/2, θ3 = π and t2 = t4. The phase cycle used is the four-

step EXORCYCLE [12]: the π/2 RF pulse has a constant phase +x; the phase of the π pulse is 

cycled as +x, +y, −x, −y; and the receiver is cycled as +x, −x, +x, −x.  
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Fig. 5  (A) The magnitude COSY pulse sequence. (B) Coherence transfer pathways for a system 

of two scalar-coupled spins-1/2. The solid lines show the observable CTPs. The dashed lines 

show the CTPs contributing to the error of the phase-cycled signal. As explained in text, only the 

CTPs that: (1) end in p4 = 0 or −2 and (2) exhibit ∆p3 = 1, −1 or −3 contribute to the error of the 

phase-cycled signal.   

 

 

 

Fig. 6  Double-quantum filtered COSY pulse sequence [43,44]. The phase cycle selecting double 

quantum-filtered CTPs is shown in Table 6.  

 

 

 

 

Fig. 7  Jeener-Broekaert pulse sequence used to select the NMR signal from quadrupolar nuclei 

in partially aligned environments [9,37]. The second π/4 RF pulse and the receiver are phase-

cycled according to Table 8. The perfect selection of quadrupolar order requires that the phases 

of the π/2 pulse and the first π/4 RF pulse be orthogonal. The time between the two π/4 pulses is 

assumed to be negligibly small.  

 

 

 

 
Fig. 8  Jeener-Broekaert spectra of a mixture of single spin-1 nuclei in a partially aligned 

environment (60%; ω0 = 1113 Hz; ωQ = 2000 Hz) and an isotropic environment (40%; ω0 = 1113 

Hz): (a) numerical density-matrix simulation assuming the perfectly orthogonal phases P1 and 

P3 (see Table 8); (b) numerical density-matrix simulation with the phase of the first π/4 pulse 

slightly mis-set (P3 = 0.48π); (c) the difference between (b) and (a); (d) the difference between 

the two spectra obtained using the ECF [Eq. (14)]. The ECF difference spectrum matches that 

computed in explicit DM simulations.  
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Figure 3, Momot and Takegoshi, Robustness of NMR pulse sequences
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Figure 4, Momot and Takegoshi, Robustness of NMR pulse sequences
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Figure 5, Momot and Takegoshi, Robustness of NMR pulse sequences
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Figure 6, Momot and Takegoshi, Robustness of NMR pulse sequences
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Figure 7, Momot and Takegoshi, Robustness of NMR pulse sequences
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Figure 8, Momot and Takegoshi, Robustness of NMR pulse sequences
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