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Abstract.   34 

Mutations in multiple oncogenes including KRAS, CTNNB1, PIK3CA and FGFR2 have been 35 

identified in endometrial cancer. The aim of this study was to provide insight into the 36 

clinicopathological features associated with patterns of mutation in these genes, a necessary 37 

step in planning targeted therapies for endometrial cancer. 466 endometrioid endometrial 38 

tumors were tested for mutations in FGFR2, KRAS, CTNNB1, and PIK3CA. The 39 

relationships between mutation status, tumor microsatellite instability (MSI) and 40 

clinicopathological features including overall survival (OS) and disease-free survival (DFS) 41 

were evaluated using Kaplan-Meier survival analysis and Cox proportional hazard models. 42 

Mutations were identified in FGFR2 (48/466); KRAS (87/464); CTNNB1 (88/454) and 43 

PIK3CA (104/464).  KRAS and FGFR2 mutations were significantly more common, and 44 

CTNNB1 mutations less common, in MSI positive tumors. KRAS and FGFR2 occurred in a 45 

near mutually exclusive pattern (p=0.05) and, surprisingly, mutations in KRAS and CTNNB1 46 

also occurred in a near mutually exclusive pattern (p=0.0002). Multivariate analysis revealed 47 

that mutation in KRAS and FGFR2 showed a trend (p=0.06) towards longer and shorter 48 

DFS, respectively. In the 386 patients with early stage disease (stage I and II), FGFR2 49 

mutation was significantly associated with shorter DFS (HR=3.24; 95% confidence interval, 50 

CI, 1.35-7.77; p=0.008) and OS (HR=2.00; 95% CI 1.09-3.65; p=0.025) and KRAS was 51 

associated with longer DFS (HR=0.23; 95% CI 0.05-0.97; p=0.045). In conclusion, although 52 

KRAS and FGFR2 mutations share similar activation of the MAPK pathway, our data 53 

suggest very different roles in tumor biology. This has implications for the implementation of 54 

anti-FGFR or anti-MEK biologic therapies.   55 

 56 

57 
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Introduction.  58 

Endometrial cancer comprises about 4% of cancer in women globally, with higher 59 

incidence in developed countries. The American Cancer Society estimates endometrial 60 

cancer will be the fourth most common cancer diagnosed and the eighth leading cause of 61 

cancer deaths in women in 2010 [1]. Approximately 80% of women are diagnosed with early 62 

stage cancers, clinically confined to the uterus. Early diagnosis of endometrial cancer 63 

contributes to the relatively good overall long-term survival. However, for women who 64 

present with late stage disease or who suffer recurrences, outcomes are poor. The five-year 65 

survival for women with recurrent, progressive or metastatic endometrial cancer is estimated 66 

as only 13% [2]. 67 

Considerable effort has gone into developing systems to more effectively identify 68 

patients with endometrioid endometrial cancer that carry an elevated risk of recurrence so 69 

they can be targeted for adjuvant therapies (radiation, hormonal therapy, chemotherapy or 70 

combination therapies). Those patients that present with extrauterine disease (stage III/IV) 71 

carry a high risk of recurrence and progression. The majority of patients (~80%), however, 72 

present with tumors clinically confined to the uterus (stage I/II). In these early stage patients, 73 

multiple studies have shown that the risk of recurrence is associated with tumor grade, depth 74 

of myometrial invasion, occult extension into the cervix and tumor cell invasion of lymphatic 75 

vessels (lymphovascular space invasion: LVSI), where high grade is the most widely 76 

accepted adverse prognostic marker [2,3]. The identification of molecular prognostic markers 77 

that could be incorporated into a risk stratification model is an unmet clinical need.  78 

Since 1988, the International Federation of Gynecology and Obstetrics (FIGO) has 79 

recommended full systematic pelvic and para-aortic lymphadectomy as part of staging for 80 

endometrial cancer. A new 2009 FIGO staging system has recently been implemented 81 

where tumors with no evidence of myometrial invasion are combined with tumors that show 82 

invasion to less than 50% of the myometrium and grouped into stage 1A [4]. There is 83 

considerable controversy in the literature as to the benefit of lymphadectomy (measured as 84 
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disease-free and overall survival) in management of endometrial cancer patients.  Some of 85 

the conflicting results may reflect difference in study designs and analysis methods. Some 86 

studies have reported improved survival in those patients with early stage cancers but only in 87 

those with high histologic grade [5]. More recently, there have been several large multicenter 88 

clinical trials that have indicated systematic pelvic lymphadectomy does not improve disease 89 

free or overall survival [6,7]. Thus, for many patients in the United States and most patients 90 

worldwide, lymph nodes are not removed and patients are treated based on uterine risk 91 

factors alone. The development of prognostic markers that could be used for risk 92 

stratification and to inform subsequent treatment options is clearly needed for early stage 93 

patients.  94 

FGFR2 has been shown to be activated in a number of cancers due to gene 95 

amplification [8,9,10] and point mutation [11,12,13]. Our group previously reported somatic 96 

activating fibroblast growth factor receptor 2 (FGFR2) mutations in 18/115 (16%) 97 

endometrioid endometrial cancers [14]. Two independent studies subsequently reported a 98 

mutation frequency of 10% [11,15]. In our initial analysis of 115 cases there was over-99 

representation of higher stage cancers that subsequently recurred and of tumors that had 100 

lost DNA mismatch repair (MSI-positive cancers). The objective of the current study was to 101 

determine the prevalence of FGFR2, CTNNB1, KRAS and PIK3CA mutation in a large, 102 

unselected cohort of endometrioid endometrial cancers and to determine the relationship 103 

between mutation status and clinicopathologic variables including outcome. Mutations in 104 

PTEN were not included in this analysis due to the increased cost associated with 105 

sequencing all 9 exons of this tumor suppressor gene. In addition, the high prevalence of 106 

PTEN aberration (70%) argued against a possible association with poor prognosis in this 107 

tumor type  108 

 109 

110 
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Materials and Methods.  111 

Ethics statement 112 

All research subjects provided written consent to ongoing protocols 91-507 and 93-113 

0828, approved by the Washington University’s Human Research Protection Office 114 

continuing Review Committee. The work performed at TGen was determined to be exempt 115 

from IRB approval following review and receipt of a Verification of Protections for Human 116 

research subjects form signed by Dr Goodfellow and a copy of the blank consent form.  117 

 118 

Study participants and clinical data 119 

 Tumor specimens were prospectively collected at the time of hysterectomy (1991-2006) 120 

for patients treated by the Division of Gynecologic Oncology at Washington University 121 

School of Medicine/Barnes–Jewish Hospital.  Surgical staging and tumor grade was 122 

assigned on the basis of FIGO 1988. Patients who had received preoperative radiation or 123 

chemotherapy were excluded from analysis. The prospectively collected clinical and 124 

pathologic information was stored in a computerized database. Following their initial 125 

treatment, these patients were routinely followed at 3-month intervals for the first 2 years and 126 

then at 6-month intervals for at least 3 years. Disease surveillance included physical 127 

examination and periodic pap smears. Diagnostic imaging and directed biopsies were 128 

performed as clinically indicated. Histological confirmation of all recurrences was performed. 129 

Follow-up data were abstracted from clinic charts, hospital records, and the Siteman Cancer 130 

Center/Barnes-Jewish Hospital’s cancer registry.   131 

 Patients for whom follow-up data were unavailable or who died perioperatively (within 132 

30 days of hysterectomy) were excluded from the analyses. The study population comprised 133 

466 patients with endometrioid endometrial cancer, 386 of which had disease confined to the 134 

uterus (stage I or II). 135 

 136 

Tissue processing, FGFR2 mutation analysis   137 
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 Tissue specimens and blood were obtained at the time of surgery, snap frozen, and 138 

stored at -70°C.  Tumors were evaluated to select tissues with >66% neoplastic cellularity for 139 

DNA preparations. DNA was isolated using proteinase K and phenol extraction or the 140 

DNeasy Tissue Kit (Qiagen Inc, Valencia, CA). DNA was extracted from peripheral blood 141 

leukocytes or, when blood was not available, from uninvolved myometrium, as previously 142 

described [16,17]. 143 

 Exons 7, 8, 10, 13 and 15 of FGFR2, exon 2 of KRAS, exon 3 of CTNNB1, and exons 9 144 

and 20 of PIK3CA were tested for mutations by direct sequencing. PCR primers and 145 

conditions are available upon request [18,19]. Sequences were analyzed using Sequencher 146 

(Gene Codes, Ann Arbor, MI). Mutation analysis was performed on blinded samples. All 147 

potential mutations were confirmed with repeat amplification and sequencing of the exon of 148 

interest.  Matched normal DNA was analyzed to confirm the mutation arose somatically for 149 

all mutations in FGFR2 and KRAS and CTNNB1. For PIK3CA, rare and novel mutations 150 

were confirmed to have arisen somatically and common tumor-associated mutations were 151 

confirmed in the majority of samples.  152 

 153 

Microsatellite instability (MSI) testing  154 

 MSI analysis is routinely performed for all tumors. The MSI status and methods used 155 

for the majority of the cases reported here have been previously described [20].  156 

 157 

Statistical analysis 158 

The relationship between gene mutation status and covariates was assessed using 159 

Fisher’s exact test or Student’s t-test as appropriate. Overall survival (OS) was defined as 160 

the time from date of surgery to death due to any cause. Survivors were censored at the date 161 

of last contact. Disease free survival (DFS) was defined as the time from surgery to 162 

recurrence or progression. Patients were excluded if they had died within 30 days of surgery. 163 

The Kaplan-Meier product limit method was used to estimate OS and DFS. Univariate and 164 
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multivariate Cox proportional hazard models were fitted to assess the effects of the 165 

covariates on OS and DFS, and the proportional hazard assumptions were checked using 166 

scaled Schoenfeld residuals [21]. Clinically accepted poor prognostic covariates that were 167 

significant on univariate analysis were included in the model including stage, grade and age. 168 

In the analysis of DFS, Gray’s competing risk methods were also used to account for the 169 

potential competing effect of death [22]. All analyses were two-sided and significance was 170 

set at a p-value of 0.05. Statistical analyses were performed using SAS (SAS Institutes, 171 

Cary, NC), as well as the cmprsk R (http://biowww.dfci.harvard.edu/~gray) statistical 172 

packages for competing risk analysis. 173 

174 



 

Page - 9 - 

 175 

Results.  176 

The mean age at diagnosis for the 466 cases analyzed was 63.7 years with a mean 177 

follow-up time of 70.2 months (0.7-176).  The majority of patients presented with early-stage 178 

disease (386 or 83% stage I or II) (Table 1). Mutation analysis was successful for the four 179 

genes of interest as follows: FGFR2 (466 tumors, 100%); KRAS and PIK3CA (464 tumors, 180 

99%); and CTNNB1 (454 tumors, 97%).  Mutation data for all four genes was obtained for 181 

453 cases  (97%).  182 

 183 

Prevalence and spectrum of FGFR2 mutations 184 

We identified FGFR2 mutations in 48/466 (10.3%) tumors (Table S1), including 115 185 

previously investigated cases [18]. One FGFR2 sequence alteration we originally reported 186 

as a frameshift (c.2287-88delCT) was excluded from analyses because of uncertainty as to 187 

whether the sequence change was functionally significant. The most common mutations 188 

were S252W (n=18; 37%) and N550K (n=12, 25%). All together, 7 mutations affecting 6 189 

codons (S252W, P253R, Y376C, C383R, N550K, N550H and K660E) accounted for 90% of 190 

the mutations identified (Figure 1). We identified two additional novel mutations in the 191 

transmembrane domain not previously described (V396D and L398M), both of which we 192 

presume to be pathogenic. The valine at FGFR2 codon 396 is highly conserved across 193 

species and between FGFR1-FGFR3 family members. Furthermore, similar substitutions in 194 

the transmembrane region of FGFR3 have been shown to be activating. Replacement of a 195 

hydrophobic residue with a glutamic acid in FGFR3 (A391E) has been identified both in the 196 

germline of patients with Crouzon syndrome [23] and as a somatic mutation in bladder 197 

cancer [24].  Functional studies have indicated the A391E mutation stabilizes the active 198 

dimer via hydrogen bonds [25]. We also hypothesize that by analogy the L398M mutation (a 199 

conservative substitution resulting in the introduction of a larger hydrophobic residue) is 200 

similarly pathogenic. This mutation may result in a structural change leading to a more active 201 
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conformation, or may promote receptor activation independent of structural changes e.g. 202 

altered protein turnover as has been shown for the G380R mutation in FGFR3 [26]. 203 

Functional studies will be required to conclusively confirm these mutations result in receptor 204 

activation. 205 

 206 

Prevalence and spectrum of KRAS mutations 207 

We identified mutations at codons 12 and 13 in KRAS in 87/464 (19%) samples, 208 

including 115 previously investigated cases [19]. The two most common mutations were 209 

G12D (33%) and G12V (29%), which is similar to the frequencies observed in the Catalog of 210 

Somatic Mutations in Cancer (COSMIC) (39% and 22%, respectively) in endometrial tumors. 211 

All mutations observed had been reported previously (Table S2).  212 

 213 

Prevalence and spectrum of PIK3CA mutations 214 

We identified 29 different mutations in exon 9 and 20 of PIK3CA in a total of 104/464 215 

(22%) cases (Table S3). The majority of these (65/104, 63%) occurred in the kinase domain 216 

encoded by exon 20 with the two most common mutations being E545K and H1047R. We 217 

identified 2 novel mutations in exon 20, L1006F and Q1014H. These non-conservative 218 

missense changes occurred in the highly conserved C-terminal portion of the protein. In 219 

silico predictions using SIFT indicate L1006F would be tolerated but Q1014H would not, 220 

whereas PolyPhen classifies L1006F as possibly damaging and Q1014H as benign. 221 

Although, in the absence of functional studies, the caveat exists that these mutations may 222 

indeed be passenger mutations and impart no increased “fitness” to the tumor, they were 223 

included in the current statistical analysis as pathogenic given that the functional validation of 224 

many more common mutations as oncogenic has not been reported.  225 

 226 

Prevalence and spectrum of CTNNB1 mutations 227 

We identified 21 different mutations in CTNNB1 in 88/454 (19%) endometrioid tumors 228 
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(Table S4). The three most common mutations occurred at D32Y (13%), S33C (11%), S37F 229 

(17%). All mutations had been reported previously. 230 

 231 

Prevalence of microsatellite instability and association with mutations 232 

158/466 (34%) of tumors were MSI positive. Mutations in KRAS were significantly 233 

more common in MSI positive tumors (42/158; 28%) compared to microsatellite stable (MSS) 234 

tumors (45/306; 14%) (p= 0.003, Fisher’s exact test). Similarly, mutations in FGFR2, were 235 

significantly more common in MSI positive tumors (24/158; 15%) compared to MSS tumors 236 

(24/308; 8%) (p=0.016). In contrast, mutations in CTNNB1 were significantly less common in 237 

MSI positive tumors (17/152; 11%) compared to MSS tumors (71/302; 24% p=0.002). 238 

Mutations in PIK3CA were more common in MSI positive tumors (43/158; 27%) compared to 239 

MSS tumors (61/306; 20%), although this was not significant (p=0.08). Figure 2 summarizes 240 

the patterns of mutations and association with MSI status.  241 

Based on our understanding of receptor tyrosine kinase-MAPK signaling, and our 242 

preliminary analysis of 115 endometrial tumors, we anticipated that FGFR2 and KRAS 243 

mutations would occur in a mutually exclusive pattern. Indeed, only 4/87 (5%) KRAS 244 

mutation-positive tumors carried a FGFR2 mutation (S252W x2, P253R, L398M), whereas 245 

44/377 (12%) KRAS mutation negative tumors carried an FGFR2 mutation (p=0.05, two-246 

tailed Fisher’s exact test). To investigate whether the tumors carrying mutations in both 247 

FGFR2 and KRAS were polyclonal, DNA from a different portion of the tumor was extracted 248 

from archived paraffin tissue and in all four cases both mutations were confirmed.  249 

Perhaps the most surprising finding from this cohort is that mutations in KRAS and 250 

CTNNB1 demonstrated a similar pattern of mutual exclusivity and rarely occurred together. 251 

In the 453 tumors sequenced for both genes, 88 and 85 carried mutations in CTNNB1 and 252 

KRAS, respectively. Of those tumors with CTNNB1 mutations, only 5/88 (5.7%) carried 253 

KRAS mutations, whereas 80/365 (22%) of the CTNNB1-wildtype tumors carried a KRAS 254 

mutation (p=0.0002, two-tailed Fisher’s exact test). Given CTNNB1 mutations were 255 
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significantly more common in MSS tumors, we looked for the relationship between KRAS 256 

and CTNNB1 mutations in both MSS and MSI tumors. This association was even stronger in 257 

those tumors that demonstrated microsatellite stability where 1/71 (1%) CTNNB1 mutation 258 

positive tumors carried a KRAS mutation, whereas 44/230 (19%) of the CTNNB1 wildtype 259 

tumors carried a KRAS mutation (p=0.00004, two-tailed Fisher’s exact test). In contrast, this 260 

association was not present in those tumors with MSI as 4/17 (24%) CTNNB1 mutation 261 

positive tumors carried an activating KRAS mutation whereas 36/135 (27%) of the CTNNB1 262 

wildtype tumors carried a KRAS mutation.  263 

Surprisingly, given the near mutual exclusivity of FGFR2 and KRAS, and of CTNNB1 264 

and KRAS, no such pattern was seen for FGFR2 and CTNNB1. Specifically 8/88 (9%) 265 

CTNNB1 mutation positive tumors carried an FGFR2 mutation, whereas 40/365 (11%) 266 

CTNNB1 wildtype tumors carried an FGFR2 mutation. Within the MSS cohort of tumors, 7/71 267 

(10%) CTNNB1 mutation positive tumors carried an FGFR2 mutation whereas 17/230 (7%) 268 

of the CTNNB1 wildtype tumors carried an FGFR2 mutation.   269 

 270 

Association of mutations with clinicopathologic features  271 

There was no association between FGFR2, KRAS, PIK3CA mutation and age at 272 

diagnosis. CTNNB1 mutations were, however, significantly more common in patients 273 

diagnosed before age 60 (49/183, 27%) compared to those diagnosed after age 60 (39/271, 274 

14%) (p=0.0016, two-tailed Fisher’s exact test). We chose 60 as our age cutoff based on 275 

previous data indicating reduced survival in patients >60 [2]. There was no association 276 

between mutations in any of the four oncogenes investigated and patient race.  FGFR2 277 

mutations were more common in Caucasian/Asian cases (46/411, 11%) than African 278 

American patients (2/55, 3%), albeit this was not significant (p=0.10). PIK3CA mutations 279 

were significantly more common in stage I/II tumors (93/384, 24%) compared to late stage 280 

tumors (11/80, 13%) (p=0.04, two tailed Fisher’s exact test) (Table S5). CTNNB1 mutations 281 

were significantly associated with low tumor grade: grade 1, 59/243, (24%); grade 2, 25/149 282 
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(17%); grade 3, 4/62 (6%) (p=0.0027, two-tailed Fisher’s exact test) and FGFR2 mutations 283 

showed a trend towards an association with grade (grade 1, 29/249 (12%); grade 2 17/152 284 

(11%); grade 3, 2/65 (3%) (p=0.10) (Table S6). As well and moderately differentiated (grade 285 

1,2) tumors have been shown to share a similar genetic etiology, we also compared mutation 286 

frequency in this group compared to high grade tumors. When analyzed in this way, 287 

CTNNB1 mutations were significantly less common in high grade tumors, 4/62 (6%) 288 

compared to lower grade tumors 84/392, (21%) (p=0.004, two-tailed Fisher’s exact test) as 289 

were FGFR2 mutations (grade 1/2, 46/401 (11%); grade 3, 2/65 (3%) (p=0.04, two-tailed 290 

Fisher’s exact test).  291 

 292 

Mutations, patient outcome and other clinicopathologic features 293 

Mutation status for the four oncogenes investigated was not associated with overall 294 

survival (OS) in the total cohort of 466 cases. OS was associated with age >60 (p=0.0002), 295 

advanced stage (III/IV) (p<0.0001), FIGO tumor grade 2 (p=0.0014), FIGO grade 3, 296 

p<0.0001) and adjuvant therapy (p<0.0001) (Table 2). Multivariate analysis did not indicate 297 

that the mutation status of any gene was associated with OS but age >60yrs, advance stage 298 

and higher grade remained significantly associated with shorter OS (Table 2, data not 299 

shown). 300 

The presence of KRAS mutation was associated with longer disease free survival 301 

(DFS) (HR=0.40 95% CI 0.17-0.93; p=0.03) whereas the mutation status of other genes was 302 

not significantly associated with DFS. As expected, DFS was associated with higher stage 303 

(III/IV) (p<0.0001), FIGO tumor grade 2 (p=0.0019) and 3 (p<0.0001) and adjuvant therapy 304 

(p<0.0001) in univariate analysis. Multivariate analysis showed that the presence of a KRAS 305 

mutation remained significantly associated with longer DFS  (HR=0.43 95% CI 0.18-0.99; 306 

p=0.048) (Table 2). When FGFR2 mutation status was incorporated into a multivariate 307 

analysis it showed a trend towards being associated with shorter DFS (HR=1.83 95% CI 308 

0.90-3.73; p=0.097) although this finding was of marginal statistical significance (Table 2). 309 
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When both genes were included in a multivariate model neither reached significance (Table 310 

2). CTNNB1 and PIK3CA mutations had no effect on the multivariate model (data not 311 

shown). We did not include adjuvant therapy in the multivariate model as analysis indicated it 312 

was not independent of stage and grade.  313 

 314 

Mutations in early-stage disease and association with patient outcome  315 

 We then tested whether mutation status of any gene was associated with outcome in 316 

patients with early stage disease, defined as all stage I and II tumors. Univariate analysis 317 

revealed shorter OS is associated with age (p=0.004), stage II (p=0.007) and high tumor 318 

grade (FIGO grade 3) (p<0.0001) (Table 3). Both FGFR2 mutation positivity and grade 2 319 

differentiation showed a trend towards shorter OS (HR=1.74; 95% CI 0.97-3.12; p=0.065 and 320 

HR= 1.52; 95% CI 0.98 – 2.33; p=0.059, respectively).  When FGFR2 mutation was 321 

analyzed taking into consideration the effects of known prognostic factors variables, it 322 

became more significantly associated with OS (HR= 2.00 95% CI 1.09-3.65; p=0.025) (Table 323 

3).   324 

 Univariate analysis revealed only high grade (p=0.0005); stage II (p=0.009); adjuvant 325 

therapy (p=0.049) and the presence of an FGFR2 mutation (p=0.019) were significantly 326 

associated with shorter disease free survival (DFS) (Table 3). KRAS mutation showed a 327 

trend towards associating with longer DFS (HR=0.26 95% CI 0.06-1.11 p=0.067) whereas 328 

CTNNB1 and PIK3CA mutations were not associated with DFS. When each gene was 329 

analyzed alone in multivariate analysis of early stage cancers, FGFR2 mutation status 330 

remained a significant factor associated with reduced DFS (HR=3.24; 95% CI 1.35-7.77; 331 

p=0.008) (Table 3) and KRAS was significantly associated with longer DFS (HR= 0.23 CI 332 

0.05-0.97 p=0.045). When both genes were included in the model, FGFR2 remained 333 

significant (HR= 3.03 CI 1.26-7.27 p=0.013). Kaplan-Meier survival plots showing the 334 

relationship between FGFR2 mutation and DFS and OS in early stage cancers are 335 

presented in Figure S1. 336 
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 337 

Discussion.  338 

Here we show the patterns of mutations in four endometrial oncogenes in the largest 339 

cohort of endometrioid endometrial tumors reported to date (n=466). Given the large number 340 

of tumors in this single institution Washington University School of Medicine cohort, novel 341 

insights have been revealed which have not been evident with smaller subsets of tumors or 342 

in some cases where disparate evidence had been reported in smaller panels of tumors 343 

[27,28,29,30].  344 

One finding that may have implications for understanding the biology underlying 345 

endometrial cancer is the hereto-unrecognized mutual exclusivity of CTNNB1 and KRAS 346 

mutations in this cohort. Although 5 tumors were identified with mutations in both genes the 347 

vast majority of tumors only carried mutations in either KRAS or CTNNB1 (p=0.0002). This 348 

finding was not a reflection of an association with MSI positive and negative tumors because 349 

when we looked in only the MSS tumors, the association was even more significant. Only 1% 350 

CTNNB1 mutation positive tumors carried a KRAS mutation whereas 19% of the CTNNB1 351 

wildtype tumors carried a KRAS mutation (p=0.00004, two-tailed Fisher’s exact test). In most 352 

other cancers, mutual exclusivity of gene activation is observed between two proteins that 353 

map to the same signaling pathway, which makes intuitive sense, as activation of the same 354 

pathway at two different nodes is redundant. Although KRAS and CTNNB1 have very distinct 355 

roles in the MAPK pathway and the Wnt/TCF signaling pathway respectively, recent data 356 

suggests novel points of pathway crosstalk in some cell types [31]. Additional work is needed 357 

to identify the mechanistic basis and biological significance of the mutual exclusivity of KRAS 358 

and CTNNB1 mutations in endometrial cancer. We hypothesize the presence of 359 

unappreciated crosstalk or a shared effector molecule between the two pathways in 360 

endometrial cells. Alternatively, the caveat exists that these two pathways do not 361 

demonstrate redundancy at the level of a shared effector molecule but perhaps merely 362 
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demonstrate biological redundancy with regard to the functional effect activation of either 363 

pathway has on the tumorigenic phenotype. e.g. uncontrolled cellular proliferation. 364 

In contrast to a previous study, our data suggest that mutations in exon 20 of PIK3CA 365 

are not associated with poor prognosis [29]. Since finalizing these analyses, it has been 366 

reported that mutations in exons 1-7 of PIK3CA are prevalent in endometrial cancer, and 367 

comprise 50% of all mutations identified [32]. Restricting mutation analysis to exons 9 and 368 

20 is a limitation of the current study, and it is possible that thorough mutational analyses 369 

may yet reveal associations with clinicopathologic variables.  370 

 In this single institution series of endometrioid endometrial cancers, the overall 371 

FGFR2 mutation rate was 10% (48/466). The 10% mutation rate for this large, unselected 372 

series is consistent with the mutation rate reported by Dutt et al. (9/86, 10%) [33] and 373 

Cheung et al. (24/243, 10%) [15]. In our initial report of FGFR2 mutations in endometrial 374 

cancers we oversampled for cases that had recurred and tumors with microsatellite instability 375 

[18], which may explain in part the higher rate of mutations in that selected population, given 376 

the association of FGFR2 mutation with both defective DNA repair and recurrence in the 377 

current unselected cohort.  378 

A number of clinical and pathologic prognostic factors have been evaluated in the 379 

search for markers to more accurately predict risk of recurrence or death for patients with 380 

endometrial carcinoma.  Past studies have suggested tumor markers p53, p16, estrogen 381 

receptor, progesterone receptor and HER2/neu may have clinical utility in endometrial 382 

cancer for predicting lymph node metastasis, prognosis and in directing treatment [34]; 383 

however, no molecular markers are routinely used clinically. Tumor aneuploidy has also 384 

been assessed and may be of some prognostic benefit for low grade cancers [35], however 385 

given its requirement for fresh tissue, it is not always clinically practical. An ongoing 386 

prospective multicenter study called Molecular Markers in Treatment in Endometrial Cancer 387 

(MoMaTEC) is currently accruing patients in Europe to investigate the predictive value of 388 

p53, p16, estrogen receptor, progesterone receptor and HER2/neu markers.  389 
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 390 

In this study we have identified that FGFR2 and KRAS have prognostic significance 391 

within the cohort of endometrioid endometrial cancers. Our data suggest that FGFR2 392 

mutations occur more often in the well and moderately differentiated endometrioid tumors 393 

(G1, G2) compared to undifferentiated tumors and possibly identify the “bad actors” in an 394 

otherwise better prognosis histological subgroup. Recent data in an independent cohort of 395 

endometrial tumors reported a similar frequency of mutations across G1-G3 tumors [15]. 396 

This disparity could be explained by the fact that in that cohort, the pathogenicity of the 397 

identified mutations is uncertain as many were novel and their somatic status was not 398 

confirmed. A poorly differentiated histology was one of the strongest predictors of recurrence 399 

and/or progression in both the overall cohort and in all early stage cancers in both univariate 400 

and multivariate analyses, consistent with previous reports [2,3,5,36].  Notably, the 401 

association of FGFR2 with shorter DFS is more significant in the multivariate analyses where 402 

the association of high grade with poor prognosis is accounted for, compared to univariate 403 

analysis. These findings strongly suggest that the observed effect of FGFR2 is not simply 404 

due to the confounding effects of other known prognostic factors, and underscore the likely 405 

functional significance of this gene in determining survival.  406 

 A novel finding of this present study is that KRAS mutation is associated with longer 407 

DFS in the total cohort in both univariate and multivariate analysis. In the subset of early 408 

stage cases, KRAS mutation was significantly associated with longer DFS in multivariate 409 

analysis after adjusting for grade and stage. We can speculate that the pattern of mutual 410 

exclusivity of FGFR2 and KRAS suggests that the role of these two genes in endometrial 411 

cancer initiation is likely to be through activation of the MAPK signaling pathway. The fact 412 

that they have different and indeed opposing effects on disease free survival leads us to 413 

further speculate that activation of “non-MAPK” pathways downstream of FGFR2 is driving 414 

the association of this gene with poor prognosis. 415 
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 Our finding that FGFR2 mutation is an independent prognostic marker in patients with 416 

early stage endometrioid endometrial cancer suggests that FGFR2 mutation testing could 417 

ultimately prove useful in the management of endometrial cancer. Current National 418 

Comprehensive Cancer Network (NCCN) guidelines for endometrioid endometrial cancer 419 

confined to the uterus recommends more aggressive adjuvant therapy as tumor grade and 420 

tumor stage increases, and also where multiple adverse prognostic indicators are present, 421 

including lymphovascular space involvement. We envisage that the mutation status of 422 

FGFR2 could be used to inform clinical decision making in a similar way to a poorly 423 

differentiated histology. Specifically, the presence of an FGFR2 mutation and absence of a 424 

KRAS mutation would stratify a patient as having high-risk disease, resulting in a 425 

recommendation for more aggressive therapy (See Figure 3).  426 

Replication of this finding in an independent patient cohort is an important step in 427 

validating the potential clinical utility of FGFR2 as a prognostic marker. The key limitations to 428 

our current finding are 1) that the patient samples are from a single institution, 2) the 429 

frequency of recurrence in early stage endometrioid cases is relatively low in this unselected 430 

cohort and 3) we had low number of late stage G1 and G2 tumors in this cohort which may 431 

have contributed to lack of statistical significance for FGFR2 in the entire cohort. We are 432 

currently sequencing the four exons of FGFR2 containing almost all reported mutations in 433 

endometrial cancer samples collected as part of the multi-institutional GOG-210 clinical trial 434 

"Molecular Staging of Endometrial Cancer". This cohort also allows the assessment of 435 

FGFR2 mutations on endometrial cancer specific survival as well as overall survival, given 436 

the extensive clinical annotation of these samples.  437 

Preclinical data suggests that FGFR2 mutation testing may identify patients whose 438 

tumors will be sensitive to FGFR inhibition [11,37]. A large number of FGFR inhibitors are in 439 

development, preclinical studies, and clinical trials [38].  Currently, several multi-target kinase 440 

inhibitors with activity against multiple kinases including FGFRs are being evaluated in 441 

endometrial patients with advance stage or recurrent endometrial cancer (Brivinib, 442 
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NCT00888173; E7080, NCT01111461, Dovitinib, NCT01379534) and additional trials with 443 

more specific FGFR inhibitors are planned. The validation of FGFR2 mutations as an 444 

independent prognostic marker in early stage tumors and the eventual identification of an 445 

FGFR inhibitor with clinical activity in patients with metastatic endometrial cancer, holds the 446 

promise of utilizing anti-FGFR therapies in an adjuvant setting to reduce the risk of 447 

recurrence in patients diagnosed with FGFR2 mutation positive endometrial cancer. 448 

 In conclusion, our mutation analysis of four oncogenes frequently mutated in the 449 

endometrioid histology of endometrial cancer revealed that mutated FGFR2 was associated 450 

with shorter disease free progression and this was significant in patients diagnosed with 451 

early stage disease. This finding has clinical significance in that FGFR2 mutation status 452 

could function as a starting point in developing a molecular prognostic risk assessment score 453 

that could be used to identify patients that may benefit from more aggressive adjuvant 454 

radiation and/or chemotherapy following an initial hysterectomy. In the longer term, anti-455 

FGFR agents could be tested in patients with FGFR2 mutation positive tumors to evaluate 456 

whether these agents reduce the frequency of recurrence in the adjuvant setting, in addition 457 

to the metastatic setting where they are currently being evaluated. As KRAS mutations were 458 

associated with reduced recurrence risk in this cohort, our data would suggest that MEK 459 

inhibition may not be effective in an adjuvant setting to prevent recurrence.  460 
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Figure Legends. 586 

Figure 1. Schematic figure of FGFR2 mutations identified in endometrioid endometrial 587 

tumors. Blue diamonds indicate each instance of a mutation in the Washington University 588 

School of Medicine cohort. Mutations are numbered relative to FGFR2b (NP_075259.2). 589 

Mutations at 6 codons (S252, P253, Y376, C383, N550, K660) comprise >90% of all 590 

mutations identified.  591 

 592 

Figure 2. Pattern of KRAS, CTNNB1, FGFR2, PIK3CA mutations and MSI status in 466 593 

endometrioid endometrial tumors.  Gene mutations and MSI positive status are depicted 594 

by colored bars. 258 tumors had a mutation in at least one of the genes evaluated, whereas 595 

208 tumors did not demonstrate mutation of KRAS, CTNNB1, FGFR2, or PIK3CA.  596 

 597 

Figure 3. Potential utility of FGFR2 mutation status as an adverse prognostic factor to 598 

affect clinical decision-making. The decision tree is adapted from 2011 National 599 

Comprehensive Cancer Network guidelines using FIGO 2009 staging. BT = brachytherapy; 600 

RT = radiation therapy. 601 

 602 
603 
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 604 

Table 1. Patient Demographics and Clinicopathologic Characteristics. 605 
 606 

Clinicopathologic Category Subcategory 
Entire Cohort of 466 

Endometrioid Endometrial 
Tumors 

Cohort of 386 Low 
Stage Endometrioid 
Endometrial Tumors 

Mean Age at Diagnosis (SD)  63.7 (11.7) 63.5 (11.6) 
Follow-up Time (Mean)   70.2 months (0.7-176) 75.4 months (1.4-176) 
Race Caucasian/Asian 411 (88%) 338 (88%) 
 African American 55 (12%) 48 (12%) 
FIGO Stage 1A 85 (18%) 85 (22%) 
 1B 192 (41%) 192 (50%) 
 1C 71 (15%) 71 (18%) 
 IIA 18 (4%) 18 (5%) 
 IIB 20 (4%) 20 (5%) 
 III 62 (13%) - 
 IV 18 (4%) - 
Grade 1 249 (53%) 225 (58%) 
 2 152 (33%) 122 (32%) 
 3 65 (14%) 39 (10%) 
Recurrence No 399 (86%) 353 (91%) 
 Yes 67 (14%) 33 (8.5%) 
Vital Status Alive 318 (68%) 283 (73%) 
 Dead 148 (32%) 103 (27%) 
MSI No 308 (66%) 257 (67%) 
 Yes  158 (34%) 129 (33%) 
FGFR2 Mutation No  418 (90%) 347 (90%) 
 Yes 48 (10%) 39 (10%) 
KRAS Mutation No  377 (81%) 311 (81%) 
 Yes 87 (19%) 73 (19%) 
CTNNB1 Mutation No  366 (81%) 298 (79%) 
  Yes 88 (19%) 78 (21%) 
PIK3CA Mutation No  360 (78%) 291 (76%) 
 Yes 104 (22) 93 (24%) 
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Table 2. Hazard Ratio (HR) and 95% Confidence Interval (CI) for Cohort of 466 Endometrioid 
Endometrial Cancers. 
 
 
Univariate Analyses 
  Disease Free Survival Overall Survival 

   
HR Ratio 

 
95% CI 

 
P 

 
HR Ratio 

 
95% CI 

 
P 

Age >60 1.47 0.88 – 2.45 0.14 2.01 1.39 – 2.92 0.0002 
Race (Black) 1.36 0.70 – 2.66 0.37 1.39 0.88 – 2.19 0.16 
FIGO stage IA/1B REF   REF   
FIGO stage IC 2.61 1.18 – 5.74 0.018 1.403 0.87 – 2.27 0.17 
FIGO stage II 3.26 1.34 – 7.93 0.009 2.10 1.21 – 3.64 0.0083 
FIGO stage III/IV 6.80 4.20 – 11.0 <0.0001 3.79 2.65 – 5.42 <0.0001 
FIGO Grade 2 2.71 1.45 – 5.07 0.0019 1.85 1.27 – 2.70 0.0014 
FIGO Grade 3 7.91 4.24 – 14.77 <0.0001 4.34 2.85 – 6.60 <0.0001 
Adjuvant therapy 3.14 1.94 – 5.09 <0.0001 2.02 1.46 – 2.81 <0.0001 
MSI 1.03 0.62 – 1.70 0.91 1.09 0.78 – 1.53 0.62 
FGFR2 mutation 1.66 0.85 – 3.25 0.14 1.37 0.83 – 2.29 0.22 
KRAS mutation 0.40 0.17 – 0.93 0.033 1.03 0.69 – 1.55 0.87 
CTNNB1 mutation 0.58 0.28 – 1.22 0.15 0.70 0.44 – 1.11 0.13 
PIK3CA mutation 0.74 0.40 – 1.38 0.34 0.71 0.47 – 1.08 0.11 
 
Multivariate Analyses 
  Disease Free Survival* Overall Survival** 

   
HR Ratio 

 
95% CI 

 
P 

 
HR Ratio 

 
95% CI 

 
P 

FGFR2  1.83 0.90 – 3.73 0.097 1.34 0.79 – 2.27 0.28 
KRAS  0.43 0.18 – 0.99 0.048 1.05 0.70 – 1.58 0.82 
FGFR2a  1.64 0.80 – 3.36 0.18 1.37 0.80 – 2.33 0.25 
KRASb 0.45 0.19 – 1.06 0.067 1.08 0.71 – 1.63 0.73 

* For DFS, the multivariate model included Stage 1C, II, III/IV, grade 2 and 3.  
**For OS, the multivariate model included age, FIGO stage 1C, II, III/IV, grade 2 and grade 3 
a  FGFR2 adjusted for KRAS in addition to covariates above.  
b  KRAS adjusted for FGFR2 in addition to covariates above. 
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Table 3. Hazard ratio (HR) and 95% confidence interval (CI) for cohort of 386 Stage I/II cases. 
 
 
Univariate Analyses 
  Disease Free Survival Overall Survival 

   
HR Ratio 

 
95% CI 

 
P 

 
HR Ratio 

 
95% CI 

 
P 

Age >60 1.42 0.69 – 2.92 0.35 1.92 1.23 – 3.00 0.004 
Race (Black) 1.27 0.49 – 3.30 0.62 1.35 0.79 – 2.30 0.27 
FIGO stage IA/1B REF   REF   
FIGO stage IC 2.65 1.20 – 5.83 0.016 1.40 0.87 – 2.27 0.17 
FIGO stage II 3.28 1.35 – 7.96 0.009 2.13 1.23 – 3.69 0.007 
FIGO Grade 2 1.56 0.70 – 3.50 0.27 1.52 0.98 – 2.33 0.059 
FIGO Grade 3 4.49 1.92 – 10.50 0.0005 3.00 1.75 – 5.15 <0.0001 
Adjuvant therapy 2.07 1.01 – 4.28 0.049 1.47 0.95 – 2.29 0.087 
MSI 1.17 0.58 – 2.38 0.66 1.17 0.78 – 1.76 0.44 
FGFR2 mutation 2.72 1.18 – 6.28 0.019 1.74 0.97 – 3.12 0.065 
KRAS mutation 0.26 0.06 – 1.11 0.069 1.39 0.89 – 2.17 0.15 
CTNNB1 mutation 0.92 0.38 – 2.23 0.85 0.82 0.48 – 1.38 0.45 
PIK3CA mutation 0.69 0.28 – 1.66 0.40 0.77 0.47 – 1.24 0.27 
       
 
Multivariate Analyses 
  Disease Free Survival* Overall Survival** 

   
HR Ratio 

 
95% CI 

 
P 

 
HR Ratio 

 
95% CI 

 
P 

FGFR2  3.24 1.35 – 7.77 0.008 2.00 1.09 – 3.65 0.025 
KRAS  0.23 0.05 – 0.97 0.045 1.29 0.81 – 2.03 0.28 
FGFR2a  3.03 1.26 – 7.27 0.013 2.05 1.12 – 3.75 0.021 
KRASb 0.24 0.06 – 1.02 0.053 1.31 0.83 – 2.07 0.25 

* For DFS, the multivariate model included Stage 1C, II, Grade 2 and 3.  
**For OS, the multivariate model included age, FIGO Stage 1C, II, Grade 2 and Grade 3 
a  FGFR2 adjusted for KRAS in addition to covariates above. 
b  KRAS adjusted for FGFR2 in addition to covariates above. 
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 608 
Supporting Information Legends 

 

Figure S1. Kaplan Meier curves for recurrence/progression free survival (A) and 609 

overall survival (B) by FGFR2 mutation status in patients with early stage endometrial 610 

cancer.  611 

 612 

Table S1. Clinicopathological features of endometrial tumors with FGFR2 mutations.  613 
 614 
a  Numbering relative to NM_022970.2 b Numbering relative to 615 
NP_075259.2 c These mutations have been reported previously (8).  616 
 617 
 618 
Table S2. KRAS Mutations in Endometrial Tumors.  619 
 620 
 621 
 622 
Table S3. PIK3CA Mutations in Endometrial Tumors.  623 
 624 
#These mutations are novel and do not appear in Cosmic (May 2011) 625 
 626 
 627 
 628 
Table S4. CTNNB1 Mutations in Endometrial Tumors.  629 
 630 
 631 
 632 
Table S5. Frequency of MSI and mutations, according to FIGO stage. 633 
 634 
 635 

Table S6. Frequency of MSI and mutations, according to tumor grade  636 
 637 

 


