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Abstract

In this paper we consider the variable order time fractional diffusion equation. We
adopt the Coimbra variable order (VO) time fractional operator, which defines a
consistent method for VO differentiation of physical variables. The Coimbra variable
order fractional operator also can be viewed as a Caputo-type definition. Although
this definition is the most appropriate definition having fundamental characteristics
that are desirable for physical modeling, numerical methods for fractional partial
differential equations using this definition have not yet appeared in the literature.
Here an approximate scheme is first proposed. The stability, convergence and solv-
ability of this numerical scheme are discussed via the technique of Fourier analysis.
Numerical examples are provided to show that the numerical method is computa-
tionally efficient.
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1 Introduction

The number of scientific and engineering problems involving fractional calculus
is already very large and still growing. One of the main advantages of the frac-
tional calculus is that the fractional derivatives provide an excellent approach
for the description of memory and hereditary properties of various materials
and processes [6]. Many of the numerical methods using different kinds of
fractional derivative operators for solving fractional partial differential equa-
tions have been proposed [13–18,28]. Anh and Leonenko presented a spectral
representation of the mean-square solution of the fractional diffusion equation
with random initial condition, from which the Caputo-Djrbashian regularied
fractional derivative was adopted [1]. Odibat proposed two algorithms for nu-
merical fractional integration and Caputo fractional differentiation. Using the
new modification derive an algorithm to approximate fractional derivatives
of arbitrary order for a given function by a weighted sum of function and
its ordinary derivative values at specified points [21]. Blaszczyk focused on a
numerical scheme applied for a fractional oscillator equation which includes
a complex form of left- and right-sided fractional derivatives in a finite time
interval [2].

Recently, more and more researchers are finding that a variety of important
dynamical problems exhibit fractional order behavior that may vary with time
or space. This fact indicates that variable order calculus is a natural candidate
to provide an effective mathematical framework for the description of complex
dynamical problems. The concept of a variable order operator is a much more
recent development, which is a new paradigm in science. Samko and Ross
[24,25] directly generalized the Riemann-Liouvile and Marchaud fractional in-
tegration and differentiation of the case of variable order, and then showed
some properties and an inversion formula. Lorenzo and Hartley [19,20] sug-
gested the concept of a variable order operator is allowed to vary either as a
function of the independent variable of integration or differentiation (t), or as a
function of some other (perhaps spatial) variable (x ), they also explored more
deeply the concept of variable order integration and differentiation and sought
the relationship between the mathematical concepts and physical processes.
Different authors have proposed different definitions of variable order differ-
ential operators, each of these with a specific meaning to suit desired goals.
Coimbra [4] took the Laplace-transform of Caputo’s definition of the fractional
derivative as the starting point to suggest a novel definition for the variable
order differential operator. Because of its meaningful physical interpretation,
Coimbra’s definition is better suited for modeling physical problems. Ingman
et al. [8,9] employed the time dependent variable order operator to model the
viscoelastic deformation process. Pedro et al. [22] studied the motion of parti-
cles suspended in a viscous fluid with drag force using variable order calculus.
Sun et al. [27] introduced a classification of variable-order fractional diffusion
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models based on the possible physical origins that prompt the variable-order.

The variable order operator definitions recently proposed in the literature in-
clude the Riemann-Liouvile-definition, Caputo-definition, Marchaud-definition,
Coimbra-definition and Grünwald-definition [4,19,20,24,25]. However, to the
best of the authors knowledge, detailed studies of the Grünwald-type vari-
able order operator have not yet been performed. Samko et al. [24] compared
the Riemann-Liouvile-definition and Marchaud-definition variable order oper-
ators, and noted the loss of certain properties of the Riemann-Liouvile def-
initions, with the Marchaud-definition being more suitable than the Riemann-
Liouvile-type. Ramirez et al. [23] also compared the Riemann-Liouvile-definition,
Caputo-definition, Marchaud-definition and Coimbra-definition variable order
operators based on a very simple criteria: the variable order operator must
return the correct fractional derivative that corresponds to the argument of
the functional order. Ramirez et al. found that only the Marchaud-definition
and Coimbra-definition satisfy the above elementary requirement, and the
Coimbra-definition variable order operator is more efficient from the numerical
standpoint. Soon et al. [26] also showed that the Coimbra-definition variable
order operator satisfies a mapping requirement, and it is the only definition
that correctly describes position-dependent transitions between elastic and
viscous regimes because it correctly returns the appropriate derivatives as a
function of x(t). Ramirez [23] showed that the Coimbra definition is the most
appropriate definition having fundamental characteristics that are desirable
for physical modeling.

Since the kernel of the variable order operators has a variable-exponent, an-
alytical solutions to variable order fractional differential equations are more
difficult to obtain, and have not been the the focus of much attention. However,
the development of numerical techniques to solve variable order fractional dif-
ferential equations are at the early stage of development. Coimbra [4] proposed
a consistent (first-order accurate) approximation for the solution of variable
order differential equations. Soon et al. [26] employed a second-order Runge-
Kutta method consisting of an explicit Euler predictor step followed by an
implicit Euler corrector step to numerically integrate the variable order differ-
ential equation. Sun et al. [27] introduced a classification of the variable-order
fractional diffusion models based on the possible physical origins that moti-
vated the variable-order, and employed the Crank-Nicholson scheme to get
the diffusion curve of the variable order differential operator model. However,
many of these authors [4,5,26,27] haven’t discussed the stability and conver-
gence of the numerical solutions. Lin et al. [11] investigated stability and con-
vergence of an explicit finite-difference approximation for the variable-order
nonlinear fractional diffusion equation. Zhuang et al. [29] proposed explicit
and implicit Euler approximations for the variable-order fractional advection-
diffusion equation with a nonlinear source term. Chen et al. [3] proposed two
numerical schemes for a variable-order anomalous subdiffusion equation, one
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with first order temporal accuracy and fourth order spatial accuracy, the other
with second order temporal accuracy and fourth order spatial accuracy. How-
ever these authors [3,11,29] considered Riemann-Liouville variable-order frac-
ctional derivatives, or the Riesz variable-order fractional derivative.

In this paper, we consider the following variable order time fractional diffusion
equation(VOTFDE):

0D
q(x,t)
t u(x, t) =

∂2u(x, t)

∂x2
+ f(x, t),

(x, t) ∈ Ω = [0, L]× [0, T ],
(1)

with initial and boundary conditions

u(x, 0) = g(x), 0 ≤ x ≤ L, (2)

u(0, t) = u(L, t) = 0, 0 < t < T. (3)

where 0 < q ≤ q(x, t) ≤ q < 1 and 0D
q(x,t)
t denotes the variable order time

fractional derivative defined by Coimbra [4]:

0D
q(x,t)
t u(x, t) =

1

Γ(1− q(x, t))

∫ t

0+
(t− σ)−q(x,t)∂u(x, σ)

∂σ
dσ

+
(u(x, 0+)− u(x, 0−))t−q(x,t)

Γ(1− q(x, t))
.

(4)

The definition (4) is particularly useful for the solution of well-posed physical
problems. In addition, the differential operator (4) requires only one initial
condition. We adopt the Coimbra-definition variable order operator in this
work. For the sake of simplicity, assuming u(x, 0+) = u(x, 0−), then the Coim-
bra definition can be viewed as the following Caputo-type definition

0D
q(x,t)
t u(x, t) =

1

Γ(1− q(x, t))

∫ t

0+
(t− σ)−q(x,t)∂u(x, σ)

∂σ
dσ. (5)

To the best of the authors knowledge, numerical schemes via the above Caputo-
type definition that is investigated here have not appeared in the literature.

2 Approximate scheme for the variable order time fractional dif-
fusion equation

Let Ω = [0, L]× [0, T ], we define the function space

G(Ω) =

{
u(x, t)|∂

4u(x, t)

∂x4
,
∂2u(x, t)

∂t2
∈ C(Ω)

}
.
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In this paper, we suppose the continuous problem (1)-(3) has a smooth solution
u(x, t) ∈ G(Ω).

We take an equally spaced mesh of M points for the spatial domain 0 ≤ x ≤ L,
N constant time steps for the temporal domain 0 ≤ t ≤ T , and denote the
spatial grid points by

xi = ih, i = 0, 1, . . . , M,

and the temporal grid points by

tn = nτ, n = 0, 1, . . . , N,

where the grid spacing is simply h = L/M in the spatial domain and τ = T/N
in the temporal domain.

At the grid point (xi, tn), Eq. (1) becomes

0D
q(xi,tn)
t u(xi, tn) =

∂2u(xi, tn)

∂x2
+ fn

i , (6)

where fn
i ≡ f(xi, tn).

The second-order spatial derivative can be approximated by the following
expression:

∂2u(xi, tn)

∂x2
=

u(xi+1, tn)− 2u(xi, tn) + u(xi−1, tn)

h2
+ O(h2). (7)

Adopting the discrete scheme given in [10,12], we discretize the variable order
time fractional derivative as

0D
q(xi,tn)
t u(xi, tn)

=
1

Γ(1− q(xi, tn))

∫ tn

0+
(tn − σ)−q(xi,tn)∂u(xi, σ)

∂σ
dσ

=
1

Γ(1− q(xi, tn))

n−1∑

j=0

∫ tj+1

tj
(tn − σ)−q(xi,tn)∂u(xi, σ)

∂σ
dσ

=
1

Γ(1− q(xi, tn))

n−1∑

j=0

∫ tj+1

tj
(tn − σ)−q(xi,tn)

×
(

u(xi, tj+1)− u(xi, tj)

τ
+ C · τ

)
dσ

=
1

Γ(1− q(xi, tn))

n−1∑

j=0

u(xi, tj+1)− u(xi, tj)

τ

∫ tj+1

tj
(tn − σ)−q(xi,tn)dσ + rn

i

=
τ−q(xi,tn)

Γ(2− q(xi, tn))

n−1∑

j=0

di,j,n[u(xi, tj+1)− u(xi, tj)] + rn
i , (8)
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where

di,j,n = (n− j)1−q(xi,tn) − (n− j − 1)1−q(xi,tn), j = 0, 1, . . . , n− 1;

rn
i =

1

Γ(1− q(xi, tn))

n−1∑

j=0

∫ tj+1

tj
C · τ(tn − σ)−q(xi,tn)dσ

=
C · τ

Γ(2− q(xi, tn))

n−1∑

j=0

[
(tn − tj)

1−q(xi,tn) − (tn − tj+1)
1−q(xi,tn)

]

=
C · τ 2−q(xi,tn)

Γ(2− q(xi, tn))

n−1∑

j=0

[
(n− j)1−q(xi,tn) − (n− j − 1)1−q(xi,tn)

]

=
C · τ 2−q(xi,tn)

Γ(2− q(xi, tn))
n1−q(xi,tn)

≤ C · T 1−q(xi,tn)

Γ(2− q(xi, tn))
· τ

≤ C̃ · τ.

We denote un
i for the numerical approximation to u(xi, tn). From Eq. (7) and

Eq. (8), we obtain the following approximate scheme for Eq. (1):

τ−q(xi,tn)

Γ(2− q(xi, tn))

n−1∑

j=0

di,j,n(uj+1
i − uj

i ) =
un

i+1 − 2un
i + un

i−1

h2
+ fn

i . (9)

Let s(xi, tn) = h2

τq(xi,tn)Γ(2−q(xi,tn))
, taking into account di,n−1,n = 1, by rear-

rangement Eq. (9) can be rewritten as

−un
i+1 + (2 + s(xi, tn))un

i − un
i−1 = s(xi, tn)

n−1∑
k=1

(di,n−k,n − di,n−k−1,n)un−k
i

+s(xi, tn)di,0,nu
0
i + h2fn

i ,

i = 1, 2, . . . , M − 1; n = 1, 2, . . . , N.

(10)
The initial and boundary conditions are

u0
i = g(xi), i = 0, 1, . . . , M ; (11)

un
0 = un

M = 0, n = 1, 2, . . . , N. (12)

Note that the coefficients possess the following properties:

Lemma 1: The coefficients di,j,n (j = 0, 1, . . . , n− 1; i = 1, 2, . . . , M − 1; n =
1, 2, . . . , N) satisfy

(1) di,j,n > 0; di,0,1 = di,n−1,n = 1;
n−1∑
k=1

(di,n−k,n − di,n−k−1,n) + di,0,n = 1;

(2) di,j,n are increase monotonically with j increases.

Proof:
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(1) This conclusion can be obtained by a straight forward calculation.
(2) Let

f(j) = di,j,n, j = 0, 1, . . . , n− 1.

It follows that

f ′(j) = (1− q(xi, tn))
[

1
(n−j−1)q(xi,tn) − 1

(n−j)q(xi,tn)

]
> 0, j 6= n− 1.

Thus, the conclusion can be obtained.

Lemma 2 (Discrete Gronwall Lemma): Let {yn} and {gn} be nonnegative
sequences and c a nonnegative constant. If

yn ≤ c +
∑

0≤k<n
gkyk, n ≥ 0,

then

yn ≤ c
∏

0≤j<n
(1 + gj) ≤ c exp(

∑
0≤j<n

gj), n ≥ 0.

Proof: See [7].

3 Stability of the approximate scheme

In this section, we use the technique of Fourier analysis to discuss the stability
of the approximate scheme (10)-(12). Consider the following equation

−un
j+1 + (2 + s(xj, tn))un

j − un
j−1 = s(xj, tn)

n−1∑
k=1

(dj,n−k,n − dj,n−k−1,n)un−k
j

+s(xj, tn)dj,0,nu
0
j

j = 1, 2, . . . , M − 1; n = 1, 2, . . . , N.

(13)
For n = 0, 1, . . . , N , we define the following grid function:

un(x) =





un
j , x ∈ (xj− 1

2
, xj+ 1

2
], j = 1, 2, . . . , M − 1;

0, x ∈ [0, h
2
] ∪ (L− h

2
, L).

Then un(x) has the Fourier series expansion

un(x) =
∞∑

l=−∞
ξn(l)ei2πlx/L, n = 0, 1, . . . , N,

where

ξn(l) =
1

L

∫ L

0
un(x)e−i2πlx/Ldx.
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Let
un = [un

1 , u
n
2 , . . . , u

n
M−1],

then, using the Parseval identities

∫ L
0 |un(x)|2dx =

∞∑
l=−∞

|ξn(l)|2, n = 0, 1, . . . , N,

and
∫ L
0 |un(x)|2dx =

M−1∑
j=1

h|un
j |2, n = 0, 1, . . . , N,

we obtain

‖un‖2 ≡
(

M−1∑
j=1

h|un
j |2

) 1
2

=

(
∞∑

l=−∞
|ξn(l)|2

) 1
2

, n = 0, 1, . . . , N. (14)

Assume that the solution of the equation (13) has the form

un
j = ξne

iσjh,

where σ = 2πl/L. Substituting the above expression into (13) gives

[−eiσh + (2 + s(xj, tn))− e−iσh]ξn

= s(xj, tn)
n−1∑
k=1

(dj,n−k,n − dj,n−k−1,n)ξn−k + s(xj, tn)dj,0,nξ0.
(15)

Using the identify

sin2 z = −1

4
(ei2z − 2 + e−i2z),

Eq. (15) can be rewritten as

ξn =
s(xj, tn)

4 sin2 σh
2

+ s(xj, tn)

n−1∑

k=1

(dj,n−k,n − dj,n−k−1,n)ξn−k +
s(xj, tn)dj,0,n

4 sin2 σh
2

+ s(xj, tn)
ξ0,

n = 1, 2, . . . , N.

(16)
Lemma 3: Let ξn (n = 1, 2, . . . , N) be the solution of Eq. (16), then

|ξn| ≤ |ξ0|, n = 1, 2, . . . , N.

Proof: For n = 1, in view of (16) and Lemma 1, we obtain

ξ1 =
s(xj, t1)dj,0,1

4 sin2 σh
2

+ s(xj, t1)
ξ0 =

s(xj, t1)

4 sin2 σh
2

+ s(xj, t1)
ξ0.

Therefore, we obtain

|ξ1| =
∣∣∣∣∣

s(xj, t1)

4 sin2 σh
2

+ s(xj, t1)
ξ0

∣∣∣∣∣ ≤ |ξ0|.
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Suppose that

|ξk| ≤ |ξ0|, k = 1, 2, . . . , n− 1.

According to (16) and Lemma 1,

|ξn| ≤ s(xj, tn)

4 sin2 σh
2

+ s(xj, tn)

n−1∑

k=1

|dj,n−k,n − dj,n−k−1,n||ξn−k|

+
s(xj, tn)dj,0,n

4 sin2 σh
2

+ s(xj, tn)
|ξ0|

=
s(xj, tn)

4 sin2 σh
2

+ s(xj, tn)

n−1∑

k=1

(dj,n−k,n − dj,n−k−1,n)|ξn−k|

+
s(xj, tn)dj,0,n

4 sin2 σh
2

+ s(xj, tn)
|ξ0|

≤ s(xj, tn)

4 sin2 σh
2

+ s(xj, tn)

{
n−1∑

k=1

(dj,n−k,n − dj,n−k−1,n) + dj,0,n

}
|ξ0|

=
s(xj, tn)

4 sin2 σh
2

+ s(xj, tn)
|ξ0|

≤ |ξ0|.

The proof of Lemma 3 is completed via mathematical induction.

According to (14) and Lemma 3, it can be obtained that the solution of equa-
tion (13) satisfies

‖un‖2 ≤ ‖u0‖2, n = 1, 2, . . . , N.

Thus, we have the following result:

Theorem 1. The approximate scheme (10)-(12) is unconditionally stable.

4 Convergence of the approximate scheme

In this section, we use the technique of Fourier analysis to discuss the conver-
gence of the approximate scheme (10)-(12). In view of (7)-(9), we have

τ−q(xj ,tn)

Γ(2− q(xj, tn))

n−1∑

k=0

dj,k,n[u(xj, tk+1)− u(xj, tk)]

=
u(xj+1, tn)− 2u(xj, tn) + u(xj−1, tn)

h2
+ fn

j + O(τ) + O(h2).

(17)
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Multiplying by h2 on both sides of (17), and by simple calculation, we have
that

−u(xj+1, tn) + (2 + s(xj, tn))u(xj, tn)− u(xj−1, tn)

= s(xj, tn)
n−1∑
k=1

(dj,n−k,n − dj,n−k−1,n)u(xj, tn−k) + s(xj, tn)dj,0,nu(xj, t0)

+h2fn
j + Rn

j ,

j = 1, 2, . . . , M − 1; n = 1, 2, . . . , N,

(18)

where s(xj, tn) = h2

τq(xj,tn)Γ(2−q(xj ,tn))
, Rn

j = h2 [O(τ) + O(h2)].

Subtracting (10) from (18), we obtain the following error equation

−En
j+1 + (2 + s(xj, tn))En

j − En
j−1

= s(xj, tn)
n−1∑
k=1

(dj,n−k,n − dj,n−k−1,n)En−k
j + s(xj, tn)dj,0,nE

0
j + Rn

j ,
(19)

where Ek
j = u(xj, tk)− uk

j .
Since E0

j = 0, we can rewrite (19) as

−En
j+1 + (2 + s(xj, tn))En

j − En
j−1

= s(xj, tn)
n−1∑
k=1

(dj,n−k,n − dj,n−k−1,n)En−k
j + Rn

j ,

j = 1, 2, . . . , M − 1; n = 1, 2, . . . , N.

(20)

For n = 0, 1, 2, . . . , N , we define the following grid functions, respectively

En(x) =





En
j , x ∈

(
xj− 1

2
, xj+ 1

2

]
, j = 1, 2, . . . , M − 1,

0, x ∈ [0, h
2
] ∪ (L− h

2
, L],

and

Rn(x) =





Rn
j , x ∈

(
xj− 1

2
, xj+ 1

2

]
, j = 1, 2, . . . , M − 1,

0, x ∈ [0, h
2
] ∪ (L− h

2
, L].

Then, En(x) and Rn(x) have the Fourier series expansions

En(x) =
∞∑

l=−∞
αn(l)ei2πlx/L, n = 0, 1, . . . , N,

and

Rn(x) =
∞∑

l=−∞
βn(l)ei2πlx/L, n = 0, 1, . . . , N,

where

αn(l) = 1
L

L∫
0

En(x)e−i2πlx/Ldx, βn(l) = 1
L

L∫
0

Rn(x)e−i2πlx/Ldx.

10



Letting

En = [En
1 , En

2 , . . . , En
M−1]

T , Rn = [Rn
1 , Rn

2 , . . . , Rn
M−1]

T ,

and applying the Parseval identities

L∫
0
|En(x)|2dx =

∞∑
l=−∞

|αn(l)|2, n = 0, 1, . . . , N,

L∫
0
|Rn(x)|2dx =

∞∑
l=−∞

|βn(l)|2, n = 0, 1, . . . , N,

and
L∫
0
|En(x)|2dx =

M−1∑
j=1

h|En
j |2, n = 0, 1, . . . , N,

L∫
0
|Rn(x)|2dx =

M−1∑
j=1

h|Rn
j |2, n = 0, 1, . . . , N,

we have, respectively

‖En‖2 ≡
(

M−1∑
j=1

h|En
j |2

) 1
2

=

(
∞∑

l=−∞
|αn(l)|2

) 1
2

, n = 0, 1, . . . , N, (21)

and

‖Rn‖2 ≡
(

M−1∑
j=1

h|Rn
j |2

) 1
2

=

(
∞∑

l=−∞
|βn(l)|2

) 1
2

, n = 0, 1, . . . , N. (22)

Since j, n are finite, there is a positive constant C1 for all j, n such that

|Rn
j | ≤ C1h

2(τ + h2), j = 1, 2, . . . , M, n = 1, 2, . . . , N. (23)

Further, by the first equality of (22) we have

‖Rn‖2 ≤ C1

√
Lh2(τ + h2), n = 1, 2, . . . , N. (24)

By the convergence of the series on the right-hand side of (22), there is a
positive constant C2 such that

|βn| ≡ |βn(l)| ≤ C2|β1(l)| ≡ C2|β1|, n = 1, 2, . . . , N. (25)

We now assume that En
j and Rn

j have the following form:

En
j = αne

iσjh, Rn
j = βne

iσjh

11



where σ = 2πl/L. Substituting the above expressions into (20), we have

−αne
iσ(j+1)h + (2 + s(xj, tn))αne

iσjh − αne
iσ(j−1)h

= s(xj, tn)
n−1∑
k=1

(dj,n−k,n − dj,n−k−1,n)αn−ke
iσjh + βne

iσjh.
(26)

Multiplying (26) by e−iσjh and again using the identify that

sin2 z = −1

4
(ei2z − 2 + e−i2z),

we obtain that

αn =
s(xj, tn)

4 sin2 σh
2

+ s(xj, tn)

n−1∑

k=1

(dj,n−k,n − dj,n−k−1,n)αn−k

+
1

4 sin2 σh
2

+ s(xj, tn)
βn.

(27)

Lemma 4: Let αn (n = 1, 2, . . . , N) be the solution of Eq. (27), then there is
a positive constant C3 such that

|αn| ≤ C3h
−2|β1|, n = 1, 2, . . . , N.

Proof: Since 0 < q(x, t) < 1, we can suppose that

1

s(xj, tn)
≤ C0τ

q(xj ,tn)h−2, j = 1, 2, . . . , M, n = 1, 2, . . . , N,

where C0 is a positive constant.

According to (27), (25) and Lemma 1, for fixed j and n, we have

|αn| ≤
∣∣∣∣∣

s(xj, tn)

4 sin2 σh
2

+ s(xj, tn)

∣∣∣∣∣
n−1∑
k=1

|dj,n−k,n − dj,n−k−1,n||αn−k|

+

∣∣∣∣∣
βn

4 sin2 σh
2

+ s(xj, tn)

∣∣∣∣∣

=
s(xj, tn)

4 sin2 σh
2

+ s(xj, tn)

n−1∑

k=1

(dj,n−k,n − dj,n−k−1,n)|αn−k|
1

4 sin2 σh
2

+ s(xj, tn)
|βn|

≤ n−1∑
k=1

(dj,n−k,n − dj,n−k−1,n)|αn−k|+ 1

s(xj, tn)
|βn|

≤ C0C2h
−2|β1|+

n−1∑
k=1

(dj,n−k,n − dj,n−k−1,n)|αn−k|

= C0C2h
−2|β1|+

n−1∑
k=1

(dj,k,n − dj,k−1,n)|αk|

= C0C2h
−2|β1|+

n−1∑
k=1

gk|αk|,

12



where gk = dj,k,n − dj,k−1,n and |αk| are nonnegative sequences. Using lemma
2, we have

|αn| ≤ C0C2h
−2|β1| · exp(

n−1∑
k=1

gk)

≤ C0C2h
−2|β1| · exp(

n−1∑
k=1

(dj,n−k,n − dj,n−k−1,n))

≤ C0C2h
−2|β1| · exp(dj,n−1,n − dj,0,n)

= C0C2h
−2|β1| · exp(1− dj,0,n)

≤ C0C2 exp(1)h−2|β1|
= C3h

−2|β1|,

where C3 = C0C2 exp(1).

Thus, the proof of Lemma 4 is completed.

Using (21), (22), (24) and Lemma 4, we obtain

‖En‖2 ≤ C3h
−2‖R1‖2 ≤ C3h

−2 · C1

√
Lh2(τ + h2) = C(τ + h2),

where C = C3C1

√
L.

Now we can get the following theorem of convergence:

Theorem 2. Suppose that the continuous problem (1) has a smooth solution
u(x, t) ∈ G(Ω), then the approximate scheme (10) is convergent, and with
order O(τ + h2).

5 Solvability of the approximate scheme

It can be seen that the corresponding homogeneous linear algebraic equations
for the approximate scheme (10)-(12) are

−un
i+1 + (2 + s(xi, tn))un

i − un
i−1 = s(xi, tn)

n−1∑
k=1

(di,n−k,n − di,n−k−1,n)un−k
i

−s(xi, tn)di,0,nu
0
i ,

i = 1, 2, . . . , M − 1; n = 1, 2, . . . , N.

(28)

u0
i = 0, i = 0, 1, . . . , M ; (29)

un
0 = un

M = 0, n = 1, 2, . . . , N. (30)

13



Similar to the proof of Theorem 1, we can also verify the solutions of the
equations (28)-(30) satisfy

‖un‖2 ≤ ‖u0‖2, n = 1, 2, . . . , N.

Since u0 = 0, we have that

un = 0, n = 1, 2, . . . , N,

which indicates that the equations (28)-(30) have only zero solutions. Thus,
we can obtain the following theorem:

Theorem 3. The approximate scheme (10)-(12) is uniquely solvable.

6 Numerical results

In this section, the following variable order time fractional diffusion equation
is considered:





0D
q(x,t)
t u(x, t) =

∂2u(x, t)

∂x2
+ f(x, t), (x, t) ∈ Ω = [0, 1]× [0, 1],

u(x, 0) = 10x2(1− x), 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, 0 < t < 1.

(31)

where q(x, t) =
2 + sin(xt)

4
(satisfies 0 < q(x, t) < 1) and

f(x, t) = 20x2(1− x)

[
t2−q(x,t)

Γ(3− q(x, t))
+

t1−q(x,t)

Γ(2− q(x, t))

]
− 20(t + 1)2(1− 3x).

(32)
The exact solution is

u(x, t) = 10x2(1− x)(t + 1)2. (33)

A comparison of the numerical solution and the exact solution is provided in
Table 1.

Table 2 shows that when we take a fixed value h = 0.01, then as the num-
ber of time steps of our approximate scheme is decreased, a reduction in the
maximum error is observed, as expected and the convergence order of time is
O(τ), where the convergence order is calculated by the following formula:

Convergence order = log τ1
τ2

e1

e2

.
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Table 1
The error, numerical solution and exact solution, when t = 1, h = 1/10, τ = 1/100.

Space (xi) Numerical solution Exact solution Error

0.1000 0.36002996 0.36000000 0.00002996

0.2000 1.28005972 1.28000000 0.00005972

0.3000 2.52008803 2.52000000 0.00008803

0.4000 3.84011251 3.84000000 0.00011251

0.5000 5.00012981 5.00000000 0.00012981

0.6000 5.76013595 5.76000000 0.00013595

0.7000 5.88012705 5.88000000 0.00012705

0.8000 5.12010048 5.12000000 0.00010048

0.9000 3.24005643 3.24000000 0.00005643

Table 2
Maximum error behavior versus time grid size reduction at t = 1 when h = 0.01.

τ Maximum error Convergence order

1/4 0.01040868

1/8 0.00410863 1.34

1/16 0.00160268 1.36

1/32 0.00061591 1.38

Table 3 shows that when we take h2 = τ , as the numbers of spatial subinter-
vals/time steps is decreased, a reduction in the maximum error is observed,
as expected the convergence order of the approximate scheme is O(h2 + τ),
where the convergence order is calculated by the following formula:

Convergence order = log h1
h2

e1

e2

.
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Table 3
Maximum error behavior versus grid size reduction at t = 1 when h2 = τ .

h Maximum error Convergence order

1/4 0.00162521

1/8 0.00024926 2.70

1/16 0.00003720 2.74

7 Conclusions

In this paper, a new numerical scheme for the variable order time fractional
diffusion equation with the Coimbra variable order time fractional operator
has been proposed. The convergence, stability and solvability of the numer-
ical scheme have been discussed via the technique of Fourier analysis. Some
numerical examples have been given and the results have demonstrated the
effectiveness of the theoretical analysis.

Acknowledgments. We wish to thank the referees for their careful reading
of the paper and many constructive comments and suggestions.
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