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Abstract

Generalized fractional partial differential equations have now found wide ap-
plication for describing important physical phenomena, such as subdiffusive and
superdiffusive processes. However, studies of generalized multi-term time and space
fractional partial differential equations are still under development.

In this paper, the multi-term time-space Caputo-Riesz fractional advection diffu-
sion equations (MT-TSCR-FADE) with Dirichlet nonhomogeneous boundary con-
ditions are considered. The multi-term time fractional derivatives are defined in the
Caputo sense, whose orders belong to the intervals [0, 1], [1, 2] and [0, 2], respec-
tively. These are called respectively the multi-term time-fractional diffusion terms,
the multi-term time-fractional wave terms and the multi-term time-fractional mixed
diffusion-wave terms. The space fractional derivatives are defined as Riesz fractional
derivatives. Analytical solutions of three types of the MT-TSCR-FADE are derived
with Dirichlet boundary conditions. By using Luchko’s Theorem (Acta Math. Viet-
nam, 1999), we proposed some new techniques, such as a spectral representation
of the fractional Laplacian operator and the equivalent relationship between frac-
tional Laplacian operator and Riesz fractional derivative, that enabled the deriva-
tion of the analytical solutions for the multi-term time-space Caputo-Riesz fractional
advection-diffusion equations.

Key words: Multi-term time-space Caputo-Riesz fractional advection-diffusion
equations; Multivariate Mittag-Leffler function; nonhomogeneous
initial-boundary-value problem; fractional Laplacian operator; analytical solution.
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1 Introduction

In recent years, fractional partial differential equations have attracted great
attention [16,26]. The fractional advection-diffusion equation is presented as
a useful approach for the description of transport dynamics in complex sys-
tems that are governed by anomalous diffusion and non-exponential relaxation
patterns [23]. The time, space and time-space fractional advection-dispersion
equations have been used to describe important physical phenomena that arise
in amorphous, colloid, glassy and porous media, in fractals and percolation
clusters, comb structures, dielectrics and semiconductors, biological systems,
polymers, random and disordered media, geophysical and geological processes
(see [3,8,19,23,24,41]) and in groundwater hydrology to model the transport
of passive tracers carried by fluid flow in a porous medium [44].

It is noteworthy to mention recent important progress in numerically simu-
lating fractional advection-diffusion equations. Meerschaert and Tadjeran [21]
presented numerical methods to solve the one-dimensional fractional advection-
diffusion equation with a Riemann-Liouville fractional derivative on a finite
domain. Roop [34] investigated the numerical approximation of the variational
solution to the fractional advection-diffusion equation on boundary domains in
R2. Liu et al. [11] transformed the space fractional advection-diffusion equa-
tion into a system of ordinary differential equations (method of lines) that
was then solved using backward differentiation formulas. Liu et al. [12] also
considered a space-time fractional advection-diffusion equation with a Caputo
time fractional derivative and Riemann-Liouville space fractional derivatives.
Shen et al. [36] discussed the fundamental solution and discrete random walk
model for the time-space Riesz fractional advection-dispersion equation. Shen
et al. [37] also investigated the fundamental solution and numerical solution of
the Riesz fractional advection-dispersion equation. Shen et al. [38] proposed
numerical approximations and solution techniques for the space-time Riesz-
Caputo fractional advection-diffusion equation.

Analytical solutions of fractional advection-diffusion / fractional advection-
diffusion-wave equations are of fundamental importance in describing and un-
derstanding dispersion phenomena, since all the parameters are expressed in
a mathematically closed form and therefore the influence of individual pa-
rameters on pollutant concentration can be easily examined [25]. Also, the
analytical solutions make it easy to obtain asymptotic behaviours of the solu-
tions, that are usually difficult to obtain through numerical calculations.

The fundamental solution for the fractional diffusion-wave equation in one
space dimension was obtained by Mainardi [18]. Agrawal [1] analyzed the
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fractional diffusion-wave equation in a half-line and a bounded domain [0,L].
Gorenflo and Mainardi [7] studied the time-fractional, spatially one-dimensional
diffusion-wave equation on the spatial half-line with zero initial conditions.
They considered the Dirichlet and Neumann boundary conditions and proved
that the Dirichlet-Neumann map is given by a time-fractional differential
operator whose order is one-half the order of the time-fractional derivative.
Mainardi and Paradisi [20] employed the time-fractional diffusion-wave equa-
tion to study the propagation of stress waves in viscoelastic media relevant to
acoustics and seismology. Several initial and boundary-value problems for the
time-fractional diffusion-wave equation were investigated by Povstenko [27–
31]. He also considered the generalized Cattaneo-type equations with time-
and space-fractional derivatives [32]. Qi and Jian also presented the exact so-
lution of the fractional Cattaneo equation [33]. Golbabai and Sayevand [5] in-
vestigated fractional advection dispersion equation by means of the homotopy
perturbation method with consideration of a promising scheme to calculate
nonlinear terms. Zhou and Jiao [45] discussed the nonlocal Cauchy problem for
the fractional evolution equations in an arbitrary Banach space and obtained
various criteria on the existence and uniqueness of mild solutions. By applying
fractional calculus to model the behavior of cells and tissues, Magin et al. [17]
unraveled the inherent complexity of individual molecules and membranes in a
way that leads to an improved understanding of the overall biological function
and behavior of living systems. Shakhmurov and Shahmurova [35] studied the
boundary value problems for linear and nonlinear degenerate elliptic differen-
tial operator equations of a second order. By using these results the existence,
uniqueness and the maximal regularity of boundary value problems for nonlin-
ear degenerate parabolic differential operator equations are established. Wang
et al. [42] developed a fast characteristic finite difference method for the effi-
cient solution of space-fractional transient advection-diffusion equations in one
space dimension. Meerschaert et al. [22] derived explicit strong solutions and
stochastic analogues for distributed-order time-fractional diffusion equations
on bounded domains, with Dirichlet boundary conditions.

Gejji and Bhalekar [4] considered a multi-term fractional diffusion-wave equa-
tion along with the homogeneous/non-homogeneous boundary conditions and
this equation has been solved using the method of separation of variables.
Based on orthogonal polynomials of the Laguerre type, Stojanovic [39] found
solutions for the diffusion-wave problem in one dimension with n-term time
fractional derivatives whose orders belong to the intervals (0, 1), (1, 2) and (0,
2), respectively. Equations in this paper can be solved in one-dimension by the
method of the approximation of the tempered convolution. This method trans-
fers the diffusion-wave problem into the corresponding infinite system of linear
algebraic equations through the coefficients, which are uniquely solvable under
some relations between the coefficients with index zero. Luchko [15] consid-
ered the initial-boundary-value problems for the generalized time-fractional
diffusion equation over an open bounded domain. Based on an appropriate
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maximum principle, Luchko [15] derived some a priori estimates for the so-
lution and then its uniqueness is established using the Fourier method of the
separation of variables. The time-dependent components of the solution are
given in terms of the multinomial Mittag-Leffler function.

Time domain wave-equations for lossy media obeying a frequency power-law
were discussed by Kelly et al. [10]. Mathematically, the power-law frequency
dependence of the attenuation coefficient cannot be modeled with standard
dissipative partial differential equations with integer-order derivatives. Kelly
et al. [10] considered the Szabo wave equation with the n-term time fractional
derivatives whose orders belong to the intervals (1, 2] or [2, 3), respectively.
Treeby et al. [40] proposed modeling power-law absorption and dispersion for
acoustic propagation using the fractional Laplacian.

However, many practical problems also involve space-fractional derivatives, in
particular, Riesz fractional derivatives [37,38]. The main purpose of this paper
is to derive the analytical solutions of the multi-term time-space Caputo-Riesz
fractional advection-diffusion equations (MT-TSCR-FADE) with nonhomoge-
neous Dirichlet boundary conditions. The multi-term time fractional deriva-
tives are defined in the Caputo sense, whose orders belong to the intervals
[0, 1], [1, 2] and [0, 2], respectively. These are known as multi-term time frac-
tional diffusion terms, multi-term time fractional wave terms and multi-term
time fractional mixed diffusion-wave terms.

In this paper, the derived analytical solutions are based on Luchko’s Theorem
[13–15]. We proposed some new techniques, such as a spectral representation of
the fractional Laplacian operator and the equivalent relationship between the
fractional Laplacian operator and the Riesz fractional derivative, that enabled
derivation of the analytical solutions for the multi-term time-space Caputo-
Riesz fractional advection-diffusion equations. As far as we are aware there
are no research papers in the published literature written on this topic.

The remainder of this paper is organized as follows. In section 2, we give
some relevant definitions and lemmas. The analytical solutions of the MT-
TSCR-FADE with multi-term time-fractional diffusion terms and multi-term
time-fractional wave terms are derived in sections 3 and 4, respectively. The
analytical solution of the MT-TSCR-FADE with multi-term time-fractional
mixed wave-diffusion terms is given in section 5, and the conclusions of the
work are presented in section 6.
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2 Background Theory

For convenience, we introduce the following definitions and theorems that are
used throughout this paper.

The MT-TSCR-FADE can be written in the following form:

P (Dt)u(x, t) = kβ
∂βu(x, t)

∂|x|β
+ kγ

∂γu(x, t)

∂|x|γ
+ f(x, t), (1)

in a finite domain 0 < x < L, t > 0. Here x and t are the space and time
variables, and kβ, kγ are positive constants, 0 < β < 1, 1 < γ ≤ 2.

The operator P (Dt)u(x, t) is defined as

P (Dt)u(x, t) =

(
Dα

t +
s∑

i=1

aiD
αi
t

)
u(x, t), (2)

0 ≤ αs < . . . < α1 < α ≤ 1 or 1 ≤ αs < . . . < α1 < α ≤ 2 or 0 ≤ αs < . . . <
αh0−1 ≤ 1 < αh0 < . . . < α1 < α ≤ 2 , and ai ∈ R, i = 1, . . . , n, n ∈ N, Dαi

t is
a Caputo fractional derivative of order αi with respect to t, which is defined
as follows:

Dαi
t f(t) =


1

Γ(m−αi)

∫ t
0

f (m)(τ)
(t−τ)1+αi−mdτ, m− 1 < αi < m,

dm

dtm
f(t), αi = m ∈ N.

(3)

The space fractional derivatives ∂βu(x,t)
∂|x|β and ∂γu(x,t)

∂|x|γ are Riesz space-fractional
derivatives of order β, γ, respectively, that are defined by Gorenflo and Mainardi
[6] in Definition 1.

Definition 1 (See [6]) The Riesz fractional operator for n ∈ N, n−1 < β ≤ n,
on a finite interval 0 ≤ x ≤ L is defined as

∂β

∂|x|β
u(x, t) ≡ Dβu(x, t) = −cβ(0Dβ

x + xD
β
L)u(x, t), (4)

where the coefficient cβ = 1

2 cos(βπ
2
)
, β ̸= 1, and

0D
β
xu(x, t) =

1

Γ(n− β)

∂n

∂xn

x∫
0

u(ξ, t)dξ

(x− ξ)β+1−n
, (5)
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xD
β
Lu(x, t) =

(−1)n

Γ(n− β)

∂n

∂xn

L∫
x

u(ξ, t)dξ

(x− ξ)β+1−n
, (6)

are the left-side and right-side Riemann-Liouville fractional derivatives, re-
spectively. In particular, when n = 2, 0D

β
xu(x, t) = xD

β
Lu(x, t) =

∂2

∂x2u(x, t).

If 0 ≤ αs < · · · < α1 < α ≤ 1, Equation (1) is a generalized time and
space fractional advection-diffusion equation with multi-term time fractional
diffusion terms. When we discuss its solutions, the initial condition is given as
follows:

u(x, 0) = ϕ(x), 0 < x < L. (7)

In this case, if ai = 0, i = 1, 2, · · · , s, α = 1, then equation (1) becomes a
space fractional advection-diffusion equation with the Riesz space fractional
derivatives, which was discussed by Yang et al. [43].

If 1 ≤ αs < · · · < α1 < α ≤ 2, then, equation (1) becomes a generalized
time and space fractional advection-diffusion equation with multi-term time
fractional wave terms. In this case, the initial conditions are given as follows:

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), 0 < x < L. (8)

If 0 ≤ αs < . . . < αh0 ≤ 1 < αh0−1 < . . . < α ≤ 2 , then equation (1) becomes
a generalized time and space fractional advection-diffusion equation, which we
refer to as a multi-term time fractional mixed wave-diffusion equation. In this
case, the initial conditions are also given by (8).

Definition 2. (See [13]) A real or complex-valued function f(x), x > 0, is
said to be in the space Cα, α ∈ R, if there exists a real number p, p > α, such
that

f(x) = xpf1(x),

where f1(x) is in C[0,∞).

Definition 3. (See [13]) A function f(x), x > 0, is said to be in the space
Cm

α ,m ∈ N0 = N ∪ {0}, if and only if fm ∈ Cα.

Lemma 1. For a function u(x, t) defined on a finite domain [0, L; 0, T ], and
u(0, t) = u(L, t) = 0, the following equality holds:

−(−△)
β
2 u(x, t) = −cβ[0Dβ

xu(x, t) + xD
β
Lu(x, t)] =

∂β

∂|x|β
u(x, t), (9)
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where the coefficient cβ = 1

2 cos(βπ
2
)
, 0 < β < 1, or 1 < β < 2, and the space

fractional derivative ∂βu(x,t)
∂|x|β is a Riesz space-fractional derivative of order β

respectively.

Proof. See [43].

Definition 4. (See [13]) A multivariate Mittag-Leffler (n dimensional) func-
tion is defined as

E(a1,...,an),b(z1, . . . , zn) ≡
∞∑
k=0

∑
l1 + · · · + ln = k

l1 ≥ 0, . . . , ln ≥ 0

k!

l1! · · · ln!

∏n
i=1 z

li
i

Γ(b+
∑n

i=1 aili)
, (10)

in which b > 0, ai > 0, |zi| <∞, i = 1, . . . , n.

Lemma 2. Let µ > µ1 > · · · > µn ≥ 0,mi − 1 < µi ≤ mi,mi ∈ N0 =
N ∪ {0}, di ∈ R, i = 1, . . . , n. The initial value problem (Dµy)(x)−∑n

i=1 di(D
µiy)(x) = g(x),

y(k)(0) = ck ∈ R, k = 0, . . . ,m− 1, m− 1 < µ ≤ m,
(11)

where the function g(x) is assumed to lie in C−1 , if µ ∈ N, and in C1
−1, if

µ /∈ N, and the unknown function y(x) is to be determined in the space Cm
−1,

has the solution

y(x) = yg(x) +
m−1∑
k=0

ckuk(x), x ≥ 0, (12)

where

yg(x) =

x∫
0

tµ−1E(.),µ(t)g(x− t)dt, (13)

and

uk(x) =
xk

k!
+

n∑
i=lk+1

dix
k+µ−µiE(.),k+1+µ−µi

(x), k = 0, . . . ,m− 1, (14)

fulfills the initial conditions u
(l)
k (0) = δkl, k, l = 0, . . . ,m− 1. The function

E(.),β(x) = Eµ−µ1,...,µ−µn,β(d1x
µ−µ1 , · · · , dnxµ−µn) (15)
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is a particular case of the multivariate Mittag-Leffler function (see [13]) and
the natural numbers lk, k = 0, . . . ,m− 1, are determined from the condition

mlk ≥ k + 1,

mlk+1 ≤ k.
(16)

In the case mi ≤ k, i = 1, . . . , n, we define lk := 0, and if mi ≥ k + 1, i =
1, . . . , n, then lk := n.

Proof. See [13].

Definition 5. [9] Suppose the Laplacian (−△) has a complete set of orthonor-
mal eigenfunction φn corresponding to eigenvalues λ2n on a bounded region D,
i.e.,(−△)φn = λ2nφn on a bounded region D; B(φ) = 0 on ∂D, where B(φ) is
one of the standard three homogeneous boundary conditions. Let

F = {f =
∞∑
n=1

cnφn, cn = ⟨f, φn⟩,
∞∑
n=1

|cn|2|λn|β <∞, }, (17)

then for any f ∈ F , (−△)
β
2 is defined by

(−△)
β
2 f =

∞∑
n=1

cn(λn)
βφn. (18)

Lemma 3. (See [9]) Suppose the one-dimensional Laplacian (−△) defined
with Dirichlet boundary condition at x = 0 and x = L has a complete set of
orthonormal eigenfunctions φn corresponding to eigenvalues λ2n on a boundary
region Ω = [0, L], if (−△)φn = λ2nφn then, the eigenvalues are given by λ2n =
n2π2

L2 for n = 1, 2, · · · and the corresponding eigenfunctions are nonzero scalar

multiples of φn =
√

2
L
sin(nπx

L
).

3 Analytical solution of the MT-TSCR-FADE with multi-term time
fractional diffusion terms

In this section, we consider the analytical solution of the MT-TSCR-FADE
(1) with multi-term time fractional diffusion terms. In this case, 0 ≤ αs <
· · · < α1 < α ≤ 1 in Eq. (1). The equation satisfies initial condition (7) and
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the following Dirichlet boundary conditions u(0, t) = µ1(t), t ≥ 0,

u(L, t) = µ2(t), t ≥ 0,
(19)

where µ1(t), µ2(t) are nonzero smooth functions with order-one continuous
derivatives. In order to solve the problem with nonhomogeneous boundary
conditions, we firstly transform the nonhomogeneous condition into a homo-
geneous boundary condition. Let

u(x, t) = W (x, t) + V (x, t), (20)

where

V (x, t) =
µ2(t)− µ1(t)

L
x+ µ1(t), (21)

satisfies the boundary conditions V (0, t) = µ1(t),

V (L, t) = µ2(t).
(22)

Using Lemma 1 and substituting (20) into (1), the function W (x, t) is the
solution of the following homogeneous problem:

P (Dt)W (x, t) + kβ(−△)
β
2W (x, t)

+kγ(−△)
γ
2W (x, t) = f1(x, t), 0 < x < L, t > 0,

W (x, 0) = ϕ1(x), 0 ≤ x ≤ L,

W (0, t) = W (L, t) = 0, t ≥ 0,

(23)

with
f1(x, t) = −P (Dt)V (x, t) + kβ

∂β

∂|x|βV (x, t) + kγ
∂γ

∂|x|γ V (x, t)

+f(x, t),

ϕ1(x) = ϕ(x)− µ2(0)−µ1(0)
L

x− µ1(0),

(24)

using Definition 1 and applying the fractional derivative formulas.
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We assume that the solution of the homogeneous equation in (23) has the
form

W (x, t) = X(x)T (t). (25)

Substituting this expression forW (x, t) in (23), we obtain the Sturm-Liouville
problem

−kβ(−△)
β
2X(x)− kγ(−△)

γ
2X(x) + λX(x) = 0,

X(0) = 0, X(L) = 0, (26)

and a fractional ordinary linear differential equation with Caputo derivatives
for T (t), namely

P (Dt)T (t) + λT (t) = 0, (27)

T (0) = ϕ̄0(x),
dT (0)

dt
= ϕ̄1(x), (28)

where the parameter λ is a positive constant.

The Sturm-Liouville problem given by (26) and (27) has eigenvalues

λ2n =
n2π2

L2
, n = 1, 2, · · · (29)

and corresponding eigenfunctions

Xn(x) = sin
(
nπx
L

)
, n = 1, 2, · · · . (30)

Based on Definition 4 and Lemma 3, we set

W (x, t) =
∞∑
n=1

cn1(t) sin
(
nπx
L

)
. (31)

In order to determine cn1(t), we expand f1(x, t) as a Fourier series using the

eigenfunction {
√

2
L
sin

(
nπx
L

)
}∞n=1 as

f1(x, t) =
∞∑
n=1

fn1(t) sin
(
nπx
L

)
, (32)
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where

fn1(t) =
2

L

L∫
0

f1(x, t) sin
(
nπx
L

)
dx. (33)

Using Definition 3 and substituting (31) and (32) into (23), we obtain

P (Dt)
∞∑
n=1

cn1(t) sin
(
nπx
L

)
+ kβ

∞∑
n=1

cn1(t)λ
β
n sin

(
nπx
L

)
+kγ

∞∑
n=1

cn1(t)λ
γ
n sin

(
nπx
L

)
=

∞∑
n=1

fn1(t) sin
(
nπx
L

)
, (34)

where the λn are given in Lemma 3.

Then, we obtain

P (Dt)cn1(t) + kβcn1(t)λ
β
n1 + kγcn1(t)λ

γ
n1 = fn1(t). (35)

Using the initial condition

W (x, 0) = ϕ1(x), 0 ≤ x ≤ L, (36)

we have

∞∑
n=1

cn1(0) sin
(
nπx
L

)
= ϕ1(x) 0 < x < L, (37)

and therefore

cn1(0) =
2

L

L∫
0

ϕ1(x) sin
(
nπx
L

)
dx n = 1, 2, · · · . (38)

According to Lemma 2, we obtain

cn1(t) =

t∫
0

Gn
α(τ)τ

α−1fn1(t− τ)dτ + cn1(0)u0(t), (39)

where
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Gn
η (t)=E(ν1,···,νs,α),η(−a1tν1 , · · · ,−astνs ,−κntα), (40)

κn = kβλ
β
n + kγλ

γ
n, νi = α− αi, i = 1, · · · , s, (41)

u0(t)= 1− κnt
αGn

1+α(t). (42)

Thus, the solution of problem (23) is given by

W (x, t) =
∞∑
n=1

cn1(t) sin
(
nπx
L

)
, (43)

where cn1(t) is given in (39).

Finally, the analytical solution of the MT-TSCR-FADE (1) with multi-term
time fractional diffusion terms is

u(x, t) =
(µ2(t)− µ1(t))x

L
+ µ1(t)

+
∞∑
n=1

 t∫
0

Gn
α(τ)τ

α−1fn1(t− τ)dτ + cn1(0)u0(t)

 sin (nπx
L

)
. (44)

4 Analytical solution of the MT-TSCR-FADE with multi-term time-
fractional wave terms

In this section, we consider the analytical solution of the MT-TSCR-FADE
with multi-term time-fractional wave terms. In this case, 1 ≤ αs < · · · <
α1 < α ≤ 2 in Eq. (1). The boundary and initial conditions are (19) and (8),
respectively.

In a similar manner as presented in Section 3, in order to solve the problem
with nonhomogeneous boundary conditions, we firstly transform the nonho-
mogeneous problem into a homogeneous problem.

Using Lemma 1 and substituting (20) into (1), the function W (x, t) is the
solution of the problem:

P (Dt)W (x, t) + kβ(−△)
β
2W (x, t)

+kγ(−△)
γ
2W (x, t) = f1(x, t), 0 < x < L, t > 0,

W (x, 0) = ϕ1(x),
∂W (x,0)

∂t
= ψ1(x), 0 ≤ x ≤ L,

W (0, t) = W (L, t) = 0, t ≥ 0,

(45)
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with

f1(x, t) = −P (Dt)V (x, t) + kβ
∂β

∂|x|βV (x, t) + kγ
∂γ

∂|x|γ V (x, t)

+f(x, t),

ϕ1(x) = ϕ(x)− µ2(0)−µ1(0)
L

x− µ1(0),

ψ1(x) = ψ(x)− µ′
2(0)−µ′

1(0)

L
x− µ′

1(0).

(46)

Similarly, based on Definition 4, we set

W (x, t) =
∞∑
n=1

cn2(t)φn(x) (47)

to obtain

P (Dt)cn2(t) + kβcn2(t)λ
β
n1 + kγcn2(t)λ

γ
n1 = fn1(t). (48)

Using the initial conditions

W (x, 0) = ϕ1(x),
∂W (x, 0)

∂t
= ψ1(x), 0 ≤ x ≤ L, (49)

we have
∑∞

n=1 cn2(0) sin
(
nπx
L

)
= ϕ1(x) 0 < x < L,∑∞

n=1 c
′
n2(0) sin

(
nπx
L

)
= ψ1(x) 0 < x < L,

(50)

and obtain cn2(0) = 2
L

∫ L
0 ϕ1(x) sin

(
nπx
L

)
dx n = 1, 2, · · · ,

c′n2(0) = 2
L

∫ L
0 ψ1(x) sin

(
nπx
L

)
dx n = 1, 2, · · · .

(51)

For each value of n, (48) and (51) constitutes a fractional initial value problem.

According to Lemma 2, we obtain

cn2(t) =

t∫
0

Gn
α(τ)τ

α−1fn1(t− τ)dτ + cn2(0)u0(t) + c′n2(0)u1(t), (52)

where
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u0(t)= 1− κnt
αGn

1+α(t), (53)

u1(t)= t− κnt
1+αGn

2+α(t). (54)

Thus, the solution of problem (45) is given by

W (x, t) =
∞∑
n=1

cn2(t) sin
(
nπx
L

)
, (55)

where cn2(t) is given in (52).

Finally, the analytical solution of the MT-TSCR-FADE (1) with multi-term
time fractional wave terms is

u(x, t) =
∞∑
n=1

 t∫
0

Gn
α(τ)τ

α−1fn1(t− τ)dτ + cn2(0)u0(t) + c′n2(0)u1(t)


× sin

(
nπx
L

)
+

(µ2(t)− µ1(t))x

L
+ µ1(t). (56)

5 Analytical solutions of the MT-TSCR-FADE with multi-term
time-fractional mixed diffusion-wave terms

In this section, we consider the analytical solution of the MT-TSCR-FADE
with multi-term time-fractional mixed diffusion-wave terms. In this case, 0 ≤
αs < . . . < αh0 ≤ 1 < αh0−1 < . . . < α1 < α ≤ 2 in Eq. (1). The boundary
and initial conditions are (19) and (8), respectively.

Similarly to the analysis in Section 4, based on Definition 4, we set

W (x, t) =
∞∑
n=1

cn3(t)φn(x) (57)

to obtain

P (Dt)cn3(t) + kβcn3(t)λ
β
n + kγcn3(t)λ

γ
n = fn1(t). (58)

According to Lemma 2, we have

cn3(t) =

t∫
0

Gn
α(τ)τ

α−1fn1(t− τ)dτ + cn3(0)u0(t) + c′n3(0)u1(t), (59)
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where

cn3(0)=
2

L

L∫
0

ϕ1(x) sin
(
nπx
L

)
dx n = 1, 2, · · · , (60)

c′n3(0)=
2

L

L∫
0

ψ1(x) sin
(
nπx
L

)
dx n = 1, 2, · · · , (61)

u0(t)= 1− κnt
αGn

1+α(t), (62)

u1(t)= t−
s∑

i=h0

ait
1+νiGn

2+νi
(t) + κnt

1+αGn
2+α(t). (63)

Thus, the solution of problem (45) is

W (x, t) =
∞∑
n=1

cn3(t) sin
(
nπx
L

)
, (64)

where cn3(t) is given in (59).

Finally, the analytical solution of the MT-TSCR-FADE (1) with multi-term
time-fractional diffusion-wave terms is

u(x, t) =
∞∑
n=1

{ t∫
0

Gn
α(τ)τ

α−1fn1(t− τ)dτ + cn3(0)u0(t)

+c′n3(0)u1(t)

}
sin

(
nπx
L

)
+

(µ2(t)− µ1(t))x

L
+ µ1(t). (65)

Special case 1: The time-space fractional telegraph equation:

Dα
t u(x, t) + aD

α
2
t u(x, t) = kβ(−△)

β
2 + kγ(−△)

γ
2 + f(x, t), (66)

with initial conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), 0 < x < L, (67)

and boundary conditions:

u(0, t) = µ1(t), t ≥ 0, u(L, t) = µ2(t), t ≥ 0, (68)

where 1 < α ≤ 2, 0 < β < 1 and 1 < γ ≤ 2.
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From (65), we obtain the solution of equations (66)-(67):

u(x, t) =
∞∑
n=1

{ t∫
0

Gn
α(τ)τ

α−1fn1(t− τ)dτ + cn3(0)u0(t)

+c′n3(0)u1(t)

}
sin

(
nπx
L

)
+

(µ2(t)− µ1(t))x

L
+ µ1(t) (69)

where

u0(t)= 1 + κnt
αGn

1+α(t), (70)

u1(t)= t− at1+
α
2Gn

2+α
2
(t) + κnt

1+αGn
2+α(t), (71)

Gn
α(τ)=E(α

2
,α),α(−aτ

α
2 ,−κnτα), (72)

Gn
1+α(t)=E(α

2
,α),1+α(−at

α
2 ,−κntα), (73)

Gn
2+α

2
(t)=E(α

2
,α),2+α

2
(−at

α
2 ,−κntα), (74)

Gn
2+α(t)=E(α

2
,α),2+α(−at

α
2 ,−κntα), (75)

here fn1(t − τ), Gn
η , κn, cn3(0), c

′
n3(0) and E(α

2
,α),η are as given in (33), (40),

(41), (60), (61) and (10), respectively.

Special case 2: The time-fractional telegraph equation:

When κβ = 0, κγ = k, γ = 2 in equation (66), we obtain the solution of the
time-fractional telegraph equation:

u(x, t) =
∞∑
n=1

{ t∫
0

E(α
2
,α),1+α(−aτ

α
2 ,−kπ

2n2

L2
τα)τα−1fn1(t− τ)dτ + cn3(0)u0(t)

+c′n3(0)u1(t)

}
sin

(
nπx
L

)
+

(µ2(t)− µ1(t))x

L
+ µ1(t) (76)

where

u0(t)= 1− kπ2n2

L2
tαE(α

2
,α),1+α(−aτ

α
2 ,−kπ

2n2

L2
τα),

u1(t)= t− at1+
α
2E(α

2
,α),2+α

2
(−aτ

α
2 ,−kπ

2n2

L2
τα)

−kπ
2n2

L2
t1+αE(α

2
,α),2+α(−aτ

α
2 ,−kπ

2n2

L2
τα). (77)

This result is in accord with the result obtained in [2]
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6 Conclusions

In this paper, we have proposed some new analytic techniques to solve three
types of MT-TSCR-FADE with nonhomogeneous Dirichlet boundary condi-
tions. By using Luchko’s Theorem and the equivalent relationship between the
Laplacian operator and the Riesz fractional derivative, we have used the spec-
tral representation of the fractional Laplacian operator to derive analytical
solutions. As far as we are aware there are no research papers in the published
literature written on this topic. The methods and techniques discussed in this
paper can also be applied to solve other types of multi-term fractional par-
tial differential equations with fractional Laplacian, such as, the Szabo wave
equation with the n-term time fractional derivatives and the power-law ab-
sorption and dispersion equation for acoustic propagation with the fractional
Laplacian.
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