
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Tang, Maolin (2012) Evolutionary placement of continuously operating ref-
erence stations of network Real-Time Kinematic. In Proceeding if the 2012
IEEE World Congress on Computational Intelligence, IEEE Computer So-
ciety Press, International Convention Centre, Brisbane, QLD, pp. 1461-
1468.

This file was downloaded from: http://eprints.qut.edu.au/51473/

c© Copyright 2012 IEEE

This work has been submitted to the IEEE for possible publication. Copy-
right may be transferred without notice, after which this version may no
longer be accessible

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1109/CEC.2012.6256527

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10911385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Tang,_Maolin.html
http://eprints.qut.edu.au/51473/
http://dx.doi.org/10.1109/CEC.2012.6256527

Evolutionary Placement of Continuously Operating
Reference Stations of Network Real-Time

Kinematic
Maolin Tang

School of Electrical Engineering and Computer Science
Queensland University of Technology

2 George Street, Brisbane, QLD 4001, Australia
m.tang@qut.edu.au

Abstract—Network RTK (Real-Time Kinematic) is a
technology that is based on GPS (Global Positioning System) or
more generally on GNSS (Global Navigation Satellite System)
observations to achieve centimeter-level accuracy positioning in
real time. It is enabled by a network of Continuously Operating
Reference Stations (CORS). CORS placement is an important
problem in the design of network RTK as it directly affects not
only the installation and running costs of the network RTK,
but also the Quality of Service (QoS) provided by the network
RTK. In our preliminary research on the CORS placement,
we proposed a polynomial heuristic algorithm for a so-called
location-based CORS placement problem. From a computational
point of view, the location-based CORS placement is a large-
scale combinatorial optimization problem. Thus, although the
heuristic algorithm is efficient in computation time it may not
be able to find an optimal or near optimal solution. Aiming
at improving the quality of solutions, this paper proposes
a repairing genetic algorithm (RGA) for the location-based
CORS placement problem. The RGA has been implemented
and compared to the heuristic algorithm by experiments.
Experimental results have shown that the RGA produces better
quality of solutions than the heuristic algorithm.

Keywords—genetic algorithm, reference station placement, net-
work RTK

I. INTRODUCTION

Network RTK (Real-Time Kinematic) is a technology that is
based on GPS (Global Positioning System) or more generally
on GNSS (Global Navigation Satellite System) observations to
achieve centimeter-level accuracy positioning in real time [1],
[2], [3]. It is underpinned by a network of Continuously
Operating Reference Stations (CORS), which continuously
stream their satellite observations to a central server where
a network RTK software is used to fix the ambiguities of the
satellites and then generates corrections from those satellite
observations. The users connect to the network RTK server to
get the correction data and use it computes their positions. In
this way, the users can achieve centimeter accuracy positioning
services.

The placement of the CORS is a very important issue in
the design of network RTK as it will directly affect the QoS
and cost of the network RTK. In order to make sure that
the network RTK can provide accurate correction data for all

the users, it must be guaranteed that there will be sufficient
CORS such that for each and every user there will be at
least at least one CORS which is geographically close to the
user. However, the establishment and maintenance of CORS
is expensive, typically tens of thousands of Australian dollars
each with annual operational cost of approximately 10% of the
CORS. Therefore, it is desirable to minimize the total number
of CORS without compromising the quality of the real-time
positioning services.

There are two categories of CORS placement problems
in network RTK. One is a so-called location-oriented CORS
placement. Given the CORS candidate sites and the distribu-
tion of users, the location-oriented CORS placement problem
is to determine at which CORS candidate site we need to place
a CORS such as that for each and every user there will be at
least CORS such that the Euler distance between the user and
the CORS site is not greater than Dmax and the total number
of CORS is minimal. Another CORS placement problem is so
called area-oriented CORS placement. Given an area of any
shape where the network RTK needs to cover, the area-oriented
placement problem is to find a placement of CORS in the area
such that at any position in the area there is at least one CORS
such that the distance between them is not greater than Dmax

and the total number of CORS is minimal. This paper focuses
on the location-based CORS placement problem.

In our preliminary research on the location-oriented CORS
placement, we have proposed a heuristic algorithm for the
problem. From a computational point of view, the location-
based CORS placement is a large-scale combinatorial opti-
mization problem. Thus, although the heuristic algorithm is
efficient in computation time it may not be able to find an
optimal or near optimal solution. Aiming at improving the
quality of solutions, this paper proposes a repairing genetic
algorithm (RGA) for the location-based CORS placement
problem. The RGA has been implemented and compared to
the heuristic algorithm by experiments. Experimental results
have shown that the RGA constantly produces better quality
of solutions than the heuristic algorithm.

The paper is organized as follows. Firstly, we formulate
the location-oriented CORS placement problem in Section II.

Then, we discuss related work in Section III before we present
the RGA in Section IV. Finally, we conclude the research
and talk about future work on the location-oriented CORS
placement problem.

II. PROBLEM FORMULATION

In the location-oriented CORS placement problem, the loca-
tions of all the users and all the CORS candidates are given.
In order to guarantee that all the users will get centimeter
accuracy positioning services, we must make sure that there
will be at least one CORS candidate is selected such that
the distance between the user and the CORS candidate is not
greater than a parameter Dmax.

Figure 1 illustrates the location-oriented CORS placement
problem. In the figure, u1, u2, · · ·, u9 represent users, and
c1, c2, · · ·, u5 are CORS candidates. The radius of those
big broken-line circles is Dmax. Thus, those big broken-line
circles show the coverage of the CORS candidates.

c1

u1

c2

c3

c5

c4

u7

u2

u8

u3

u4

u5

u6

u9

c6

Fig. 1. Illustration of the location-oriented CORS placement problem

To model the location-oriented CORS placement problem
as a graph-theoretic problem, we define some symbols that
will be used in the modeling in Table I.

TABLE I
SYMBOLS USED IN THE PROBLEM FORMULATION

U the set of users
C the entire set of CORS candidates
Dmax the maximal spacing constraint
u = (xu, yu) ∈ U the location of user u
c = (xc, yc) ∈ C the location of CORS candidate c
C∗ a subset of C where a CORS will be placed
|C∗| the number of CORS candidates in C∗

The location-oriented CORS placement problem can be
represented by a bipartite graph [4] G = (V1

⋃
V2, E),

where V1 = U , V2 = C. An edge (u, v) ∈ E, if and

only if ∃u = (xu, yu) ∈ U , ∃c = (xc, yc) ∈ C, and√
(xu − xc)2 + (yu − yc)2 ≤ Dmax. This bipartite graph is

called coverage graph. Figure 2 is the coverage graph of the
location-oriented CORS placement problem in Figure 1.

U

C

u1 u2 u3 u4 u5 u6 u7 u8 u9

c3 c4 c5c1 c2 c6

Fig. 2. Illustration of coverage graph

It is assumed that for any user there exists at least one
CORS candidate such that the distance between the user and
the candidate CORS does not exceed Dmax. The location-
based CORS placement problem can be transformed into the
following graph-theoretic problem:

Given a coverage graph G = (C
⋃

U, E), find C∗ ⊆ C,
such that |C∗| is minimum and ∀u ∈ U ∃v ∈ C∗ such that
(u, v) ∈ E.

Theorem 2.1: The location-based CORS placement prob-
lem is NP-complete.

Proof: In order to prove the location-based CORS place-
ment problem (CP) is NP-complete, we show the location-
based CORS placement problem (LP) is equivalent to the Set
Cover Problem (SCP) [5] under polynomial reductions.

From CP to SCP:
Given an instance of CP, G = (C

⋃
U, E), construct a

SCP (S,U) as follows: the universe U = U and the family
of subsets is S = {S1, S2, · · · , Sn}, where Si = {uj |(ci ∈
C)&(uj ∈ U)&((ci, uj) ∈ E)} and 1 ≤ i ≤ n = |C|.

If C∗ is the minimal CORS set of a CP, then S
∗

=
{S1
∗
, S2
∗
, · · · , S|C∗|

∗} is the minimal set cover of the cor-
responding SCP, where Si

∗
= {uj |(ci ∈ C∗)&(uj ∈

U)&((ci, uj) ∈ E)}.
From SCP to CP:
Let (S,U) be an instance of SCP with the universe U and

the family of subsets S = {Si|i ∈ I}. Construct a CP G =
(C∪U, E) as follows: the user set U = U ; the CORS candidate
set C = S; and edge (Si, uj) ∈ E if and only if uj ∈ Si.

If S
∗

= {S1
∗
, S2
∗
, · · · , Sk

∗} is the minimal cover set of a
SCP, then the corresponding CORS set of S

∗
is the minimal

CORS for the corresponding CP.

III. RELATED WORK

There are various placement problems in the context of
communication network planning and deployment. Although
the placement problems are different from each other in terms
of objectives and constraints, they all transformed into a
problem of finding the locations of communication devices,
such as base stations [6], [7], [8], [9], [10], reference stations
[11], [12], relay stations [13], [14], cache [15], access point
[16], [17] and gateways [18], [19], [20]. Placement problems
are very important in communication network planning and
deployment as they determine the cost of building a commu-
nication network and the performance of the communication
network.

The placement problems can be categorized into discrete
placement problems and continuous placement problems. In
discrete placement problems, candidate locations of the com-
munication devices are given. Thus, discrete placement prob-
lems are selecting a set of locations among those candidate
locations such that the objectives are optimized subject to
some constraints. The search space of the discrete placement
problems is discrete. From a computational point of view,
discrete placement problems are constrained combinatorial
optimization problems. Thus, various combinatorial optimiza-
tion techniques are applied to solve the discrete placement
problems.

In continuous placement problems, in contrast, there are
no candidate locations given for the communication devices.
Thus, continuous placement problems are find locations on
a continuous area such that objectives are optimized subject
to some constraints. Existing approaches to the continuous
placement problems are to transform the continuous placement
problems into a discrete placement problem by modeling a
continuous area using a grid graph where possible locations
of reference stations are restricted to the gird points of the grid
graph. In this way, a reference station placement problem can
be transformed into a combinatorial optimization problem.

Since the location-based CORS placement is NP-hard, a
heuristic algorithm (HA) was proposed in [11]. The HA starts
with a solution in which every CORS candidate has been
placed a CORS. Then, it systematically identifies and removes
redundant CORS. A CORS is redundant if all the users that
are covered by the CORS are also covered by at least another
CORS. A user is said to be covered by a CORS if the distance
between the user and the CORS is less than or equals to Dmax.
The heuristic algorithm terminates when no redundant CORS
can be found. Algorithm 1 is the description of the HA:

It can be seen from the algorithm description that the HA
is a hill-climbing algorithm. It is fast in computation time.
However, this may be trapped at a local optimum during the
exploration. Thus, we propose a Repairing Genetic Algorithm
(RGA) for the CORS placement problem in the following
section.

Algorithm 1: A HA for the CORS placement algorithm
Input : the set of CORS candidate sites C and the set

of users U
Output: a CORS placement that covers all the users in

U , satisfying the maximum distance constraint
Dmax

1 construct the coverage graph G = 〈C
⋃

U,E〉;
2 for i = 1 to |C| do
3 if the ith CORS candidate is redundant then
4 remove it from C;
5 remove all the edges adjacent to it from E;
6 end
7 end
8 output C.

IV. THE RGA

This section presents a RGA for the location-oriented CORS
placement problem. The RGA uses a repairing technique to fix
up any infeasible solution that may be generated in the initial
population generation, and any infeasible solution that may
be generated by the genetic operators. A solution is said to be
feasible, if in the solution for every user there exists at least
CORS such that the distance between the user and the CORS
is less than or equals to Dmax; otherwise, it is infeasible.

A. The encoding scheme

In the RGA we use a binary string c1c2 · · · cn to represent
a solution to a location-oriented CORS placement problem,
where ci corresponds to a CORS candidate, and 1 ≤ i ≤ n =
|C|.

ci =
{

1, if CORS candidate ci is selected;
0, otherwise. (1)

B. Fitness function

Since the RGA is a repairing one, at the end of each
generation all the individuals are feasible. Thus, when defining
the fitness function we only need to consider feasible solutions.
In addition, the quality of a CORS placement depends on
the number of CORS in the placement solution. The more
CORS in the placement, the worse the quality of the solution
is. Equation 2 is the fitness function that is used to measure
the fitness value of an individual p = c1c2 · · · cn.

fitness(p) = 1−
∑n

i=1 ci

n
(2)

where n = |C|, representing the total number of CORS
candidates, and

∑n
i=1 ci gives the total number of CORS in

p. The fewer the number of CORS in p, the greater the fitness
value is.

Property 4.1: For any feasible CORS placement p, 0 ≤
fitness(p) ≤ 1.

C. Initial population generation

The RGA begins by randomly creating a population of
individuals, each of which is a solution to the CORS place-
ment problem. When randomly generating an individual, it
randomly picks up a value (0 or 1) for each of the gens in
the chromosome. It is important to note that an individual
generated in this manner may not be a feasible solution. If
it is the case, the RGA will use a repairing technique, which
will be detailed in the following, to transform it into a feasible
one.

D. Repairing technique

1) The representation of the coverage graph: A coverage
graph G = (V,E), where V = U

⋃
C, can be represented by

an m × n adjacency matrix A = [aij]m×n, where m = |U |,
n = |C|, and

aij =
{

1, if ui ∈ U , cj ∈ C, and (ui, cj) ∈ E;
0, otherwise.

For example, the coverage graph shown in Figure 2 can be
represented by the following adjacency matrix:

A =

1 0 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 1 0 1 0

2) The coverage of an individual: The coverage of an

individual p = c1c2 · · · cn can be represented by a matrix,
B = [bij]m×n, where bij = aij × cj , 1 ≤ i ≤ m, and
1 ≤ j ≤ n. From a coverage matrix, we can easily identify
if a user is covered in a solution and if a CORS is placed at
a CORS candidate in a solution. For example, the coverage
of individual p = 110100 for the location-oriented CORS
placement problem shown in Figure 1 is

B =

1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 1 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Property 4.2: A user is covered in a solution, there exists

at least 1 in the corresponding row of the coverage matrix;
otherwise, it is not covered by the solution.

Property 4.3: If a CORS is placed at a CORS candidate,
then there exists at least one 1 in the corresponding column
in the coverage matrix; otherwise, there is no CORS placed
at the CORS candidate in the solution.

3) The repairing technique: The repairing technique is used
whenever an infeasible individual is generated. In order to
reduce the computation time, the RGA combines the feasibility
checking process with the repairing process.

In order to check the feasibility of an individual and repair it,
if it is not feasible, firstly we need to build the coverage matrix
of the individual. Then, we check the rows in the coverage
matrix one by one. If there exists any row in which there is
no 1, the individual is not feasible as there is no CORS that can
be used as a qualify reference station for the user. To fix up the
problem, we randomly selects a 1 in the corresponding row in
the bipartite graph, and changes the vale of the corresponding
gene in the individual from 0 to 1. Algorithm 2 depicts the
repairing process.

Algorithm 2: Repairing Algorithm
Input : an infeasible solution, C = c1c2 · · · cn

Output: a feasible solution, C ′ = c′1c
′
2 · · · c′n

1 C ′ = C;
2 build the coverage matrix of C ′;
3 for i = 1 to m do
4 if user i is not covered then
5 for j = 1 to n do
6 if user ui can be covered by CORS candidate

c′j then
7 c′j = 1;
8 update the coverage matrix;
9 end

10 end
11 end
12 end
13 output C ′.

E. Crossover operator

Linkage problem is a potential problem in the RGA as in the
encoding scheme each gene represents a CORS candidate and
some CORS candidates that are geographically close to each
other may interact each other and form some good schemata
(building blocks). However, in the encoding scheme those
genes may be far apart from each other and therefore those
good schemata may be broken if classical one-point or two-
point crossover is used.

There are a few ways to deal with linkage problems, and
perhaps the simplest way is to use the uniform crossover.
The uniform crossover evaluates each gene in the parent
chromosomes for exchange with a probability of 0.5. In
the RGA we use a modified uniform crossover. Rather than
giving the same opportunity to the two parent chromosomes
contribute to the child chromosome, we adopt a mixing ratio,
which is in proportional to the fitness values of the two
parent chromosomes. This is based an assumption that a
chromosome that has a greater fitness value contains more
useful information. It is expected that the modified crossover

results in a more complete search of the design space with
maintaining the exchange of good schemata.

Below is the algorithm of the crossover that is used in our
RGA:

Algorithm 3: Crossover algorithm

Input : two parent chromosomes, Ci = ci
1c

i
2 · · · ci

n and
Cj = cj

1c
j
2 · · · cj

n

Output: one child chromosome, Ck = ck
1ck

2 · · · ck
n

1 f i = fitness(Ci);
2 f j = fitness(Cj);
3 for q = 1 to n do
4 randomly generate a real value between 0 and 1, r;
5 if r < f i/(f i + f j) then
6 ck

q = ci
q;

7 end
8 else
9 ck

q = cj
q;

10 end
11 end
12 output Ck.

The child chromosome may not be feasible solution. Thus,
if a child chromosome is not a feasible solution, the repairing
technique is used to make it feasible.

F. Mutation operator

The mutation operator simply randomly picks up a gene
in the chromosome and inverts the value of the chosen gene.
Below is the algorithm of the mutation operator:

Algorithm 4: Mutation algorithm
Input : a chromosome, C = c1c2 · · · cn

Output: a mutated chromosome, C ′ = c′1c
′
2 · · · c′n

1 C ′ = C;
2 randomly generate a number between 1 and n, i;
3 replace c′i with c̄′i;
4 output C ′.

The mutated chromosome may no longer be feasible after
the mutation. Thus, if this happens, the repairing technique is
used to make it feasible.

G. The description of the RGA

The RGA uses a repairing technique to convert any infea-
sible individual that are generated by the initial population
generation procedure and the genetic operators into a feasible
one. The selection strategy used in the RGA is the roulette
selection. Algorithm 5 is a high-level description of the RGA.

V. EVALUATION

This section evaluates the performance and scalability of
the RGA by conducting an empirical study. In order to
conduct the empirical study, we have implemented it in C# on

Algorithm 5: The RGA
Input : a set of CORS candidates C, a set of users U ,

and Dmax

Output: a feasible CORS placement that covers all the
users in U , satisfying the maximum distance
constraint Dmax

1 generate a population of PopSize individuals, P ;
2 for each individual in P do
3 if it is not feasible then
4 convert it into a feasible solution using the

repairing technique;
5 end
6 end
7 initialize the best individual in the past;
8 while the termination condition is not true do
9 for each individual in P do

10 calculate its fitness value;
11 end
12 for each individual in P do
13 use the roulette selection to select another

individual to pair up;
14 end
15 for each pair of parents do
16 probabilistically use the crossover operator to

produce an offspring;
17 end
18 for each individual in P do
19 if it is not feasible then
20 convert it into a feasible solution using the

repairing technique;
21 end
22 end
23 for each individual in P do
24 probabilistically use the mutation operator to

mutate a randomly chosen gene in the individual;
25 if the mutated individual is not feasible then
26 convert it into a feasible solution using the

repairing technique;
27 end
28 end
29 find the best individual in P ;
30 if the best individual in P is better than the best

individual in the past then
31 replace the best individual in the past with the

best individual in P ;
32 end
33 end
34 decode the best individual in the past and output it.

Microsoft Visual Studio 2010. Since there are no benchmarks
available for the location-oriented CORS placement problem,
we have developed a problem which can randomly generate
test problems. We have also implemented the HA presented in
Algorithm 1 in Section III in the same programming language
on the same platform as we need to use the solutions generated

by the HA as benchmarks to evaluate the quality of solutions
produced by the RGA.

A. Test problems generation

In order to evaluate the RGA, we have developed a C#
program that can randomly generate location-oriented CORS
placement problems of different characteristics. Given the
number of users, the number of CORS candidates, boundaries
of the locations of users and CORS candidates, and the value
of Dmax, the program randomly generates a location for each
of the users and the CORS candidates.

The program can guarantee that for every test problem
generated there exists a feasible solution. This is achieved by
the following process. Firstly, the program randomly generates
the given number of CORS candidates within the boundaries.
Then, it randomly generates a location for a user within the
boundaries. Once the location of a user is generated, the
program immediately checks if there exists at least one CORS
candidate at which if a CORS is deployed the network RTK
system can use it as a qualified reference station by checking
if the distance between the user and the CORS candidate is not
greater than Dmax. If there is no such a CORS, the program
discards the location and re-generates a new location for the
user. This is repeated until an appropriate location is found for
the user. This process is repeated until all the users’ locations
are generated.

In the evaluation, all the locations of the users and the CORS
candidates are bounded by a 600km × 400km rectangular and
the value of Dmax is 70km.

B. RGA parameters

In the evaluation, all the RGA parameters were fixed.
Table II shows the RGA parameters used in the evaluation.

TABLE II
RGA PARAMETERS

Parameter Value
population size (PopSize) 100

crossover rate (pc) 0.95
mutation rate (pm) 0.05

termination condition no improvement in 15 consecutive
generations

C. Scalability of the RGA

The computation time of the RGA depends on both the
number of users and the number of CORS candidates. Thus,
in order to evaluate the scalability of the RGA we conducted
two sets of experiments. In a set of experiments, we gradually
increased the number of users without changing the number
of CORS candidates to see how the computation time of the
RGA would increase. Figure 3 shows how the computation
time of the RGA increased when the number of users increased
from 100 to 1000 while the number of CORS candidates was
fixed to 100. The computation time shown in the figure is the
average computation time of 30 runs. It can be seen from the
figure that the average computation time of the RGA increased

100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of users

T
im

e(
se

co
nd

s)

Fig. 3. The computation time of the RGA with the number of CORS
candidates

from 0.11 seconds to 1.07 seconds linearly when the number
of users increased from 100 to 100.

In the other set of experiments, we gradually increased the
number of CORS candidates without changing the number of
users to monitor how the computation time would increase.
Figure 4 displays the increasing trend of the computation time
of the RGA when the number of CORS candidates increased
from 100 to 1000 while the number of users was fixed to 100.
It can be seen from the figure that the average computation
time of the RGA increased from 1.07 seconds to 8.24 seconds
linearly when the number of CORS candidates increased from
100 to 1000.

100 200 300 400 500 600 700 800 900 1000
1

2

3

4

5

6

7

8

9

Number of CORS candidates

T
im

e(
se

co
nd

s)

Fig. 4. The computation time of the RGA with the number of users

Based on the above experimental results, it is concluded
that the RGA can scale up very well when the size of the

location-based CORS placement problem increases.

D. Performance of the RGA

In order to evaluate the performance of the RGA, we
randomly generated a number of test problems of various con-
figurations. We used both the RGA and the HA to solve those
randomly generated test problems and recorded the solutions
obtained by the two algorithms. Considering the stochastic
nature of the RGA, we ran the RGA for 30 times for each
of the test problems. Tables III and IV show the statistics of
the experimental results. Specifically, Table III shows statistics
of the experimental results for ten test problems where the
number of users ranged between 100 and 1000 and the number
of CORS candidates was fixed to 100. Table IV shows statistics
of the experimental results for other ten test problems in which
the number of CORS candidates ranged between between 100
and 1000 while the number of users was fixed to 100.

TABLE III
COMPARISON OF THE HA AND THE RGA WITH RESPECT TO DIFFERENT

NUMBERS OF USERS

Test U C HA RGA
Problem (#) (#) Sol Ave Best Worst StdDev

1 100 100 12 11.97 11 12 0.183
2 200 100 17 13.87 13 14 0.346
3 300 100 14 13.73 13 14 0.450
4 400 100 16 14.70 14 15 0.466
5 500 100 18 13.87 13 15 0.434
6 600 100 17 14.90 14 16 0.481
7 700 100 17 14.97 14 16 0.490
8 800 100 19 14.33 14 15 0.479
9 900 100 15 14.80 13 15 0.484

10 1000 100 16 14.40 14 15 0.498

TABLE IV
COMPARISON OF THE HA AND THE RGA WITH RESPECT TO DIFFERENT

NUMBERS OF CORS CANDIDATES

Test U C HA RGA
Problem (#) (#) Sol Ave Best Worst StdDev

1 100 100 16 14.40 14 15 0.498
2 100 200 18 14.90 14 16 0.548
3 100 300 17 14.90 14 16 0.481
4 100 400 18 15.17 14 16 0.461
5 100 500 17 14.90 14 16 0.481
6 100 600 17 14.00 14 16 0.371
7 100 700 17 15.37 14 16 0.556
8 100 800 17 15.00 14 16 0.643
9 100 900 17 15.10 14 16 0.481

10 100 1000 16 15.23 14 16 0.568

It can be observed from the tables that
1) the average solution of the RGA was constantly better

than the solution obtained by the HA for all the tested
problems.

2) the worst solution of the RGA was still better than, or
as good as, the solution produced by the HA. In fact,
the RGA generated a worst solution that is still better
than the solution generated by the HA for 16 out of the
20 test problems.

In addition, we observed that both the RGA and the HA
were always able to generate a feasible solution for all the

test problems during the experiments. Thus, we can conclude
that the RGA is effective and efficient.

VI. CONCLUSION AND FUTURE WORK

This paper has proposed an RGA for the location-oriented
CORS placement problem, and evaluated the performance of
the RGA by experiments. The experimental results have shown
that the RGA always produced much better results than the
HA for all the randomly generated test problems. In addition,
this paper has also studied the scalability the RGA. Since the
computation time of the RGA depends on both the number
of users and the number of CORS candidates, two sets of
experiments have been conducted. One experiment was to look
at the how the computation time of the RGA would increase
when the numbers of users increased without changing the
number of CORS candidates. The experimental results have
shown that the computation time of the RGA increased linearly
when the number of users increased. Another experiment was
to study how the computation time of the RGA would increase
when the number of CORS candidates increased without
changing the number of users. The experimental results have
also shown that the computation time of the RGA increased
linearly when the number of CORS candidates increased.
Thus, it can be concluded that the RGA is scalable.

This is the first attempt to use evolutionary computation
to tackle the location-oriented CORS placement problem. In
the future we will study how to further improve the RGA
using more effective crossover operators. In addition, we
will investigate how to hybrid the RGA with the HA to
further improve the quality of solutions while reducing the
computation time. Finally, the proposed RGA uses a repairing
technique to handle infeasible solutions. In the future we will
look at other strategies to handle infeasible solutions.

ACKNOWLEDGMENT

The author would like to thank the anonymous reviewers
for your valuable comments and suggestions.

This research was carried out as part of the activities of,
and funded by, the Cooperative Research Centre for Spatial
Information (CRC-SI) through the Australian Government’s
CRC Programme (Department of Innovation, Industry, Science
and Research).

REFERENCES

[1] C. Rizos, “Network rtk research and implementation - a geodetic
perspective,” Journal of Global Positioning Systems, vol. 1, no. 2, pp.
144–150, 2003.

[2] L. Wanninger, “Gps on the web: Virtual reference stations (vrs),” GPS
Solutions, vol. 7, pp. 143–144, 2003.

[3] C. M. Fotopoulos, G, “An overview of multi-reference station methods
for cm-level positioning,” GPS Solutions, vol. 4, no. 3, pp. 1–10, 2001.

[4] G. Chartrand, Introductory Graph Theory. Dover, New York, 1985.
[5] M. Garey and D. Johnson, Computers and Intractability: a Guide to the

Theory of NP-Completeness. San Francisco: W.H. Freeman, 1979.
[6] M. Wright, “Optimization methods for base station placement in wireless

applications,” in Vehicular Technology Conference, 1998. VTC 98. 48th
IEEE, vol. 1, May 1998, pp. 387–391 vol.1.

[7] N. Weicker, G. Szabo, K. Weicker, and P. Widmayer, “Evolutionary
multiobjective optimization for base station transmitter placement with
frequency assignment,” Evolutionary Computation, IEEE Transactions
on, vol. 7, no. 2, pp. 189 – 203, april 2003.

[8] J. Wong, A. Mason, M. Neve, and K. Sowerby, “Base station placement
in indoor wireless systems using binary integer programming,” Commu-
nications, IEE Proceedings-, vol. 153, no. 5, pp. 771 –778, oct. 2006.

[9] M. Aldajani, “Convolution-based placement of wireless base stations
in urban environment,” Vehicular Technology, IEEE Transactions on,
vol. 57, no. 6, pp. 3843 –3848, nov. 2008.

[10] D. Yang, S. Misra, and G. Xue, “Joint base station placement and fault-
tolerant routing in wireless sensor networks,” in Global Telecommuni-
cations Conference, 2009. GLOBECOM 2009. IEEE, nov. 2009, pp. 1
–6.

[11] M. Tang, “A reference station placement scheme in deployment of
network real-time kinematic positioning systems,” in Proc. International
Global Navigation Satellite Systems Society Symposium, Sydney, De-
cember 2007, pp. 123–132.

[12] ——, “QoS-aware reference station placement for regional network
RTK,” Journal of Software Engineering and Applications”, vol. 2, no. 1,
pp. 1–10, 2009.

[13] Q. Wang, K. Xu, G. Takahara, and H. Hassanein, “Transactions papers
- device placement for heterogeneous wireless sensor networks: Min-
imum cost with lifetime constraints,” Wireless Communications, IEEE
Transactions on, vol. 6, no. 7, pp. 2444 –2453, july 2007.

[14] B. Lin, P.-H. Ho, L.-L. Xie, X. Shen, and J. Tapolcai, “Optimal
relay station placement in broadband wireless access networks,” Mobile
Computing, IEEE Transactions on, vol. 9, no. 2, pp. 259 –269, feb.
2010.

[15] P. Nuggehalli, V. Srinivasan, C.-F. Chiasserini, and R. Rao, “Effi-
cient cache placement in multi-hop wireless networks,” Networking,
IEEE/ACM Transactions on, vol. 14, no. 5, pp. 1045 –1055, oct. 2006.

[16] X. Ling and K. L. Yeung, “Joint access point placement and channel
assignment for 802.11 wireless lans,” Wireless Communications, IEEE
Transactions on, vol. 5, no. 10, pp. 2705 –2711, oct. 2006.

[17] S. Sarkar, H.-H. Yen, S. Dixit, and B. Mukherjee, “Hybrid wireless-
optical broadband access network (woban): network planning using
lagrangean relaxation,” IEEE/ACM Transactions on Networking, vol. 17,
no. 4, pp. 1094–1105, 2009.

[18] B. Aoun, R. Boutaba, Y. Iraqi, and G. Kenward, “Gateway placement
optimization in wireless mesh networks with qos constraints,” Selected
Areas in Communications, IEEE Journal on, vol. 24, no. 11, pp. 2127
–2136, nov. 2006.

[19] P. Li, X. Huang, Y. Fang, and P. Lin, “Optimal placement of gateways
in vehicular networks,” Vehicular Technology, IEEE Transactions on,
vol. 56, no. 6, pp. 3421 –3430, nov. 2007.

[20] M. Tang, “Gateways placement in backbone wireless mesh networks,”
International Journal of Communications, Network and System Sciences,
vol. 2, no. 1, pp. 44–50, February 2009.

