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Ton channels are membrane proteins that open and close at random and play a vital role in the
electrical dynamics of excitable cells. The stochastic nature of the conformational changes these
proteins undergo can be significant, however current stochastic modelling methodologies limit the
ability to study such systems. Discrete-state Markov chain models are seen as the ‘gold-standard’,
but are computationally intensive, restricting investigation of stochastic effects to the single cell level.
Continuous stochastic methods that use stochastic differential equations (SDEs) to model the system
are more efficient but can lead to simulations that have no biological meaning. In this paper we
show that modelling the behaviour of ion channel dynamics by a reflected SDE ensures biologically
realistic simulations and we argue that this model follows from the continuous approximation of the
discrete-state Markov chain model. Open channel and action potential statistics from simulations
of ion channel dynamics using the reflected SDE are compared with those of a discrete-state Markov
chain method. Results show that the reflected SDE simulations are in good agreement with the
discrete-state approach. The reflected SDE model therefore provides a computationally efficient
method to simulate ion channel dynamics, whilst preserving the distributional properties of the
discrete-state Markov chain model and also ensuring biologically realistic solutions. This framework
could easily be extended to other biochemical reaction networks.

PACS numbers: 87.10.Mn, 87.19.11, 87.19.1c, 87.19.Hh
Keywords: Hodgkin-Huxley model; Reflected stochastic differential equations; Ion channels; Membrane noise

I. INTRODUCTION

TIon channels are multiconformational proteins
that form a pore in the membrane of excitable cells.
They open and close due to conformational changes
in the protein as a result of variations in membrane
potential, and thus regulate the movement of ions
across the lipid bilayer (see for example the review
[1]). The dynamics of these proteins are therefore
one of the fundamental elements in the generation
of an action potential (AP) in excitable cells, [2].

Single-channel recordings demonstrated that the
conformational changes the protein undergoes as it
opens and closes occur at random, [3]. This in-
ternal stochasticity causes fluctuations in individual
ionic conductances, [2], and has been shown to have
important effects on the electrical dynamics of the
whole cell, [4], [5], [6], [7]. In neuronal cells, for
example, stochastic ion channel behaviour can mod-
ify a number of electrical properties of the cell in-
cluding the firing threshold [8] and spike timings [9].
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Furthermore, in cardiac myocytes this intrinsic ran-
domness leads to variability in the duration of suc-
cessive APs, [5], [6], termed beat-to-beat variability,
which is thought to be an indicator of potential life-
threatening arrhythmias, [10]. It can even cause al-
terations to the AP morphology under pathological
conditions, resulting in the formation of early after
depolarisations (EADs), [5].

Cells are not isolated entities, but are self-
organised in complex multiscale systems such as the
heart and neural networks. Therefore, successful
physiological investigation requires an understand-
ing not just of isolated cell dynamics, but also the
way in which these cells interact at the tissue and
whole organ level [11]. For example, in [5] the au-
thors demonstrate that the coupling together of car-
diac myocytes via gap junctions, greatly reduces the
variability in AP duration and can stop the for-
mation of EADs, both phenomena observed at the
single-cell level. Therefore the stochastic effects at
single-cell level do not directly translate to the tis-
sue level. The issue is that current stochastic sim-
ulation techniques have restricted the investigation
into the effects of channel noise at the tissue level,
since these methods are typically very computation-
ally intensive.



Traditionally an ion channel is considered to tran-
sition between a discrete set of states at rates that
depend upon the membrane potential [2]. The prob-
ability of the channel residing in a particular state in
the future is assumed to depend only on the current
state of the channel, [2]. For a collection of N chan-
nels, the evolution in the number of channels in each
state can therefore be modelled as a discrete-state
continuous-time Markov chain [12]. The change over
time in the probability distribution of this process is
described by a partial differential equation (PDE)
called the Master equation [13], [14], or more com-
monly referred to as the forward Kolmogorov equa-
tion in the probability literature [15]. In the case
of the classical Hodgkin-Huxley model, [16], Austin
[17] shows that in the limit N — oo the Master equa-
tion converges to the standard deterministic equa-
tions. Indeed this has also been shown for more
general systems of chemical reaction networks, (see
for example [14], [18]). The Master equation can
be solved directly [19], [20], or individual realisa-
tions of the process can be simulated exactly us-
ing the Gillespie-type algorithm [21], also referred to
as the Stochastic Simulation Algorithm (SSA) [22].
While such a discrete-state modelling and simula-
tion approach is often seen as the ‘gold-standard’, it
becomes increasingly computationally costly as the
number of channels increases above a few hundred,
[23]. Furthermore, since the system is random, each
simulation will produce a different realisation and
so many simulations are needed in order to make
inferences about the general behaviour of the sys-
tem. Thus, incorporating such an approach into a
multiscale modelling environment can become com-
putationally intractable.

In recent years this has led to the increasing
popularity of using stochastic differential equations
(SDEs) to describe ion channel behaviour [24], [5],
[25]. Fox and Lu [26] were the first to take such an
approach which they applied to the Hodgkin-Huxley
model, and their method has since been extensively
used to model neuronal cells [24], [25], cardiac my-
ocytes [5], [6] and pancreatic beta cells [7]. Their
approach reduces the dynamics of the whole chan-
nel to the collective behaviour of a series of gating
variables that can be either open or closed. The
proportion of each gating variable in the open state
is described by an SDE and the proportion of open
channels is given by the product of the open gates.
Essentially, Fox and Lu [26] extend the determinis-
tic Hodgkin-Huxley model directly by incorporating
a noise term into the equations that describe the
gating variables so that they become SDEs. This
method leads to orders of magnitude speed up in

the computational time of each simulation over the
traditional discrete-state Markov chain model [23].
However, a number of studies have demonstrated
discrepancies between the SDE and discrete-state
Markov chain model, questioning as to whether an
SDE model could accurately capture the stochas-
tic dynamics of the discrete-state Markov chain [23],
27), [28].

A recent study by Goldwyn et al. [29] showed
that the discrepancies between the two approaches
occurs due to the formulation of the SDE model.
The authors demonstrate that constructing the SDE
model in terms of the kinetic behaviour of the chan-
nel, rather than the individual gating variables, pre-
serves the stochastic behaviour of the discrete-state
Markov chain model. They refer to the SDE they
implement, originally derived in [26], as a channel-
based SDE and that of the Fox and Lu approach
a subunit-based SDE. Throughout this paper we
shall adopt the channel-based approach to formu-
late the SDE model of ion channel dynamics, given
in [29], and so for simplicity shall refer to this as
the SDE model, rather than the channel-based SDE.
The work of Goldwyn et al. emphasised that the
structure of the ion channel dynamics is critical for
formulating the SDE model, see the recent review
[30] for a further discussion.

However, issues remain with this approach which
question the physical meaning of such a model. The
solutions of the SDE model provide the evolution in
the proportion of channels in each state. Therefore
the solution to the SDE must remain non-negative
for the path to have any biological relevance. Yet it
has been shown that the solution can become neg-
ative [31]. Furthermore, since the noise term in the
SDE model involves the square root of some func-
tion of the state variable, this can result in numer-
ical solutions becoming imaginary [31]. Alterations
to the numerical scheme can be made to force the
solution to remain positive, for example the Wiener
increment can be continually resampled [5]. How-
ever such alterations can bias the results [31], [32],
[33]. Another approach is to replace the variable
(i.e. the state of the system) in the noise term with
its equilibrium value, [29], [24] so that the square
root term is independent of the state of the system.
However, such an approach can still result in the
proportion of channels becoming negative, [29].

In [31] a hybrid simulation method for the
Hodgkin-Huxley model was developed that attempts
to improve the computational efficiency of the
discrete-state Markov chain model whilst ensuring
individual simulations remain non-negative. The hy-
brid method switches to the discrete-state Markov



chain model when the chance of negative solutions
to the SDE model is high. Such an approach has
been shown to increase computational efficiency as
well as reduce the chance of biologically unrealistic
simulations of ion channel dynamics. However, the
optimal time to switch from one regime to another
is unclear, and the computational speed ups are not
sufficient to incorporate this method into a multi-
scale environment, [31].

In this paper we address the issue of ensuring bio-
logically realistic solutions to the SDE model, with-
out potentially biasing the solution, by describing
a technique for incorporating boundaries into the
SDE. The resulting model is commonly termed a re-
flected SDE and has previously been used to model
constrained animal motion [34], human metabolic
processes [35] and in a stochastic hybrid model of
biochemical reaction kinetics [36]. However, to the
best of our knowledge this is the first time that ion
channel dynamics have been described using such
a formulation. We argue that the reflected SDE
is the correct equation that describes the individ-
ual realisations of the diffusion process, obtained
from the system size expansion of the discrete-state
Markov chain model. Using reflected SDEs to model
the sodium and potassium channels in the Hodgkin-
Huxley model, we show through simulation that the
behaviour of the reflected SDE is consistent with the
discrete-state Markov chain model. Furthermore,
we show that the approximation to the SDE made
by Goldwyn et al. [29] is not always valid and in
such cases the reflected SDE is in better agreement
with the dynamics of the discrete-state Markov chain
model. We conclude that the reflected SDE pro-
vides a computationally efficient model of ion chan-
nel dynamics that faithfully preserves the stochastic
dynamics of the discrete-state Markov chain model,
whilst also ensuring biologically meaningful simula-
tions.

In the next section, we discuss the mathematical
theory of the discrete-state Markov chain model and
the approximation of the dynamics by the SDE, for
a simple ion channel model. This section contains no
new material but rather provides the mathematical
background that underpins one of the key outcomes
of this paper, namely that the reflected SDE model
is the appropriate equation to describe the approxi-
mation from the discrete-state Markov chain model,
while the SDE without reflection is not. In Secs.
III and IV we describe the main novel concepts of
this work, demonstrating that using a reflected SDE
to describe the dynamics of the approximate contin-
uous process is the correct way in which to incor-
porate boundary conditions into the SDE model to

ensure biologically realistic solutions. We first intro-
duce the reflected SDE using the simple ion channel
model given in Sec. ITI. We then extend these meth-
ods to general models of ion channel dynamics and in
Sec V we discuss the numerical method used in this
paper to approximate solutions to the reflected SDE.
The Hodgkin-Huxley model, [16], is used to test the
accuracy of the reflected SDE method against the
‘gold-standard’ Markov chain model. The reflected
SDEs for the sodium and potassium channels in the
Hodgkin-Huxley model are formulated in Sec. VI.
Sec. VII describes the different simulation proto-
cols undertaken to compare the reflected SDE and
discrete-state Markov chain models and in Sec. VIII
we briefly describe the results of the simulations.

Finally in Sec. IX we outline the key contributions
of this paper in the context of the previous work on
SDE models of ion channel dynamics. In particular
we discuss how the methodology outlined here may
be applicable to a wider set of biologically modelling
problems than ion channel dynamics alone. We also
review the combined impact of this paper and the
work of Goldwyn et al. [29] in the fields of neuro-
science and cardiac modelling.

II. SIMPLE MODEL OF ION CHANNEL
DYNAMICS

Throughout this section random variables are de-
noted by capital letters and individual realisations
of these variables by lower case letters. Bold type is
used to denote vectors while scalar values are given
in standard type.

The simplest model of an ion channel is to assume
that it can be in one of two states, open, O, or closed,
C, at time t.

¢ — o
b

For a collection of N ion channels let the entries of
the vector X (t) = (X1(t), X2(t))” denote the num-
ber of channels in the open and closed states, re-
spectively. If the system is currently in state x(t),
then the probabilities of transitioning from closed
to open, or open to closed in a small time interval
[t,t + A;) are respectively azeA; and bz A;. The
transition rates, a and b, are usually assumed to de-
pend on the membrane potential V', which for small
A; can be assumed to remain constant over the time
step. Therefore, from here on we shall consider the
transition rates a and b to be constant over a small
time step of size A;.



A. Discrete-state stochastic model

The process X (t) is conventionally modelled as
a discrete-state continuous-time Markov chain and
the total number of channels N is assumed to re-
main constant, [12]. Therefore X (t) will take values
on the two dimensional integer lattice [0, N]x[0, N].
Since N is constant, Xo = N — X; and so only the
number of channels in the open state, which we de-
note by X(t), need to be considered.

Let P (x, t) be the probability that the system is
in state z (which is integer-valued) at time ¢, given
some initial state xzg. The evolution of the system
can be described by a PDE called the Master equa-
tion [13], [14] or the forward Kolmogorov equation
13,

% —a(N—(z—1)Plx—1,1) (1)
+b(z +1)P(x +1,1)
— (bx +a(N —z))P(z,1)

forO<aez <N z € N.

Since the total number of channels remains constant,
the following condition must be satisfied

N
OP(z,t)
— =0.

x=0

Using this, along with the fact that X (¢) cannot be
negative or greater than N, P(z,t) must satisfy the
following equations at the boundary of the interval
[0, N].

% —bP(1,t) — aNP(0, 1),
% — aP(N —1,t) — bNP(N, ).

As the number of channels increases, simulating
the dynamics of this discrete-state Markov chain
becomes increasingly computationally intensive, re-
stricting the incorporation of such methods into mul-
tiscale models. This has lead to the development of
models that approximate the dynamics of this sys-
tem.

B. Background: Approximating ion channel
dynamics by a diffusion model

In this section we discuss the approximation of the
discrete-state Markov chain by a continuous-state

model using the system size expansion approach of
Van Kampen [14]. For the Hodgkin-Huxley model
[16] much of the mathematical theory underlying
this limit was presented by Pakdaman et al. [37]
and Fox and Lu [26]. In these works, the authors
explicitly take into account the voltage dependence
of the transition rates. Since we assume that the
transition rates are constant on a given time step,
we give a simpler presentation of the mathematical
theory largely based on [14].

As the number of channels becomes large, it makes
sense to think of the state of the system in terms
of proportions of channels in a certain state rather
than discrete numbers. Therefore we consider the
behaviour of the scaled process Y (¢t) = X (¢)/N. For
ease of notation we let § = y — % and § =y + %
The master equation, (1), thus becomes

% = Nla(l —§)P@@,t) +biPH,1)]  (2)
— N [by +a(l - y)] Py, 1)
for0<y<1l yeR

Note we have not considered the behaviour of the
system at the boundary. We shall deal with the
boundary conditions for this system in the next sec-
tion.

Consider taking the Taylor expansion of the first
two terms in (2) about the point y. We assume that
N is large enough so that terms of order greater than
two can be considered negligible [14], [26]. The first
two terms can thus be approximated by the following
expressions,

0
+ ﬁa—yg (byP(y,t)).

Replacing these terms in (2) by the appropriate ex-
pansion we obtain a PDE called the Fokker-Planck
equation, [14], [26],

9Py t) _ _8% [(a — ay) P(y,t)] (5)

ot
+ 5k 2z [(a+ By) P(y.1)],

where a =a+b, 6=0—a.



This equation describes the evolution in the prob-
ability distribution of a continuous-state continuous-
time Markov chain model, which is frequently re-
ferred to as a diffusion process [15]. In moving from
(1) to (5) we effectively assume that for large enough
N, the dynamics of the discrete-state Markov chain
can be well approximated by those of the diffusion
process.

It is well known that the sample paths of a diffu-
sion process can be described by an SDE [38] and in
the case of (5) this takes the form of the following
Langevin equation, [39], [40]

dY = (a—aY)dt + S\/a+ pYdW,  (6)

where, W (t) is a Wiener process whose increments
dW = W (t+ A¢) — W(t) are independent and nor-
mally distributed with mean 0 and variance A;.

The advantage of describing ion channel dynam-
ics in this way is that a single path of an SDE
can be simulated with comparable efficiency to that
of an ordinary differential equation (ODE), and so
greatly improves the computational efficiency of the
discrete-state Markov chain model. The simplest
method for numerically solving an SDE is the Euler-
Maruyama method, see [41] for example. In the case
of (6) this leads to

y(t+ Ar) = y(t) + (@ — ay(t)) Ay (7)

+ g Va+ By AW,

where A; is the time interval and AW, is a Wiener
increment. However, there are issues with ensuring
biologically realistic solutions to (6).

Making the transformation U(t) = a + Y (),
based on (6) and using It6’s formula, [41], the trans-
formed process can be described by the following
SDE,

dU = (2ab— alU)dt + ZvUdW.

This equation is commonly known as the Cox, In-
gersoll and Ross (CIR) model [42] and was first pro-
posed by Feller to model population dynamics [43].
In particular, Feller showed that there exists a non-
negative solution to (8). Transforming back to the
original process Y'(t), this suggest that Y(¢) > =* if
a < bor otherwise Y (t) < %“ Therefore the process
Y (t) can become negative or greater than one and
for such values Y (¢) has no physical meaning, [31].
In spite of this, (6) is a popular model used to
simulate ion channel dynamics, where authors often

implement alterations to the numerical scheme (for
example in (7)) in order to force the discrete approx-
imations to remain within the desired region [5], [24].
However, the real issue stems from the form of (6)
rather than the numerical approximation.

The SDE gives the individual realisations of the
diffusion process Y (t) whose probability distribu-
tion is governed by the Fokker-Planck equation (5).
While we can impose boundary conditions onto the
Fokker-Planck equation to ensure the probability of
Y (t) taking values outside [0, 1] is 0, in switching to
the SDE formulation of the problem these boundary
conditions have in some sense become ‘lost’. In the
next section we show how these boundary conditions
can be incorporated into the SDE, thus providing
a formulation for the sample paths of the diffusion
process that is consistent with the dynamics of the
Fokker-Planck equation.

IIT. REFLECTED STOCHASTIC
DIFFERENTIAL EQUATIONS

Returning to the construction of the Fokker-
Planck equation, (5), we require that the diffusion
process, Y (t), must remain in [0, 1] for all time. Us-
ing this, along with the fact that the probability den-
sity function P(y,t) must integrate to 1, the follow-
ing relation must hold

1
/ P(y,t)dy =1,
0

and so

8 1
§/0 P(y,t)dy = 0.

Interchanging the integral and the derivative with
respect to t in the above formula and using the re-
lation (5) it follows that

(a—ay) P(y,t) — 22 [(a+ By) Py,t)] = 0, (8)

at the boundaries y = 0 and y = 1, [14].

Since the condition (8) reflects the solution back
into the interval (0, 1) at the boundaries, the process
Y (t) is often referred to as a reflected diffusion.

In the previous section we noted that the approx-
imation of (1) by (5) only holds for large N, and so
for small IV the diffusion process may no longer ac-
curately capture the dynamics of the discrete-state
Markov chain. However, in such situations the dif-
fusion process will still remain within the interval
[0,1] because of the reflecting boundary condition



(8). Therefore the probability of the process, Y (¢),
described by (5) and (8) lying outside the interval
[0,1] is 0. Yet, as discussed in the last section, the
solutions to the SDE that describes the individual
paths of this process can leave this region with pos-
itive probability.

In order to impose the boundary condition (8)
on the dynamics of the SDE (6), consider decom-
posing the diffusion process Y (¢) into the sum of
two stochastic processes Y (t) = X (t) + K(t). The
dynamics of the first process, X (t), is governed by
(6), and so determines the behaviour of Y'(¢) on the
interior of the interval (0,1). Thus we must have
that Y (0) = X(0) and in particular it follows that
Y (t) = X(¢t) on (0,1).

The process K (t) determines the behaviour at the
boundary and we set it to have initial value K (t) =
0. In some sense K(t) can be thought of as the
minimal process which forces Y (¢) to remain in the
interval [0, 1]. The measure induced by this process
must thus be concentrated at the times t. where
Y(te) = 1 or Y(t.) = 0. We can formalise this by
requiring K (t) to satisfy the following property,

t
|K|(1f)=/0 Ly (s=o,v(s)=13dIK|(s).  (9)

In fact, in [44] the authors informally refer to the
process K(t) as a local time. In stochastic analy-
sis the local time is a process that characterises the
amount of time a stochastic process spends at a par-
ticular point. So by using this term, the authors
in [44] are emphasising that the measure of K (t) is
closely linked to the amount of time Y () spends at
the boundary.

The property above only ensures that K(¢)
changes at the times when Y'(¢) is at the boundary,
but the way in which K(t) will reflect the process
Y (¢) back into (0, 1) at the endpoints of this interval
must still be specified. We assume that the process
K (t) will reflect Y (¢) into the interior of the interval
in the direction of the inward pointing unit normal.
That is, when Y'(¢) = 0, K(t) will push the process
in the positive direction while at Y (t) = 1, K (¢) will
force this process in the opposite direction. To char-
acterise the behaviour of Y (¢) at the boundary in
this way we impose the following condition on K (t)

K(t) = / (Y (5))d| K] (5), (10)

where v(Y(s)) is a unit inward normal to the end-
points of the interval [0,1] and |K|(t) denotes the
total variation of K (t) on [0,t]. Other authors also

deal with oblique reflection at the boundary [45],
however for our problem we focus only on normal
reflection at the boundary.

Taking the stochastic differential it follows that
Y (t) satisfies the SDE

dY = (a—aY)dt + —=\/a+ fYdW +dK, (11)

with initial condition Y (0) = yo € [0,1]. Such an
equation is termed a reflected SDE, since the pro-
cess Y (t) is instantancously reflected back into [0, 1]
when it reaches the endpoints. We shall refer to the
domain into which the reflected SDE forces the solu-
tion as the reflecting domain. This equation is also
sometimes known as the Skorokhod equation, since
Skorokhod first proved the existence and uniqueness
of solutions to SDEs of this type [46], [47].

300

Probability density

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
Proportion open channels

FIG. 1: (Color online) A frequency plot of the re-
flected SDE for the simple 2 state model calculated over
100,000 simulations with parameter values N = 500,
a = 0.004, b = 3 and the initial proportion of open chan-
nels set to 0.1 (blue (dark gray) bars). Solution of the
Fokker-Planck equation for the same parameter values
(red (light gray) line with star markers). Both distribu-
tions are calculated after 4ms of simulation.

To better understand this reflecting process K (t),
we shall for a moment digress from our current do-
main of reflection, and consider the simplest situ-
ation where the process Y (t) is reflected at 0 (i.e.
the domain of reflection is [0,00)). The smallest
value that would have to be added to the process
to ensure that it remains in [0, 00) in the time in-
terval [0, ¢], will be the maximum amount by which
the unreflected process overshoots the zero bound-
ary (i.e. the largest negative value of the unreflected



process) up until time ¢. That is, the exact form of
the reflecting process in this simple case will be

K (t) = supo<s<i(Y(s)) ™, (12)
where a~ = max(0, —a).

In our case there is also reflection at the boundary
y = 1 and so K (t) will no longer take the form given
above. In general it is difficult to characterise the
reflecting process K (t) for an arbitrary reflecting do-
main and so it must be approximated numerically.
In Sec. V we shall discuss numerical methods to
approximate solutions to reflected SDEs.

In Fig. 1 we compare the probability distribution
obtained from solving (5) with boundary conditions
(8) with the distribution obtained from multiple sim-
ulations of the reflected SDE (11). The two distri-
butions are very similar, supporting the conclusion
that the reflected SDE is the correct formulation of
the sample paths for the process described by (5)
and (8).

IV. GENERALISATION TO MULTISTATE
ION CHANNEL MODELS

The model of ion channel dynamics considered so
far is somewhat an over-simplification of true ion
channel behaviour within cardiac and neuronal cells.
More commonly a channel will reside in a number of
different conformational states as it transitions to
the open position and so more realistic models are
far more complex than the two state model consid-
ered thus far (see [48], for example). We therefore
discuss the extension of the reflected SDE frame-
work to a multistate model of ion channel dynam-
ics, where a channel can reside in one of m different
states at time ¢.

As before, the total number of channels, N,
is assumed to remain constant and the state of
the system is now given by the vector Y (¢) =
(Yi(t),...,Ym(t))T, whose entries Y;(t) are the pro-
portion of channels in state i at time ¢. A channel
can transition from one state to another via k dif-
ferent reversible transitions, so the total number of
transitions possible in the system is 2k. If transi-
tion [ results in a channel in state ¢ moving to state
j then the probability of transition ! occurring is
fi(y(t)) = rijy:(t), where r;; is the transition rate of
the channel shifting from state i to j.

As for the simple model, the individual trajecto-
ries of the approximate continuous-state process can
be described by the following Langevin SDE, [29],

[26]a

dY = A(Y)dt + = +/B(Y)dW, (13)

where dW is a vector of independent Wiener incre-
ments (for the specific forms of the matrices A(Y")
and B(Y') see [26] and [29]).

This equation was first described by Fox and Lu
[26] for the sodium and potassium channels in the
Hodgkin-Huxley model and was later implemented
by Goldwyn et al. [29]. The issue with (13) is
that it involves the square root of a matrix, lim-
iting the computational speed up over the discrete-
state Markov chain model [29]. Therefore in [26]
Fox and Lu describe a simplification by directly ex-
tending the Hodgkin-Huxley model, describing each
gating variable by an SDE and this method has since
been taken as the standard way to model ion chan-
nel dynamics using SDEs. This formulation, termed
the subunit-based SDE in [29], provides substantial
computational speed up over (13), but is inconsis-
tent with the discrete-state Markov chain model [23],
[27], [28], while the SDE model given by (13) is not
[29], [30].

Due to the special structure of this system, namely
that each transition is reversible, it is possible to de-
compose the matrix B(Y') so that the square root
can be described exactly by the product of two ma-
trices, [49]. The decomposition of the matrix B(Y)
is non-unique, that is there are different matrices
B(Y) such that B(Y)B(Y)T = B(Y). In [49] the
authors showed that the smallest dimension of the
matrix B(Y') that satisfies B(Y)B(Y)T = B(Y)
is m x k, and this matrix takes the form B(Y) =
EF(Y). Here E is a matrix of 0's, —1’s, and 1’s
and F(Y') is a diagonal matrix whose entries are of
the form \/7;;y; + 7j;y;. Therefore (13) becomes [49]

dY = A(Y)dt + L EF(Y)dW. (14)

For an example of the matrices E and F(Y') for
the sodium and potassium channels in the Hodgkin-
Huxley model, see Appendix A. We use this formu-
lation of the decomposition of the matrix B since it
employs fewer Wiener increments than that given in
[39] and so is more computationally efficient.

This formulation of the noise term will require a
larger number of Wiener increments than the ap-
proach in [29], given by (13), when the number of
reversible transitions is greater than the number of
different states of the channel. For example, in the
Hodgkin-Huxley model, the sodium channel is as-
sumed to consist of 8 different states which can un-
dergo 10 different pairs of reversible reactions. The



formulation of the SDE, (13), will require 8 Wiener
increments at each time step while (14) will require
10 in this case. However, since all Wiener increments
for the simulation can be initialised at the start, the
extra computational cost in generating more Wiener
increments per simulation is very minimal. Indeed,
it is certainly much less computationally intensive
than taking the square root of a matrix at each time
step, and thus provides substantial improvement in
speed over the implementation in [29)].

For Y (t) to have biological meaning, each element,
Yi(t) for i = 1,...,m, of the vector must lie within
the interval [0, 1] since it represents the proportion
of channels in state ¢ at time t. Therefore it fol-
lows that the individual trajectories of this process,
given by (13), must remain within a m-dimensional
hypercube bounded by the intervals [0, 1]. Further-
more, by conservation of the number of channels,
Yo Yi(t) =1, Y () is restricted to the hyperplane
given by >, Y; = 1 which lies inside this hyper-
cube. We denote the reflected domain of the process
Y (t) by D. For a channel that can reside in three
different states, for example, D will take the form of
a plane, which is embedded within a cube, see Fig.
2.

Reflecting domain Projection method

FIG. 2: (Color online) Left: Example of the reflecting
domain, D, (shaded region) for an ion channel model
that can reside in three different states. Right: Diagra-
matical representation of the projection scheme for an
ion channel that can reside in three different states.

To ensure solutions to (13) remain within D, as in
the previous section we decompose the process Y ()
into the sum of two processes Y (t) = X (¢) + K(t).
The first, X (), satisfies (13), and describes the be-
haviour of Y (¢) on the interior of the domain D
(int(D)), i.e. Y (t) = X (t) for X(¢t) € int(D). The
second, K (t), we again define to be the process that
reflects Y (¢) into D. As before we can describe the
individual realisations of the process by a reflected
SDE

dY = A(Y)dt + \/—%EF(Y)dW +dK.  (15)

Analogously to the simple 2 state model, we can
think of the reflecting process K(t), now vector-
valued, as the minimal amount that we need to add
to the unreflected process to ensure that Y (t) re-
mains within the domain D. The definition of the
conditions imposed on the reflecting process in the
2 state model, (9) and (10), naturally generalise to
the multidimensional setting,

t
K|(t) = / Ly (oycomdIK](s),

K(1) = / (8K (s), (16)

where y(s) € N(Y(s)) if Y(s) € 0D and N(x) is
the set of inward pointing unit vectors to the point x
which lies on the boundary of D (9D). The solution
to the reflected SDE, (15) will be a pair (Y (¢), K (1))
that satisfy these properties. For a more rigorous
definition of the solution to the reflected SDE (15),
see for example [50].

The existence and uniqueness of such a pair was
extended to domains in R™ by [51], providing D is
convex [52] or satisfies certain regularity conditions
[53]. Since our domain D is convex, the solution to
the reflected SDE that describes the behaviour of a
general ion channel model, (15), exists and is unique.
As for the simple model, the last two conditions in
the above definition ensure that the reflecting pro-
cess only increases on the boundary of D, 0D, and
that it reflects Y'(¢) back into the interior of D in
the normal direction to the boundary.

Although numerical methods for reflected SDEs is
a far less developed field than for ordinary SDEs, a
number of techniques exist. These can be broadly
split into two categories, penalization methods and
projection methods. The penalization method con-
structs solutions to reflected SDEs by approximating
diffusion processes where the reflecting process is re-
placed by a penalty term, Gx(y). Convergence to
the solution of the reflected SDE is acquired in the
limit as A | 0. Such methods have been studied by
[54], [55], [56] with orders of strong and weak con-
vergence obtained under different conditions. The
issue with such methods is that numerical solutions
can leave the domain D, even though the exact so-
lution to the reflected SDE does not. For this rea-
son we do not use such methods. The projection
method approximates the solution to the SDE with-
out reflection, and if the numerical solution leaves D
it is projected onto the domain. Such methods en-
sure numerical solutions remain within the desired



region. In the next section we describe an algorithm
to obtain numerical solutions to the reflected SDEs
given in this section using the projection method.

V. PROJECTION METHOD FOR
REFLECTED STOCHASTIC DIFFERENTIAL
EQUATIONS

The projection method is a simple extension of
the Euler-Maruyama method, given in Sec. II. At
time ¢ the non-reflected process is evaluated at the
next time step t 4+ A using the Euler-Maruyama al-
gorithm, (7). If this value lies within the closure of
D, D, then the process at the next time step is set
to this value. Otherwise it is equal to the orthog-
onal projection of this point onto the boundary of
D. Let II(-) denote the orthogonal projection map
onto D, given in the following subsection. For fixed
time step, A, the projection method algorithm is as
follows:

1. Set t =0 and Y (0) = y,.

2. Generate AW, p = 1,--- ,k as independent
normal random variables mean 0 and variance

A¢. Let AW = [Wy,..., Wi]T and set
Yaolt+A) =Y () + AY(1)A; (17)
+ S EF(Y (1) AW.
3. Y g(t+A;) € Dthenset Y (t+A;) = Y(t+
Ay). Otherwise Y (t + Ay) =L (Y gta,))-

4. Set t =t 4+ A; and return to step two.

Fig. 2 diagrammatically shows how the projection
method works at a certain time step for a three state
model. The shaded area is the domain of reflection,
the round point is the value at some time step of the
unreflected process and the star point is the projec-
tion of this point onto D, i.e. the value taken at the
next time step for the projection method.

Note that under this scheme we do not explicitly
calculate the reflecting process K (t) at each time
step since we are only interested in the solution to
the reflected SDE, Y (t). However, it is straight-
forward to define K (t) for the numerical algorithm
given above, K(0) =0,

K(t)+1I(Yea)
K(t)

it Yg¢ D
otherwise.

K(t—i—At):{

This scheme has been shown to converge in the

1/2 6)

mean square sense with order O(A, for any

e > 0, uniformly on compact sets, [57]. In [50] a
slightly faster rate of O((A¢logA;)/?) was obtained
but this was only for pointwise convergence. There-
fore this scheme has a lower order of convergence
than the standard Euler-Maruyama method. The
lower convergence is due to the fact that between
times ¢t and t + A; the process may leave D and
lie in D at time ¢t + A, without any effect on the
value of the numerical approximation at t+ A;. This
‘overshoot’ of the approximation means that the pro-
jected method does not agree with the exact solution
at the discrete time points, while for the standard
Euler-Maruyama method it does. Therefore to im-
prove the order of convergence, this issue with the
overshoot must be dealt with. In [58] this is done by
sampling from the exact distribution of the reflect-
ing process at each time step, therefore restricting
this method to systems where the reflecting process
can be characterised exactly and this is not the case
for our system.

A. The Orthogonal projection method

We briefly describe the orthogonal projection
method that is used to numerically approximate so-
lutions to (15), for more details see [59].

For any point z € R™, the projection of z onto
the closure of the domain D, D, is the solution to
the minimisation problem

u=arg minuEDHu - Z||7 (18)

and since D is closed and convex this set contains
a unique point. Chen and Ye [59] show that us-
ing Moreau’s identity [60], the solution to (18) can
be simplified to a univariate minimisation problem.
Furthermore they show that there are m possible
choices for the solution to this problem that can
be computed explicitly and w is the only one of
these that falls within the correct interval. Below
is an outline of the algorithm used for the orthog-

onal projection of a point y = (y1,...,ym)? € R™
onto the domain D = {&x e R™ : 0 < z; < 1,i =
1,...,m and > " x; = 1}. For more details see

[59]a

1. Sort y into ascending order and set i = m — 1.
2. Compute t; = M Ift; > y;,sett =t;
and go to Step 4. Otherw1se reduce ¢ by 1 and
redo Step 2 if ¢ > 1 or go to Step 3 if i = 1.
Z;n:1 yj—1

m

3. Set £ =



4. Set the projection of y onto D to be z
max((y —1),0).

VI. CONDUCTANCE MODEL WITH
BOUNDED STOCHASTIC ION CHANNEL
DYNAMICS

We consider the application of the reflected SDE
method to the sodium and potassium ion channel
dynamics in the original Hodgkin-Huxley model [16]
as well as a variant of this model given in [27]. How-
ever, this method could be applied to any conduc-
tance model.

The Hodgkin-Huxley model, [16], describes the
propagation of an AP (a rapid rise and fall in the cell
membrane potential) through a squid giant axon.
The cell membrane is modelled as a capacitor in par-
allel with three ionic currents, a potassium current
Ik, a sodium current, In,, and a constant leakage
current, I;,. Thus the membrane potential, V, is
described by the following differential equation

av
O

— GNapS*(V — En) — GxpS(V — Ek)
(19)
-G (V—-FEp)+1,

where C is the membrane capacitance, I is the stim-
ulus current, F; is the reversal potential for the cur-
rent of type ¢ and G, is the conductance of the leak-
age current. The conductance through the sodium
and potassium channels is given by the product
Gipl, for i = Na and K, where G; is the maxi-
mal conductance per ion channel of type i and p6 is
the proportion of open channels of type 3.

To compute the evolution in pio, the classical
Hodgkin-Huxley model assumes that each sodium
channel consists of three identical activation gates,
m, and one inactivation gate, h, while the potassium
channel has four identical gates, n. Each gate, z, can
be either open or closed at time t and transitions
from closed to open and vice versa at rates a,(V),
b.(V), respectively, that depend on the membrane
potential V.

Under the assumption of large channel numbers,
so that ion channel fluctuations can be ignored (as is
the case in the original Hodgkin-Huxley model), the
proportion of open channels is given by the product
of the proportion of open gates, with the dynamics of
each gating variable described by an ODE [16]. In
the case when channel fluctuations are significant,
the dynamics of each channel can be modelled as a
discrete-state Markov chain. Letting each possible
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configuration of open and closed gates represent a
different state of the channel, the Markov kinetics of
the sodium and potassium channels are given by the
following state diagrams respectively:

dan 3an

ng — ni1 ——

bn 2bn

n2 n3 n4g

3am 2am

moho == miho == m2ho == mszho
bm 2bm, 3bm

bpTlan bpTlan bpTlan brTlan
3am 2am, am,

moh1 == mih1 = m2h1 = mzh
b 2bm 3bm

Let y;;(t) denote the proportion of sodium chan-
nels with ¢ open m gates and j open h gates at
time ¢. Similarly let z;(¢) denote the proportion
of open potassium channels with i open n gates at
time t. The channel is assumed to be in the open
state only when all gating variables are open and
so pN® = y31(t) and p5 = z4(t), respectively. The
state of the potassium channel at time ¢ is given
by the vector x(t) = (x4, 3,72, 71,20)7 and the
state of the sodium channel is denoted by y(t) =
(Y31, Y21, Y11, Yo1, Y30, Y20, Y10, Yoo) . The SDE de-
scribing the dynamics of the sodium and potassium
channels was first derived in [26] and later imple-
mented in [29], [30]. We use the representation of
the noise term in the SDE described in [49], which
removes the need to find the square root of a matrix
and so the sodium and potassium channel dynamics
are given by the following SDEs, [32], [49]

dy = HNaydt + \/%NQEN(;FNa(y)dWNav (20)

dz = Hiadt + 2= Ex Fie(2)dW ", (21)
where Fna, Fx, Ena, Fx, Hna, Hg are given in
Appendix A. To ensure the stochastic dynamics of
the sodium and potassium channels remain within
a biologically realistic region, we incorporate the re-
flecting processes KV and KX into (20) and (21),
respectively, in the manner described in Sec. 1V,
giving

dy = Hyoydt + ﬁENaFNa(y)dWN“ +dKNe,
(22)

de = Hgxdt + ﬁEKFK(m)dWK +dK*. (23)

To the best of our knowledge, the formulation of the
stochastic dynamics of the sodium and potassium

channels in terms of reflected SDEs in the classical
Hodgkin-Huxley model is novel.



VII. SIMULATIONS

We compare different statistics obtained from sim-
ulations of the Hodgkin-Huxley model using the re-
flected SDE formulation of ion channel dynamics,
with those obtained from a discrete-state Markov
chain model approach, under a range of simula-
tion protocols. Individual trajectories of the discrete
stochastic model are simulated using the stochastic
simulation algorithm (SSA), [22]. This algorithm
calculates the exponential waiting time 7 until the
next transition and updates the number of channels
in each state based on the most likely transition to
have occurred.
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FIG. 3: (Color online) Distribution in the number of
open sodium (top) and potassium (bottom) channels cal-
culated using the reflected SDE (red (light gray) line
with triangle markers) and the SSA (blue (dark gray)
bars) where the number of sodium channels is set to
1000, the number of potassium channels is 333 and the
voltage is set to 28mV .

A. Open channel statistics

We calculated the mean and standard deviation in
the proportion of open sodium and potassium chan-
nels in the Hodgkin-Huxley model, as given by (19).
The total number of sodium and potassium channels
was varied from 500 to 1000. For these simulations,
the transition rates are taken to be the following
functions of the membrane potential V' [16],

25-V
e((25—Vv)/(10)) _ 1’

=<
~—~"

am(V) = 0.1 b (V) = 4¢("15),
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FIG. 4: (Color online) Mean (left) and standard de-
viation (right) in the proportion of open sodium (top)
and potassium (bottom) channels calculated using the
reflected SDE (blue (dark gray) line) and the SSA (red
(light gray) circles). Statistics calculated over 100, 000
simulations at the final point for a fixed voltage value.
In the reflected SDE simulations the initial condition for
the sodium channel is taken to be Yy = 1/8€T and for
the potassium channel it is Xy = 1/56T, where e is the
unit vector. For the discrete system the initial condition
is calculated by multiplying Yo and Xo by the number of
sodium or potassium channels respectively, and round-
ing to the nearest whole number. The number of sodium
and potassium channels is set to 1000 and the time step
to Ay = 0.01lms.

The mean and standard deviation were calculated
over 100,000 simulations and initially the voltage
was kept constant throughout the simulation. Each
simulation was run for a total of 100ms, with the
mean and standard deviation calculated at the final
time point. The open channel statistics were cal-
culated in this way for a range of different voltage
values. Fig. 3 shows the distribution in the num-
ber of open sodium and potassium channels at the
final simulation time point, where the voltage is set
to 28mV (this value has been chosen arbitrarily).
In Fig. 4 the mean and standard deviation in the
number of open channels is plotted as a function of
voltage, and the number of channels is set to 1000,



for the SSA and reflected SDE methods. The differ-
ence between the mean and standard deviation cal-
culated using the two stochastic simulation methods
(namely the SSA and reflected SDE) as a function
of voltage for a range of difference channel numbers
is shown in Fig. 5.

Next the open channel statistics were calculated
for a fixed voltage path. Initially the deterministic
Hodgkin-Huxley model was solved over 10ms with
stimulus current I = 10pA to obtain a path for the
voltage that varies through time, shown in Fig 6.
This path was then used to simulate the dynamics
of the sodium and potassium channels over 10ms
and the path statistics were calculated over 100, 000
simulations. Fig. 7 shows the mean and standard
deviation in the number of open channels, as a func-
tion of time, where the number of channels is set
to 1000, for the SSA and reflected SDE methods.
The difference in the mean and standard deviation
between these two stochastic simulation methods, is
plotted as a function of time for a range of channel
numbers in Fig. 8.
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FIG. 5: (Color online) Absolute difference in the mean
(left) and standard deviation (right) in the proportion of
open sodium (top) and potassium (bottom) channels be-
tween the reflected SDE and the SSA for channel num-
bers equal to, N = 500 (blue (dark gray) solid line),
N = 750, (black dotted line with circle markers) and
N = 1000 (red (light gray) dashed line).

B. Action potential statistics

The comparison between the AP statistics calcu-
lated using the reflected SDE and the discrete-state
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Markov chain approach is an extension of simula-
tions in [27]. In this study by Bruce, the effect of
stochastic channel behaviour on the auditory fiber
AP statistics were investigated as a function of the
number of sodium channels (Ny,) using the metrics
of the mean threshold current (I;,) and the relative
spread (RS). The mean threshold current is the in-
put current that corresponds to a firing efficiency
(FE) of 50%, where FE is defined to be the fraction
of trials in which the stimulus current results in the
generation of an AP. It is calculated by fitting the
FE versus input current curves using an integrated
Gaussian function, as in [61]. The relative spread
(RS) is a measure of the relative noise level and is
calculated as,

g

RS = 2,
Iip,

(24)

where o is the standard deviation in threshold fluc-
tuations and I is the threshold current. The jitter
(standard deviation of AP occurrence times) and la-
tency (mean value of AP occurrences) metrics were
also used in the comparison of AP statistics between
the reflected SDE and SSA simulation methods.

] 10
Time

FIG. 6: (Color online) Voltage path used to calculate
the open channel statistics for the sodium and potassium
channels, for varying voltage simulations.

Since the examination of the AP statistics is based
on the work of Bruce [27], we use the same equa-
tions as in this study in order to conduct these sim-
ulations, rather than using the classical Hodgkin-
Huxley model as described in the previous subsec-
tion. For this model the membrane potential V is



described by the following equation
av. 1

dt  Cp

(—vNaNﬁa (V — Bxa) — 3+ I) :
Ry,

(25)
where C,, is the membrane capacitance, vy, is the
single-channel sodium conductance, I is the stimu-
lus current and N, is the number of open sodium
channels. For the reflected SDE the value for Ng,
is obtained by multiplying the proportion of open
channels (from the SDE solution) by the total num-
ber of channels and rounding to the nearest inte-
ger. We employ this method of rounding since the
work of Bruce [62] suggested that this is more ac-
curate than either rounding up or down. Note that
a potassium current has not been included in (25)
mainly to ensure consistency with the simulations
in [27] and so only the stochastic dynamics of the
sodium channel are considered in the analysis of the
AP statistics. The dynamics of the sodium chan-
nel are still modelled by the state diagram given in
the previous section, however the transition rates are
now taken to be the same functions of the voltage
as were employed in the simulations in [27]

~1.872(V —25.41) ~3.973(21.001 - V)
am = 1 _ o(25.41-V)/6.06° "™ T | _ o(V+27.74)/9.41°

22.57
1 _ o(36=V)/12.5°

—0.549(27.74+ V)

Oh = 7 o(V+27.74)/9.06 ° bn =

The AP statistics were calculated over 1000 repeti-
tions of a single 100us monophasic depolarising cur-
rent pulse. The equation for the membrane poten-
tial, (25), is solved using the Euler method with a
time step A; = 1us. The stochastic dynamics of
the sodium channel were simulated using the SSA
and reflected SDE method, as in the previous sec-
tion, and also using the method given in [29]. In
[29], the authors use the SDE without reflection to
describe the dynamics of the sodium channel, (20).
To ensure solutions remain real the values y;; in the
noise term are replaced by their equilibrium values,
and so this term is independent of the state of the
system. When discussing the results we shall refer
to this approach as the SDE method for simplicity.
The threshold current I;;, and the relative spread RS
were calculated for sodium channel numbers rang-
ing from 100 to 10,000. The effect of varying the
total number of channels was considered for two dif-
ferent cases: constant channel density and constant
membrane area. As described in [63], the membrane
area is scaled proportionally to the number of chan-
nels in the case of constant channel density. As-
suming the model’s capacitance and resistance are
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based on 1000 sodium channels, as in [27], in the con-
stant channel density simulations these values will be
scaled by the total number of sodium channels Ny,
(ranging from 100 to 10,000) as follows

Nna 1000

Cyn =0.0714 x F, R,, =1953.49 x MSQ.
m 100077 'm Niya
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FIG. 7: (Color online) Mean (left) and standard de-
viation (right) in the proportion of open sodium (top)
and potassium (bottom) channels calculated using the
reflected SDE (blue (dark gray) line) and the SSA (red
(light gray triangles)) for a set voltage path. The initial
condition is the steady state for V' = 0 of the deter-
ministic system and the number of channels is set to be
1000.

For constant membrane area the capacitance and
resistance are independent of Ny, and so are taken
to be Cp, = 0.0714pF and R,, = 1953.49M) for
all values of Ning, as in [27]. These parameter val-
ues have been chosen primarily to ensure consistency
with the simulations in the study by Bruce [27]. We
remark that there is naturally variability in parame-
ter values between cells, but we do not consider the
effects of extrinsic noise in this paper and results are
based solely on the values given here. The jitter and
latency were calculated only for Ny, = 1000 chan-
nels. For more details of the simulation protocol
used to calculate the AP statistics see [27] and the
MATLAB code therein. In Fig. 9 the RS and thresh-
old current, as calculated using the three different
methods, are plotted as a function of the number
of channels for the constant area and constant den-
sity scaling protocols. The top of Fig. 10 shows the
difference in the RS between the SSA and reflected



SDE and the SSA and SDE method as a function
of the number of channels, for constant density and
constant area. The difference in the jitter and la-
tency between the SSA and reflected SDE, and the
SSA and SDE method, are shown at the bottom of
Fig. 10 as a function of the stimulus current (/) and
where the number of channels is set to 1000.
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FIG. 8: (Color online) Absolute difference in the mean
(left) and standard deviation (right) in the proportion
of open sodium (top) and potassium (bottom) channels
between the reflected SDE and the SSA for a fixed volt-
age path and channel numbers equal to, N = 500 (blue
(dark gray) solid line), N = 750, (black dotted line with
circle markers) and N = 1000 (red (light gray) dashed
line with triangle markers).

Sample MATLAB code used for the simulations
is available on the authors website and on the Mod-
leDB website (accession number 144489).

VIII. RESULTS

A. Open channel statistics

When the voltage is kept fixed, the mean and stan-
dard deviation obtained using the reflected SDE is
very close to that of the SSA for both the sodium
and potassium channels, Fig. 4. In particular, the
difference between the two means is on the order of
1073 and as the number of channels increases it is
clear that the reflected SDE mean converges to that
of the SSA, as expected, Fig. 5. These quantita-
tive results suggest that the reflected SDE accurately
captures the distributional properties of the discrete-
state Markov chain model. Furthermore, Fig. 3
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qualitatively shows that the distribution in the num-
ber of open sodium and potassium channels for the
reflected SDE is very similar to that of the discrete-
state Markov chain. Therefore, when the voltage is
kept constant these results suggest that the reflected
SDE is an accurate approximation for the dynamics
of the discrete-state Markov chain model.
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FIG. 9: (Color online) Threshold current (Ith) (top)
and relative spread (RS) (bottom) as a function of the
total number of sodium channels for constant channel
density simulations (left) and constant membrane area
simulations (right) calculated using the three different
methods, SSA (red (light gray) solid line), reflected SDE
method (blue (dark gray) dashed line with circle mark-
ers) and the SDE method from [29] (black dotted line
with triangle markers).

For a set voltage path, the reflected SDE still
closely matches the mean and standard deviation
of the SSA simulations, Fig. 7. In particular, the
difference in the means between the reflected SDE
and SSA methods is on the order of 1072 for the
sodium channel and 10~2 for the potassium chan-
nel. The greatest difference between the two statis-
tics occurs at the height of the AP, Fig. 8, and is
likely to happen here since this is where the greatest
voltage change (and so the greatest change in chan-
nel transition rates) between consecutive time steps
takes place. In additional simulations (not shown),
where the step-size was reduced, the greatest differ-
ence between the two statistics still occurred at the
height of the AP, indicating that this effect is not
a function of the time step. These results suggest
that even with the added complication of a varying
voltage in the ion channel model, the reflected SDE
still accurately captures the open channel statistics



of the discrete-state Markov chain model.
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FIG. 10: (Color online) Top: Absolute differences in
the relative spread (RS) between the SSA and reflected
SDE methods (red (lower) line) and between the SSA
and SDE methods (blue dashed (upper) line with cir-
cle markers). Results shown as a function of number of
channels for constant channel density simulations (left)
and constant membrane area simulations (right). Bot-
tom: Absolute difference in the jitter (left) and latency
(right) between the SSA and reflected SDE methods (red
(dark gray) solid line) and between the SSA and SDE
methods (blue (light gray) dashed line with circles). Re-
sults shown as a function of stimulus current for 1000
sodium channels.

B. Action potential statistics

From Fig. 9 it can be seen that the RS calcu-
lated from the reflected SDE simulations is very
close to that of the SSA simulations and the two
values quickly converge as the number of channels
increases. This is the case for both the constant
channel density and constant membrane area simu-
lations. On the other hand, the difference between
the RS for the SDE and the SSA simulations is no-
ticeable even for large channel numbers, particularly
in the case of the constant membrane area simula-
tions, Fig. 10. Furthermore, the difference in the jit-
ter and latency statistics between the reflected SDE
and SSA simulations is much smaller than the dif-
ference between the SDE and SSA simulations, Fig.
10. These results suggest that the reflected SDE cap-
tures the AP statistics of the discrete-state Markov
chain model more accurately than the SDE method
in [29]. In the next section we shall discuss a possible
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reason for this.

Another advantage of the reflected SDE method
is that simulations remain within a biologically real-
istic domain with probability 1, by definition. With-
out the reflecting term, however, with 100, 000 simu-
lations of the Hodgkin-Huxley model given by (19),
simulations went negative a mean number of 352
times.

Finally, Fig. 11 shows that the simulation time
for the reflected SDE is substantially faster than the
SSA, particularly for larger numbers of channels. In
particular, the speed of the Markov chain model in-
creases with increasing numbers of channels, while
the reflected SDE method remains more or less con-
stant. This is because the computational cost of
the reflected SDE is dependent on the step-size used
in simulation while the Markov chain model is re-
stricted by the average time until the next reaction,
which can become very small for large channel num-
bers.

Together, the results from the simulations sug-
gest that the reflected SDE method is an accurate
approximation of the discrete-state Markov chain
model as well as ensuring biologically realistic and
computationally efficient simulations.
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FIG. 11: (Color online) Mean computational time

in seconds over 10,000 simulations of the stochastic
Hodgkin-Huxley model, (19), over 10ms for the reflected
SDE approach (red (dark gray) dots) and the SSA ap-
proach (blue (light gray) stars) for a range of channel
numbers. The time step in the reflected SDE simula-
tions is taken to be 0.01ms. Simulations were performed
in MATLAB on a 2.5GHz core Intel Core 2 processor.



IX. DISCUSSION

SDEs were first introduced as a model of ion chan-
nel dynamics by Fox and Lu [26], who used them to
describe the stochastic behaviour of the sodium and
potassium channels in the Hodgkin-Huxley model.
Since then, the approach taken by Fox and Lu has
become the standard manner by which to model
ion channel behaviour using SDEs within the neuro-
science and cardiac modelling literature. The SDE
model poses an attractive alternative to the discrete-
state Markov chain approach for studying the effects
of stochastic ion channel behaviour on the dynam-
ics of electrically excitable cells and tissue due to
the appreciable computational speed up achieved.
For this reason they have been frequently utilised
to simulate ion channel dynamics within a range
of different electrically excitable cells including neu-
ronal cells [24], [25], cardiac myocytes [5], and pan-
creatic beta cells [7]. However, the accuracy of the
SDE approach has come into question in recent years
for two main reasons. Firstly a number of studies
have demonstrated that the SDE approach does not
faithfully capture the stochastic behaviour of the
discrete-state Markov chain model [23], [27], [28].
Secondly solutions to the SDE model can become
negative and even imaginary, and so in such situ-
ations have no physical meaning [31]. The first of
these issues was recently dealt with by Goldwyn et
al. [29] who showed that by formulating the SDE
model in terms of the multistate structure of the ion
channel (termed the channel-based SDE), the SDE
model accurately captures the stochastic behaviour
of the discrete-state Markov chain model. However,
they do not address the problem that the SDE can
result in the proportion of channels in a certain state
becoming negative. Indeed, the authors in [29] ap-
proximate the noise term by its equilibrium value so
that simulations do not become imaginary, although
they may still become negative.

In this paper we primarily address this issue that
the SDE model can result in biologically unrealis-
tic simulations of stochastic ion channel dynamics.
We have demonstrated that by including a reflected
term into the SDE, solutions are guaranteed to re-
main within a biologically realistic domain, whilst
without this term they are not. We argued that
this novel formulation is the correct equation that
describes the individual realisations of the diffusion
process, whose probability distribution is described
by a Fokker-Planck equation obtained in the limit of
large N from the Master equation that determines
the discrete-state Markov chain. Thus we conclude
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that the reflected SDE provides a model of ion chan-
nel dynamics that is biologically realistic and math-
ematically consistent with the approximation from
the discrete-state system to the continuous diffusion
model. Furthermore, we have shown how to for-
mulate the noise term in the SDE in terms of the
product of two matrices, rather than as the square
root of a matrix as was the approach in [29], thus
greatly improving the computational efficiency over
the implementation described in [29].

We present numerical results for the reflected SDE
method applied to the classical Hodgkin-Huxley
model for channel numbers ranging from 500 to 1000
both when the voltage is kept constant and when it
was allowed to vary. From these simulations we show
that the open channel statistics of the reflected SDE
model are in good agreement with the discrete-state
Markov chain model. Furthermore, the AP statistics
for a variant of the Hodgkin-Huxley model given in
[27] calculated using the reflected SDE were close to
the discrete-state Markov chain model. In particu-
lar, the reflected SDE method seemed to perform
better in these simulations than the approximate
SDE method described in [29).

At channel numbers smaller than 500 the approx-
imation to the reflected SDE begins to break down,
and so it is possible that for such small channel num-
bers the behaviour of the reflected SDE will be less
representative of the dynamics of the discrete-state
Markov chain model. However, as can be seen in
Fig. 11, at such channel numbers the computational
cost of simulating the dynamics to the discrete-state
Markov chain (namely using the SSA) is compara-
ble to that of the reflected SDE. Therefore in such
situations, the SSA would be the obvious simulation
choice, since there is no gain to be made by using
the approximate reflected SDE method.

A possible explanation for why the approach of
Goldwyn et al. [29] does not perform as well as
the reflected SDE here could be because the ap-
proximation made in the diffusion term, replacing
the variables by their equilibrium value, may not be
valid for the variant of the Hodgkin-Huxley model
given by (25). The authors state in [29] that this
approximation is accurate if “the relaxation of V' to
its equilibrium value occurred on a much slower time
scale than the relaxation of the gating variables” and
furthermore they note that “this separation of time
scales does not appear to be a generic feature of
Hodgkin-Huxley models”. Therefore for this partic-
ular model, the approximation made in the diffusion
term of the SDE may not be accurate enough to cal-
culate the AP statistics studied here. However, in
[29] the authors show that this approximation accu-



rately captures the mean open channel statistics as
well as the mean and coefficient of variation of the
interspike intervals in the classical Hodgkin-Huxley
model. Therefore it seems that for certain models,
the results from the approximate SDE method in [29]
are comparable to the discrete-state Markov chain
model, while for other models, namely those with
fast AP dynamics, this method is less accurate than
the reflected SDE. Finally we demonstrated that the
reflected SDE approach is more computationally ef-
ficient than the discrete-state Markov chain simula-
tion method, and for large numbers of channels the
speed up can be an order of magnitude greater.

Since the field of numerical approximations to re-
flected SDEs is much less well developed than for
ordinary SDEs, and since the work presented here
was primarily concerned with modelling rather than
numerical issues, the method used to solve the re-
flected SDE has a rather low order of convergence.
A numerical scheme with a higher order of conver-
gence may therefore result in better agreement be-
tween the reflected SDE and discrete-state Markov
chain method. The development of such techniques
is left to future work.

In this paper we have focused on stochastic models
of ion channel dynamics. However, the issue of phys-
ically unrealistic solutions to the SDE model used to

approximate discrete physical systems is present in a
number of other fields, such as biochemical reaction
kinetics [64]. The ideas presented in this paper could
easily be extended to model such systems and so the
method described here provides a general framework
for modelling stochastic dynamics of physical sys-
tems by approximate methods in an accurate and
efficient way.

We close by emphasising the combined contribu-
tion of this paper with the previous work of Gold-
wyn et al. [29] is to present an approximate for-
mulation of the discrete-state Markov chain model
for ion channel dynamics that gives significant com-
putational speed up in simulation time, whilst pre-
serving the stochastic behaviour and boundaries of
the discrete-state system. This work therefore opens
up the potential to accurately investigate the ef-
fects of stochastic ion channel behaviour in complex
multiscale models, an area previously restricted by
the computational cost of the discrete-state Markov
chain approach.
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Appendix A: Matrices Used in Numerical Simulations

Vamy21+3bmys:
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