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Abstract Bacterially-mediated iron redox cycling exerts a strong influence on groundwater geochemistry, but 

few studies have investigated Fe biogeochemical processes in coastal alluvial aquifers from a microbiological 

viewpoint. The shallow alluvial aquifer located adjacent to Poona estuary on the subtropical Southeastern 

Queensland coast represents a redox-stratified system where iron biogeochemical cycling potentially affects 

water quality. Using a 300 m transect of monitoring wells perpendicular to the estuary, we examined 

groundwater physico-chemical conditions and the occurrence of cultivable bacterial populations involved in iron 

(and manganese, sulfur) redox reactions in this aquifer. Results showed slightly-acidic and near-neutral pH, 

suboxic conditions and an abundance of dissolved iron consisting primarily of iron(II) in the majority of wells. 

The highest level of dissolved iron(III) was found in a well proximal to the estuary most likely a result of iron 

curtain effects due to tidal intrusion. A number of cultivable, (an)aerobic bacterial populations capable of diverse 

carbon, iron or sulfur metabolism coexisted in groundwater redox transition zones. Our findings indicated 

aerobic, heterotrophic respiration and bacterially-mediated iron/sulfur redox reactions were integral to carbon 

cycling in the aquifer. High abundances of dissolved iron and cultivable iron and sulfur bacterial populations in 

estuary-adjacent aquifers have implications for iron transport to marine waters. This work demonstrated 

bacterially-mediated iron redox cycling and associated biogeochemical processes in subtropical coastal 

groundwaters using culture-based methods. 
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Introduction 

Iron (Fe) is a transition-metal element and naturally undergoes active reactions between ferrous and ferric 

states in circumneutral-pH, redox-stratified aquifers. Due to the instability of dissolved Fe(II) and the adsorptive 

capability of insoluble Fe(III) compounds, active Fe cycling exerts a strong influence on groundwater 

geochemistry. Associated redox reactions can be substantially driven by bacterial activities, which promote Fe 

accumulation to high levels (>1.0 mg L–1) in coastal groundwater redox transition zones (Chapelle & Lovley, 

1992). In the presence of trace amounts of O2 (<0.1–1.0 mg L–1), dissolved Fe can support substantial bacterial 

growth, particularly Fe(II)-oxidizing/Fe(III)-depositing bacteria such as stalked Gallionella and sheathed 

Leptothrix (Tyrrel & Howsam, 1997; Stuetz & McLaughlan, 2004). Conversely, in anaerobic microsites of 

coastal aquifers, the presence of Fe(III)-reducing bacteria such as Geobacter spp. can reduce Fe oxyhydroxides, 

mobilizing large quantities of Fe and increasing dissolved Fe loads that can be transported to marine waters 

(Lovley, 1997). 

In addition to diverse Fe(II)-oxidizing and Fe(III)-reducing bacteria capable of Fe metabolism under 

(sub)oxic and anoxic conditions (Kappler & Straub, 2005; Weber et al., 2006), manganese (Mn) and sulfur (S) 

bacteria also influence Fe cycling via biological (direct) and abiotic (indirect) mechanisms. For example, most 

Mn(IV)-reducing bacteria and some sulfate-reducing bacteria can utilize Fe(III) as an alternative electron 

acceptor (Lovley, 2006), whereas microbially-produced Mn(IV) and sulfide abiotically react with aqueous 

Fe(II)/(III), affecting Fe re-distribution and transport in groundwater-dependent ecosystems (Chapelle & Lovley, 

1992; Brown et al., 1999). However, research regarding bacterially-mediated Fe (and Mn, S) cycling in coastal 

systems has focused largely on sequential reduction processes linked to organic carbon (C) mineralization and 

mineral mobilization, and overlooked oxidation processes which have the potential to promote elemental redox 

cycling (Canfield et al., 1993; Lovley, 1997). In addition, previous work regarding coastal groundwater Fe (and 

Mn, S) cycling has primarily studied the geophysical and chemical mechanisms of seawater intrusion, mineral 

precipitation and/or ion exchange (Charette and and  Sholkovitzet al., 2002; Testa et al., 2002; Spiteri et al., 

2006; Weng et al., 2007; Johnston et al., 2010). There have been few bacterial culture-based studies relating to 

Fe biogeochemical processes in coastal alluvial aquifers (Chapelle & Lovley, 1992). 

The focus of this study is a shallow alluvial aquifer on the subtropical southeast Queensland (SEQ, 

Australia) coastal lowland, where large-scale clearing of native vegetation preceded establishment of exotic pine 

plantation in the 1950s. Recent plantation harvesting and replanting practices, combined with natural seasonal 

flooding, may contribute to mineral soil disturbance and mobilization of limiting nutrients causing off-site 
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pollution (Costantini & Loch, 2002; Lin et al., 2011). Of concern in this coastal setting is that the growth of 

toxin-producing marine cyanobacterium, Lyngbya majuscula, can be promoted by high levels of nutrients and 

dissolved Fe, and the presence of humic substances from land runoff that make the Fe bioavailable (Pointon et 

al., 2003). L. majuscula intermittently blooms on the coast of Queensland and worldwide (Ahern et al., 2006; Al-

Shehri & Mohamed, 2007; Bell & Elmetri, 2007) adversely affecting marine ecosystem health through 

smothering benthic habitats. It is hypothesized that abundant dissolved Fe and other substrates support dynamic 

bacterial populations and elemental cycling in redox-stratified coastal aquifers which affect the quality of these 

groundwaters. 

Using a 300 m transect of monitoring wells from the plantation-forested lowland to an estuary, we examined 

groundwater physico-chemical conditions and the abundances of cultivable Fe- (and Mn-, S-) oxidizing and 

reducing bacteria in the shallow aquifer. We specifically focused on a group of neutrophilic Fe(II)-oxidizing 

bacteria which have recently been found ubiquitous in surface and subsurface waters encompassing the 

catchment study area (Lin et al., 2012). The objectives were to identify environmentally significant functional 

bacterial groups contributing to biogeochemical processes in this estuary-adjacent ecosystem, and to evaluate 

implications for groundwater Fe (and Mn, S) cycling and potential water quality impacts.  

 

Materials and methods 

Site description 

The shallow, alluvial aquifer under study is adjacent to the mouth of Poona estuary located 300 km north of 

Brisbane, on the Fraser Coast of SEQ (Fig. 1). Local climate is subtropical maritime. Annual average rainfall is 

1 148 mm, mostly during warmer months (Nov–Mar). Mean monthly maximum temperatures range from 22.0C 

in Jul to 30.7C in Jan; with monthly minima 8.6C in Jul to 20.6C in Jan. The small catchment of Poona Creek 

(ca. 100 km2) consists of a flat to gently undulating coastal plain with elevations mostly <50 m above the 

Australian Height Datum (AHD). Catchment gradients gently decrease towards the eastern coastline, with tidal 

creeks discharging to the Ramsar-, and UNESCO-listed Great Sandy Strait. Surface drainages are ephemeral in 

upper, but perennial in lower, reaches. The presence of discontinuous clay layers results in water-logging of 

overlying topsoils in much of the region. Exotic Pinus plantation forestry was first established in the 1950s and 

presently covers over half the catchment area. Native vegetation consisting of Melaleuca and Eucalyptus spp., 

tufted native grasses and sedges remains in buffer zones adjacent to waterways. 
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Groundwater monitoring wells were drilled in June 2007 along a 300 m transect perpendicular to the Poona 

estuary, near its mouth (Fig. 2). The original aim of the drilling for this study was to locate continuous shallow 

aquifers within the study area for general characterization of ground and surface waters in the Poona catchment. 

As there were no previous studies focusing on aquifer location and mapping in the Poona catchment, drilling 

was chiefly exploratory. Much of the geology in the area was found to consist of shallow topsoil overlying 

weathered bedrock. However, borelogs from exploratory drilling in the study area between the Poona Creek 

estuary and pine plantation compartments contained alluvial sands and gravels of high hydraulic conductivity. 

This shallow aquifer is contained within a meandering bank of Poona creek, the result of gradual infilling from 

south to north during channel migration. 

Wells were constructed using a hydraulic rotary drilling rig with bentonite drilling mud. Well depths were 

6–12 m, with a three-meter slotted PVC screen at the bottom. Wells were capped, and housed with galvanized 

steel casing set in a concrete surface seal. During the drilling process, sediment samples were collected from 

wells at 0.5 m intervals. A typical sediment profile on the transect (except for W8) consisted of (a) topsoil 

consisting of sands and organics (some aeolian sand layers), (ca. ≤ 1 m thickness) (b) discontinuous gleyed semi-

confining to confining clay layer (ca. 1-3 m thickness), (c) alluvial sands and gravels of ca. 5 to 8 m thickness 

(aquifer materials), (d) thin peat layer (ca. ≤ 1 m thickness ), and (e) weathered bedrock. Based on the cross-

section (Fig. 2), aquifer thickness can be up to ca. 8 m. However, the full extent of this aquifer has not been 

mapped; only that associated with the transect from the south towards the estuary.  

The aquifer was estimated from the geomorphology of the area at ca. 0.26 km2. Supratidal flats consisting of 

silty sands and a high proportion of organics occur between the estuary and the transect monitoring wells. W8 is 

located where the clay layer dips towards the estuary and limits tidal intrusion further inland (marking the 

northern boundary of the alluvial aquifer), and is at the transition between these two lithologies. A topsoil layer 

of ca. 1 m and ca. 3.5 m of organic silty sands (similar to those in the supratidal flats) overly the clay layer at this 

point (Fig. 2).  

The aquifer itself can be considered semi-confined. Although the shallow clay layer is expected to have low 

hydraulic conductivities and reduce the rate of vertical percolation, it is discontinuous and rainfall recharge is 

relatively fast. On one data collection field trip during a high rainfall event, purging time limits had to be 

imposed as recharge was continuous and the monitoring wells could not be completely purged. Flow direction in 

the aquifer is southwards or downhill (Fig. 2). However, at W8, flow direction is controlled by tidal flux during 
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steady state conditions, i.e. times of low rainfall (Larsen & Cox, 2011). Water levels in the transect vary between 

1.0 and 2.5 metres below ground surface (bgs) or -0.5 to 1.5 m AHD. 

 

Sampling 

Groundwater samples were collected from seven wells (W1–W8) in December 2008. W3 was excluded as it 

was screened in a confining clay layer and considered to not be representative of groundwater flows in the area. 

To ensure representative sampling of aquifer water, wells were purged using a submersible pump prior to in situ 

measurements and sample collection, with continuously recharged wells purged for at least 10 min. For 

laboratory chemical analysis, samples were collected using a deionized water-rinsed reusable bailer or 

submersible pump and filtered in the field using 0.45 µm pore size polycarbonate filter paper. For cation tests, 

samples were acidified to pH <2 using 50% nitric acid and stored in high-density polyethylene bottles (Eaton et 

al., 2005). For anion tests, sample bottles were not acidified but filled to eliminate air space. Cation and anion 

samples were stored at 4ºC prior to analysis. Biological samples were aseptically collected using an 80% (v/v) 

ethanol-rinsed reusable bailer and sealed in autoclaved glass bottles leaving no headspace. Biological samples 

were transported to the laboratory within 2 d of collection and processed for bacterial cultivation within 24 h 

upon arrival, or stored at 4°C prior to other analyses. 

To yield sufficient microbial biomass for 16S rRNA-based molecular biological analysis, a second round of 

groundwater sampling was conducted in Feb 2009 specifically for laboratory cultivation and enrichment of 

neutrophilic Fe(II)-oxidizing bacteria using semi-solid FeS gradient medium. In addition, a sample of rust-

colored flocculent microbial mat material from estuarine sediment surface water was aseptically collected. The 

mat sample was collected in a foil-wrapped sterile 70 mL Sarstedt plastic specimen container and transported to 

the laboratory within 2 d of collection for microscopic examination. 

 

Groundwater physico-chemical analysis 

Groundwater temperature (°C), pH, redox potential (Eh), dissolved oxygen (DO) and electrical conductivity 

(EC) were measured in situ using a calibrated TPS 90FL field multimeter. Water levels were measured with a 

Solinst dip-tape water level meter in meters below ground surface and later converted to m AHD by 

determination of topographic heights from LiDAR data in ESRI Arcmap. Water samples were analyzed for 

dissolved organic carbon (DOC) using the combustion method with a Shimadzu TOC-5000A analyzer; cations 

including Mn, magnesium (Mg), calcium (Ca), sodium (Na) and potassium (K) using Inductively Coupled 
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Plasma–Optical Emission Spectrometry (Varian Vista-MPX); anions including, chloride (Cl), sulfate (SO4
2–), 

phosphate (PO4
3–) and nitrate (NO3

–) using a Dionex DX300 ion chromatograph; dissolved inorganic C (DIC, 

bicarbonate as alkalinity) colorimetrically using an AQ2+ Seal discrete analyser; sulfide (S2–) colorimetrically 

using  a manual spectrophotometric methylene blue method (Lovley & Phillips, 1987; Eaton et al., 2005). Total 

Fe and Fe(II) were determined colorimetrically on the AQ2+ Seal discrete analyser using the phenanthroline 

method (Eaton et al., 2005). 

 

Bacterial cultivation and enumeration  

A variety of laboratory media were employed for cultivation and enumeration of Fe, Mn and S bacteria 

(Table 1). One-to-ten dilution-to-extinction (10–1–10–10) was performed using (an)oxic broth media for 

(an)aerobic bacteria, i.e., one mL groundwater was directly inoculated into 9.0 mL of each broth medium, and all 

dilutions were made directly in respective media. For enumeration of neutrophilic, microaerophilic Fe(II)-

oxidizing bacteria that have been found abundant in slightly-acidic, iron-rich environments (Emerson & Moyer, 

1997; Emerson & Weiss, 2004; Weiss et al., 2007), Modified Wolfe’s Mineral Medium was used to prepare the 

one-to-ten dilution series (10–1–10–6), with 0.1 mL diluted groundwater inoculated into CO2-buffered, liquid FeS 

gradient medium and incubated under suboxic conditions. To increase surface area for bacterial growth and 

facilitate microscopy, a sterile glass rod was inserted into each tube of the liquid FeS gradient medium before 

inoculation. For molecular biological analysis, laboratory enrichment cultures were obtained using semi-solid 

FeS gradient medium by directly inoculating 0.5, 0.1 or 0.01 mL groundwater. For enumeration of aerobic, 

heterotrophic bacteria (HPC) and Mn(II)-oxidizing bacteria, groundwater dilution series (10–1–10–6) were 

prepared in sterile phosphate buffered saline (pH 6.8), with 0.1 mL spread on R2A and PC media for plate 

counts (colony-forming units, CFU). An uninoculated control was included for each medium during laboratory 

cultivation. Presumptive positive growth was recorded based on observation of specific growth reactions (Table 

1) after two (FeS gradient medium) or four weeks incubation (all other media) in the dark at 25C (FeS gradient 

media) or 28C (all other media). The presence of bacterial cells and filaments was confirmed using light 

microscopy (1000× total magnification). Single colonies were subcultured from laboratory gradient enrichment 

cultures after four weeks incubation, with cells harvested from the fourth successive subculture prepared for 

electron microscopy or stored at 80C prior to molecular biological analysis (Emerson & Moyer, 1997). 

Light microscopy was performed directly on a subsample of suspended microbial mat material to identify 

bacterial morphology in situ. Electron microscopy was performed on the fourth transfer of laboratory gradient 
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enrichment cultures to examine the association of putative Fe(II)-oxidizing bacterial cells with iron oxides. For 

scanning electron microscopy (SEM), a glass rod with presumptive colonies was selected from the liquid FeS 

gradient medium showing positive bacterial growth. The glass rod was aseptically cut into 1 cm lengths, fixed 

using 13% glutaraldehyde for a minimum of 2 h at 4C, washed with 0.1 M cacodylate buffer (pH 7), and 

dehydrated with an ethanol series (70%, 90% and 100%) and amyl acetate. SEM samples were dried in a Denton 

Vacuum critical point dryer, mounted on aluminum stubs and coated with gold. Imaging and energy-dispersive 

X-ray spectroscopy (EDS) were performed using an FEI Quanta 200 Environmental SEM under high vacuum at 

5–15 kV. For transmission electron microscopy (TEM), a sterile syringe or Pasteur pipette was used to extract 

0.5–1 mL cell material from the Fe(II) oxidation band in the semi-solid FeS gradient medium. A droplet of 

suspended cell material was mounted on a copper grid without staining. Direct imaging was performed using a 

JEOL 1200EX microscope operating at 80 kV. 

 

16S rDNA-based molecular biological analysis 

Total genomic DNA (gDNA) was extracted from semi-solid gradient enrichment cultures using a MoBio 

PowerSoil™ DNA isolation kit following manufacturers instructions. Extracted gDNA was checked for quality 

and quantity using 1% (w/v) agarose gel electrophoresis before storage at –20°C prior to further molecular 

biological analysis. For Temperature Gradient Gel Electrophoresis (TGGE) analysis, a 16S rDNA fragment of 

approximately 550 bp was amplified from bacterial gDNA extracts using primers 341F-GC/907R (Muyzer et al., 

1995). The PCR reaction contained 0.5 U Roche Taq DNA polymerase, 2.5 µL 10× PCR buffer, 3.0 mM MgCl2, 

0.4 mM each dNTP, 0.25 µM each primer, and 1–2 µL template DNA; the final volume was adjusted to 25 µL 

with sterile Gibco UltraPure™ distilled water. Acidithiobacillus ferroxydans was used as a positive control and 

PCR amplifications were performed in an Eppendorf Mastercycler S following a touchdown protocol (Muyzer et 

al., 1995). Final primer extension was carried out at 72°C for 3 minutes, with 30 total cycles. 

PCR products of low yield were concentrated with cold ethanol before TGGE analysis. The Diagen TGGE 

system contained horizontal polyacrylamide gels made of 5% (w/v) acrylamide/bis (37.5:1), 8 M urea and 2% 

(v/v) glycerol in 1× ME electrophoresis buffer (20 mM 4-morpholinepropanesulfonic acid, 1 mM EDTA, pH 

8.0). An aliquot of 5 µL PCR product was applied to the gel for electrophoresis. After running at 300 V for 3.5 h 

(48–62°C), gels were silver stained with DNA bands excised using a sterile scalpel blade. Excised bands were 

transferred into microcentrifuge tubes containing 30–50 µL elution buffer (0.5 M ammonium acetate, 1 mM 

EDTA, pH 8.0), and incubated at 4°C overnight. Eluted DNA was concentrated to 10 µL using ethanol and re-
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amplified using bacterial primers 341F/907R and the same PCR reaction and touchdown protocol described 

above. Re-amplified DNA was cleaned using a MoBio UltraClean™ PCR clean-up kit. Automated DNA 

sequencing was performed using an ABI 3500 Genetic analyzer. 

Sequence data was manually checked and modified with 4Peaks (A. Griekspoor and Tom Groothuis, 

http://mekentosj.com), then compared with existing sequences in the GenBank database using BLAST 

(http://blast.ncbi.nlm.nih.gov/). Sequences were automatically aligned with closest relatives in the Greengene 

database (Nov, 2008) using ARB 5.1 (Ludwig et al., 2004). Alignment was manually checked and corrected if 

necessary. A phylogenetic tree was constructed using the Neighbor-joining algorithm and ARB 5.1. Sequences 

were deposited in GenBank under accession No. JQ712491–JQ712497 and HQ117915. 

 

Data analysis 

Data were examined for normality using the K-S test and variables log-transformed when necessary. 

Spearman-rank order correlation was performed with p-value 0.05 as the significance threshold. Data analysis 

was performed with SPSS 16. 

 

Results 

Groundwater physico-chemistry 

During the sampling period in December 2008, there was an overall downward slope towards the estuary 

going from 1.1 m AHD at W1 to –0.6 m AHD at W8 except at W4 (1.9 m AHD) where the water table was 

elevated relative to the adjacent wells W2 and W5 which were 0.6 and 0.2 m respectively (Table 2). Associated 

temperatures ranged from 18.5 to 24.6C, mostly >21C and varied diurnally. The pH was slightly acidic in 

landward wells and gradually increased towards the estuary to a near neutral level (5.2–6.6). DO and Eh were 

within the microaerobic range, 0.1 to 1.0 mg L–1 and –50 to +150 mV, respectively, except for W1 (DO 1.8 mg 

L–1). There was an increase in EC from W1 towards the estuary, with a substantial EC variation between W7 and 

W8 (Table 2). 

DOC levels were between 3.5 and 7.6 mg L–1, except for in W6 where it was approximately one order-of-

magnitude higher (47 mg L–1). Similarly, the highest DIC level was in central wells W4–W6 (31–55 mg L–1, 

Table 2). Total dissolved Fe was the lowest in W1 (1.6 mg L–1), between 4.2–9.0 mg L–1 in central wells W2–

W6, and >10 mg L–1 in W7 and W8 (Table 3). A similar trend was observed in dissolved Fe(II) (1.2–28.0 mg L–

1), which comprised the majority of total dissolved Fe in all wells. Total dissolved Mn was below minimum 



 9

detection limit (MDL, 0.02 mg L–1) in most wells, except W2 and W8 (Table 2). Sulfate was below 8.3 mg L–1 in 

W1–W6, but reached substantially higher levels in W7 and W8 (42.1 and 35.5 mg L–1, respectively). Sulfide 

levels ranged from 0.2 to 0.6 mg L–1 in well waters, showing no clear trend (Table 3). Nitrate and phosphate 

were <MDL (0.05 mg L–1) for all samples analyzed. Sodium and chloride were the dominant cation and anion, 

respectively, for all samples (Table 3). Regarding total dissolved ions (TDI), there was a large increase between 

W7 and W8 from 403 to 1564 mg L-1 over a distance of 20 m (gradient = 58 mg L-1 m-1) with a more gradual 

increase between W1 and W7 of  97 to 403 mg L-1 over 270 m (gradient = 1.13 mg L-1 m-1) (Tables 2 and 3). 

 

Bacterial cultivation and enumeration 

Laboratory cultivation demonstrated the presence of (micro)aerobic and anaerobic bacteria capable of 

putatively chemoheterotrophic or chemolithotrophic C, Fe or S metabolism in well waters (Table 4). HPC was 

consistently between 7.5  103 and 3.4  104 CFU mL–1. A strong correlation was observed between HPC and 

DOC levels (r2 = 0.79, p <0.05). Neutrophilic, microaerophilic Fe(II)-oxidizing and aerobic Fe(III)-depositing 

bacterial levels ranged from 10 to 104 cells mL–1, except for substantially higher level of the latter in W8 (109 

cells mL–1). Neutrophilic, anaerobic Fe(III)-reducing bacteria were also present in all wells. Highest Fe(III)-

reducing bacterial levels were in central wells W4–W6 (106–108 cells mL–1), which contained the highest Fe(II)-

oxidizing bacterial levels (104 cells mL–1. Levels of neutrophilic Fe(II)-oxidizing and Fe(III)-reducing bacteria 

(log10-transformed) were both correlated with DIC (r2 = 0.79, p <0.05 and r2 = 0.81, p <0.05, respectively). 

Acidophilic Fe(II)-oxidizing and neutrophilic Mn(II)-oxidizing bacteria were <MDL (<10 cells mL–1). 

In addition, several cultivable bacteria capable of sulfide, elemental S or thiosulfate oxidation were detected 

in well waters (Table 4). Of these, sulfide-oxidizing bacterial levels were <MDL in landward W1 and W2 (<10 

cells mL–1), increasing from W5 (10 cells mL–1) towards the estuary, reaching four orders-of-magnitude higher 

in W8 (105 cells mL–1). The levels of elemental S- and thiosulfate-oxidizing bacteria both fluctuated, with the 

former up to 5–6 orders-of-magnitude higher than the latter in landward W2 and W8 proximal to the estuary. 

Sulfate-reducing bacteria occurred at 10 to 103 cells mL–1, with the lowest level in central well W5, increasing 

towards W8 near the estuary. 

SEM-EDS analysis indicated Fe and O as the primary elements in both biogenic and abiotic Fe precipitates 

in FeS gradient media (data not shown). SEM of laboratory enrichment cultures from the liquid FeS gradient 

medium showed abundant unicellular bacterial cells proximal to Fe oxide precipitates (Fig. 3). TEM of 

laboratory enrichment cultures from the semi-solid FeS gradient medium showed unicellular bacterial cells of 
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similar morphology in close association with Fe oxide deposition (Supplemental material). Together our 

experience observing the proximity and the close association of bacterial cells (curved rods) with Fe oxides (Lin 

et al., 2012) lead us to conclude that these cells are associated with Fe oxidation.  Gallionella-like stalks and 

Sphaerotilus or Leptothrix-like sheaths were not observed in the microbial mat sample using light microscopy. 

Neither was this filamentous bacterial morphology observed in Fe and S bacterial enrichment cultures. 

 

16S rDNA-based PCR-TGGE analysis 

PCR-TGGE of laboratory enrichment cultures from the semi-solid FeS gradient medium demonstrated the 

presence of Sideroxydans lithotrophicus-related bacteria (PN001 and PN015, 96% sequence identity, SI) in four 

of seven wells (W1, W2, W4, W7), and a Gallionella capsiferriformans-related bacterium in W6 (PN0013, 96% 

SI) (Fig. 4, and5). Other bacteria detected included Ralstonia pickettii (PN030, 98% SI), Burkholderia 

kururiensis (PN0029, 100% SI), Massilia timonae (PN003, 99% SI), Burkholderia tropica (PN008, 100% SI) 

and Dyella koreensis (PN002, 98% SI) (Figs. 4, and 5). 

 

Discussion 

Groundwater biogeochemistry 

The Poona estuary-adjacent aquifer features slightly-acidic and near-neutral pH (Table 2). Groundwater 

temperature was higher when compared with other research (e.g. Taylor et al., 1997), largely due to the 

subtropical climate and shallow water depths. Relatively higher DO and positive Eh values in landward W1 

(Table 2) indicated advection of oxic freshwater from the landward end of the transect. Although seawater is 

also advecting landward from the estuary, the semi-confining clay layer between W7 and W8 appears to limit 

intrusion inland, resulting in a large difference in total dissolved ions (TDI) between these two wells (Tables 2 

and 3). The large differences in Eh and pH between W7 and W8 (Tables 2 and 3) indicate the presence of a 

groundwater redox transition near the fresh–seawater interface. 

DOC content (Table 2) was generally higher than the average range for natural or pristine aquifers (0.5–2.0 

mg L–1), but comparable to organic-rich coastal and estuarine groundwaters (2–10 mg L–1) (Brown et al., 1999; 

Goldscheider et al., 2006; Pavelic et al., 2007; Perera & Jinno, 2010). Similarly, laboratory cultivation 

demonstrated HPC comparable to cultivable counts of aerobic, heterotrophic bacteria in contaminated or fouled 

organic-rich groundwaters (ca. 103–105 cells mL–1), and 2–4 orders-of-magnitude higher than those in pristine 

shallow unconsolidated aquifers (ca. <10–103 cells mL–1) (Marxsen, 1988; Taylor et al., 1997; Stuetz & 
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McLaughlan, 2004; Ultee et al., 2004). Together these findings suggested aerobic, heterotrophic respiration was 

of significance to organic matter mineralization, accounting for the correlation between HPC and DOC (p <0.05) 

in the aquifer. However, a corresponding increase in HPC was not seen in W6 (Table 4) despite substantial DOC 

input possibly related to the buried peat layer (Table 2). We postulate the majority of organic matter in W6 was 

oxidized via anaerobic respiration, leading to highest DIC levels in adjacent wells (W4–W6, Table 2).  

Anaerobic reduction of metals, particularly Fe(III) has been reported as the primary mechanism for organic 

matter mineralization in coastal groundwater redox transition zones (Chapelle & Lovley, 1992; Snyder et al., 

2004). This work also showed high abundances of dissolved Fe(II) and Fe(III)-reducing bacteria in well waters, 

whereas a lack of dissolved Mn was associated with an absence of cultivable Mn(II)-oxidizing bacteria (Table 

4). Due to the abundance of dissolved Fe(II) and the tendency of abiotic Mn(IV) reduction by dissolved Fe(II), 

Mn(IV) oxides were unlikely to occur in aquifer sediments. Consequently, microbial Mn metabolism was 

limited via a lack of bioavailable substrates, and bacterial Fe(III) reduction dominated organic matter 

mineralization, particularly in central wells W4–W6 which had lowest Eh and highest DIC and Fe(III)-reducing 

bacterial levels. 

In addition, unicellular, neutrophilic, microaerophilic Fe(II)-oxidizing and aerobic Fe(III)-depositing 

bacteria were found ubiquitous in the aquifer (Table 4). The culturable Fe(II)-oxidizing bacteria were related to 

Sideroxydans lithotrophicus and Gallionella capsiferriformans (96% SI), which thrive in Fe-rich subsurface 

environments and compete with abiotic Fe(II) oxidation by O2 at the oxic–anoxic interface (Emerson & Moyer, 

1997; Emerson & Weiss, 2004; Weiss et al., 2007). Despite the proximity and the close association of putative 

Fe(II)-oxidizing bacterial cells with crystalline Fe oxides (Fig 3), we observed few Fe precipitates on the cell 

surface, suggesting the production of soluble/colloidal Fe(III) compounds in slightly-acidic micro-environments. 

Associated cell surface encrustation with Fe(III) precipitates could be retarded due to the excretion of metal-

binding ligands by these bacteria, as reported by Roden et al. (2004). 

Despite being several orders-of-magnitude less than Fe(II)-reducing bacteria, neutrophilic Fe(II)-oxidizing 

bacteria could be highly active and compete successfully with abiotic Fe(II) oxidation, particularly in the central 

wells W4–W6 with abundant dissolved Fe(II) and DIC (Table 2). Such bacterially-mediated Fe(II) oxidation has 

the potential to promote bacterial Fe(III) reduction at the redox interface via supplying limiting Fe(III) substrates 

such as amorphous or poorly-crystalline ferrihydrite (Sobolev & Roden, 2002), accelerating groundwater Fe 

cycling. On the other hand, the correlation between DIC and Fe(II)-oxidizing/Fe(III)-reducing bacterial levels (p 

<0.05) suggested that putatively chemolithotrophic Fe(II)-oxidizing bacteria that utilize CO2 were supported by 



 12

bacterial Fe(III) reduction linked to organic C oxidation. Such bacterial involvement could be of increasing 

significance to Fe redox cycling at lower pH (e.g. < 5) due to the increasing stability of Fe substrates. However, 

the rate of Fe redox cycling was likely controlled by neutrophilic Fe bacteria in Poona catchment aquifer due to 

the pH range of 5.2–6.6 and a lack of culturable, acidophilic Fe bacteria. 

Aerobic S-oxidizing and anaerobic sulfate-reducing bacteria co-occurred in all wells (Table 4). Increasing 

S bacterial numbers towards the estuary indicated bacterial S cycling was promoted by seawater intrusion, which 

supplied a limiting sulfate substrate. The associated dissolved Fe(III) is most likely in an organically-complexed 

form, either transported in this form or complexed in situ. Organic complexation will stabilize Fe(III) in the 

presence of abundant Fe(III)-depositing bacteria at near neutral pH (Langmuir 1997; Krachler 2005).  

Seawater is generally characterized by low Fe (10–100 µg L–1) (Armstrong 1957) and Fe is generally 

terrestrially sourced. Löhr et al. (2010) found extensive areas of high Fe soils within Poona catchment containing 

a large proportion of ferricrete and Fe-concretions, most of which were in the form of sparely soluble Fe-oxides. 

Iron is widespread throughout this study area, although readily extractable Fe concentrations are low overall. 

However, localized anoxic conditions and input of organic matter in waterlogged soils and stream sediments 

enable transformation of Fe-oxides to more readily available forms (Löhr et al. 2010). Dissolved Fe(II) is 

transported into aquifer sediments from water logged areas, along with stable organically-complexed Fe(III). 

Elevated Fe levels at W7 and W8 were most likely a result of ‘iron curtain’ effects at this saline/fresh interface. 

With increasing pH there is a precipitation of groundwater-borne dissolved Fe(II) and subsequent accumulation 

of Fe oxides onto subsurface sands at the groundwater-seawater interface (Charette and Sholkovitz 2002; Spiteri 

et al. 2006). However, a parallel Poona catchment study by Larsen (2012) indicated redox conditions vary with 

depth where fresh lower pH/Eh waters overly more saline higher pH/Eh waters. Consequently, both oxidation 

and reduction processes occur, resulting in high levels of both Fe(II), organically-complexed Fe(III) and 

particulate ferrihydrite for subsequent reduction. 

 

Implications for groundwater quality  

The abundances of Fe(II)-oxidizing and Fe(III)-reducing bacteria in the shallow aquifer demonstrate the 

potential for active groundwater Fe cycling, which can promote the mobility of Fe in groundwaters by 

maintaining Fe species in soluble forms or suspended, poorly-crystalline oxyhydroxides within the sediment 

profile. Together the results of high dissolved Fe levels in the majority of these monitoring wells has 
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implications for Fe transport to marine waters, a potential contributor to cyanobacterial blooms. Larsen (2012) 

found groundwaters within the supratidal flats between the transect and the estuary also contained abundant Fe 

(1.4 to 12.2 mg L-1 total Fe) although substantially reduced from W8 (32.8 mg L-1) due to increased pH and DO 

associated with saline intrusion. These results indicate groundwater Fe loads were being transported to within 85 

m of the estuary. The high organic content of sediments in the supratidal flats, humic and fulvic acids maintain 

the pH (6.3 to 7.2, variable with depth) at a level where dissolved Fe(II) and/or organically-complexed Fe 

remain stable. However, quantities of Fe reaching the estuary and the fate of this Fe once within the drainage 

system remain to be determined. 

In addition, biofilm formation by neutrophilic, microaerobic Fe(II)-oxidizing/Fe(III)-depositing bacteria 

and/or sulfide production by anaerobic sulfate-reducers are considered to be important mechanisms causing well 

clogging and fouling (Taylor et al., 1997). The abundance of Fe and SO4
2-/S bacterial populations, as well as 

dissolved Fe (1.0–26 mg L–1) in the Poona estuary-adjacent aquifer demonstrates potential for the development 

of turbidity and color (Fe >0.05–0.1 mg L–1), and adverse taste and household staining (Fe >0.3 mg L–1), as well 

as microbially-mediated clogging and biocorrosion of metallic infrastructure including well casings, screens, and 

pumps (Taylor et al., 1997, WHO, 1996; NHMRC, 2004). Together the detection of several heterotrophic 

bacteria generally known as plant pathogens or soil bacteria in well waters (Fig 4 and 5) (1995; Scola et al., 

1998; Sintchenko et al., 2000; Reis et al., 2004; Deris et al., 2010) indicate the Poona estuary-adjacent aquifer or 

a comparable aquifer should not be used for potable groundwater abstraction. 

 

Conclusions 

The subtropical Poona estuary-adjacent alluvial aquifer provided a profile of slightly-acidic and redox-

stratified groundwater. Abundant DOC/DIC and Fe/S substrates supported a large number of neutrophilic, 

(micro)aerobic and anaerobic bacterial populations capable of diverse C, Fe and S metabolism in this aquifer. 

Aerobic, heterotrophic respiration and bacterial Fe/S oxidation-reduction reactions most likely functioned as the 

primary driver of groundwater electron flow. High abundances of dissolved Fe and associated Fe (and S) 

bacterial populations have implications for groundwater quality and abstraction, as well as mineral dissolution 

and Fe mobilization in coastal alluvial aquifers. Dissolved Fe can pass through the estuary-adjacent saline 

gradient and discharge into marine habitats, where it may trigger potentially toxic blooms of cyanobacteria.  
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Table 1. Laboratory enrichment media used in bacterial cultivation and enumeration 

Medium pH Target bacteria Growth reaction Reference(s) 

9K 2.5 Aerobic, acidophilic Fe(II)-oxidizing, e.g. 

Acidithiobacillus ferrooxydans 

Rust-colored Fe(III) oxide 

precipitate 

Lazaroff (1963) 

Liquid FeS gradient 

medium 

4.8 Neutrophilic, microaerophilic Fe(II)-oxidizing, 

e.g. stalk-forming Gallionella ferruginea 

Rust-colored colonies 

attached to tube wall 

Hanert (2006)  

Semi-solid FeS 

gradient medium 

6.3 Neutrophilic, microaerophilic Fe(II)-oxidizing, 

e.g. unicellular Sideroxydans 

Dense rust-colored Fe(II) 

oxidation band at the oxic–

anoxic interface 

Emerson and 

Floyd (2005)  

Fe(III) medium 7.0 Aerobic, neutrophilic Fe(III)-depositing, e.g. 

Sphaerotilus and Leptothrix 

Turbidity and filamentous 

growth 

Atlas (2004)  

Fe(III)-EDTA 

medium 

7.0 Anaerobic, neutrophilic Fe(III)-reducing Ferrozine indicator turns 

purplea 

Gould et al. 

(2003)  

S medium 4.8 Aerobic, acidophilic elemental S-oxidizing, 

e.g. Thiobacillus thiooxidans 

pH indicator bromophenol 

blue turns yellowb 

Unz (2005)  

Thiosulfate medium 7.8 Aerobic, neutrophilic thiosulfate-oxidizing, 

e.g. Thiobacillus thioparus 

pH indicator bromothymol 

blue turns yellowb 

Unz (2005)  

MP broth 7.0 Neutrophilic, microaerophilic sulfide-

oxidizing, e.g. filamentous Beggiatoa and 

Thiothrix 

pH indicator bromothymol 

blue turns yellowb 

Unz (2005)  

API 7.5 Anaerobic, neutrophilic sulfate-reducing, e.g. 

Desulfovibrio 

Black FeS precipitate Tanner (1989)  

PC 7.0 Aerobic, neutrophilic Mn(II)-oxidizing, e.g. 

hyphal, budding Pedomicrobium 

Dark brown or black Mn(IV) 

precipitate on colonies 

Tyler and 

Marshall (1967) 

R2A 7.2 Aerobic, heterotrophic Bacterial colonies Reasoner and 

Geldreich 

(1985)  

a. Ferrozine reacts with Fe(II) produced via bacterial Fe(III) reduction; and b. pH decreases due to S oxidation and H2SO4 

production 
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Table 2. Physico-chemistry, DOC and DIC of monitoring wells in Poona estuary-adjacent shallow groundwaters 

(December 2008) 

Well Distance from 

estuary (m) 

Tma  

(ºC) 

pH Ehb

(mV) 

DOc

(mg L-1) 

ECd

(mS cm‐1) 

DOCe 

(mg L-1) 

DICf

(mg L-1) 

W1 600 22.7 5.4 90 1.85 0.17 6.7 3.7 

W2 520 21.3 5.2 118 0.40 0.28 4.0 2.1 

W4 420 18.5 5.4 -21 0.69 0.28 7.6 30.6 

W5 390 21.8 5.6 -3 0.59 0.43 7.3 39.7 

W6 360 24.6 5.9 -32 0.56 0.39 47.3 54.6 

W7 320 21.2 5.7 -16 0.12 0.72 3.7 3.7 

W8 300 22.2 6.6 30 0.56 2.34 3.5 6.7 

a. Temperature; b. redox potential; c. dissolved oxygen; d. electron conductivity; e. dissolved organic carbon; 

and f. dissolved inorganic carbon 
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Table 3. Ionic concentrations and TDI for monitoring wells in Poona estuary-adjacent shallow groundwaters (mg 

L–1) 

Well Fetotal Fe(II) Mntotal SO4
2- S2– NO3– PO4

3– Ca Mg Na K Cl TDI 

W1 1.6 1.2 0.01 8.3 0.5 <0.05 <0.05 0.5 5.9 38 0.6 8 96 

W2 9.0  7.4 0.1 7.8 NDa <0.05 <0.05 3.0 7.9 43 0.5 75 147 

W4 5.4  4.6 0.01 8.1 0.6 <0.05 <0.05 1.0 5.0 55 1.5 70 177 

W5 3.0  2.6 0.02 6.8 0.2 <0.05 <0.05 1.5 6.3 75 2.0 107 242 

W6 4.2  4.2 0.02 4.2 0.5 <0.05 <0.05 1.5 7.0 68 2.7 90 227 

W7 15.0 11.6 0.02 42.1 0.4 <0.05 <0.05 2.2 14 120 3.2 206 406 

W8 32.8 28.0 0.1 35.5 0.2 <0.05 <0.05 16 120 310 14 932 1467 

a. not determined 
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Table 4. Cultivable bacterial numbers of Poona estuary-adjacent shallow groundwater (CFU or cells mL–1) 

Well HPC Neutrophilic 

Fe(II)-oxidizing 

bacteria  

Fe(III)-

depositin

g bacteria

Fe(III)-

reducing 

bacteria 

Sulfide-

oxidizing 

bacteria 

Elemental 

sulfur-oxidizing 

bacteria 

Thiosulfate

-oxidizing 

bacteria 

Sulfate-

reducing 

bacteria 

W1 1.4 × 104 101 103 104 <10 103 10 102 

W2 9.8 × 103 102 102 102 <10 107 102 102 

W4 1.2× 104 104 103 109 10 103 103 103 

W5 3.4 × 105 104 104 108 10 102 10 10 

W6 3.0 × 104 104 103 107 102 104 102 102 

W7 7.5 × 103 103 102 102 103 103 10 102 

W8 9.6 × 103 102 109 104 105 107 10 103 

Acidophilic Fe(II)-oxidizing and neutrophilic Mn(II)-oxidizing bacteria were below 10 cells or CFU mL–1 

(MDL) 
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Figure captions: 

Figure 1. Location of Poona estuary on the Fraser Coast of Southeast Queensland. 

Figure 2. Schematic diagram of the transect of sampling wells (W1–W8, except W3) near Poona estuary mouth 

(1:60 vertical exaggeration); W1 and W8 are approximately 950 and 650 m from the estuary northern bank, 

respectively; topographic heights extracted from Light Detection and Ranging (LIDAR) data supplied by 

Forestry Plantations Queensland. 

Figure 3. Neutrophilic Fe(II)-oxidizing bacterial enrichment culture recovered from Poona estuary-adjacent 

shallow groundwater (W5) using liquid FeS gradient medium (A–B) Photographs of rust-colored colonies 

attached to tube wall and glass rod; (C) TEM image of unicellular bacterial cells in the vicinity of Fe oxide 

precipitates. 

Figure 4. TGGE of neutrophilic Fe(II)-oxidizing bacterial enrichment cultures recovered from Poona estuary-

adjacent shallow groundwater using semi-solid FeS medium. 

Figure 5. Neighbor-joining tree of bacterial enrichment cultures (PN) recovered from Poona estuary-adjacent 

shallow groundwater using semi-solid FeS gradient medium. Bootstrap values shown at nodes for frequencies at 

or above a 40% threshold (1000 bootstrap resampling). Acidithiobacillus ferrooxydans used as outgroup. Bar 

indicates 10% sequence variance. 

Figure 6. Profile of the sampling site illustrating potential for bacterially-mediated groundwater Fe cycling in 

the Poona estuary-adjacent shallow aquifer (not to scale; well designations as per Fig. 2). 

 

Supplemental material 

Figure 1. Neutrophilic Fe(II)-oxidizing bacterial enrichment culture recovered from Poona estuary-adjacent 

shallow groundwater (W7) using semi-solid FeS gradient medium (A) Photograph of rust-colored Fe(II) 

oxidation band due to bacterial growth (arrows); (B) TEM image of unicellular bacterial cells (arrows) 

associated with Fe oxide precipitates; and (C) TEM image of unicellular cell showing polar, electron dense areas 

(arrows) due to Fe oxide deposition. 


