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Abstract—In this work we present an optimized fuzzy visual
servoing system for obstacle avoidance using an unmanned aerial
vehicle. The cross-entropy theory is used to optimise the gains
of our controllers. The optimization process was made using the
ROS-Gazebo 3D simulation with purposeful extensions developed
for our experiments. Visual servoing is achieved through an
image processing front-end that uses the Camshift algorithm
to detect and track objects in the scene. Experimental flight
trials using a small quadrotor were performed to validate the
parameters estimated from simulation. The integration of cross-
entropy methods is a straightforward way to estimate optimal
gains achieving excellent results when tested in real flights.

I. INTRODUCTION

Aerial robotics is getting more importance each year in the
field of robotic community. The advances in electronics have
allowedthe miniaturization of sensors and the systems onboard
aircraft, causing a radical increasing in the manufacturing of
all sort of aerial robots at an affordable price. Nowadays is
possible to acquire a basic quadcopter in standard electronic
or toy shops, when years ago the possibility of research with
aerial robots was affordable only by few research groups in
the world. Actually there are so much research groups involve
to obtain results for different type of tasks with this kind of
platform.

Multiple sensors are used onboard aerial robots in order to
acquire information of the environment. For instance, Laser
ranger finder [1] and sonars [2]. But the most widely used sen-
sor are cameras. An example of the use of cameras for attitude
estimation can be found in [3], [4]. Furthermore, advanced
systems such as the ”kinect” [5] have been demonstarted with
quadrotors [6].

On the other side the Soft-computing techniques in engi-
neering applications are becoming common. Tasks such as
prediction [7], data mining [8], control are some of the uses
of these techniques.The way Soft-Computing can manage un-
certainty and inaccuracies of sensors made them very suitable
for automatize robotic systems. Some examples for control
purposes can be found in [9], [10]. In order to obtain a
robust control system once the controller was developed an
optimization process is required. One of the last optimization
method developed is the Cross-entropy [11] which has not
been widely used for control tasks [12], [13].

This paper is structured as follows. In section II we describe
the image processing front-end used in our approach. In
section III we explain the visual servoing approach using
fuzzy logic for heading control. The cross-entropy theory is
introduced in section IV. Experimental results are presented
in section V. Finally, concluding remarks and future work are
presented in section VI.

II. VISUAL SYSTEM

Information (image) from the environment is acquired using
an onboard forward-looking camera. This information is then
sent for off-board processing in a laptop ground-station. The
result of the visual processing (including servoing commands)
are then send back to the vehicle using a 802.11n link. In
this section we describe briefly the image processing front-
end used for detection and tracking of objects.

In a nutshell, the avoidance task is based on the idea of
keeping the target in the image plane at constant bearing, either
right of left (as seen from image centre). When the object is
first detected is pushed to the edge (far left of right side) of
the image. Objects will be placed in the far edge on the same
side of first detection.

The problem of target detection is approached pre-defining
a color and then designing an algorithm to highlight this
color that then will be tracked. For this purpose, we use a
color representation that allows us to keep color distributions
derived from video image sequences approximately constant
(in outdoor settings). This process is not always perfect, and
changes still occur in colour distributions over time. This
dynamic nature of changes in lighting can be addressed by
dynamically adapting to changes in probability distributions
of color. An algorithm that adopts this strategy is the Contin-
uously Adaptive Mean Shift [14] (CamShift). This algorithm
is based on the mean shift originally introduced by Fukunaga
and Hostetler [15].

Using Camshift algorithm we are able to track and extract
the centre of the color region that describes the object.
Figure 16 shows an example of the tracking processes on
red coloured object. Using the coordinates of the object’s
centre in the image plane, we are able to generate desired
yaw commands which in turn will modify the trajectory of



the vehicle in order to keep the object at constant relative
bearing. This is performed keeping forward velocity constant.

III. FUZZY CONTROLLER

The aim of the controller is to generate desired yaw com-
mands for the vehicle based on the location of the target in
the image plane.This section will describe the details of this
controller.

The control task is based on Fuzzy Logic techniques. This
was implemented using our own software routines. These
routines have been used in a wide variety of control appli-
cations such as autonomous landing [16] and autonomous
road following [17]. The controller has three inputs and one
output. The first input measure the error in degrees between the
quadrotor, the object to avoid minus the reference (Figure1).
The second, is the derivate of the error, as is shown in Figure2,
and third input, shown in the Figure 3 represents the integral
of the error. The output is the commanded yaw that the vehicle
needs to turn in order to keep the object at the desired relative
bearing, see Figure 4.

Fig. 1. Membership function of the first input, the error.

Fig. 2. Membership function of the second input, the derivate of the error.

Fig. 3. Membership function of the third input, the integral of the error.

Fig. 4. Membership function of the output, heading degrees to turn.

The definition of the fuzzy variables bring on a 45 rules.
A 3D representation of this base of rules is shown in the
Figure 5 like a relation of one-to-one variables, being the
third dimension the output. In where the Figure 5(a) shows
the relation between the first and the second inputs, the Figure
5(b) shows the relation between the first and the third inputs,
and the Figure 5(c) presents the relation between the second
and the third inputs.

(a) Error Vs. Derivate of the error

(b) Error Vs. integral of the error

(c) Derivate of the error Vs. integral of the
error

Fig. 5. 3D surface representations of the fuzzy controller rules base.

Comparing with previous visual servoing works with aerial
vehicles, in which no optimization have been apply, this ap-
proach shows a big reduction in the number of the membership
function sets at the variables. A simplify base of rules has been
obtained thanks to the cross-entropy tunning of the controller.

IV. CROSS-ENTROPY OPTIMIZATION METHOD

The Cross-Entropy (CE) method is a new approach in
stochastic optimization and simulation. It was developed as an
efficient method for the estimation of rare-event probabilities.
The CE method has been successfully applied to a number
of difficult combinatorial optimization problems. In this paper
we present an application of this method for optimization of
the gains of a Fuzzy controller. Next, we present the method
and the Fuzzy controller optimization approach. A deeply
explanation of the Cross Entropy method is presented on [11]



A. Method Description

The CE method is iterative and based on the generation of
a random data sample (x1, ...,xN) in the χ space according
to a specified random mechanism. An reasonable option is to
use a probability density function (pdf) such as the normal
distribution. Let g(−,v) be a family of probability density
functions in χ parameterized by a real value vector v ∈ ℜ:
g(x,v). Let φ be a real function on χ , so the aim of the CE
method is to find the minimum (like in our case) or maximum
of φ over χ , and the corresponding states x∗ satisfying this
minimum/maximum: γ∗ = φ(x∗) = minx∈χ φ(x).

In each iteration the CE method generate a sequence of
(x1, ...,xN) and γ1...γN levels such that γ converges to γ∗ and
x to x∗. We are concerned with estimating the probability l(γ)
of a event Ev = {x ∈ χ | φ(x)≥ γ},γ ∈ℜ.

Defining a collection of functions for x ∈ χ,γ ∈ℜ.

Iv(x,γ) = I{χ(xi)>γ} =

{
1 i f φ(x)≤ γ

0 i f φ(x)> γ
(1)

l(γ) = Pv(χ(x)≥ γ) = Ev · Iv(x,v) (2)

where Ev denotes the corresponding expectation operator. In
this manner, Equation 2 transform the optimization problem
into an stochastic problem with very small probability. The
variance minimization technique of importance sampling is
used in which the random sample is generated based on a pdf
h. Being the sample x1, ...,xN from an importance sampling
density h on φ and evaluated by:

l̂ =
1
N
·

N

∑
i=1

I{χ(xi)>γ} ·W (xi) (3)

Where l̂ is the importance sampling and W (x) = g(x,v)
l is the

likelihood ratio. The search for the sampling density h∗(x) is
not an easy task because the estimation of h∗(x) requires that l
be known h∗(x)= I{χ(xi)>γ} ·

g(x,v)
l . So the referenced parameter

v∗, must be selected such the distance between h∗ and g(x,v)
is minimal, thereby the problem is reduced to a scalar case.
A way to measure the distance between two densities id the
Kullback-Leibler, also known like cross-entropy:

D(g,h) =
∫

g(x) · ln g(x)dx−
∫

g(x) · ln h(x)dx (4)

The minimization of D(g(x,v),h∗) is equivalent to max-
imize

∫
h∗ln[g(x,v)]dx which implies that maxvD(v) =

maxvEp
(
I{χ(xi)>γ} · ln g(x,v)

)
, in terms of importance sam-

pling it can be re-written as:

maxvD̂(v) = max
1
N

N

∑
i=1

I{χ(xi)>γ} ·
px(x)
h(xi)

· ln g(xi,v) (5)

Note that h is still unknown, therefore the CE algorithm will
try to overcome this problem by constructing an adaptive
sequence of the parameters (γt | t ≥ 1) and (vt | t ≥ 1).

B. Fuzzy Control Optimization Approach

This approach is based on a population-and-simulation
optimization [?]. The CE algorithm generates a set of
N fuzzy controllers xi = (xKE ,xKD,xKI) with g(x,v) =
(g(xKE ,v),g(xKD,v),g(xKI ,v)) and calculates the cost func-
tion value for each controller. The controllers parameters
KE,KD,KI correspond to the gains of the first, second and
third input of each controller (Figures 1, 2 and 3). Then
updates g(x,v) using a set of the best controllers. This set
of controllers is defined with the parameter Nelite.The process
finish when the minimum value of the cost function or the
maximum number of iterations is reached, as is shown in the
Algorithm 1.

Algorithm 1 Cross-Entropy Algorithm for Fuzzy controller
optimization
1. Initialize t = 0 and vt = v0
2 Generate a sample of N controllers: (xt

j)1≤ j≤N) from g(x,vt),
being each xi = (xKE j,xKD j,xKI j)
3. Compute φ(xt

j) and order φ1,φ2, ...,φN from smallest to
biggest.Get the Nelite first controllers γt = χ[Nelite].
4. Update vt with vt+1 = argvmin 1

N ∑
N
j=1 I{χ(xt

j)≥γt} · ln g(xt
j,vt)

5. Repeat from step 2 until convergence or ending criterion.
6. Assume that convergence is reached at t = t∗, an optimal
value for φ can be obtained from g(.,v∗t ).

For this work the Normal (Gaussian) distribution function
was selected. The mean µ and the variance σ are estimated
for each iteration h = 1,2,3 parameters (Ke,Kd ,Ki) as µ̃th =

∑
Nelite

j=1
x jh

Nelite and σ̃th = ∑
Nelite

j=1
(x jh−µ jh)

2

Nelite where 4≤ Nelite ≤ 20.
The mean vector ¯̃µ should converge yo γ∗ and the standard

deviation ¯̃σ to zero. In order to obtain a smooth update of the
mean and the variance we use a set of parameters (β ,α,η),
where α is a constant value used for the mean, η is a variable
value which is applied to the variance to avert the occurrences
of 0s and 1s in the parameter vectors, and β is a constant
value which modify the value of η .

η = β −β · (1− 1
t )

q

µ̂t = α · µ̃t +(1−α) · µ̂t−1
σ̂t = η · σ̃ +(1−η)) · σ̂t−1

(6)

Where µ̂t−1 and σ̂t−1 are the previous values of µ̂t and σ̂t .
The values of the smoothing update parameters are 0.4≤ α ≤
0.9, 0.6≤ β ≤ 0.9 and 2≤ q≤ 7. In order to get an optimized
controller different cost functions could be chosen, such as
the Integral time of the absolute error (ITAE) or the Integral
time of the square error (ITSE) or the root mean-square error
(RMSE).

V. RESULTS

A. Simulation Tests

In this section are presented all the information about
the simulation environment and software developed for the
optimization using the Cross-Entropy method. The explanation



of the 330 tests accomplished, the evolution of the gains,
its probability density functions and the evaluated error is
presented in the second part of this subsection.

1) Simulation Environment: The simulation tests were per-
formed using the ROS (Robotics Operative System) and the
3D simulation Gazebo [18]. In the simulations, a quadcopter
model of starmack ros-pkg developed by the Berkeley Univer-
sity [19] used. The obstacle to avoid is defined by a virtual
yellow balloon.

Two external software in C++ were developed for accom-
plish these tests. One of then is the cross-entropy method. This
program is responsible for the optimization process. Generate
a set of controllers, select the control to test and when all
the controllers are tested, update the pdf with the tests results
to obtain the new set of controllers. The other one is the
responsible to execute iteratively the ROS-Gazebo system. In
order to test all the controllers in the same conditions, the
ROS-Gazebo is restarted for each test getting same initial stage
for all the tests. The Figure 6 shows the tests flowchart.

Fig. 6. Flowchart of the optimization process.

Besides this external software to execute in a loop the 3D
simulator, two nodes have been added to the ROS-Gazebo.
One is the visual algorithm which get the visual image ob-
tained by the simulated camera onboard the quadcopter. Each
frame is converted in to a OpenCV image to be processed.
Then the visual information is sent to the Fuzzy controller
node. The controller evaluates the this data to obtain the cor-
rect yaw value. Finally this command is sent to the simulated
aircraft at the 3D simulator.

2) Optimization process using the simulation: In order to
obtain the optimal controller, we define a 3 seconds test for
each controller. The quadcopter start position is in front of the
object to avoid. A constant pitch speed during all the test is
sent to the aircraft. In five seconds the controller must oriented
the quadcopter in order to keep the object at the left side of
the image. To evaluate each test the Integral Time Absolute
Error (ITAE) function cost was used. Some tests were made

Fig. 7. Interaction between the ROS-Gazebo 3D simulator and the two other
process developed for this work.

with the Root Mean Square Error (RMSE) cost function with
similar results. We choice the ITAE error estimator because it
penalizes so hard the error at the end of the test. Being more
important estimator during a optimization process. The cross-
entropy system generate per each iteration N = 30 controllers
based on the last update of the probabilistic density functions
of each gains. From this set of controllers the five with the
lower value of the ITAE have been selected (Nelite = 5) to
update the next pdf parameters. The initial values for the pdf of
all the gains are µ0 = 0.5, σ0 = 0.5. The rest of the parameters
of the cross-entropy method are q = 2, β t0 = 0, β0 = 0.92,
α0 = 0. Those values are based on the researches of [12] and
[20].

Fig. 8. Control loop with the optimization of the Cross-Entropy method.

Fig. 9. Evolution of the probability density function for the first input gain.
The standard variance converge in 12 iterations to a value of 0.0028 so that
the obtained mean 0.9572 can be used in the real tests.

330 tests have been made to obtain the optimal controller.
This process corresponds to a 11 updates of the gains-pdf.
The Figure 9 shows the evolution of the probability density
function of the first input of the controller. The final values of



Fig. 10. Evolution of the probability density function for the second input
gain. The standard variance converge in 12 iterations to a value of 0.0159 so
that the obtained mean 0.4832 can be used in the real tests.

Fig. 11. Evolution of the probability density function for the third input
gain. The standard variance converge in 12 iterations to a value of 0.0015 so
that the obtained mean 0.4512 can be used in the real tests.

Fig. 12. Evolution of the itae error during the 12 Cross-Entropy iterations.
The ITAE value of each iteration correspond to the mean of the first 5 of 30
controllers of each iteration.

Fig. 13. Evolution of the gains of each input. The value of the gain correspond
to the first 5 of 30 controllers of each iterations.

the pdf were mean = 0.9572 and sigma = 0.0028. The Figure
10 shows the evolution for the second input with the final
values of mean = 0.4832 and sigma = 0.0159. I the same way
the Figure 11 shows the evolution of the pdf for the third
input, which finalize with mean= 0.4512 and sigma= 0.0015.
In the Figure 12 is shown the evolution of the mean of the

ITAE value of the 5 winners from each set of 30 controllers.
The Figure 13 shows the evolution of the different gains of
the controller during the 330 tests.

B. Real Environment Tests

We performed real flights tests with the aim of validating
our simulations. We used a AR.Drone-Parrot [21] platform
with our own software routines developed for this purpose. A
typical orange traffic cone was used as the object to avoid. We
recorded the trajectory quadrotor with the maximum precision
using the VICON position detection system [22]. The VICON
system was used to data logging, no data was used for the
control of the quadrotor.

1) Quadcopter System: The quadcopter system used for
this test is the commercial Parrot AR.Drone. This is a four-
rotors aircraft with two cameras onboard, forward-looking
which has been used in this work, and downward-looking. The
aircraft is connected to a ground station via wi-fi connection.
A extended explanation of this platform is presented at [21].

2) Flight Test: The test was performed in similar fashion
as the simulation with constant pitch, zero roll and constant
altitude of 0.8m (kept by the internal altitude controller of the
AR.Drone).

The position of the quadcopter is calibrated at the beginning
of the test, being the initial position the point (0,0,0) meters.
The obstacle to avoid was located in front of the initial position
of the quadcopter at 6 meters of distance and at 1.1 meters
from the floor (6,0,1.1) meters. The Figure 14 shows the 2D
reconstruction of this test and Figure 15 shows the 3D flight
reconstruction over a capture frame from the camera used to
record the test. This video can by found at [23]. These tests
were made at indoor flying lab located at ARCAA (Australian
Research Center of Aerospace Automation).

Fig. 14. 2D flight reconstruction with the VICON data. The black circle and
the white cross at the position (6,0) represent the object to avoid.

Once the quadrotor take-off it flies one meter towards the
obstacle in open loop. Then the visual control process is
activated. During the next 5 seconds the controller sends
commands to the aircraft. Once the aircraft has reached a
maximum allowed turn, is commanded from this point with
a constant yaw (last yaw commanded). The Figure 16 shows
some images captured from the onboard camera during the
execution of this test. The Figure 16(a) shows the beginning
of the test during the first meter in open loop. The Figure
16(b) shows the capture image at the middle of the test and at
the Figure 16(c) can be seen when the quadrotor is overtaking
the obstacle.



Fig. 15. 3D flight reconstruction with the VICON data over a image capture
with an external camera. The obstacle to avoid is a orange traffic cone and it
is set at the position (6,0,1.1).

(a) (b) (c)

Fig. 16. Onboard images during the execution of the test.

The behavior of the controller is represented in the Figure
17 which shows the evolution of the error during the test.
The red line step represent the moment in which the image
processing start. To evaluate the behavior of the controller we
use the metric RMSE and not the ITAE like in the optimization
process. RMSE is better at evaluating the optimal controller.
Low values of the RMSE corroborates the excellent behavior
of the optimized-controller.

Fig. 17. Evolution of the error during a real test.

A video of this and other tests can be found at [24], [25].

VI. CONCLUSIONS

This work have presented an autonomous system for see and
avoid task using Micro unmanned aerial vehicles (MUAV). To
accomplish this mission a Fuzzy controller has been developed
and optimized using the Cross-Entropy method. The process
of optimization has been done testing 330 different controllers

using the virtual environment ROS-Gazebo with the starmac
aircraft model. The Cross-Entropy method has been used
to optimized the gains of the controller. Once the optimal
controller was obtained we proceeded with real flights using an
AR.Drone-Parrot. The quick response of the controller and the
small error during the test indicates an excellent behavior of
the controller, besides the differences between the model with
the simulator, the Starmac, and the real aircraft, the AR.Drone-
Parrot.

The uses of the Cross-Entropy method made possible a
significant size reduction of the base of rules given it allows
to reduce the number of the membership functions. We are in
process of designing new controllers for altitude control. These
new controllers will include more inputs such as aircraft speed,
range to target, etc.
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