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solving time-variable-order time-space
fractional reaction-diffusion equation ⋆
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Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
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Abstract:
Fractional differential equations are becoming more widely accepted as a powerful tool in
modelling anomalous diffusion, which is exhibited by various materials and processes. Recently,
researchers have suggested that rather than using constant order fractional operators, some
processes are more accurately modelled using fractional orders that vary with time and/or
space.
In this paper we develop computationally efficient techniques for solving time-variable-order
time-space fractional reaction-diffusion equations (tsfrde) using the finite difference scheme.
We adopt the Coimbra variable order time fractional operator and variable order fractional
Laplacian operator in space where both orders are functions of time. Because the fractional
operator is nonlocal, it is challenging to efficiently deal with its long range dependence when
using classical numerical techniques to solve such equations.
The novelty of our method is that the numerical solution of the time-variable-order tsfrde
is written in terms of a matrix function vector product at each time step. This product
is approximated efficiently by the Lanczos method, which is a powerful iterative technique
for approximating the action of a matrix function by projecting onto a Krylov subspace.
Furthermore an adaptive preconditioner is constructed that dramatically reduces the size of
the required Krylov subspaces and hence the overall computational cost. Numerical examples,
including the variable-order fractional Fisher equation, are presented to demonstrate the
accuracy and efficiency of the approach.

Keywords: fractional derivative of variable order, time-space fractional reaction-diffusion
equation, preconditioned Lanczos method, matrix transfer technique, Krylov subspace

1. INTRODUCTION

In the last decades, constant-order fractional differential
equations have won considerable popularity because of
their promising applications in various areas (Baleanu
et al., 2010; Sabatier et al., 2007; Klages et al., 2008;
Podlubny, 1999). More recently, to better describe the
behaviour of some heterogeneous diffusion processes, the
concept of variable-order fractional differential equations
has been investigated by numerous authors (Samko and
Ross, 1993; Samko, 1995; Lorenzo and Hartley, 1998, 2002;
Coimbra, 2003; Ramirez and Coimbra, 2010). This idea
allows us to consider the order of the fractional derivative
to vary either as a function of time (t), space (x) or some
other variables.

Since the kernel of the variable-order operator has a vari-
able exponent, analytical solutions to variable order frac-
tional differential equations are more difficult to obtain.

⋆ Dr Yang and Dr Moroney acknowledge the financial support of
QUT’s Early Career Academic Research Development Program and
Science and Technology Research Career Development Program.

Hence, to illustrate the solution behaviours of such equa-
tions and further explore their applications, the numerical
approximation of these equations plays an important role
in the development of these new type of variable-order
fractional models.

The research on variable-order fractional partial differ-
ential equations is relatively new, and hence numerical
approximation of these equations is still at an early stage
of development. Coimbra (2003) proposed a first-order ac-
curate approximation for the solution of variable-order dif-
ferential equations. Soon et al. (2005) employed a second-
order Runge-Kutta method consisting of an explicit Eu-
ler predictor step followed by an implicit Euler corrector
step to numerically integrate variable-order differential
equations. Sun et al. (2009) introduced a classification
of variable-order fractional diffusion models based on the
possible physical origins that motivate the variable order,
and used the Crank-Nicolson scheme to get the diffusion
curve of the variable-order fractional models. Zhuang et al.
(2009) presented explicit and implicit Euler approxima-
tions for the variable-order fractional advection-diffusion



equation with a nonlinear source term, and also provided
a rigorous stability and convergence analysis. Chen et al.
(2010) proposed two numerical schemes for a variable-
order anomalous subdiffusion equation: one with first or-
der temporal accuracy and fourth order spatial accuracy,
and the other with second order temporal accuracy and
fourth order spacial accuracy. Shen et al. (2012) presented
numerical techniques for the variable-order time fractional
diffusion equation and discussed the stability and conver-
gence.

Due to the nonlocal property of the fractional deriva-
tive of either constant or variable order, it is challenging
to efficiently deal with its long range dependence using
classical numerical techniques. Recent advances in com-
putationally efficiently solving constant-order fractional
differential equations equations have been made by Yang
et al. (2011a,b). Using the matrix transfer technique (Ilić
et al., 2006), Yang et al. (2011a,b) write the numerical
solution of the time-space fractional diffusion (or reaction-
diffusion) equations in two dimensions as a matrix function
vector product f(A)b at each time step, where A is an
approximate matrix representation of the standard Lapla-
cian. Depending on the methods to generate the matrix
A, i.e. the finite difference/element/volume methods, this
product is then approximated efficiently by the Lanczos
method or the M-Lanczos method, which are powerful it-
erative techniques for approximating the action of a matrix
function by projecting onto a Krylov subspace.

In this paper, we extend this Krylov subspace tech-
nique including adaptive preconditioning to solve the fol-
lowing time-variable-order time-space fractional reaction-
diffusion equation (tsfrde) with homogeneous Dirichlet
or Neumann boundary conditions

0D
q(t)
t u(x, t) = −Kα(−∆)α(t)/2u(x, t) + g(u, x, t), (1)

u(x, 0) = u0(x),

where 0 ≤ x ≤ L, t > 0; u(x, t) is (for example) a
concentration and Kα is the diffusion coefficient. The time
fractional derivative of variable order q(t) (0 < q(t) < 1)
is defined by Coimbra (2003) as

0D
q(t)
t u(x, t)

=
1

Γ(1− q(t))

∫ t

0+
(t− τ)−q(t) ∂u(x, τ)

∂τ
dτ

+
(u(x, 0+)− u(x, 0−)) t−q(t)

Γ(1− q(t))
. (2)

For q(t) = 1, 0D
q(t)
t u = ∂u/∂t. For the sake of simplicity,

assuming u(x, 0+) = u(x, 0−), then the Coimbra definition
can be viewed as the following Caputo-type definition

0D
q(t)
t u(x, t)

=
1

Γ(1− q(t))

∫ t

0+
(t− τ)−q(t) ∂u(x, τ)

∂τ
dτ. (3)

The space fractional derivative −(−∆)α(t)/2 is the frac-
tional Laplacian operator of variable order α(t) (1 <
α(t) ≤ 2), which is defined through its eigenfunction
expansion on the finite domain [0, L] (Ilić et al., 2006).

Definition 1. Suppose the Laplacian (−∆) has a complete
set of orthonormal eigenfunctions φn corresponding to
eigenvalues λ2

n on a bounded region D, i.e. (−∆)φn = λ2
nφ

on D; B(φ) = 0 on ∂D, where B(φ) is one of the standard
three homogeneous boundary conditions. Let

F =

{
f =

∞∑
n=1

cnφn, cn = ⟨f, φn⟩,

∞∑
n=1

|cn|2|λn|α(t) < ∞, 1 < α(t) ≤ 2

}
,

then for any f ∈ F , the time-variable-order fractional
Laplacian (−∆)α(t)/2 is defined by

(−∆)α(t)/2f =
∞∑

n=1

cn(λn)
α(t)φn.

The nonlinear reaction term g(u, x, t) is assumed to be
Lipschitz continuous.

2. NUMERICAL SCHEME

In this section, we present the numerical scheme to simu-
late the solution behaviour of the time-variable-order ts-
frde (1). Let xi := ih, i = 0, 1, 2, . . . ,M , where h := L/M
is the spatial step; tn := nτ , n = 0, 1, 2, . . . , N , where
τ := T/N is the time step; un

i denote the numerical
approximation of u(xi, tn); and un denote vectors of such
values.

First, according to the matrix transfer technique proposed
by Ilić et al. (2006), the fractional Laplacian operator of
constant order α, i.e., (−∆)α/2, can be approximated by
the matrix representation of the standard Laplacian oper-
ator raised to the same fractional order, i.e., Aα/2. This
technique can be extended to approximate the fractional
Laplacian operator of variable order α(t) as follows

−(−∆)α(tn)/2u(x, tn) ≈ −Aα(tn)/2un, (4)

where

A =
1

h2


2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2


(M−1)×(M−1)

under homogeneous Dirichlet conditions, or

A =
1

h2


1 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1


(M+1)×(M+1)

under homogeneous Neumann conditions.

Next, adapting the finite difference scheme for discretising
the constant-order time fractional derivative in Lin and
Xu (2007), similarly we discretise the variable-order time
fractional derivative as

0D
q(tn)
t u(tn) =

1

sn

n−1∑
k=0

dnk [u(tn−k)− u(tn−k−1)] +O(τ2−q(tn)) ,

(5)

where
sn = τ q(tn) Γ(2− q(tn))

and

dnk = (k + 1)1−q(tn) − k1−q(tn), k = 0, 1, . . . , n− 1.



Finally, combining (4) and (5) together and treating the
nonlinear reaction term explicitly (Yang et al., 2010), we
obtain the numerical approximation of the time-variable-
order tsfrde (1) in vector form

1

sn

n−1∑
k=0

dnk [u
n−k − un−k−1] = −KαA

αn/2un + gn−1, (6)

where αn = α(tn) and gn−1 = g(un−1,x, tn−1). After
some further manipulations of (6), we write the numerical
solution of the time-variable-order tsfrde (1) in terms of
a matrix function vector product at each time step

un = fn(A)bn, (7)

where

fn(A) =
[
I+ snKαA

αn/2
]−1

and

bn =

n−2∑
k=0

(dnk − dnk+1)u
n−k−1 + dnn−1u

0 + sng
n−1.

To compute un, the traditional method requires us to solve
a (M − 1)× (M − 1) linear system (or (M +1)× (M +1)
depending on which boundary condition is used) at each
time step tn. Although the matrix A generated from the
finite difference method is symmetric and tridiagonal, the
matrix function fn(A) will be a dense matrix due to raising
A to a fractional index. When the number of spatial steps
M is large, it is very time consuming to solve a large dense
system at each time step. Hence, it is challenging to solve
for un efficiently.

3. MATRIX FUNCTION APPROXIMATION

In this section, we devise a novel and efficient algorithm
to approximate the matrix function vector product un =
fn(A)bn without needing to form the dense matrix fn(A).
The prevailing method in the literature for approximating
the matrix-vector product f(A)b for a scalar, analytic
function f : D ⊂ C → C is the Lanczos approximation

f(A)b ≈ ∥b∥Vm f(Tm) e1, b = ∥b∥Vm e1, (8)

where

AVm = VmTm + βm vm+1 e
T
m

is the Lanczos decomposition with the columns of Vm

forming an orthonormal basis for the Krylov subspace
Km(A ,b) = span{b ,Ab , . . . ,Am−1b} and Tm symmet-
ric and tridiagonal [see van der Vorst (1987) and Saad
(1992)].

This method is particularly attractive when a good pre-
conditioner is available. A good preconditioner can signif-
icantly improve the rate of convergence of the standard
Lanczos method. We now propose an adaptively precondi-
tioned Lanczos method. The idea is to construct a matrix
Z−1 and work with the matrix function f(AZ−1) rather
than f(A) itself. The matrix Z−1 should be such that
f(AZ−1)b is in some sense easier to compute than f(A)b,
but at the same time there must be a known relationship
between f(AZ−1)b and f(A)b, since the latter is what is
actually required in the numerical scheme.

It is known that small eigenvalues hinder the convergence
of the Lanczos method, and several authors have pro-
posed preconditioners to deal directly with this problem.

Suppose we compute the k smallest eigenvalues {λi}ki=1

and corresponding eigenvectors {qi}ki=1 of the matrix
A. Lehoucq and Sorensen (1996)’s implicitly restarted
Arnoldi method can be used to do this efficiently. Then
setting Qk = [q1,q2, . . . ,qk] and Λk = diag{λ1, . . . , λk}
we therefore have AQk = QkΛk. Baglama et al. (1998)
and Erhel et al. (1996) have both proposed the precondi-
tioner Z−1 taking the form

Z−1 = λ∗QkΛ
−1
k QT

k + I−QkQ
T
k , (9)

where λ∗ = λmin+λmax

2 . Here λmin, λmax are the smallest
and largest eigenvalues of A respectively, obtained from
the implicit restarted Arnoldi process (Saad, 1992). It
is easy to show that the product AZ−1 has the same
eigenvectors asA but its k smallest eigenvalues {λi}ki=1 are
all mapped to λ∗ [ see Baglama et al. (1998); Erhel et al.
(1996)]. Hence this preconditioner eliminates the influence
of the k smallest eigenvalues on the convergence of the
Lanczos method.

The important observation at this point is the following
relationship between f(A) and f(AZ−1) (Ilić et al., 2008)

f(A)b = Qkf(Λk)Q
T
k b+ f(AZ−1)b̂, (10)

where b̂ = (I−QkQ
T
k )b.

Note that if A is symmetric then so too is AZ−1 (Ilić
et al., 2008). Hence, we can apply the standard Lanczos
decomposition to AZ−1, i.e.,

AZ−1Vm = VmTm + βmvm+1e
T
m,

where v1 = b̂/∥b̂∥ and the columns of Vm form an or-

thonormal basis for the Krylov subspace Km(AZ−1 , b̂) =

span{b̂ ,AZ−1b̂ , . . . , (AZ−1)m−1b̂} . The Lanczos ap-
proximation (8) then gives

f(AZ−1)b̂ ≈ Vmf(Tm)VT
mb̂ (11)

where the much smaller matrix function f(Tm) can be
easily calculated by finding the diagonalisation of Tm.
To this end, the equations (9)–(11) form the adaptively
preconditioned Lanczos method for approximating f(A)b
when A is non-singular (under homogeneous Dirichlet
boundary conditions).

However, when the matrix A is obtained from (1) with
homogeneous Neumann boundary conditions, we notice
that there appears to be a problem building the Krylov
subspace Km(AZ−1 , b̂). In this case A is singular (it has
a single zero eigenvalue), and hence we cannot perform
Λ−1 to form Z−1 as required in (9).

But in fact, we do not actually need to form the matrix
Z−1. We only ever need the product AZ−1. So now, we
illustrate a clever way to expressAZ−1 so that the division
by zero eigenvalue is avoided.

Since AQk = QkΛk, multiplying A on the both sides of
(9) gives

AZ−1 = λ∗AQkΛ
−1
k QT

k +A−AQkQ
T
k

= λ∗QkΛkΛ
−1
k QT

k +A−QkΛkQ
T
k

= λ∗QkQ
T
k +A−QkΛkQ

T
k

= A+Qk(λ
∗Ik −Λk)Q

T
k

= A+QkΩkQ
T
k , (12)



where Ωk = λ∗ Ik − Λk. Hence, rather than building the
Krylov subspace Km(AZ−1 , b̂), we build

Km(A∗ , b̂) = span{b̂ ,A∗b̂ , . . . ,A∗
m−1b̂},

where A∗ = A+QkΩkQ
T
k .

This way we extend the application of the preconditioner
Z−1 defined in (9) to cover all cases, including when A is
singular (under homogeneous Neumann conditions).

We remark that the matrix A∗ is not formed explicitly
anywhere either. Only its action on a vector is required
when building the Krylov subspace.

According to the theory presented to this point, we pro-
pose the following Algorithm 1 to approximate the solution
of the time-variable-order TSFRDE (1). The error bound
used in this algorithm is derived in Ilić et al. (2008).

Input: Discrete Laplacian matrix A, right hand side
vector b, tolerance τ , number of time steps n,
number of stored eigenpairs k, and maximum size
of Krylov subspace maxiter.

Output: un

Compute Λk and Qk;
for time step j=1:n do

Set b̂ = (I −QkQ
T
k )b;

Set v1 = b̂/∥b̂∥2;
for m = 1 : maxiter do

Set w = (A+QkΩkQ
T
k )vm;

if m ̸= 1 then
w = w − βm−1vm−1;

end

αm = vTmw;
w = w − αmvm;
βm = ∥w∥2;
vm+1 = w/βm;
Compute linear system residual

∥rm∥2 = ∥b̂∥2 |βmeTmT−1
m e1|;

Compute µmin – the smallest eigenvalue of Tm;
Compute error bound as f(µmin)∥rm∥2;
if error bound < τ then

break;
end

end

Compute uj = Qkf(Λk)Q
T
k b+ ∥b̂∥2Vmf(Tm)e1;

end

Algorithm 1: Lanczos approximation to un = fn(A)bn

with adaptive preconditioning, where A is symmetric.

4. NUMERICAL RESULTS

In this section, we present two numerical examples to
demonstrate the accuracy and efficiency of our proposed
approach.

Example 1: Take α(t) = 2 (standard diffusion in
space) and Kα = 1. Consider the following time-variable-
order time fractional diffusion equation with homogeneous
Dirichlet boundary conditions:

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

x

u(
x,

t=
1)

 

 

numerical solution
exact solution

Fig. 1. Comparison of numerical solution and exact so-
lution for t = 1 with τ = 0.01, h = 0.01 and
q(1) = 0.7104 in Example 1.

Table 1. Temporal errors at t = 1 with h =
0.005 and q(1) = 0.7104 in Example 1.

τ Maximum errors

0.01 2.0948e-004
0.005 8.5430e-005
0.0025 3.4906e-005
0.00125 1.4353e-005
0.000625 5.9846e-006

Order 1.28

0D
q(t)
t u(x, t) = ∆u(x, t) + g(x, t), (13)

u(x, 0) = 10x2(1− x), 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, t > 0,

where q(t) = 2+sin(t)
4 (satisfies 0 < q(t) < 1) and

g(x, t) =20x2(1− x)

[
t2−q(t)

Γ(3− q(t))
+

t1−q(t)

Γ(2− q(t))

]
− 20(t+ 1)2(1− 3x).

The exact solution is

u(x, t) = 10x2(1− x)(t+ 1)2.

A comparison of the exact and numerical solutions for
Example 1 at time t = 1 is presented in Figure 1. It
is apparent that the numerical solutions are in excellent
agreement with the exact solution.

To identify the order of convergence in time for the
numerical scheme (7), we compute the maximum error in
the numerical solution at t = 1 with fixed h = 0.005 and
q(1) = 0.7104 for a sequence of reduced temporal steps in
Table 1. The order of convergence in time is estimated to
be O(τ1.28), which is consistent with the theoretical claim
O(τ2−q(1)) in (5).

Another highlight of our proposed numerical method is
the excellent performance of the preconditioner on accel-
erating the rate of convergence of the standard Lanczos
method. In Figure 2 and Table 2, we illustrate the impact
of the preconditioner on the size of the Krylov subspace
m when k smallest approximate eigenpairs are used. This
includes the case k = 0, where no preconditioning was
applied. We see that the average subspace size m is greatly
reduced as we increase the number of eigenpairs from k = 5
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Fig. 2. Subspace size m at each time step for tfinal = 1
with τ = 0.01, h = 0.005 in Example 1.

Table 2. Number of smallest eigenpairs used k
and the corresponding average subspace size m

in Example 1.

k = 0 k = 5 k = 10 k = 20 k = 40

m = 199 m = 112.63 m = 59.39 m = 25.72 m = 10.17

to k = 40. Hence, not only solving fractional models ac-
curately, our proposed adaptively preconditioned Lanczos
method also enables us to solve test problems much more
efficiently.

To further illustrate the effect of the variable order in
both time and space, we present another example with
the Fisher reaction term leading to logistic growth, with
u = 0 being an unstable equilibrium point.

Example 2: Take Kα = 0.01. Consider the follow-
ing time-variable-order time-space fractional reaction-
diffusion equation with homogeneous Neumann boundary
conditions:

0D
q(t)
t u(x, t) = −Kα(−∆)α(t)/2u(x, t) + u(x, t)(1− u(x, t)),

u(x, 0) = e−5x, 0 ≤ x ≤ 10, (14)

∂u

∂x
= 0 at x = 0 and x = 10, 0 ≤ t ≤ 20,

where α(t) = 1.7 + 0.5e−
t
50−1 (satisfies 1 < α(t) ≤ 2) and

q(t) = 2+sin(t)
4 (satisfies 0 < q(t) < 1). The exact solution

is not available for this example.

In Figure 3, we show several evenly spaced time slices for
the evolution of the fractional Fisher model (14) in four
cases:

(a) the standard diffusion with α(t) = 2 and q(t)=1;
(b) the time-variable-order space fractional diffusion with

1.82 < α(t) < 1.89 and q(t)=1;
(c) the time-variable-order time fractional diffusion with

α(t) = 2 and 0.25 ≤ q(t) ≤ 0.75; and
(d) the time-variable-order time-space fractional diffusion

with 1.82 < α(t) < 1.89 and 0.25 ≤ q(t) ≤ 0.75.

We can see that the system exhibits various different
anomalous diffusion behaviours when the fractional deriva-
tive is involved in space and/or time. From Figure 3(a) the
steady wave speed of the standard Fisher equation with
α = 2 and q = 1 is visible. Figure 3(b) shows the effects

0 2 4 6 8 10
0

0.5

1
(a) α(t)=2 and q(t)=1

0 2 4 6 8 10
0

0.5

1
(b) 1.82<α(t)<1.89 and q(t)=1

0 2 4 6 8 10
0

0.5

1
(c) α(t)=2 and 0.25≤q(t)≤0.75

0 2 4 6 8 10
0

0.5

1
(d) 1.82<α(t)<1.89 and 0.25≤q(t)≤0.75

Fig. 3. Fisher reaction for (a) standard diffusion, (b) time-
variable-order space fractional diffusion, (c) time-
variable-order time fractional diffusion, and (d) time-
variable-order time-space fractional diffusion in Ex-
ample 2.

Table 3. Number of smallest eigenpairs used k
and its corresponding average subspace size m

in Example 2.

k = 0 k = 5 k = 10 k = 20 k = 40

m = 201 m = 90.46 m = 40.08 m = 12.29 m = 2.44

of space fractional diffusion, in this case q(t) = 1 and
α(t) is varying between 1.82 and 1.89. This is consistent
with the exponential spread derived by Engler (2010).
Figure 3(c) presents the effects of time fractional diffusion
or subdiffusion, in this case α(t) = 2 and q(t) is changing
between 0.25 and 0.75. The effect of the variable order on
the shape of the travelling wave is clearly visible. Finally,
Figure 3(d) presents the mixed effects of time fractional
diffusion and space fractional diffusion. In this case α(t)
is varying between 1.82 and 1.89 while q(t) is changing
between 0.25 and 0.75.

Again, to showcase the excellent performance of the adap-
tively preconditioned Lanczos method, we compute the
numerical solution for the case (b) at tfinal = 20 over
x ∈ [0, 10] with τ = 0.2 and h = 0.05. In Figure 4 and
Table 3, we illustrate the impact of the preconditioner on
the size of the Krylov subspacem when k smallest approxi-
mate eigenpairs are used. We see that the average subspace
size m is greatly reduced as we increase the number of
eigenpairs from k = 5 to k = 40. Especially, when k = 40
the average subspace size m is only 2.44, compared with
m = 201 when k = 0 (i.e. no preconditioning). Hence,
we would only need to compute a 3 × 3 matrix function
(k = 40) instead of a 201 × 201 matrix function (k = 0)
at each time step. Note that the cost of using MATLAB’s
eigs function to compute the smallest eigenpairs of the
matrix A is trivial, owing to its tridiagonal structure.
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Fig. 4. Subspace size m at each time step for tfinal = 20
with τ = 0.2, h = 0.05 in Example 2.

5. CONCLUSIONS

In this paper, a finite difference scheme with an adap-
tively preconditioned Lanczos algorithm is constructed for
simulating the solution behaviours of the time-variable-
order time-space fractional reaction diffusion equation.
The excellent numerical performance of the proposed tech-
nique is described and demonstrated. The highlights of this
technique include its efficiency and the generalisation of its
application to both cases where A is non-singular (under
homogeneous Dirichlet boundary condition) and singular
(under homogeneous Neumann boundary condition). The
proposed techniques can be applied to solve higher dimen-
sional time-variable-order fractional differential equations
and this will be explored in future work.
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M. Ilić, F. Liu, I. Turner, and V. Anh. Numerical ap-
proximation of a fractional-in-space diffusion equation
(II) with nonhomogeneous boundary conditions. Fract.
Calc. Appl. Anal., 9: 333–349, 2006.

R. Klages, G. Radons, and I.M. Sokolov. (Eds.) Anomalous
Transport: Foundations and Applications. Wiley, 2008.

R.B. Lehoucq and D.C. Sorensen. Deflation techniques
for an implicitly restarted Arnoldi iteration. SIAM J.
Matrix Anal. Appl., 17: 789–821, 1996.

Y. Lin and C. Xu. Finite difference/spectral approxima-
tions for the time-fractional diffusion equation. J. Comp.
Phys., 225:1533–1552, 2007.

C.F. Lorenzo and T.T. Hartley. Initialization, conceptual-
ization, and application in the generalized fractional cal-
culus. NASA Technical Publication 98-208415, NASA,
Lewis Reseach Center, 1998.

C.F. Lorenzo and T.T. Hartley. Variable order and dis-
tributed order fractional operators. Nonlinear Dynam-
ics, 29: 57-98, 2002.

I. Podlubny. Fractional Differential Equations. Academic
Press, New York, 1999.

E.S. Ramirez and F.M. Coimbra. On the selection and
meaning of variable order operators for dynamic mod-
eling. International Journal of Differential Equations,
Volume 2010, doi:10.1155/2010/846107.

Y. Saad. Analysis of some Krylov subspace approxima-
tions to the matrix exponential operator, SIAM J.
Numer. Anal., 29: 209–228, 1992.

J. Sabatier, O.P. Agrawal, and J.A.T. Machado. (Eds.)
Advances in fractional calculus: Theoretical develop-
ments and applications in physics and engineering.
Springer, 2007.

S.G. Samko. Fractional integration and differentiation
of variable order. Analysis Mathematica, 21: 213–236,
1995.

S.G. Samko and B. Ross. Intergation and differentiation
to a variable fractional order. Integral Transforms and
Special Functions, 1(4): 277–300, 1993.

S. Shen, F. Liu, J. Chen, and I. Turner. Numerical tech-
niques for the variable order time fractional diffusion
equation. Applied Mathematics and Computation, in
prints, 2012.

C.M. Soon, F.M. Coimbra and M.H. Kobayashi. The
variable viscoelasticity oscillator. Ann. Phys., 14(6):
378-389, 2005.

H. Sun, W. Chen and Y. Chen. Variable-order fractional
differential operators in anomalous diffusion modeling.
Physica A, 388: 4586-4592, 2009.

H.A. van der Vorst. An iterative solution method for
solving f(A)x = b using Krylov subspace information
obtained for the symmetric positive definite matrix A,
J. Comput. Appl. Math., 18: 249–263, 1987.

Q. Yang, F. Liu, and I. Turner. Stability and convergence
of an effective numerical method for the time-space frac-
tional Fokker-Planck equation with a nonlinear source
term. International Journal of Differential Equations,
Article ID 464321, 22 pages, 2010.

Q. Yang, I. Turner, F. Liu, and M. Ilić. Novel numerical
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