
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Drovandi, Christopher C. & Pettitt, Anthony N. (2011) Using approxi-
mate Bayesian computation to estimate transmission rates of nosocomial
pathogens. Statistical Communications in Infectious Diseases, 3(1).

This file was downloaded from: http://eprints.qut.edu.au/50265/

c© Copyright 2012 [please consult the author]

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.2202/1948-4690.1025

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10910485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Drovandi,_Christopher.html
http://eprints.qut.edu.au/view/person/Pettitt,_Anthony.html
http://eprints.qut.edu.au/50265/
http://dx.doi.org/10.2202/1948-4690.1025


1 Introduction

Recent decades have seen the global emergence of Methicillin-resistant Staphy-
lococcus aureus (MRSA), causing substantial health and economic burdens
on patients and health-care systems. Eradicating, treating and containing
the pathogen is complicated as this strain is resistant to certain antibiotics
such as Methicillin, Cloxacillin and other related antibiotics (Ayliffe and En-
glish, 2003). This epidemic has occurred at the same time that policies,
promoting higher patient throughput in hospitals, have led to many services
operating at, or near, full capacity. A result has been a limited ability to
scale services according to fluctuations in patient admissions and available
staff, and hospital over-crowding and under-staffing. Clements et al. (2008)
state that over-crowding and under-staffing lead to failure of MRSA control
programmes via decreased health-care worker hand-hygiene compliance, in-
creased movement of patients and staff between hospital wards, decreased
levels of cohorting, and overburdening of screening and isolation facilities.
In turn, a high MRSA incidence leads to increased inpatient length of stay
and bed blocking, exacerbating over-crowding and leading to a vicious cycle
characterised by further infection control failure.

In order to design hospital systems it is therefore critical to evaluate
the effect of systems changes on the incidence of MRSA infection and other
similar adverse events. Hence, it is important for hospital administrators to
know that the methods presented in this paper suggest that transmission
rates can be estimated accurately with quite coarse data and therefore allow
detection of improvements from system changes.

In an intensive care unit (ICU) setting, the pathogen is usually spread
via the hands of temporarily contaminated health-care workers who are in
contact with colonised patients. Unfortunately it has been shown that many
health-care practitioners do not comply with hand hygiene protocol (Har-
barth, 2006). Other within-ICU modes of transmission are generally negligi-
ble as the patients are not mobile. However, patients being transferred from
another hospital may be colonised or infected. Furthermore, new patients
may unknowingly be carriers of the pathogen.

In this paper we use approximate Bayesian computation (ABC) to in-
fer the transmission rates between patients and health-care workers and vice-
versa. In particular we utilise the sequential Monte Carlo (SMC) likelihood-
free algorithm of Drovandi and Pettitt (2011a), but any ABC algorithm could
be applied. This involves a re-analysis of the continuous-time multivariate



Markov process models including the colonised status of patients and health-
care workers developed in Drovandi and Pettitt (2008) and McBryde et al.
(2007). The models in Drovandi and Pettitt (2008) are used to help explain
routinely collected incidence data on colonised patients.

Motivation for the ABC approach stems from the difficulty in comput-
ing the likelihood function of the multivariate Markov process. One approach
to calculating the likelihood involves computing the matrix exponential to
obtain the probability transition matrix. Unfortunately for the full trivariate
Markov process involving the colonised patients, health-care workers and inci-
dence count, there are a large number of states in the Markov process and the
matrix exponential is an expensive computation (Moler and Van Loan, 2003).
However, we apply a pseudo-equilibrium approximation as per Drovandi and
Pettitt (2008) and McBryde et al. (2007) to eliminate the health-care worker
stochastic variable to create a more tractable likelihood. We compare the
likelihood-based and likelihood-free inferences on the transmission rates for
both the pseudo and full models.

Furthermore, the likelihood-based approach requires: (a) a bound on
the incidence variable to create a finite state process and, (b) a fixed number
of patients and health-care workers in the ICU. The ABC approach relies
solely on simulation from the model and therefore does not suffer from the
same restrictions.

The paper is organised as follows. In section 2 the data available
for analysis is described. An introduction to ABC is provided in section 3
together with some analytic results on a toy example to highlight the error
due to the ABC approximation. In section 4 we detail the models developed
to provide a biological explanation of the data. Section 5 refers to one form of
likelihood computation for multivariate Markov process models and we give
details on model simulation in section 6. The inference results are provided
in section 7 followed by a concluding discussion in section 8.

2 Data

The data available for analysis consist of 3,329 patient records collected be-
tween the 8th of August 2001 and the 3rd of March 2004 (inclusive) in the
ICU at the Princess Alexandra Hospital, Brisbane, Australia. These patients
had a hospital length of stay of at least 48 hours. The patients were swabbed
for MRSA on admission, discharge and twice weekly.



Whilst individual patient data are available, data often take the form
of daily/weekly/monthly prevalence or incidence counts as such data are
reported routinely by hospitals. Here we use weekly incidence counts, which
are shown in Figure 1. Here a new colonisation is defined as a patient whose
swab was negative on admission and positive during their stay in the ward.
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Figure 1: (top) Weekly incidence data collected from the ICU at the Princess
Alexandra Hospital, Brisbane, Australia, between the 8th of August 2001
and the 3rd of March 2004. (bottom) Sample autocorrelation function of the
weekly incidence data.

3 Approximate Bayesian Computation

A Bayesian statistician is interested in obtaining the posterior distribution,
π(θ|y), given by

π(θ|y) ∝ f(y|θ)π(θ),

where θ is the parameter of interest, y is the observed data assumed to be
drawn from f(·|·) and π(·) is the prior. However, it is becoming increas-
ingly apparent that there are many statistical models that do not emit a
computationally tractable likelihood function.

Fortunately a class of simulation methodologies popularly termed ap-
proximate Bayesian computation (ABC) can produce statistically valid in-
ferences about the posterior distribution when the likelihood function is not
computationally tractable.



Although ABC approaches do not necessitate the evaluation of the
likelihood function, it is paramount that simulating data from the statistical
model is relatively fast to perform. The initial need for a likelihood function
is alleviated by simulating data from the model and searching for parameter
values that produce simulated data close to the observed data. This assess-
ment of closeness typically involves comparing a set of summary statistics.
Optimally, this set of statistics will be minimal sufficient statistics for the
parameter of interest. In the absence of minimal sufficient statistics, the
search for appropriate summary statistics is a trade-off between obtaining
near sufficiency and a low dimensional set of summaries.

ABC methods are becoming an increasingly important component in
the statisticians toolbox since they allow for inferences on certain statistical
models that were previously problematic. Furthermore, the approach allows
for progressively more realistic models to be developed. For example, ABC
is now widely applied in population genetics examples using a coalescent
model (see for example, Beaumont et al. (2002)). Other models include Ising
type models (Grelaud et al., 2009), alpha-stable models (Peters et al., 2010),
quantile distributions (Drovandi and Pettitt, 2011b) and Markov processes
(Drovandi and Pettitt, 2011a). See also Blum and Tran (2010) for an ABC
example on the types of models presented in this paper. The application
areas of ABC is also widespread, from epidemiology (McKinley et al., 2009)
through to finance (Peters et al., 2010).

To avoid the computation of the likelihood, ABC introduces an auxil-
iary variable, x, which is the simulated data. The joint approximate posterior
distribution of the parameter and the auxiliary data is given by

π(x,θ|y, ε) ∝ f(x|θ)π(θ)φ(y|x,θ, ε), (1)

(Luciani et al., 2009) where f(x|θ) is the likelihood function evaluated at
the simulated data and φ(y|x,θ, ε) is a weighting function that assesses the
similarity between x and y, giving high weight if they are close. Here ε is
a tolerance specifying how close the simulated and observed data must be.
Of interest then is the marginal approximate posterior distribution of the
parameter which can be obtained by marginalising over the simulated data

π(θ|y, ε) ∝
∫
x

f(x|θ)π(θ)φ(y|x,θ, ε)dx.

ABC algorithms are designed to sample from either or both of the marginal
and joint targets (see Sisson et al. (2010) for more details).



Most weighting functions are of the form φ(y|x,θ, ε) = φ(y|x, ε)
(Reeves and Pettitt, 2005), producing a simple hierarchical structure y →
x→ θ. There are several forms of the weighting function, but most involve a
discrepancy function, ρ(y,x), that provides an overall measure of the differ-
ence between observed and simulated datasets. Typically, this function in-
volves a comparison of a set of p summary statistics, s(·) = {s1(·), . . . , sp(·)},
of the observed and simulated data

ρ(y,x) = ‖s(y)− s(x)‖,

for a suitably chosen norm. For example, the simplest and most commonly
used weighting function is based on the indicator function

φ(y|x, ε) = 1(ρ(y,x) ≤ ε),

which is unity if the discrepancy function is less than or equal to a pre-defined
tolerance ε. This is sometimes referred to as the uniform weighting function.
The approach can be extended to B simulated datasets (e.g. Sisson et al.
(2007)), which can produce general weights but we take B = 1 throughout.
Another approach for assigning different weights to different parameter val-
ues is to use a non-uniform weighting function. Some options include the
Epanechnikov and Gaussian weighting functions so that the weight varies
smoothly with ρ(y,x). Apart from the section below, we use the uniform
weighting function throughout.

3.1 The Effect of the Approximation

It is no surprise that there is some price to pay in terms of accuracy when
the likelihood model is only used to simulate data. However, it can be shown
that if sufficient statistics are used and ε = 0 the true posterior is produced.
In most applications of ABC, sufficient statistics are not available. As an
alternative, one may use a careful selection of statistics that is believed to
encompass most of the information in the observed data. Matching on these
non-sufficient summary statistics leads to one source of error inherent in
ABC.

Regardless of the use of summary or sufficient statistics, it is generally
impractical (and completely impossible for continuous data) to attempt to
match these statistics exactly as the acceptance probabilities are too low. To
overcome this, ABC methods (Pritchard et al., 1999) introduce the tolerance,



ε (see Fu and Li (1997) and Weiss and von Haeseler (1998) for a non-Bayesian
context), so that the summaries do not need to match exactly. This toler-
ance introduces a second source of error into the ABC approximation, but is
necessary to ensure inferences can be obtained in reasonable time.

To examine these sources of error more closely, consider data Yi
iid∼

N(µ, φ), i = 1, . . . , n, with an unknown mean, µ, and a known variance, φ.
A sufficient statistic for µ is the sample mean, ȳ, which has the distribution
Ȳ = 1

n

∑n
i=1 Yi ∼ N(µ, φ/n). Consider further that the data is split into two

independent components so that the original sufficient statistic becomes ȳ =
λ1ȳ1+λ2ȳ2, where y1 and y2 are the independent components and λ1+λ2 = 1.
Assume that the simulated data is also split into components of the same
size, x1 and x2. The non-sufficiency is introduced here by matching between
observed and simulated data on the basis of y1 and x1. For analytic results
consider the Gaussian weighting function φ(y|x, ε) ∝ e

1
2ε

(ȳ1−x̄1)2 . Computing
the marginal approximate posterior of µ by integrating out the simulated
sample mean gives

π(µ|ȳ1, ε) ∝ N

(
µ; ȳ1,

φ

λ1n
+ ε

)
π(µ).

The true posterior is proportional to N(µ; ȳ, φ
n
)π(µ). It is evident that there

are two sources of error; non-sufficiency of the summary statistic affects the
mean of the likelihood and both aspects of the approximation inflate the
variance of the likelihood.

3.2 Algorithms

3.2.1 Acceptance Sampling

The first ABC algorithms to appear were acceptance-based sampling algo-
rithms and most involved applications in population genetics. The first gen-
uine ABC method with summary statistics and a tolerance was developed
by Pritchard et al. (1999). This basic algorithm, which involves draws from
the prior predictive distribution, was popularised by Beaumont et al. (2002)
and is presented in Algorithm 1.

3.2.2 Markov Chain Monte Carlo

The acceptance threshold can be improved in general if local moves are pro-
posed in high posterior support regions, and thus can avoid wasteful proposals



Algorithm 1 Acceptance sampling ABC.

1: Draw θ ∼ π(·)
2: Simulate x ∼ f(·|θ)
3: If ρ(y,x) ≤ ε then accept θ
4: Repeat lines 1, 2 and 3 until J samples are drawn

in regions of negligible posterior probability. This is particularly important in
the ABC context, since generation of a good parameter value can still often
lead to rejection due only to the variability in the simulated data. There-
fore Marjoram et al. (2003) proposed a Markov chain Monte Carlo (MCMC)
approach to ABC whereby a Markov chain is developed whose invariant
distribution is the joint approximate posterior distribution of the space of
simulated data and parameter in (1). Note that this approach also samples
from the marginal target as a by-product via Monte Carlo integration. The
proposal distribution is carefully selected so that evaluation of the likelihood
is avoided. More specifically, the proposal for (x∗,θ∗) based on current val-
ues (x,θ) is given by q(x∗,θ∗|x,θ) = f(x∗|θ∗)q(θ∗|θ), which ensures that
the Metropolis-Hastings ratio is free of likelihood evaluations.

The proposal distribution for the parameter, q(·|·), is essentially ar-
bitrary and can be tuned to achieve a desired acceptance probability. This
MCMC approach can be found in full in Algorithm 2. This basic algorithm
has since been extended (see for example, Bortot et al. (2007), Wegmann
et al. (2009) and Sisson and Fan (2010)).

3.2.3 Sequential Monte Carlo

The next set of algorithms are based on SMC (Del Moral et al., 2006) ap-
proaches to ABC pioneered by Sisson et al. (2007). SMC methods are par-
ticularly suited to ABC, since a natural sequence of targets involves a non-
increasing sequence of tolerances ε1 ≥ ε2 ≥ · · · ≥ εT . More specifically, the
sequence of joint targets is given by

πt(θ,x|y, εt) ∝ f(x|θ)π(θ)1(ρ(y,x) ≤ εt), for t = 1, . . . , T.

The sequence of marginal targets follow naturally

πt(θ|y, εt) ∝
∫
x

f(x|θ)π(θ)1(ρ(y,x) ≤ εt)dx, for t = 1, . . . , T.



Algorithm 2 MCMC ABC algorithm of Marjoram et al. (2003).

1: Start with θ0 (e.g. a single draw from acceptance sampling ABC or use
a burn-in)

2: for i = 1 to J do
3: Draw θ∗ ∼ q(·|θi−1)
4: Simulate x∗ ∼ f(·|θ∗)

5: Compute MH ratio α = π(θ∗)q(θ|θ∗)
π(θ)q(θ∗|θ)

1(ρ(y,x∗) ≤ ε)

6: if U(0, 1) < α then
7: θi = θ∗

8: else
9: θi = θi−1

10: end if
11: end for

The SMC approach produces J weighted particles distributed according to
each target in the sequence via a series of weighting, resampling and mutation
steps.

In this paper we use the SMC ABC replenishment algorithm of Drovandi
and Pettitt (2011a), which is described below. Consider that the particle set
for target t−1 is given by {θit−1, ρ

i
t−1}Ji=1. The algorithm determines the next

tolerance, εt, dynamically by taking it as the (1− α)th empirical quantile of
the particles discrepancies, where α is a tuning parameter.

Since our mutation step makes use of an MCMC kernel, the particles
values do not get updated from target t− 1 to t but are simply re-weighted
to reflect the new target (Chopin, 2002). The so called incremental weight
calculation is given here by

w̃it ∝
1(ρ(xit−1,y) ≤ εt)

1(ρ(xit−1,y) ≤ εt−1)
,

such that W i
t ∝ w̃itW

i
t−1 where W i

t is the normalised weight of the ith particle
at target t. Clearly after the re-weighting step there will be ≤ J particles
with non-zero weight, referred to hereafter as ‘alive’ particles. The number of
particles with zero weight is controlled by α, for example if α = 0.5 then there
will be J/2 ‘alive’ particles. The advantage of this re-weighting step is that
since we begin the algorithm with J perfect draws from the first target (by
performing acceptance sampling with ε1) the importance weights are either



proportional to one or equal to zero throughout and hence their values do
not need to be maintained.

After the re-weighting step, to boost the particle population size back
to J , we resample with replacement from the ‘alive’ particles, effectively du-
plicating some of the particles. To increase the diversity we use an MCMC
kernel of invariant distribution involving the adaptively determined toler-
ance εt to move the resampled particles. Our MCMC proposal distribution,
qt(·|·), is also determined adaptively in the spirit of Chopin (2002). More
specifically the tuning parameters of qt (for example the covariance matrix
of a multivariate normal or t-distribution random walk) are inferred using
sample moments of the ‘alive’ particles. Due to low MCMC acceptance rates
inherent in ABC, we repeat the MCMC step Rt times such that

Rt =
log(c)

log(1− pacc
t−1)

,

where pacc
t−1 is the acceptance rate of the MCMC step of the previous iteration

and c is a tuning parameter with a small value. It is clear that Rt is also
determined dynamically.

It is the fully adaptive nature of the Drovandi and Pettitt (2011a)
algorithm that makes it so attractive. The only tuning parameters consist of
ε1, εT , α and c. A reasonable choice for c is 0.01 and a sensible choice for α is
0.5, that is, to drop half the particles at each iteration. Furthermore, ε1 can
be chosen to achieve a particular acceptance rate in the initial acceptance
sampling phase. Finally, the stopping rule for the algorithm could be when
the MCMC acceptance rate becomes intolerably low, which determines εT .
The main algorithm is presented in Algorithm 3 while more details of the
MCMC step are given in Algorithm 4.

It appears quite clear that the MCMC proposal in the SMC setup, qt,
will be far more efficient than the usual MCMC proposal, q, for a fixed tol-
erance as qt will contain a closer to optimal random walk standard deviation
and can incorporate the correlations between parameters. This algorithm
could be viewed as J interacting MCMC kernels running in parallel, and this
helps prevent the algorithm from becoming stuck in areas of low posterior
probability and will have an improved chance of representing multimodal
targets.

The SMC ABC algorithm of Sisson et al. (2009) and Beaumont et al.
(2009) use a forward kernel, instead of an MCMC kernel. To propagate
the particle to the next target at t, a particle is first resampled from the



Algorithm 3 The SMC ABC replenishment algorithm of Drovandi and Pet-
titt (2011a).

1: Set Ja as the integer part of αJ
2: Perform the acceptance sampling algorithm with ε1. This produces a set

of particles {θi, ρi}Ji=1

3: Sort the particle set by ρ and set εt = ρJ−Ja and εmax = ρJ . If εmax ≤ εT
then finish, otherwise go to 4

4: Compute the tuning parameters of the MCMC kernel qt(·|·) using the
particle set {θi}J−Jai=1

5: for j = J − Ja + 1 to J do
6: Resample θj from {θi}J−Jai=1

7: Apply the MCMC kernel with invariant distribution involving εt to
particle θj for Rt iterations. See Algorithm 4

8: end for
9: Compute Rt based on the overall MCMC acceptance rate of the previous

iteration and go to 3

Algorithm 4 The MCMC step of the Drovandi and Pettitt (2011a) algo-
rithm for the jth particle.

1: for k = 1 to Rt do
2: Propose θ∗ ∼ qt(·|θj) and simulate x∗ ∼ f(·|θ∗)

3: Compute MH rato α = π(θ∗)q(θj |θ∗)

π(θj)q(θ∗|θj)
1(ρ(y,x∗) ≤ εt)

4: if U(0, 1) < α then
5: Set θj = θ∗ and ρj = ρ(y,x∗)
6: end if
7: end for



current population of particles at t − 1 proportional to their weights, θ∗ ∼
{θit−1,W

i
t−1}Ji=1. To ensure diversity, the particle’s parameter is perturbed

according to a Markov kernel, θ∗∗ ∼ Kt(·|θ∗), and then data is simulated
from the model, x∗∗ ∼ f(·|θ∗∗). If the distance between x∗∗ and y is within
the current tolerance, εt, the parameter value θit = θ∗∗ is accepted, otherwise
the process is repeated until the condition is satisfied. The particle is re-
weighted according to

W i
t ∝

π(θit)∑N
j=1 W

j
t−1Kt(θ

i
t|θ

j
t−1)

,

which essentially amounts to an approximation of the importance distribution
based on the particle set. Unlike our algorithm the importance weights will
be non-uniform hence their values will need to be maintained. However this
algorithm will not suffer from duplicated particles but the effective sample
size (ESS) will be less than J , whereas the ESS in our algorithm is always
equal to J . We implement both of these algorithms for one of the models
described below and present the results in section 7.1.1.

3.3 Learning the Optimal MCMC Kernel

The choice of an MCMC kernel has the additional benefit that the method of
Fearnhead and Taylor (2010) can be applied. Fearnhead and Taylor (2010)
propose to allow each particle to have its own MCMC kernel and compare
the performance of each kernel using a criterion such as the expected squared
jumping distance (ESJD). The SMC algorithm then attempts to learn the op-
timal MCMC kernel in the original subset of MCMC kernels by weighting the
kernels (based on the chosen criterion) after each MCMC step. Resampling
these MCMC kernels proportional to their weights eliminates poor kernels
and duplicates kernels that are performing well.

The MCMC proposals we consider are of the form, θ∗ ∼ N(θit, g
2Σ̂πt)

then x∗ ∼ f(·|θ∗), where θit is particle i at target t, (θ∗,x∗) is a proposal

(parameter, simulated data) and Σ̂πt estimates the covariance matrix of the
parameter at the current target πt using the surviving particles. Therefore
the aim is to determine the optimal scaling, g, of the random walk proposal,
however it is straightforward to extend the set of MCMC proposals as per
Fearnhead and Taylor (2010).



The performance criterion we use is the same as that in Fearnhead
and Taylor (2010) and is based on the ESJD, which is given by

Λ(θit,θ
∗) = (θit − θ

∗)T Σ̂−1
πt

(θit − θ
∗).

The jumping distance is then multiplied by the acceptance probability of
the proposal to form the final criterion. The acceptance probability is zero
or one in this context (since we use a uniform prior, a symmetric proposal
and the indicator ABC weighting function). However, as opposed to only
one MCMC iteration in Fearnhead and Taylor (2010), we apply the MCMC
step Rt times. We use these Rt proposals of parameter and simulated data,
(θ∗

1,x
∗
1), . . . , (θ∗

Rt
,x∗

Rt
), of the MCMC kernel to obtain an estimate of the

kernel’s performance by summing the criterion over all iterates. The resulting
criterion for this application is given by

Λ̃(θit,θ
∗
Rt

) =
Rt∑
k=1

1(ρ(x∗
k,y) ≤ εt)Λ(θit,θ

∗
k),

keeping in mind that θit will change throughout the Rt proposals every time
an acceptance occurs. Note that it may also be possible to learn the optimal
value of g through these Rt iterates but we take this more conservative ap-
proach. In order to weight the performance of each MCMC kernel we use a
simple linear weighting function, f(Λ̃) = Λ̃.

Incorporating this into the algorithm is relatively straightforward. Af-
ter the MCMC step f(Λ̃) must be computed for each particle. The MCMC
kernels are then resampled proportional to their weights. It is also possible
to add noise to the resampled values in order to prevent the distribution of g
from converging too quickly to a point distribution, but we do not apply this
here. See section 7.1.3 for application of this approach to our ABC algorithm.

4 Modelling and Parameters

4.1 Deterministic Model

A two compartment model was developed by McBryde et al. (2007) that
models the number of colonised patients and health-care workers at time t,
given by Yp(t) and Yh(t), respectively. The uncolonised states are not required



in the model as it is assumed that the numbers of patients and health-care
workers are fixed at Np and Nh, respectively.

Given that the ward size is fixed, it is assumed a discharged patient is
immediately replaced with a new patient. Colonised and uncolonised patients
are discharged at per-capita rates of µ′ and µ respectively. The new patient
to replace the discharged patient has a probability σ of being colonised.

Colonised health-care workers can become uncolonised due to a hand-
washing event that occurs at a rate of κ per number of colonised health-care
workers. There is assumed to be no spontaneous decolonisation of patients,
so patients that are colonised before or during their stay remain so.

Finally, the colonised populations can increase by a transmission be-
tween a colonised patient and an uncolonised health-care worker or vice-versa.
The parameter c is a common contact rate. The probability of a transmis-
sion between a colonised patient and an uncolonised health-care worker and
vice-versa is given by pph and php respectively. The rates of transmission
are also dependent on the relevant population sizes. The above assumptions
lead to the following deterministic system, which is shown as a compartment
diagram in Figure 2

dYp
dt

= cphp(Np − Yp)Yh − µ′(1− σ)Yp + µσ(Np − Yp),

dYh
dt

= cpph(Nh − Yh)Yp − κYh.
(2)

4.2 Assumptions and Fixed Parameters

We will assume further that the patient to health-care ratio is unity so that
Nh = Np = N . While in the study the ward size did vary slightly we will
hold the ward size constant at its average value, N = 15. The parameter
values obtained at the time of the study were σ = 0.03, µ′ = 1/10.6 per
day, µ = 1/4 per day and pph = 0.13. The parameters c, php and κ need to
be inferred from the data. However, Cooper et al. (1999) provide a formula
to express κ in terms of known parameters by using the following relation
between the pre-contact hand hygiene compliance, h (proportion of patient
contacts that were preceded by hand-washing), and the hand hygiene rate

h =
κ

κ+ cN
. (3)
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Figure 2: Compartment diagram for the model developed by McBryde et al.
(2007).



See Drovandi and Pettitt (2008) for a theoretical justification. The hand
hygiene compliance was measured to be h = 0.59 at the time of study. In
section 7.1.2 we incorporate the uncertainty associated with these parameters
into the analysis.

4.3 Markov Process Modelling

4.3.1 Trivariate Model

Since the population size N is small, it is appropriate to consider the stochas-
tic variation in Yp and Yh as discrete, random counts (Bailey, 1990). At this
stage we introduce a third variable, N(t), which we define to be the incidence,
that is, the number of new patient colonisations up to time t. We define a
new colonised patient as one who becomes colonised as a result of transmis-
sion assumed to take place within the ICU. Using the model described in
equation (2), we can create the analogous discrete Markov process. Given
that the current values of the states are Yp(t) = i, Yh(t) = j and N(t) = k,
and a small time increment, ∆t, that allows at most one event to occur, the
probabilities of various combinations of the states at time t + ∆t are given
by

P (Yp = i+ 1, Yh = j,N = k) = µσ(N − i)∆t + o(∆t),

P (Yp = i+ 1, Yh = j,N = k + 1) = φ1(N − i)j∆t + o(∆t),

P (Yp = i− 1, Yh = j,N = k) = µ′(1− σ)i∆t + o(∆t),

P (Yp = i, Yh = j + 1, N = k) = φ2(N − j)i∆t + o(∆t),

P (Yp = i, Yh = j − 1, N = k) =
hφ2N

pph(1− h)
j∆t + o(∆t),

(4)

where φ1 = cphp and φ2 = cpph. The probability of remaining in the current
state is given by one minus the sum of the above probabilities. All other
transitions occur with probability o(∆t). The likelihood-based inference has
the restriction on the incidence that N(t) ≤M for all t. N(t) is reset to zero
following each incidence recording.

4.3.2 Approximating Bivariate Model

McBryde et al. (2007) introduce an approximation to the differential equa-
tion formulation (2) that can be used to eliminate the stochastic health-care



worker variable. The rate of change of the colonised health-care worker pop-
ulation is assumed to be zero. This is called a pseudo-equilibrium approxi-
mation, denoted by Ȳh. Setting dYh

dt
= 0 and making the substitution for κ

given in equation (3), we obtain the following steady state result

Ȳh =
NYp

hN
pph(1−h)

+ Yp
.

We can use this relation in the Markov processes and the trivariate process
(4) reduces to a bivariate process. Given that the current values of the states
are Yp(t) = i and N(t) = k, and a small time increment, ∆t, the probabilities
of various combinations of the states at time t+ ∆t are given by

P (Yp = i+ 1, N = k) = µσ(N − i)∆t + o(∆t),

P (Yp = i+ 1, N = k + 1) = φ1(N − i)Ȳh∆t + o(∆t),

P (Yp = i− 1, N = k) = µ′(1− σ)i∆t + o(∆t).

We see that this model has only one parameter for inference, φ1.

5 Computing the Likelihood

One approach to computing the likelihood of Markov processes involves the
matrix exponential, which arises from continuous-time Markov chain theory
(Grimmett and Stirzaker, 2001). Such a computation can be expensive in
particular for multivariate processes as the number of states in the Markov
chain can be large (see Sidje (1998) and Moler and Van Loan (2003) for
the computational difficulties of computing the matrix exponential for large
matrices). Additionally, computing the likelihood involves a marginalisation
step as only one of the variables is actually observed. See the supplementary
material of Drovandi and Pettitt (2008) for more details on computing the
likelihood. Overall computing the likelihood is both computationally and
algorithmically more difficult than simulating data from the model, implying
that a simulation based approach is faster and easier to implement.

6 Model Simulation

Given values for the parameters, it is relatively straightforward to simulate
data from a Markov process model using Gillespie’s algorithm (Doob, 1945;



Gillespie, 1977). This algorithm involves simulating the time until the next
event with an exponential distribution and choosing an event type based on
their relative hazards. Simulating for incidence has an additional step in
that the incidence must be reset to zero just after an incidence observation
is collected. The starting values for the colonised patients and health-care
workers is simulated from the appropriate stationary distribution.

7 Results

For each run of the SMC ABC replenishment algorithm below we used J =
1,000, α = 0.5 and c = 0.01. Furthermore the MCMC move kernel was a
multivariate normal random walk with covariance matrix estimated empir-
ically using the particles. The summary statistic used here was the mean
of the weekly incidence data and the discrepancy function was the absolute
value of the difference between the simulated and observed summaries.

7.1 Results of Inference for the Bivariate Model

7.1.1 Comparison of Likelihood-free and Likelihood-based Infer-
ence

We compared the ABC approximation to that when the likelihood function
is available for the pseudo-equilibrium model. We ran the SMC ABC re-
plenishment algorithm setting the initial and target tolerance of ε1 = 8 and
εT = 0.04 respectively (we found that reducing the tolerance further had
negligible impact on the approximate posterior). Secondly we performed
a normal random walk MCMC likelihood-based algorithm with a proposal
standard deviation of 0.01 (tuned to ensure an acceptance rate of roughly
50%). We performed 11,000 iterations of this algorithm, discarding the first
1,000 as burn-in and thinning out the resulting sample by a factor of 10,
producing more or less 1,000 independent draws. For this likelihood-based
inference, we set M = 4 as the maximum allowable incidence value.

The resulting inferences are comparable. The ABC analysis produced
a median with a 95% credible interval of 0.041(0.031,0.054) while the equiva-
lent results for the likelihood-based analysis were 0.040(0.030,0.052). A com-
parison of these posterior distributions is shown in Figure 3 (solid and dashed
lines). We also implemented the algorithm of Beaumont et al. (2009) with
a tolerance schedule of {8, 6.95, 5.05, 2.48, 0.57, 0.28, 0.15, 0.075, 0.04}, which



was the adaptive set of tolerances determined by the replenishment algo-
rithm. From a single run, both algorithms required approximately 25,000
model simulations, where the replenishment algorithm finished with 944
unique particles while the algorithm of Beaumont et al. (2009) resulted in an
ESS of 926. Both algorithms produced very similar posterior distributions,
and were validated against the posterior obtained using acceptance sampling,
which produces perfect draws from the ABC posterior. The acceptance sam-
pling algorithm was ten times less efficient, requiring roughly 250,000 model
simulations for 1,000 samples.
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Figure 3: Posterior distributions for φ1 of the pseudo-equilibrium model with
likelihood-based inference (solid line), ABC (dashed line) and ABC including
uncertainty in the fixed parameters (dotted line).

The closeness of the likelihood-free and likelihood-based inferences
implies that the sum of the new cases over the time period is almost a suf-
ficient statistic and fully efficient in terms of the likelihood analysis. This
suggests that inferences will not be sensitive to the time grouping of the data
(e.g. daily, weekly or monthly). This is consistent with the results of the time
grouping sensitivity analysis in Drovandi and Pettitt (2008).

7.1.2 Incorporating Uncertainty in Fixed Parameters

The parameters assumed to be fixed in the model were all estimated at the
time of the study and hence there is an element of uncertainty in their values.
Out of the 3,329 patients, 100 were colonised upon entry. Over the time



period of the study, 235 and 89 patients were discharged in an uncolonised
and colonised state respectively. The parameter pph was estimated based on
17 positive hand cultures out of 129 patient visits by health-care workers.
Finally, h = 0.59 was estimated from 395 compliances out of 668 contacts.

Here we assigned an uninformative U(0, 1) prior for the proportion
parameters, namely h, pph and σ. We assume that one binomial observation
(described above) is collected for each of these parameters, creating beta
posterior distributions with parameter (α, β) given by (396, 274), (18, 113)
and (101, 3230) for h, pph and σ, respectively.

For the rate parameters, µ and µ′, an uninformative improper prior
that is proportional to the reciprocal of the parameter is assigned. Assuming
that patients are discharged according to a Poisson process, gamma posteriors
with parameter (a, b) given by (235, 939) and (89, 939) are obtained for µ and
µ′, respectively.

We incorporated the uncertainty in our ABC analysis using these
probability distributions as priors for these parameters but these prior distri-
butions are not updated with the incidence data. The plot of the posterior
when including the uncertainty is shown by the dotted line in Figure 3. It is
evident that the posterior variance of φ is substantially increased when incor-
porating the uncertainty, producing a 95% credible interval of (0.024,0.070).
However point estimation based on the median would be similar under the
three posterior distributions shown in Figure 3.

7.1.3 Optimal MCMC Random Walk Scaling

Here we revisited the one parameter likelihood-free problem in section 7.1.1
and applied the method of Fearnhead and Taylor (2010) in the ABC context
based on the specifications given in section 3.3.

The set of allowable scalings was initially generated from a U(0, 10)
distribution. The final distribution of g following the end of the SMC ABC
algorithm are shown in Figure 4. The performance of the random walk
MCMC kernel appears to be relatively insensitive to the choice of g, but
values below 1 and above 5 appear to be quite poor scalings. Note that the
choice of g = 1 in section 7.1.1 would appear to be sub-optimal in terms
of sampler performance. However, it is computationally less intensive as we
found that larger values of g produced lower acceptance rates.

To investigate the validity of the distribution of g obtained from the
algorithm, we ran the MCMC ABC algorithm of Marjoram et al. (2003) with
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Figure 4: Distribution of the scaling parameter g produced from the SMC
ABC algorithm that utilises the approach of Fearnhead and Taylor (2010)
for the one parameter bivariate model.

a variety of different scalings and investigated the autocorrelation function up
to 20 lags. We found that the optimal value of g could be anywhere between
1.25 and 4 with small values of g resulting in particularly poor mixing, which
is in some agreement with the distribution obtained in Figure 4.

7.2 Results of Inference for the Trivariate Model

Next we considered obtaining inferences for φ1 and φ2 of the trivariate model.
We placed independent U(0, 1) priors on the parameters. The prior for φ2

may be justified since we expect this parameter to be around the same order
as φ1. For the ABC analysis we set ε1 = 7.5 and εT = 0.04. For the likelihood-
based inference we used a random walk Metropolis-Hastings algorithm with a
standard deviation of 0.01 and 0.1 for the proposal of φ1 and φ2 respectively.
We ran this algorithm for 11,000 iterations discarding the first 1,000 as burn-
in. The acceptance rate was about 50%. We thinned the output by a factor
of 10, producing 1,000 simulations from the true posterior.

The posterior distribution for φ1 produced by the ABC analysis is
very similar to the ABC posterior for φ1 of the pseudo model with the me-
dian and 95% credible interval for the former being 0.041(0.031,0.053). See
Figure 5 (left) for posterior densities for φ1 of the trivariate model based
on likelihood-free and likelihood-based inferences. The ABC posterior dis-



tribution for φ2 was almost flat over (0,1), indicating that with this choice
of summary statistic the data are not informative at all about this param-
eter. However, small values of φ2 are slightly less preferred as can be seen
by comparing the empirical posterior cumulative distribution function of φ2

with the cumulative distribution function of a uniform random variate in
Figure 5 (right). We also tried adding in extra summary statistics such as
the variance of the incidence data but this did not improve the precision of
our estimates.

The likelihood-based analysis also produced an imprecise estimate for
φ2 and is similar to the ABC posterior of this parameter. However, the
availability of the likelihood allowed us to rule out very small values of φ2,
where the posterior distribution has an approximate range of (0.015,1). The
inference on φ2 is generally still very imprecise, however. To investigate
the poor identification of this parameter, we produced many simulations
from the model with φ1 fixed at 0.04 and various values of φ2. We found
that the trajectories of the incidence, patient prevalence and health-care
worker prevalence were very similar in terms of the mean and spread at
each time point for values of φ2 greater than 0.01. Small values of φ2 led
to slightly lower means but slightly greater variances at each time point for
the patient incidence and prevalence variables. Therefore small values of φ2

allow for larger incidence values to be realised but are still consistent with
the summary statistic (sum of the incidence counts) as the mean is lower.
The slightly informative inference from the likelihood-based approach may
be misleading as the arbitrary upper limit of the incidence is set to M = 4
to keep computation tractable and a small value of φ2 can produce incidence
counts substantially larger than this. Therefore the inference on φ2 may be
sensitive to the choice of M .

The parameter φ2 has a negligible impact on the colonised health-care
worker population. This provides support as to why the pseudo-equilibrium
model is a reasonable approximation in this scenario.

8 Discussion

Here we have presented a likelihood-free methodology to estimate the trans-
mission rates of nosocomial MRSA, which has become endemic in many
hospitals (Tiemersma et al., 2004; Evans and Brachman, 1998; Harbarth,
2006). We considered a pseudo-equilibrium simplification so that inferences
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Figure 5: Posterior summaries of φ1 and φ2 of the trivariate model. For φ1

(left) posterior densities are shown for likelihood-based inference (solid line)
and ABC (dashed line). For φ2 (right) the posterior empirical cumulative
distribution functions are provided based on ABC (black) and likelihood-
based inference (grey). The dashed straight line on the graph on the right
denotes the theoretical cumulative distribution function of a U(0, 1) random
variate.



could be obtained more easily for one of the parameters, compromising little
on model fit. There was an agreement with the inferences of the likelihood-
based and likelihood-free approaches, with the likelihood-free method easier
to implement and faster to run.

The likelihood of the pseudo-equilibrium model is relatively straight-
forward to compute. However, likelihood evaluation of the full trivariate
model is substantially more complicated as it involves calculating the expo-
nential of a large matrix. Its computation is time consuming in a high level
language such as Matlab R© (MathWorks, 2008) and can be unstable in some
regions of the parameter space. There would be extra motivation for an ABC
approach if the time intervals between observations were not constant, since
a matrix exponential would be required for each unique time difference. Fur-
thermore, the likelihood would become even less tractable if the ward size
increased and varied, and the incidence count was larger (see Drovandi et al.
(2011) for an ABC example on macroparasite population evolution, where
larger populations exist). Finally, in the likelihood-based analysis, an arbi-
trary upper limit for the incidence, M , required specification.
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