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Free convection in a triangular enclosure with
fluid-saturated porous medium and internal

heat generation

Suvash C. Saha1 Y. T. Gu2

Abstract

Unsteady natural convection inside a triangular cavity has been
studied in this study. The cavity is filled with a saturated porous
medium with non-isothermal left inclined wall while the bottom sur-
face is isothermally heated and the right inclined surface is isother-
mally cooled. An internal heat generation is also considered which
is dependent on the fluid temperature. The governing equations are
solved numerically by finite volume method. The Prandtl number, Pr
of the fluid is considered as 0.7 (air) while the aspect ratio and the
Rayleigh number, Ra are considered as 0.5 and 105 respectively. The
effect of heat generation on the fluid flow and heat transfer have been
presented as a form of streamlines and isotherms. The rate of heat
transfer through three surfaces of the enclosure is also presented.
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1 Introduction 2

1 Introduction

The characteristics of heat and fluid flow for a configuration of isothermal
vertical walls, maintained at different temperatures and with adiabatic hor-
izontal walls, are well understood [1, 2]. Less work has been carried out
for more complex thermal boundary conditions, such as an imposed thermal
gradient that is neither purely horizontal nor purely vertical. Shiralkar and
Tien [3] numerically investigated the natural convection in an enclosure with
temperature gradients imposed in both the horizontal and vertical directions
simultaneously. There are number of studies related to simultaneously heat-
ing and cooling of the adjacent walls of a square/rectangular enclosure are
available in the literature [4–6]. Velusamy et al. [7] investigated the steady
two-dimensional natural convection flow in a rectangular enclosure with a
linearly varying surface temperature on the left vertical wall, cooled right
vertical and top walls and a uniformly heated bottom wall. The similar work
is also conducted by Hossain and Wilson [8].

In recent decades, flow in a confined porous medium has received consid-
erable attention from researchers working with various methodologies such
as experimental, theoretical as well as numerical. The main application of
studying in this area is to develop technology and industry, such as pre-
vention of sub-oil water pollution, storage of nuclear waste and geothermal
energy systems (see extensive review in [10]).

The fluid flow and heat transfer inside a triangular enclosure is also con-
sidered by many researchers recently because of its engineering application in
attic-shaped buildings, electronic devices, solar collectors etc. An extensive
review of natural convection in the triangular enclosure can be found in [11].
An investigation of natural convection inside a triangular enclosure with lin-
ear heating/cooling on the inclined surfaces is investigated by Basak et al.
[9]. Natural convection in attic space filled with porous media has also been
conducted by a number of researchers [12–15]. In this study, we consider
triangular enclosure filled with porous media and heat generating fluid with
non-uniform temperature conditions of one of the slopping walls. A detailed
development of the present investigation is given in the subsequent sections.

2 Mathematical formulation

Under consideration is a triangular cavity of height H, half length of the base
l, in a saturated porous medium containing a Newtonian fluid with Pr = 0.7
which is initially at rest with a temperature Tc. At the time t = 0, a non-
isothermal temperature condition is applied on the left inclined wall where



2 Mathematical formulation 3

 

Tc 

Th u = v = 0,  T = Th 

                   u = v = 0   

 T = Th - s(Th - Tc) 
   u = v = 0 T = Tc 

y 

x 

H 
g 

Figure 1: Schematic of the geometry and the coordinate system

the temperature reduces linearly from bottom to top. The bottom surface is
uniforly heated at Th and the top mejor portion of the right inclined wall is
cold at Tc. The boundary condition at the lower portion of the right inclined
wall is explained as: a small gap of length s1 = s/10 (s is the total length
of the inclined surface) where the temperature varies linearly from Th to Tc.
The effect of temperature-dependent heat generation in the flow region is also
taken into consideration. The volumetric rate of heat generation, Q(W/m3),
is assumed to be:

Q =

{
Q0(T − Tc), T ≥ Tc

0, T ≤ Tc

(1)

where Q0 is the heat generation constant. The above relation, as explained
in Saha et al. [16], is valid as an approximation of the state of some exother-
mic process, which means that heat flows from the surface to the enclosure.
We further assume unsteady laminar flow of a viscous incompressible fluid
having constant properties. The effect of buoyancy is included through the
well-known Boussinesq approximation. Under the above assumptions, the
conservation equations for mass, momentum and energy in a two-dimensional
Cartesian co-ordinate system are:

∂u

∂x
+

∂v

∂y
= 0 (2)
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∂t
+ u

∂u
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where u and v are the fluid velocity components in the x and y-direction,
respectively. t is the time, T is the fluid temperature, p is the fluid pressure, β
is the volumetric thermal expansion coefficient, K is the permeability of the
porous medium, and ρ, α and Cp are, respectively the density of the fluid,
the thermal diffusivity and the specific heat at constant pressure. In the
present investigation, porous medium inertia effects have been neglected in
the momentum equations, and the effects of viscous dissipation are neglected
from the energy equation. In Eqs. (3) and (4), K is the measure of the
permeability of the porous medium (a packed bed of spheres) (see [8]), defined
by

ϵ+3d2

180 (1− ϵ+)2
(6)

where, d is the diameter of the solid sphere and ϵ+ is known as the porosity
of the media and is defined by

ϵ+ =
Vf

Vc

(7)

Here Vf is the volume of the fluid and Vc is the control volume. The following
dimensionless variables are constructed:

X =
x

H
, y =

y

H
, τ =

t

H/U0

, P =
p

ρU0

U =
u

U0

, V =
v

U0

, θ =
T − Tc

Th − Tc

(8)

where U0 = ν
H

is the reference velocity. Introducing the above dimension-
less dependent and independent variables in the governing Eqs. (3)(4) the
following equations are obtained:

∂U

∂X
+

∂V

∂Y
= 0 (9)

∂U
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+
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)
(10)
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+
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where
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Ra =
gβT (TH − TC)H

3

κν
, Pr =

ν

κ
, and λ =

Q0H
2

ρνCp

(13)

The dimensionless initial and boundary conditions:
All boundaries are rigid and non-slip;
at τ ≤ 0, U = V = θ = 0;
On the bottom surface: θ = 1;
On the left inclined surface: θ = 1− s;
Upper portion of the right inclined surface: θ = 0;
Lower portion of the right inclined wall: θ = 1− s/s1.

Using the numerically obtained values of the temperature function we
may obtain the rate of heat flux from each of the walls. The non-dimensional
heat flux from any surface is given by -∂T

∂n
, where n is the direction normal

to the wall. For example, the non-dimensional heat transfer rate, Nu, per
unit length in the depthwise direction for the left vertical surface is:

Nu = −
∫ 1

0

(
∂T

∂X

)
X=0

dY (14)

3 Numerical procedure

Two-dimensional numerical simulations have been carried out in this study.
For this purpose, an isosceles triangular domain is considered, and a Carte-
sian coordinate system is adopted with the origin located at the centre of
the base, the x-direction pointing horizontally, and the y-direction pointing
vertically. The initial and boundary conditions for the numerical simulations
are also specified. That is, the air in the enclosure is initially quiescent and
isothermal with a uniform temperature of θ = 0. At the time τ = 0, the left
inclined surface is linearly cooled. On the right inclined wall, the bottom gap
is maintained as linearly cooling like left wall and top portion is maintained
as uniform cooling and the base of the enclosure is uniformly heated. All
three surfaces of the enclosure are assumed as rigid and no slip.

The governing equations (9)-(12), along with the specified initial and
boundary conditions are solved numerically. The Finite Volume scheme has
been chosen to discretize the governing equations, with the quick scheme
approximating the advection term. The diffusion terms are discretized using
central-differencing with second order accurate. A second order implicit time-
marching scheme has also been used for the unsteady term. A detailed grid
sensitivity test has been carried out to ensure the accuracy of the numerical
results. The grid size of 300× 200 with non-uniformly distributed has been
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Figure 2: Isotherms (left) and velocity field with vector arrow (right): (a-b)
λ = 0, (c-d) λ = 10, (e-f) λ = 20, (g-h) λ = 30, (i-j) λ = 40 while Ra = 105,
Pr = 0.7, K = 10.0.
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adopted for the present simulations. For brevity, the test results of grid
dependency are not presented here.

4 Results and discussions

Numerical results for natural convection heat transfer for the fluid with in-
ternal heat generation in a triangular enclosure filled with a saturated porous
medium with uniform porosity are described. The left inclined wall is non-
uniformly cooled and the right inclined and the bottom base are uniformly
cooled and heated respectively.

We plot the isotherms and contours of stream function in Fig. 2 for dif-
ferent values of heat generation parameter, λ with Ra = 105, Pr = 0.7 and
K = 10.0. Fig. 2(a) represents the isotherm and streamlines for pure fluid in
the absence of internal heat generation (λ = 0). Since the bottom surface is
uniformly heated, a heated boundary layer develops adjacent to the bottom
surface. Due to the buoyancy effect, the hot fluid inside the boundary layer
moves upward from the bottom left tip. The non-uniform heating effect of
the left inclined surface triggers the hot fluid to move upward and to dis-
parse into the core of the enclosure. On the otherhand, the cold fluid near
the right slopping wall moves downwards through the cold inclined boundary
layer. In the corresponding streamlines, a large convecting cell occupies the
whole enclosure with clockwise circulation. We see in the isotherm that in
the presence of heat generation and for increasing value of the heat genera-
tion parameter, λ, (See Fig. 2) the region of clustered isotherms moves to the
right inclined cold surface of the enclosure. The gradient of temperature also
appears to increase in the core section of the enclosure. As λ increases, the
flow becomes stronger and a secondary vortex appears near the left inclined
wall. This secondary vortex becomes larger as the heat generation parameter
increases. It is expected that the secondary vortex would dominant the flow
if the heat generation parameter cinreases further.

In Figs. 3(a)-(c) we plot the total heat transfer along three surfaces
of the enclosure for values of the permeability, 10−5 ≤ K ≤ −10−2, for
Pr = 0.7 and Ra = 105. It can be seen from these figures that, as the
value of the permeability increases, the heat transfer from the bottom surface
increases. For the linearly varying temperatureon left surface, the heat flux
is lower near the bottom and higher near the mid portion of the surface from
where hot fluids discharge into the core of the enclosure. However, the heat
transfer near the top end is the lowest where two surfaces meets with the
same temperature. Heat transfer through the right surface shows that the
increase of the permeability accelerates the heat transfer. However, there
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Figure 3: Rate of heat transfer from the surfaces for different values of K
while Ra = 105, P r = 0.7, λ = 0.0 (a) bottom surface, (b) left surface and
(c) right surface.
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is almost no effect of the permeability on heat transfer through the portion
where the temperature is linearly distributed.

We have shown the time series of average heat transfer through three
surfaces of the enclosure for different values of heat generation parameter,
λ in Fig. 4. Fig. 4(a) shows the average heat transfer through the uni-
formly heated bottom surface. Initially, the heat transfer rate is very high
for all values of λ due to conduction. As the flow grows with time, there
exists undershoots when the convection starts to dominate the heat transfer.
We also see that as heat generation parameter increases, the heat transfer
through this surface decreases which is expected as discussed before. Time
evolution of average heat transfer on the left inclined surface, which is lin-
early heated, is shown in Fig. 4(b). A large variation of heat transfer is
seen for increase values of λ when the convection starts to dominant in the
duration of 0.02 < τ < 0.04. After that the heat transfer reduced slightly
and becomes steady state. Fig. 4(c) calculates the average heat transfer on
cold right inclined surface. There is a large variation of heat transfer at the
time of steady state for increasing values of heat generation parameter.

5 Conclusions

The effects of internal heat generation and porosity of the medium on the
natural convection laminar flow and heat transfer in a triangular enclosure
with one of the inclined surfaces is non-isothermal. We have used finite vol-
ume solution technique and apply the Boussinesq approximation to treat the
buoyancy effects. The studies have been carried out for a fluid having Prandtl
number 0.7 and for a Rayleigh number of 105. Increasing heat generation
in the fluid reduces the thermal gradients near the heated bottom surface of
the enclosure. The strength of the dominant vortex induced by bouyancy is
reduced due to increasing internal heat generation, and a more, nearly equal
double vortex structure develops. Increasing the permeability of the medium
for a fixed heat generation parameter value also increases heat transfer at
the surfaces.
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