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Abstract—A priority when designing control strategies for
autonomous underwater vehicles is to emphasize their cost of
implementation on a real vehicle. Indeed, due to the vehicles’
design and the actuation modes usually under consideration for
underwater plateforms the number of actuator switchings must
be kept to a small value to insure feasibility and precision. This
is the main objective of the algorithm presented in this paper.
The theory is illustrated on two examples, one is a fully actuated
underwater vehicle capable of motion in six-degrees-of freedom
and one is minimally actuated with control motions in the vertical
plane only.

I. INTRODUCTION

Investigating the control of mechanical systems becomes
increasingly interesting when one considers systems that have
unique methods of actuation and locomotion with specific
constraints, or are underactuated, subject to dynamic external
forces. Underwater vehicles are subjected to dynamic and
unpredictable external forces (i.e., ocean currents), and are
propelled in many different and novel ways (e.g., biomimetic
[1], energy harvesting [2] and variable buoyancy [3]). In
many cases they are also underactuated (e.g., torpedo-shaped
vehicles). For these reasons, control theory for Autonomous
Underwater Vehicles (AUVs) is a heavily studied area with
many open questions, practical applications and interesting
problems.

With an ever increasing autonomy, AUVs are becoming a
fundamental research tool for studying the ocean and conduct-
ing science underwater. These vehicles facilitate simultaneous
and rapid measurements that capture the appropriate scale of
spatiotemporal variability for many dynamic phenomena that
we seek to understand in marine ecosystems. Intelligent im-
plementations of AUVs can provide fine-scale data resolution
far surpassing existing sampling methods, such as infrequent
measurements from ships, or static measurements from buoys.
Intelligent planning requires a path for the vehicle(s) to
traverse, gathering samples in the right place at the right time
for maximal information gain. Based on the limited endurance
of most AUVs, computing optimal controls (with respect to
time or energy conservation) along these paths increases their
abilities to gather data of high scientific importance.

Theoretical algorithms very often produce control strategies
that require a large number of instantaneous changes in some
of the components of the control. These instantaneous changes
are referred to as switchings. It is especially true, in optimal

control for instance, that optimal trajectories often contain a
singular arc, a large number of switchings or even chattering
[4], [5]. In some systems, such as AUVs, this is undesirable or
unimplementable due to physical constraints on the actuators,
or other concerns. A common solution is to develop piecewise-
constant (PWC) control to achieve the desired goal as well as
possible. Based on practical constraints, these new strategies
are designed to have a small number of switchings. In practice,
these PWC controls are constructed through heuristics and
extensive numerical simulations. The PWC controls can be
designed in many different ways. We can, in optimal control,
put the emphasize on the final configuration by fixing it, and
construct a sub-optimal path (see [6], [7] for applications of
this approach to time and energy minimization for AUVs).

A major difficulty is to provide a formal estimation that
compares the newly computed PWC strategies to the non-
feasible strategy that was initially calculated. We briefly (due
to the lack of space) address this question here. More precisely,
we develop the theory to explicitly calculate an error bound
(in terms of difference in final state vectors) of a PWC control
with a fixed (small) number of switchings with respect to a
desired control, and we provide an algorithm to determine
such a PWC control. We remark that an integral cost can be
appended to the system as a state variable.

The paper is organized as follows. In Section II we introduce
all necessary definitions and state the problem. Section III de-
scribes the algorithm and provides theoretical error estimates.
Finally, Section IV addresses the motion planning problem
of an AUV via PWC controls. Results are presented for two
different types of AUV, followed by concluding remarks on
the application of our proposed methods.

II. PROBLEM STATEMENT

Consider a nonlinear, control-affine control system

ẋ(t) = f (x(t)) + g (x(t))u(t)
.
= f̄ (x(t), u(t)) , (1)

where x(t) ∈ Rn is the state variable, u(t) ∈ U ⊂ Rm is a
measurable bounded function called the control and assume
the functions f : Rn → Rn, g : Rn → Rn×m to be
continuously differentiable. Let x0 be an initial condition,
and u

∗(·) a reference control defined on [0, T ] such that its
corresponding trajectory x

∗(·) is the unique solution of (1)
defined on [0, T ]as well.



Our goal is to construct a PWC control ũ(·) defined on
[0, T ] with a fixed number of switchings σ such that its
associated trajectory x̃(·) minimizes the difference of the
final states �x∗(T )− x̃(T )� . We also provide an upper
bound for the state error at the final time, it depends on the
functions f(·), g(·), on the given control signal u∗(·) and on
the switching times of the PWC control.

III. ALGORITHM FOR THE PWC CONTROL WITH A FIXED
NUMBER OF SWITCHINGS

The analysis of PWC controls has received some attention
in the literature but the state of art is still uncomplete. Some
related work can be found in [8] in an optimal-control setting,
in [9] for driftless control systems, and in [10], [11] for time-
optimal syntheses of bang-bang controls. The major difficulty
is to prove that the algorithms constructing PWC controls with
a small number of switchings produce very efficient solutions
(either in terms of the cost or of the final configuration).
In this paper we take a novel approach by considering the
one-sided Lipschitz constant. It should actually be no surprise
since it is known that the classical Lipschitz constant estimates
only exponential growth even if the errors decay [12]. The
details regarding the theoretical estimation bounds will be
provided in a forthcoming work, here we limit the discussion
to a few results without proofs since the emphasize is on the
applicability of our techniques to AUVs.

Let us first introduce some basic definitions.

Definition 1 (Logarithmic norm [13]): Given a square
matrix A, its logarithmic norm is defined as

µ(A)
.
= lim

h→0+

�I + hA� − 1

h
. (2)

where �.� is a given norm.
In [12] the reader can find formula for the logarithmic norm.
For instance, for the Euclidean norm we have that µ(A) =
λmax = largest eigenvalue of 12 (A

T +A).

Theorem 1: Assume that (x(.), u(.)) and (x̃(.), ũ(.)) are
both solutions to the affine control system (1), and that the
following estimates hold

1) µ

�
∂f̄

∂x
(ξ, u(t))

�
< l(t) ∀ξ ∈ [x(t), x̃(t)];

2)
��f̄(x̃(t), u(t))− f̄(x̃(t), ũ)

�� ≤ δ(t);

3) �x(0)− x̃(0)� ≤ ρ.

Let L(t) =

� t

0
l(τ)dτ . Then the controlled trajectories

satisfy

�x(t)− x̃(t)� ≤ e
L(t)

�
ρ+

� t

0
e
−L(τ)

δ(τ)dτ

�
. (3)

Proof: We here only sketch the prrof since it folllows very
closely the proof of Theorem 10.6 in [12], where a similar
result in the framework of ordinary differential equations is
presented. First, we introduce �(t)

.
= �x(t)− x̃(t)�. It is

easy to see using triangle inequality and assumption 2 in the
theorem that for small h ∈ R+,

�(t+h) ≤
��x(t)− x̃(t) + h

�
f̄(x(t), u(t))− f̄(x̃(t), u(t))

���

+ hδ(t) +O(h2). (4)

Applying the Mean Value Theorem on the compact interval
[x(t), x̃(t)] to the function F (x(t)) = x + hf̄(x, u(t)) we
obtain

�(t+ h) ≤ �(t) max
ξ∈[x(t),x̃(t)]

�����I + h
∂f̄

∂x
(ξ, u(t))

����

�

+ hδ(t) +O(h2). (5)

Then

�(t+ h)− �(t)

h
≤

�(t) max
ξ∈[x(t),x̃(t)]






���I + h
∂f̄
∂x (ξ, u(t))

���− 1

h




+ δ(t) +O(h)

(6)

and by taking the limit for h → 0+,

D+�(t) ≤ �(t) max
ξ∈[x(t),x̃(t)]

µ

�
∂f̄

∂x
(ξ, u(t))

�
+ δ(t), (7)

where µ(·) is defined as in (2).
Using the first inequality in the statement of the theorem,

we obtain

D+�(t) < �(t)l(t) + δ(t). (8)

According to the definition of L(t), the solution of the
differential equation γ

�(t) = γ(t)l(t) + δ(t) is

γ(t) = e
L(t)

�
γ(0) +

� t

0
e
−L(τ)

δ(τ)dτ

�
. (9)

From the third assumption of the theorem, there exists ρ

such that �(0) ≤ ρ. We define γ(0) = ρ. Since �(t) and γ(t)
are continuous, to complete the proof we simply have to show
that �(t) ≤ γ(t) ∀t ∈ [0,∆].

By contradiction, let t2 be a point with �(t2) > γ(t2) and
consider the first point t1 to the left of t2 with �(t1) = u(t1).
Then for small h > 0 we have

�(t1 + h)− �(t1)

h
>

γ(t1 + h)− γ(t1)

h
(10)

and, taking the limits, D+�(t1) ≥ D+γ(t1). This contradicts
(8) as

D+�(t1) < l(t1)�(t1)+δ(t1) = l(t1)γ(t1)+δ(t1) = D+γ(t1).
(11)



A. An upper bound for the final error

Important is to provide an upper bound for the right-hand
side of equality (3). This can be done as follows. Let σ be the
number of fixed switchings for the new control and t0 < t1 <

... < tσ be the switching times (including the initial and final
time). we define ∆0 = t1 − t0 the first time interval and we
define u0 as

u0 =
1

2
max

t,s∈[0,∆0]
(u∗(t)− u

∗(s)) (12)

where u
∗(.) is the reference trajectory. Using the fact that

∀τ ∈ [0,∆0] there exists l̄τ such that
� ∆0

τ
l(t)dt = l̄τ (∆0 − τ), (13)

we have

e
L(∆)

� ∆

0
e
−L(τ)

�g(x(τ))(u∗(τ)− ũ)� dτ

≤ �δu0� ē(∆0, l̄0) (14)

where l̄0 = max
τ∈0,∆0

l̄τ , �δu0� =
kg

2
max

t,s∈[0,∆]
�u

∗(t)− u
∗(s)�,

kg defined such that �g(x)� ≤ kg ∀x, and ē(∆0, l̄0)
.
= e

l̄0∆
0 −1
l̄0

.
Theorem 1 applied with x(0) = x̃(0) implies

�1 ≤ �δu0� ē(∆0, l̄0). (15)

Iterating this construction, we obtain

�σ ≤

σ−1�

k=0

�
�δuk� ē(∆k, l̄k)

σ−1�

i=k+1

{l̄i∆i}

�
. (16)

B. Practical Algorithm

In this section we provide a constructive algorithm to
design a PWC control with a fixed number of switchings that
minimizes the error on the final state of the system with respect
to the desired one. The PWC controls with a fixed number of
switchings are computed via general nonlinear programming
with initial guess computed as follows1. Notice that, as also
outlined in [14], an accurate initial guess might play a central
role in computing approximating PWC controls via nonlinear
programming. For instance for our two examples, the fully
actuated is very robust in terms of dependence with respect to
initial guess while the minimally actuated is unstable.

We describe a numerical way to determine the best choice
of PWC control, that usually differs from the one used above
for theoretical purposes. For a given time step ∆ between two
switchings, according to the result of Theorem 1, we have

�x(∆)− x̃(∆)� ≤ e
L(∆)

ρ +

e
L(∆)

� ∆

0
e
−L(τ)

�g (x̃(τ)) (u(τ)− ũ)� dτ, (17)

1The code of the algorithm is available at http://math.hawaii.edu/∼marriott/
pwc/

and therefore the best choice for the constant value ũ ∈ Rm

would be

ũ = argmin
υ∈U

� ∆

0
e
−L(τ)

�g (x̃(τ)) (u(τ)− υ)� dτ. (18)

The main difficulty is that x̃(t) is not known a priori. To
address this issue, a good initial guess can be obtained by
assuming g(x̃(t)) � g(x(t)) and solving the convex optimiza-
tion problem:

ũ = argmin
υ∈U

N�

k=0

e
−L(tk)

��g(xk)(uk
− υ)

��2 (19)

where t
k are samples over the interval [0,∆], divided in N+1

steps. Fixing the length of the time steps for the PWC control
∆0,∆1, ...,∆σ−1, problem (19) can then be solved for each
time step ∆i, thus computing the values ũ0, ũ1, ..., ũσ−1 of
the initial-guess PWC control. Finally, after selection of an
initial guess, general nonlinear minimization techniques are
used to find the PWC control, i.e. a set of switching times
and constant control values, which minimizes the final error
�x(T )− x̃(T )�.

IV. APPLICATION TO THE MOTION PLANNING FOR
UNDERWATER VEHICLES

In this section, we examine the implementation of our meth-
ods on two types of underwater plateforms: a fully actuated
underwater vehicle capable of motion in all six degrees-of-
freedom (DOF) and a profiling float which is a minimally
actuated vehicle.

A. Application on a Fully-Actuated AUV

We first apply our analysis to the non-linear, control-affine
model for AUVs as seen in [15] or [16]. The reference
control is taken as a time-optimal control to steer the fully
actuated AUV from one configuration to another, with the
motion starting and ending at rest (zero velocity). Time-
optimal trajectories are formed by concatenations of bang
arcs (corresponding to either maximal or minimal thrust) and
singular arcs [6]. In [6], the authors develop a numerical
algorithm to design control strategies to steer the AUVs to
the exact configuration with a fixed number of switchings. It
is shown that this method can produce control strategies with
as few as 2-3 switchings and be within 10% of the optimal
time. The approach taken here is different, as we fix the final
time to the optimal time and minimize the error between the
achievable final configuration and the desired configuration.

The simulations are based on the AUV analyzed in [6].
The test-bed vehicle is the Omni-Directional Intelligent Nav-
igator (ODIN) [16], [17], developed by the Autonomous
Systems Laboratory, College of Engineering at the University
of Hawai‘i. The vehicle’s main body is a 0.64 m diameter
sphere, with eight thrusters evenly distributed around the
sphere; four oriented vertically and four oriented horizontally.
The numerical values of vehicle parameters, derived from
estimations and experiments, see [6], are given in Table I.
Based on these vehicle parameters, this fully actuated AUV



mass 123.8 kg B = ρgV 1215.8 N
diameter 0.64 m W = mg 1214.5 N
CB (0, 0,−7) mm CG (0, 0, 0) mm
Mν1

f 70 kg Mν2
f 70 kg

Mν3
f 70 kg Ixx 5.46 kg m2

Iyy 5.29kg m2 Izz 5.72 kg m2

TABLE I
MAIN DIMENSIONS AND HYDRODYNAMIC PARAMETERS FOR ODIN.

is capable of unbiased movement in six DOF, and has acted
as an excellent platform for the development, implementation
and comparison of a wide-rage of control strategies, e.g., [18]–
[20].

For an underwater vehicle moving in six DOF, we con-
sider the generalized position to be η = (b�, π�)� =
(b1, b2, b3, φ, θ, ψ)�, with respect to an inertial frame, and
let ν = (v�, ω�)� be the vehicle velocity in the body-fixed
frame. Let u = (u1, ..., u6) represent the controls. Then the
equations of motions are

η̇ = J(η)ν
Mν̇ + C(ν)ν +D(ν)ν + g(η) = u,

(20)

where J(·) maps a vector expressed in the body-fixed frame
to the same vector expressed in the inertial frame, M is the
mass and inertia matrix, C(·) the Coriolis matrix, D(·) the
damping matrix and g(·) is the gravity vector (see [15] for
details).

The initial and final are taken respectively as the origin and
(η�, ν�) = (5, 4, 1.3, 01×3, 01×6). The time-optimal control
signals have many discontinuities, see Fig. 1, and therefore
are not implementable on physical actuators. Moreover there
are singular arcs which require a continuous change in the
actuation.

Applying our algorithm to this scenario, we can produce
a PWC control with only two switchings, with an error
with respect to the desired final state equals to (0.0414,
0.0474, 0.0171, 0.0112, 0.0104, 0.0273, -0.0137, -0.0132, -
0.0010, -0.0289, -0.0226, -0.0085). This error corresponds to
approximately 6 cm in position, 2 deg in orientation, 2 cm/s
in translational velocity, and 2 deg/s in angular velocity.

Figures 2–4 show the simulation results. Note that the prob-
lem formulation is such that the control-vector components are
allowed to jump all at the same time instants.

The precision of the algorithm is particularly relevant based
on the fact that, unlike [6] and [7], the final time is fixed to
be the optimal one, 17.39 s. The estimate (16) provides a
reasonable theoretical bound even for two control switchings.

The gain here is significant. Indeed, the number of swic-
things were reduced from a large number of switchings
(together with about 10 singular arcs) for the time-optimal
control, to only 2 switchings, and reaching with good precision
the final state. The advantage in reducing the number of control
switchings has many practical reasons, for instance: less stress
on the control actuators, besides less onboard memory-storage
requirements. From the computational-time point of view there
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in the bottom plot.

is also a significant gain by considering a small number of
switchings. Solving the PWC control problem for a nonlinear
system with 12 states and 6 inputs (including 2 switching
times) required 36.943 s on a dual-core, 2.66 GHz processor. A
computational time of 349.754 s was required for 10 switching
times.
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B. Application on a Minimally-Actuated AUV

Here, we consider applying our method to the control of
profiling float. This vehicle is free-drifting, and can only
actively control its depth. By intelligently altering its depth, the
vehicle uses ocean currents to carry it to a desired destination.
Apart from the hotel load, changes in depth (buoyancy) are the
only source of energy consumption. Extending the endurance
of this vehicle directly corresponds to minimizing the number
of depth changes (switchings).

1) System Model: For the analysis here, we assume a
simple model of a profiling float. The vehicle moves in R3,
and is invariant in roll (φ), pitch (θ), and yaw (ψ). The
vertical position of the float (b3(t)) can be controlled, and
the horizontal velocities (ḃ1, ḃ2) are determined strictly by
ocean currents. We assume that the float can be represented
dynamically as a point mass. We can express the equations of
motion in R3 by expressed by the equations

ḃ1 = f(b3, t), ḃ2 = g(b3, t), ḃ3 = v3(t) + h(b3, t), (21)

where f(b3, t), g(b3, t) and h(b3, t) represent the horizontal
(x, y) and vertical components of the ocean velocity, respec-
tively. Note that this system is not control affine as in the
previous example, however the system does fit into the flexible
framework of the proposed algorithm.

Here, we will ignore vertical currents, i.e., h(b3, t) = 0, and
thus ḃ3 = v3(t). As ocean currents are not constant functions
with respect to depth, we can indirectly control the horizontal
motion of the float by intelligently controlling the depth of

the vehicle. Hence, rather than considering the ocean currents
as drift to the system, we write them as a dependent input
control, see [21] for a detailed treatment of this concept. Thus,
for a given location, choosing a depth defines the direction of
motion. Let H(b3, t) = (f(b3, t), g(b3, t), 0)�, where f, g :
R+ �→ R represent the north-south and east-west currents,
respectively. Here, velocity is positive eastward and northward.
Since we are interested in steering the float from one position
on the sea surface to another position on the sea surface, the
motion planning can actually be projected into R2, with the
depth (b3) acting as the input control that defines the velocities
in the plane. Thus, we express the system as

(ḃ1, ḃ2, b3)
� = (0, 0, 1)�u3(t) +H(b3, t). (22)

The only direct control input is the depth of the vehicle, i.e.,
b3(t) = u3(t), and u ∈ [0, 2000] meters. Since H(b3) is a
function of depth and time, we obtain indirect control on the
vehicle velocity as we change the depth over time. For our
analysis, H(b3) is obtained from an ocean model. Based on the
time scale of the horizontal motion, we can assume that depth
can be changed instantaneously. We remark that although the
vehicle is moving in R3 the motion of interest only occurs in
R2. Since the depth is a control, the state variables are simply
(b1, b2), corresponding to longitude and latitude, respectively.

2) Algorithm Results: We compare the results of our al-
gorithm to an existing control strategy for an ocean-science
application, see [22]. In [22], an A∗ algorithm is used
to determine a set of waypoints, with a lower-level algo-
rithm determining the control necessary to navigate between
these waypoints. We compare our result to the output of
this lower-level algorithm. For a reference control, we take
the initial point (−118.4800, 33.4600) with a final point of
(−118.4600, 33.4800). The reference algorithm from [22]
produces a control with a duration of 62 hours and 45
switchings, shown in Fig. 5. The final point reached is
(−118.4632, 33.4800), which lies within the destination toler-
ance (400 m) for the low-level actuator decision algorithm. A
PWC control is found with only eight switchings. This com-
puted PWC control reaches the point (−118.4633, 33.4801),
which is just more than 300 m from the desired destination.
Hence, we achieve the goal location within the desired accu-
racy with only 18% of the switchings. This is a significant
reduction in energy consumption. Note that the path executed
with only eight switchings deviates more significantly from
the desired, straight-line path connected the waypoints than
the algorithm presented in [22], however this accuracy is
application specific. In general, such deviations are acceptable
given the significant energy savings, especially at the large
spatiotemporal scales examined in ocean science.

In this application, we notice a particular sensitivity to the
initial guess on the number of switchings. In many systems,
an acceptable PWC control can be found without putting great
effort into the initial guess. In the first system considered,
“opposite” initial guesses for the control, one with zero motor
actuation and the other with constant full motor actuation, have
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a difference of only 9.3% in final state error of the optimized
PWC control.

In this example the importance of the initial guess is easily
illustrated. For a PWC control with ten switchings, if the initial
guess is constructed by sampling the given control at evenly
spaced switching times, the algorithm arrives at a control with
a final state error of 9.79 km. However we have shown that
with just eight switchings we can produce an error of just 300
m.

V. CONCLUSION

Reducing the number of control switchings is considered
important in many classes of nonlinear control systems, for
many practical reasons, especially when there are physical
limitations on the control actuators. This paper considers the
use of PWC controls with a small number of switchings to
obtain a state trajectory whose final state is as close as possible
to the final point of a reference trajectory, and the trajectory
time is the calculated optimal one.

For the case of underwater vehicles, it has been shown that
very efficient trajectories can be designed by only using a few
switchings in the control. Such heuristic observations motivate
our study, and are validated here in a theoretical framework.
We provide an effective algorithm which constructs such a
control. Although we only considered applications of our
algorithms to the motion control of underwater vehicles, this
general approach has a wide range of applications. Further
publications will give further treatment to the theoretical

framework and a wider range of applications. Most important,
future work will focus on discussion of the most suitable norm
to be used in the error estimate arguments.
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