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Non-compositional concepts and quantum tests
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Abstract. Compositionality is a frequently made assumption in linguistics, and yet many human
subjects reveal highly non-compositional word associations when confronted with novel concept
combinations. This article will show how a non-compositional account of concept combinations
can be supplied by modelling them as interacting quantum systems.
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MODELLING THE HUMAN MENTAL LEXICON

Accurate models of language are essential in the modern world of Information Access
and Retrieval (IAR), and yet the complexity of the human mental lexicon [1] makes
this a difficult requirement to satisfy. In particular, the apparent contextuality exhibited
by words makes probabilistic models of language difficult to construct. While Bayesian
models have met with some success [2], this paper will discuss an alternative approach
that utilises the probability structure of Quantum Theory (QT) to model the behaviour
of words in the human mental lexicon [3, 4, 5].

A large amount of data has been collected which helps to map the human mental lex-
icon. We shall concentrate upon the University of South Florida (USF) word association
data, which maps the strength of free word associations displayed by a large sample of
psychology students over a period of 30 years [6]. In figure 1 we see the free associa-
tion strengths for two words, “boxer” and “bat”. Note the manner in which both words

Associate Probability

ball 0.25
cave 0.13
vampire 0.07
fly 0.06
night 0.06
baseball 0.05
bird 0.04
blind 0.04
animal 0.02
· · · · · ·

(a)

Associate Probability

fighter 0.14
gloves 0.14
fight 0.09
dog 0.08
shorts 0.07
punch 0.05
Tyson 0.05
· · · · · ·

(b)

FIGURE 1. The free association data for two words, (a) bat, and (b) boxer. In both cases, we can see a
clear division of the senses of the two words, into a sport sense (highlighted in bold), and an animal sense.



can be attributed a meaning that belongs to one of two senses; an animal sense and a
sporting sense. Despite this ambiguity, humans are adept at recognising the sense that is
intended for an ambiguous word. They do this through reference to the context in which
the word is being used, and this context might depend upon the co-occurrence of other
words spoken before and after, the history of a conversation, the social context of the
speaker etc. In the next section we shall show that it is possible to construct a simple
model of this contextual dependency through use of the quantum formalism.

A QUANTUM-LIKE MODEL OF HUMAN WORD ASSOCIATIONS

A simple model of the effect of context in human word association data can be con-
structed through the use of a superposition state. In figure 2(a), the word w is repre-
sented in a free association context c, as a superposition of recalled, |1〉 and not recalled
|0〉. Alternatively, referring to the online USF data for “bat” we can see that it might
be represented as a superposition of ‘recalled’ and ‘not recalled’ upon presentation of a
cue word “cave” (which in this case acts as a new context d). The probability of “bat”
being recalled in this context is represented by |a1|2, as per the measurement postulate
of quantum theory [7], but can be easily related to the Pythagorean theorem for the
above diagram (which explains its origins). Thus, we could represent “bat” as the super-
position:

√
0.94|0〉+

√
0.06|1〉 so giving a 6% probability that the word “bat” will be

recalled by a subject who is presented with the cue “cave”.1
This model is made more interesting in figure 2(b), where we have represented the fact

that a different context might result in a different set of recall probabilities. Thus, when
given the cue word “ball” we could represent the concept bat as the new superposition√

0.81|0〉+
√

0.19|1〉. In this case we see that the word “bat” is more likely to be
retrieved from memory when a subject is presented with the cue “ball” than the cue word
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FIGURE 2. A concept w, for example bat, is represented in some context c which takes the form of
a basis. (a) The word “bat” is recalled |1〉, or not, |0〉, in some context. Thus, if the context is the cue
“cave”, then the subject might recall “bat” with a probability a2

1, or they might fail to recall “bat”, with
the probability a2

0. (b) Changing the cue to “ball” might significantly change the chances of recall.

1 These numbers are obtained by finding the value for “bat” in the “cave” matrix that is depicted at
http://web.usf.edu/FreeAssociation/AppendixC/ , a similar procedure is used for the “ball” matrix in the
below paragraph.



“cave”. Thus, this formalism provides a natural representation of contextual effects as
they actually occur in language.

How should we consider the combination of two words in this model? While it
is possible that a simple tensor multiplication of the two superposition vectors might
suffice, this is not necessarily the correct mechanism. Indeed, it seems possible that some
concepts must be considered as non-separable, or, in the terminology of linguistics, non-
compositional, which would imply that not all senses of a word remain accessible when
it is combined with another. Thus, it might prove to be the case that a “boxer bat” is
only ever thought of by human subjects as “a small furry mammal with boxing gloves
on”, or “a toy bat that a boxer dog chews on”, which would imply a case of perfect
anti-correlation in the senses. That is, defining a basis state in which |1〉 implies that a
sport sense is recalled by a subject, and |0〉 an animal sense, we might find that not all
possible combinations of the two senses can be realised:

|boxer〉⊕ |bat〉= a|01〉+b|10〉, where |a|2 + |b|2 = 1. (1)

The remainder of this paper will briefly sketch out recent work which attempts to test
for such non-compositional behaviour in conceptual combination [3, 4, 5].

QUANTUM TESTS OF (NON-)COMPOSITIONALITY

QT has a well developed set of tests for non-separable behaviour which can be quickly
adapted to probabilistic tests of the non-compositional behaviour of concept combina-
tions. Generally, standard probabilistic reasoning suggests that if two systems A and B
have behaviour that can be considered as separate then it is possible to describe this be-
haviour in terms of four random variables representing bivalent outcomes: {A1,A2} and
{B1,B2}. The joint probability describing the behaviour of the two systems can then be
considered in a number of different ways. For example, it is possible to construct a vari-
ation of the Clauser–Horne–Shimony–Holt (CHSH) inequality using an analysis derived
from Cereceda [8]:

∆ =|2(Pr(A1 =+1,B1 =+1)+Pr(A1 =−1,B1 =−1)+Pr(A1 =+1,B2 =+1)
+Pr(A1 =−1,B2 =−1)+Pr(A2 =+1,B1 =+1)+Pr(A2 =−1,B1 =−1)
+Pr(A2 =+1,B2 =−1)+Pr(A2 =−1,B2 =+1)−2)| ≤ 2 (2)

There is nothing in the above equation that restricts its domain of application to quan-
tum theory. Indeed, there are many systems that appear to be separated in a similar way
and so should adhere to probabilistic behaviour like that predicted in (2). One example
can be found in the psychological literature, where an ongoing debate about the com-
positionality (or not) of concept combinations has been apparently irresolvable [5]. In
this case, a concept combination (like boxer bat) should be considered compositional
if it is possible to model it only with reference to its parts (possibly combined in some
functional form). In a set of recent work [9, 4, 5] we have performed a number of ex-
periments aimed at testing the compositional hypothesis. In these experiments, subjects
are first primed by exposure to words that have a particular sense with regards to the



second stage, where they are presented with a bi-ambiguous concept combination. They
are then asked to interpret that combination, designating the senses that were used in
that interpretation, and a probabilistic analysis is performed upon the data so obtained.
This analysis has led to the simplified set of CHSH values depicted in table 1.

TABLE 1. Results obtained from a set of three CHSH style experiments performed upon the
concept combinations boxer bat, spring plant, and ring pen for n subjects.

Concept A Concept B Results

Prime 1(α1) Prime 2 (α2) Prime 3 (β1) Prime 4 (β2) CHSH n

boxer bat fighter dog vampire ball 1.95 108

spring plant summer coil seed factory 2 136

ring pen diamond oval ink pig 2.61 132

It is also possible to write the joint probability in a form that starts to explain how
violations of (2) occur. To do this we represent the four different random variables in
a matrix describing the distribution, with each random variable combination itself split
into the set of possible outcomes. This allows us to breakdown the result from table 1 into
a form that allows for a consideration of the underlying form of the violations (or not) of
(2). In this representation we can write the data gathered from the above experiments out
as a set of joint distributions, which allows for a further understanding of the resulting
behaviour. In this analysis, the joint probability for boxer bat becomes:

boxer

A1(dog) +1
−1

A2( f ighter) +1
−1

bat
B1(ball)
+1 −1

B2(vampire)
+1 −1

0 0.89
0 0.11

0.42 0.46
0 0.12

0 0.67
0 0.13

0.61 0.30
0 0.09

 (3)

Here, we see no particular ordering or patterns. In particular, when we compare equa-
tions (2) and (3) we can see that the data gathered does not centre the distribution in such
a way that it can violate the CHSH inequality. In contrast, spring plant leads to a joint
distribution that has a far more interesting structure:

spring

A1(coil) +1
−1

A2(summer) +1
−1

plant
B1( f actory)
+1 −1

B2(seed)
+1 −1

0.51 0
0 0.49

0.9 0
0 0.1

0.87 0
0 0.13

0.98 0
0 0.02

 (4)



In this case, we see a complete correlation between the subject responses. Thus, when-
ever a subject interprets spring as a season they decide that a plant is a vegetable, and
that if spring is interpreted as a mechanical object then a plant is thought of as a factory
etc. This complete correlation of the senses attributed to the bi-ambiguous words leads
to a value of ∆ = 2.

Finally, if we consider the CHSH violating concept combination ring pen then we can
see why a value of ∆ > 2 is obtained.

ring

A1(oval) +1
−1

A2(diamond) +1
−1

pen
B1(pig)
+1 −1

B2(ink)
+1 −1

0.49 0
0 0.51

0.69 0
0 0.31

0.21 0
0.03 0.76

0.26 0
0.33 0.41

 (5)

While this case is similar to the one illustrated in (4), it features a key difference in that a
non-zero value has been returned by the ensemble of subjects for a couple of off-diagonal
cases where the random variables yield {A2=−1,B1=+1} and {A2=−1,B2=+1}.
In the CHSH form written in equation (2) we see that it is the second term that is
important; the off-diagonal term means that there is enough probability ‘mass’ for a
violation. Comparing (3–5) with the set of equations typified by (2) we can understand
that while it is necessary to for a system violating CHSH inequalities to have some
correlation in the random variables, it is just as important to have an anti-correlation.

Thus, the techniques of Quantum Theory offer a number of valuable tools for classi-
fying the manner in which humans respond to novel word compounds. Future work will
attempt to further develop this fertile avenue of investigation.
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