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The Development of the Graphics-Decoding Proficiency Instrument 
 

The Graphics-Decoding Proficiency (G-DP) instrument was developed as a 

screening test for the purpose of measuring students’ (aged 8-11 years) 

capacity to solve graphics-based mathematics tasks. These tasks include 

number lines, column graphs, maps and pie charts. The instrument was 

developed within a theoretical framework which highlights the various types of 

information graphics commonly presented to students in large-scale national 

and international assessments. The instrument provides researchers, classroom 

teachers and test designers with an assessment tool which measures students’ 

graphics decoding proficiency across and within five broad categories of 

information graphics. The instrument has implications for a number of 

stakeholders in an era where graphics have become an increasingly important 

way of representing information. 

Keywords: information graphics, assessment items, assessment instrument, 

mathematics 

Context 

 
For many children in today’s society, visual representations including graphic 

displays are common place—both in school contexts and out-of-school settings. As 

school systems attempt to provide learning opportunities for students to develop skills 

and processes that equip them to function in society, visual-and spatial-reasoning 

becomes increasingly important and valued. In recent years, there has been a 

considerable shift in the way students’ knowledge is being assessed in schools 

(Lowrie & Diezmann, 2009), with an increased use of graphics in these assessment 

contexts. Graphics typically include graphs, maps, diagrams, charts, networks, and 

according to Bertin (1967/1983) are seen as visual representations for ‘storing, 

understanding and communicating essential information’ (p. 2).  

Not only is there more graphical information in typical mathematics 

assessment items but the level of visual-spatial detail in these items has also 



increased. This is due, in part, to the fact that the graphics in tests and assessment 

instruments can be cost effectively produced in colour and with visual detail not able 

to be achieved in the recent past. As a result, students are required to interpret 

graphical displays with detailed patterns, shading and other retinal properties (Bertin, 

1967/1983). However, this increase in detail can heighten the demand on the 

interpreter of the graphic. As Roth (2002) argued, in a visually-oriented society, 

greater attention must be given to the practices of reading, producing and 

understanding graphical representations. In terms of assessment, young students are 

less likely to encounter word-based problems in mathematics tests and are more likely 

to be required to decode tasks which have high graphics demand (Lowrie & 

Diezmann, 2009).  

Graphical reasoning, and therefore the capacity to decode information in a 

task, is influenced by the nature of the task, the properties of the graphic, and the 

skills and experiences brought to the task (Brna, Cox, & Good, 2001). Kosslyn (2006) 

maintained that the graphical composition of a task included not only the actual 

graphic but also the information embedded within the task. For young students, the 

capacity to decode text-and graphic-based information is challenging in its own right, 

but as graphics become more detailed, additional demands are placed on students’ 

decoding skills (Lowrie & Diezmann, 2011). Studies by Hittleman (1985) and 

Carpenter and Shah (1998) have shown that students find it challenging to move 

between text and graphics to the extent that it can disturb their thinking. Indeed, the 

graphic can often make the task more difficult to decode (Berends & van Lieshout, 

2009; Elia, Gagatsis, & Demetriou, 2007; Schmidt-Weigand, Kohnert, & Glowalla, 

2010). Hence, further research on how young students decode graphics is necessary, 

especially given the increased attention such tasks are afforded in curricula and testing 



(Lowrie & Diezmann, 2009). Of particular concern is the large number of graphics 

used in everyday mathematical situations each with specific conventions of use 

(Harris, 1996). 

The scope of the project 

Background 

This paper describes the development of an instrument designed to determine 8 to 11 

year old students’ proficiency in decoding graphics represented in mathematics tasks. 

The purpose of the instrument is to provide educators with an assessment tool which 

identifies students’ level of proficiency when decoding specific types of graphics 

items. Specifically, the instrument provides classroom teachers with a tool which can 

be administered in either whole-class or individual settings.  

Although a similar instrument has been developed for older children (see 

Diezmann & Lowrie, 2009a), few mathematics instruments are available for students 

of this age group (8-11 years). Moreover, to our knowledge, no other instruments 

have specifically included all types of graphics representations within a single 

instrument. In this sense the instrument serves as a screening device designed to 

identify overall strengths or weaknesses across all types of graphical representations 

and mark proficiencies or deficiencies in particular areas or domains. A graphical 

processing instrument is necessary given the fundamental changes in the way 

mathematics tasks are now presented and represented in curricula and test design at 

both national and international levels. Such an instrument also needs to consider that 

various types of graphics items have different structure, composition, balance and 

intent (Bertin, 1967/1983), both in terms of the actual graphic, and in relation to the 

graphic as part of an assessment item. As Kosslyn (2006) recognised, the actual 

graphic contains particular design features which help convey (and potentially hinder) 



information. Thus an effective screening test needs to incorporate a range of different 

graphical structures in order to comprehensively assess student decoding proficiency.  

Theoretical framework 

The theoretical framework which underpins the development of the instrument is 

based on the work of Bertin (1967/1983), who describes graphics in terms of 

information within the graphic, the properties of the system, and the underlying 

components that govern and combine these properties. One of the most important 

aspects of Bertin’s work was the identification of the nature of graphics and the extent 

to which particular types of graphics differed from one another. Mackinlay (1999) 

built on aspects of Bertin’s work by making more explicit the extent to which 

graphics could be classified in relation to the perceptual elements they contain, and 

the encoding techniques required to construct the graphic. Mackinlay classified 

graphics within six ‘graphical languages’, which make specific reference to the 

structure of the graphics in terms of how the graphic is encoded. 

These six graphical languages are named Axis, Apposed-position, Map, 

Retinal-list, Connection, and Miscellaneous, respectively. Axis language items 

include line graphics represented on either a horizontal or vertical axis and typically 

include number lines. Apposed-position graphics encode information on two axes and 

often include line graphs or column graphs. Map language graphics are similar to 

Apposed-position items; however they have information encoded through the spatial 

location of marks. These items typically include road maps or topographic maps. In 

mathematics education contexts, students are expected to develop their understanding 

of maps by interpreting common grids and compass directions, and by following and 

providing directions for movement within and around map contexts. By contrast, 

Retinal-list graphics are not dependent on position or axis structure. These items often 



require the decoding of information through the translation or rotation of objects. 

Connection language encodes information by connecting a set of node objects with a 

set of link objects. This graphical language requires the interpretation of information 

in relation to connections and links between sets of objects (e.g., family trees and 

tennis draws). Due to the lack of Connection items in published tests, we included 

these items as part of the Miscellaneous language. This language encodes information 

with a variety of additional graphical techniques. These graphical languages include 

specifically tailored graphics such as pie charts and Venn diagrams. See the appendix 

for an example of the five categories of graphical languages. 

With colleagues, Lowrie and Diezmann (e.g., Diezmann & Lowrie, 2009b; 

Lowrie & Diezmann, 2007) have incorporated Mackinlay’s framework into 

mathematics education contexts suitable for primary-aged students. The rationale for 

the application of this framework was to provide an understanding of how students 

decode and process information graphics within mathematics teaching and assessment 

contexts. These studies have revealed distinct differences between males and females 

(in favour of males) on Axis and Map languages (Lowrie & Diezmann, 2011) and the 

extent to which the orientation of a graphic influences student performance (e.g., 

Lowrie, Diezmann & Logan, 2009). The current study extends this work through the 

establishment of an instrument which is suitable for younger students. 

Method 

Participants 

A pilot instrument was administered to 273 students (M = 135, F = 138) from four 

primary schools throughout one of Australia’s largest cities, in what would typically 

be described as middle-class metropolitan suburbs (less than 5% of the participants 

had English as a second language). Students’ age ranged from 8 to 11 years (Median 



age = 9.4, Grades 3-5). The schools were randomly chosen from a convenience 

sample within a regional cluster of schools situated a practical distance from the 

University. The sample size represented 26% of the total population size of the 

cluster.  

Procedure and Initial Analysis 

The items were selected from state, national and international year-level mathematics 

tests that had been administered to students in their early years of primary school or to 

similarly aged students (e.g., Queensland School Curriculum Council, 2000a). Since 

all items for the instrument were sourced from high-stakes mathematics assessment 

instruments which were being used for national and international benchmarking, 

criterion validity for the respective items had been previously established. Moreover, 

the items within these tests were selected from age appropriate instruments and thus 

content validity was also achieved. In terms of construct validity, a panel of expert 

mathematics educators (N = 5) independently categorised 175 items within 

Mackinlay’s (1999) graphical languages framework based on item structure and 

composition (reliability coefficient Cronbach’s alpha 0.90 was achieved). 

The research team approached schools in a region (randomly selected for 

investigation) with information about the nature of the study and the specific 

requirements for participation. Once ethics approval had been given at both 

University and Education Department levels, information packages were sent to 

parents or guardians via the schools. All participants had written consent from a 

parent or guardian to take part in the study, with students also completing a 

participant consent form. Researchers administered the instrument to primary-aged 

children (N = 273) in whole-class situations in the presence of the classroom teacher. 

The researchers administered the instruction protocol orally and explained the nature 



of the study. Participants were given one hour to complete the instrument and this was 

sufficient time for all students. 

Descriptive, bivariate and Guttman scaling (Kline, 2005) analyses were 

undertaken to reduce the item pool. This was necessary to ensure that the items varied 

in complexity and required substantial levels of graphical decoding. This analysis 

sought to 1) identify items of varying difficulty; 2) produce items with moderate to 

high within language correlations; and 3) ensure that hybrid items, with moderate to 

high across language correlations, were avoided. These procedures resulted in a bank 

of 40 items (8 items from each of 5 graphical languages).  

Results 

Exploratory Factor Analyses 

Five Exploratory Factor Analyses (EFA) were undertaken (on items within each of 

the respective languages) using tetrachoric correlation matrices. This procedure was 

undertaken to ensure that the sample size to number of variables ratio was adhered to 

(MacCallum, Widaman, Zhang, & Hong, 1999). The ratio of 34:1 for sample size to 

variable is well above the recommended 20:1 ratio. In addition, the sample size of 273 

more than adequate given the number of factors produced. Since dichotomous (i.e., 

correct and incorrect) measures were used, analyses were conducted with tetrachoric 

correlations as they were more appropriate than Pearson or Spearman coefficients 

(Kaplan & Saccuzzo, 2008). Moreover, tetrachoric correlations overcome problems 

caused when items of differing difficulty are correlated. These correlations were 

produced using Systat 16 whilst the EFAs were conducted with SPSS 17. The 

principal component extraction method, with Oblimin rotation, resulted in the 

reduction of the original 40 items to 25 items. Thus, the instrument now comprised 25 

items with five items in each of the five graphical language categories (see Appendix 



for an example of each of the five languages). This reduction was undertaken to select 

the items which were most closely related thus, the maximum amount of shared 

variance of items within each language was retained (see Table 1).  

 
INSERT TABLE 1 ABOUT HERE 

 
Given the different difficulty of items, it was necessary that their individual 

contributions reflect their importance in calculating the overall score. In order to 

achieve this outcome, items where weighted using principal component factor 

loadings to calculate aggregated scores within each language. The correlations 

between the aggregated language scores are displayed in Table 2. The distributions of 

the scores were within normal skewness and kurtosis values desirable for further 

analysis (since they fell within the -1 to +1 range, see Tabachnick & Fidell, 2001 for 

further explanation). 

There were moderate correlations among most of the aggregated language 

measures. The Miscellaneous language was the most highly correlated with the other 

four languages. The Apposed-position items were moderately correlated with the 

Miscellaneous items and less so with the other three language items.  

The means and standard deviations for student performance on each graphical 

language across grade are presented in Table 3. As anticipated due to maturation and 

experience factors, mean scores increased at each grade level for each of the five 

graphical languages. Mean score increases across grade (i.e., between Grade 3 and 

Grade 4 or Grade 4 and Grade 5) and language were relatively stable with most 

increases ranging from 18% to 27%. The three outlying mean score increases 

occurred for the Axis (32%), Apposed-position (11%) and Retinal (10%) between 

Grades 3 and 4.  

 



INSERT TABLES 2 AND 3 ABOUT HERE 
 

Further Analysis of the 25 Items 

Descriptive analysis was undertaken to determine the hierarchy of difficulty 

for the five items within each language. Data concerning the proportion of correct 

responses (see Table 1) indicated a varying degree of difficulty across the five items 

within language, for all the graphical languages. The scaling properties for items 

within each of the five languages were assessed by using procedures derived for 

Guttman scaling (see Bernard, 2000) in order to establish the strength of the 

hierarchical scale within language. The coefficient of reproducibility is produced by 

calculating the number of instances a student correctly answers a more difficult item 

after failing to correctly solve a less difficult item. The proportion of these “errors” is 

then subtracted from 1 to yield the coefficient. The coefficients for each language on 

the combined data were Axis = 0.91; Apposed-position = 0.90; Retinal-list = 0.87; 

Map = 0.93; and Miscellaneous = 0.90 respectively. Guttman indicated that 

coefficients of 0.90 are desirable for establishing a hierarchy among items. Hence, 

within each language there is a sequence of five items of increasing difficulty which 

are largely predictive of future performance in that language. These results confirm 

the applicability of the instrument as a screening tool.  

Cross-Validating the Instrument by use of Confirmatory Factor Analysis 

A Confirmatory Factor Analysis (CFA) was conducted with those participants 

(N=199, 73% of the original cohort) who had completed each of the 25 items from the 

instrument in order to have a complete data set (i.e., all participants completed all 

questions). It was hypothesized that a single congeneric measurement model with one 

latent variable could adequately fit these data. This assumption is based on the fact 

that Mackinlay’s (1999) theoretical framework describes a “set of primitive graphical 



languages” (p.74, emphasis added) which encompasses a collective set of graphics 

based representations. Using different scales (languages), the congeneric model 

assumes that each observed variable measures the same latent variable and is the least 

restrictive model for reliability estimation (Graham, 2006). Consequently, structural 

equation modeling (SEM) was undertaken to explore the relationship between 

decoding performance and performance across graphical languages. The fit indices 

(N=199; χ2=5.45; df=5; p=.365; χ2/df= 1.09 (p=.62); CFI= .99; NNFI = .98; 

RMSEA=.02 [90%CI=.00-.10]) for the model yielded a very good fit to the data.  

In an evaluation of the model (also see Figure 1), the chi-square statistic 

associated with the p value, the comparative fit index (CFI), the nonnormed fit index 

(NNFI), and the root-mean-square error of approximation (RMSEA) are reported. The 

nonsignificant value of the chi-square statistic (p=.365) indicates a good fit; however, 

in order to test the sensitivity to sample size, a χ2/df of less than 2 (Maruyama, 1998) 

should also be obtained. The strength of the model is also reinforced when CFI and 

NNFI indices are greater than .90 (Hoe, 2008)—both are above .98 in this model. 

Finally, the RMSEA value (.02) is less than the .05 recommended (Yuan, 2005) to 

ensure an absolute fit index for the model. Consequently, all GFI statistics indicate a 

good model fit (also see Table 4).  

 
INSERT TABLE 4 ABOUT HERE 

 
In terms of the five graphical language categories, the Miscellaneous language 

provided the most shared variance to the model (52%). Three of the other four 

categories, namely Axis, Retinal-list and Map, contributed similarly, with more than 

40% shared variance. The Apposed-position language items contributed only 34% of 

the shared variance. 

 



INSERT FIGURE 1 ABOUT HERE 
 

Discussion 

The main goal of this study was to develop an instrument which could serve as a 

screening measure for lower to middle primary-age students across several domains 

of graphics-decoding proficiency. The 25-item instrument comprised five items from 

each of the five graphical languages most commonly found in school mathematics. 

The component loadings from the EFA were strong for almost all of the 25 items, 

apart from one item in each of the Apposed-position and Retinal languages. The 

shared variance of the items for the respective languages ranged from 50% for the 

Axis language to only 35% for the Apposed-position language. Given the different 

representation (including different perspectives) and orientation (including vertical 

and horizontal orientations) of items within the five graphic-language structures, these 

loading proportions are both acceptable and indicate a good fit for 23 of the 25 items 

and validated our conceptual thinking regarding our graphical framework. 

Nevertheless, it is noteworthy that the five Apposed-position items contribute 35% of 

the variance to the language structure. Items within this language include various 

types of graphs (including line, bar and column graphs). Elsewhere (Lowrie & 

Diezmann, 2005), it is argued that relationships between items within this language 

are, at best, moderate since questions measure such a range of concepts. In this sense, 

these results provide further evidence that this language can be viewed as more varied 

and amorphous than the Axis, Map and Retinal domains. The values for R squared in 

Figure 1 indicate the complexity of these relationships so that whilst the languages 

may share and underlying commonality, they are clearly distinctive both conceptually 

and empirically.  



The CFA tested the degree to which a single congeneric model of graphical 

ability could be seen as underlying performances in five language areas. From a 

conceptual standpoint, the results of the structural equation modelling indicate that 

lower – middle primary-aged students’ graphics decoding proficiency comprises a 

number of interrelated decoding measures. These five graphical languages provide 

strong evidence of the interconnectedness of decoding ability within general graphics 

understanding.  

The instrument can be used as a diagnostic measure of student graphics 

decoding proficiency in mathematics tasks. Thus, it can be used as a screening device 

to identify strengths and weaknesses of individual students across graphical domains. 

In addition, items from the instrument can be used to elicit students’ sense making 

through one-to-one interviews. We suggest that the bank of items (i.e., the five items 

in a language) should be used to measure an individual’s understanding of a graphical 

language; however, the instrument is not intended to be used as a general mathematics 

assessment tool, nor to provide precise measures of achievement in the particular 

content domains. Noteworthy, is the utility of the instrument which provides a means 

of rapid, diagnostic assessment across a range of graphical domains.  

The Graphics-Decoding Proficiency (G-DP) instrument has the potential to 

provide a number of educational benefits for classroom teachers and test designers. 

The instrument provides teachers with the ability to monitor their students’ 

performance and particularly to identify areas of weakness in students’ decoding 

proficiency (in terms of graphical languages) rather than only recognising students’ 

content-based knowledge which is typically identified in assessment tools. Therefore, 

the instrument along with appropriately tailored, one-on-one interviews provides 

insights into why and how individual students might perform seemingly erratically on 



graphically-rich mathematics tasks with similar mathematics content. This instrument 

has the added potential to identify the skills students might need to fully benefit from 

Learning Objects (software) that use dynamic and multiple graphics since all dynamic 

representations of graphics use a combination of the graphics representations 

presented in this instrument.  

Conclusion 

The results of the study provide insights into how students perform on tasks 

commonly found in national and international mass testing contexts. The Graphics-

Decoding Proficiency instrument meets the original aims of the study with the 

statistical analysis supporting the robustness of the instrument. We acknowledge that 

the number of items in the instrument (i.e., 24) may lead to fatigue for some students, 

however, the separateness of the five languages within the instrument allow for 

administration to be undertaken over shorter time periods. In the future there is also 

scope for the items to be constructed in a digital form and to increase the sample to 

include more dynamic representations—we appreciate that the instrument can only be 

administered in a pencil-and-paper form at present. Future research on instrument 

development should broaden the instrument’s scope to include items that can be 

implemented with younger and older students since testing practices across the globe 

are requiring students to complete tests that have high levels of graphics. 
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Table 1.  
Principal component analysis for items within languages. 
 
Language % shared 

variance 

Item Proportion 

correct 

Component 

loading 

Axis 49.99% 81 .83 .71 

  76 .81 .64 

  166 .58 .78 

  46 .54 .70 

  92 .50 .70 

Apposed-position 35.45% 72 .84 .74 

  129 .80 .26 

  120 .79 .57 

  149 .56 .77 

  157 .45 .49 

Retinal-list 38.17% 83 .68 .62 

  73 .58 .57 

  144 .57 .32 

  8 .49 .68 

  45 .44 .80 

Map 46.39% 63 .85 .63 

  145 .80 .76 

  148 .71 .63 

  117 .69 .81 

  90 .49 .55 

Miscellaneous 45.97% 96 .86 .76 

  40 .65 .57 

  150 .57 .68 

  153 .54 .73 

  164 .50 .64 



 
Table 2.  
Correlation matrix for the Aggregated Language Measures (N = 199). 
 
Measures 1 2 3 4 5
1. Axis 1     

2. Apposed .35* 1    
3. Retinal .49* .37* 1   
4. Map .37* .38* .42* 1  
5. Misc. .45* .44* .44* .49* 1
*p<.01 (2-tailed) 
 



 

Table 3.  
Means (Standard Deviations) of students’ performance on examples of the five 
graphical languages. 
 
Graphical language Grade 3 

(n = 58) 

Grade 4 

(n = 58) 

Grade 5 

(n = 83) 

Axis 1.75 (0.95) 2.32 (0.90) 2.76 (0.86) 

Apposed-position 1.67 (0.67) 1.86 (0.52) 2.25 (0.62) 

Retinal 1.40 (0.82) 1.54 (0.85) 1.96 (0.78) 

Map 1.97 (0.89) 2.40 (0.86) 2.86 (0.67) 

Miscellaneous 1.73 (0.85) 2.06 (0.92) 2.61 (0.77) 

    

 



 

Table 4.  
GFIs and other statistics for the tested model. 
 
GFIs/other statistics Result 
Chi-square 5.45 
df 5 
p .365 
NFI .978 
TLI .996 
IFI .988 
CFI .998 
 
 



 
 

 
 
 
Figure 1. Graphics decoding ability confirmatory factor analysis model with 
unstandardised (and standardised) parameter estimates. 
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Appendix. Sample items from the five graphical languages. 

 
The temperature on the soccer field was 
34°C.  Which thermometer shows this 
temperature? Mark your answer. 

    

    
 

____________________________________
____ 
Item 1—Axis. Texas Education Agency. 
(2007). Texas assessment of knowledge and 
skills: Grade 3 (p. 23). Texas: Author.

The graph shows the heights of four girls. 

 
The names are missing from the graph. 
Debbie is the tallest. Amy is the shortest. 
Dawn is taller than Sarah. How tall is Sarah? 
  75 cm 
  100 cm 
  125 cm 
  150 cm  
____________________________________
____ 
Item 2—Apposed-position. National Center 
for Education Statistics. (1995). Complete 
TIMSS 4 mathematics items: Item number 
MO12126 (p. 79). Washington, DC: Author.

This is a map of Colour Island. 

 
Pete the Pirate is standing at X. From there, 
he walks south and then west. Where could 
Pete the Pirate be now? 
 
  Yellow Beach 
  White Beach 
  Purple Point 
  Black Hill 
____________________________________
___ 
Item 3—Map. Educational Assessment 
Australia. (2006). International competitions 
and assessments for schools: Mathematics 
2006: Grade 3 paper A (p. 5). Sydney: 
University of New South Wales. 

Sara made a model using small cubes. This is 
what it looked like from the front and from 
the side. 

 
 
How many cubes did Sara use in her model? 
  three 
  four 
  six 
  seven 
 
 
 
 
 
____________________________________
___ 
Item 4—Retinal-list. Australian Council for 
Educational Research. (n.d.). Progressive 
Achievement Tests in mathematics: Test 
booklet 2B (revised edn., p. 7). Camberwell, 
Victoria: Author.



 
Lani left for a holiday on Saturday 3rd January.
 

 
 
She came back home on Monday 9th February. 
How long was her holiday? 
  about 1 week 
  about 3 weeks 
  about 4 weeks 
  about 6 weeks 
_________________________________________ 
Item 5—Miscellaneous. New South Wales 
Department of Education and Training. (1999). 
Basic skills testing program: Aspects of numeracy: 
Year 3 (p. 5). Sydney, Australia: Author.

 

 
 


