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Notations: 
 
σ  = longitudinal stress 

M = bending moment calculated using applied load and assuming simply supported 

conditions 

I = second moment of area of pipe cross section 

oD = external pipe diameter 

bρ  = bulk density of soil 

 H  = the pipe depth (200 mm) 
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Abstract 

 

Failure of buried pipes due to reactive (e.g., shrinking/swelling) soil movement is a common 

problem for water and gas pipe networks in Australia and the world. Soil movement is closely 

related to seasonal climatic change and particularly the moisture content of soil. Although 

some research has been carried out to understand the effect of freezing and thawing of soils 

and temperature effects in colder climates, there is very limited research has been undertaken 

to examine the possible failure mechanisms of pipe buried in reactive soils. This study reports 

the responses of a two metre long polyethylene pipe buried in reactive clay in a box under 

laboratory conditions. The soil and pipe movements were measured as the soil was wetted 

from the bottom of the box. It was observed that the pipe underwent substantial deformation 

as the soil swelled with the increase of moisture content. The results are explained with a 

simplified numerical analysis.  

 

Introduction 

 

As the pipe asset ages, buried pipe failures or breaks have become a major concern to most 

water and gas utilities. Failures of these pipes can produce negative social, environmental and 

economic impacts to the community. Water main bursts can lead to the loss of water, traffic 

delays, damage to surrounding infrastructure, soil erosion and storm water main 

contamination, whereas failures of gas pipe can lead to hazardous conditions, even involving 

violent explosions. The water losses due to pipe breaks vary in different parts of the world 

and the costs of maintenance of pipe networks can be considerable amounting to billions of 

dollars worldwide. For instance, the cost of maintaining and replacing existing urban water 

assets in Australia is estimated to be in excess of $AU 1 Billion dollars (WSAA, 2008).  In 
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1998/99, the water pipe network in Australia was approximately 175,000 km and up to 30% 

of water (in some councils) is considered unaccounted for including water lost from pipe 

leaks and bursts. Similar issues are associated with the gas pipe networks. Therefore, there is 

a clear need for undertaking research into minimising the maintenance cost for the water and 

gas industry that will lead to an advanced system for pipe management and prediction of pipe 

failure.   

 

The factors that lead to buried pipe failures have been identified as corrosion, internal 

pressure, traffic loading, thermal stress due to pipe temperature, and bending due to poor 

bedding and the forces produced by swelling/shrinking clay (Makar et al., 2001, Rajani et al., 

1995) There is clear statistical evidence locally and in some parts of the world that pipe 

failure is significantly affected by seasonal moisture and temperature changes (Ibrahimi, 2005, 

Jarrett et al., 2001, Kassiff and Zeitlen, 1962, Rajani and Kleiner, 2001). The existing models 

for pipe failure consider only some of physical variables, and the influence of soil and climate 

are not properly taken into account. Under Australian climatic conditions, it has been 

established that water and gas pipe failure rates rise markedly during summer and to 

somewhat lesser extent during winter (Chan et al., 2007, Gould and Kodikara, 2008, Gould 

and Kodikara, 2009, Rajani et al., 1995). Furthermore, the pipe failure data indicates that 

these effects are much more pronounced after a wet and then prolonged dry periods (e.g., 

2001/2002), highlighting the susceptibility of the existing pipe network to the local climatic 

changes.  

 

Previous work on Australian data (Gould and Kodikara, 2009) indicates that there is a close 

correlation between increased pipe failure rates, climate and soil type. The understanding 

inferred from this work is that during periods of hot, dry weather reactive clay soils shrink 
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due to a reduction in moisture content with the loss of support for the pipes, and during the 

winter or wet periods, the soil swell exerting upward pressure to the pipes. A study (Kassiff 

and Zeitlen, 1962) inferred that high stresses produced by swelling soil can lead to pipe 

rupture. Similarly, in cold climates, increased pipe failures have been noted during winter due 

to decrease of pipe temperature (Rajani et al., 1995, Lochbaum, 1993, Needham and Hove, 

1981). Freezing and thawing of soils has also been blamed for pipe failure in colder climates 

(Seligman, 2000).  In general the soil movement is uneven and bending stresses are induced 

on the pipes, increasing the potential for failure.  

 

Although some evidence of pipe failure in reactive soils is available, direct experimental 

results of pipe behaviour in reactive soils, either in the field or laboratory are very limited. 

The report (Kassiff and Zeitlen, 1962) on measurement of buried pipe stresses in the field was 

probably one of the earliest studies in this area. The field study was undertaken by burying 

two asbestos cement pipes in a site in Israel that contained highly expansive clay. The study 

has compared the difference in stresses due to moisture variation of backfill material, seasonal 

change and irrigation. A definite relationship between soil moisture variation and the axial 

loading has been found and the bending stresses induced by soil swelling can be a major 

cause of pipe failures. More recent field instrumentation has been undertaken in Canada (Hu 

and Vu, 2006) for a water main buried in expansive soils. A 4 m long, 150 mm diameter 

asbestos cement pipe section buried at 2.9 m below ground surface was removed and replaced 

by an instrumented PVC pipe section. Soil moisture content, temperature, and earth pressure 

were monitored by sensors installed at various depths below and above the pipe level. Strain 

gauges installed on the PVC pipe around its perimeter measured the pipe strain and 

extensometer attached to the pipe measured the pipe deflection. The analysis of the 

preliminary results of this study showed the development stress in the pipe due to soil 
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temperature changes and pipe deflection due to soil movement (shrink/swell). Apart from 

these studies, experimental works on pipe failures in reactive soils are not commonly 

undertaken. At Monash University there is an on-going project on this topic with field 

measurements of pipe behaviour, and this paper presents the laboratory experimental results 

of a model polyethylene pipe tested in an instrumented model box filled with reactive clay 

soil. Although polyethylene pipes are used relatively recently, in many cases they are installed 

by trenchless methods and, hence, no special bedding is provided surrounding the pipes. 

Hence, the behaviour of these pipes directly buried in reactive soils is relevant to field 

conditions. The paper presents results of pipe displacements measured using a specially 

developed device and soil moisture and suction measurements during soil wetting.  Finally, a 

simplified numerical procedure is presented to estimate the soil movement on the basis of the 

measured soil and pipe properties.  

 

Soil used in the experiment  

 

An expansive soil collected from Merri Creek in Victoria, Australia was used for this study, 

and will be herein referred to as Merri Creek Clay. Interestingly, Merri Creek clay, which is 

black in colour, is commercially mined for construction of cricket pitches in Victoria. The 

physical properties of the soil obtained from laboratory test procedures, following Australian 

standards (Standard Australia, 1995a, 1995b, 1995c, 1995d, 2003) are presented in Table 1. 

The result of the compaction test conducted in accordance with Australia standard is shown in 

Fig. 1. The mineral composition of the test material was determined using the commercial 

package SIROQUANT for X – ray diffraction (XRD) (Srodon et al., 2001), the results are 

shown in Table 2. The significance presence of clay minerals, including smectite imparts high 

reactivity to the soil. 
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Swelling properties of soil 

To obtain swelling curves of Merri Creek clay, a specimen was re-moulded to a diameter of 

75 mm and a height of 20 mm using clay with an initial water content of 13%, which was 

equivalent to the initial water content of the soil used in the box.  The specimen was then set 

on an Oedometer apparatus and a seating surcharge load of 1 kPa was applied. After 

inundating the specimen with water, the vertical displacement was continuously monitored 

until its rate of movement became approximately zero. Dividing this maximum vertical 

displacement by the specimen’s initial height, the free-swelling strain was calculated. Upon 

reaching the maximum vertical displacement, the specimen was compressed by increasing the 

vertical stress in steps. In this paper, “the swelling pressure” was defined as the stress required 

bringing the specimen height to its initial height (Nelson et al., 2006). At each loading step, 

the load was sustained until the vertical displacement became a constant value. The vertical 

strain was then plotted against the corresponding vertical stress to obtain the so called 

“swelling curve”. Four swelling curves obtained for samples with four different initial dry 

densities (e. g., 1.15, 1.25, 1.42, 1.46 g/cm3) are shown in Fig. 2. It can be seen clearly that 

both the free-swelling and the swelling pressure increase with an increase in clay density. Fig. 

3 shows the swelling curve used in the numerical analysis of the pipe deflection. In this figure, 

the swelling data of soil with dry density of 1.15 g/cm3 as applicable to the soil in the 

experiment are fitted with a polynomial curve to describe the complete swelling curve.  

 

Triaxial tests on soil 

The triaxial test was undertaken to obtain the unsaturated shear strength of the soil above the 

pipe in the soil box. The pipe was buried at a depth of 200 mm below the surface and 

therefore the quick undrained triaxial test was performed with a confining stress of 1 kPa. A  
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soil specimen measuring 150 mm in height and 75 mm in diameter was remoulded to the 

same average density of the soil used in the experiment (ρd = 1.15 g/cm3) and moisture 

content of 45 %, which is equivalent to 92 % saturation.  The test was started by applying 1 

kPa of cell pressure. Subsequently, the specimens were compressed at a loading rate of 0.2 

mm/sec. The test was stopped after an axial strain of 10 % was achieved and the specimen 

was then removed from the cell. Fig. 4 shows the deviator stress against axial strain 

relationship obtained from triaxial test results and the data were fitted with a polynomial 

function. This result was used in the analysis section of this paper. 

 

Mechanical properties of Polyethylene pipe used  

 

The Young’s Modulus and Poisson’s ratio of the (medium density polyethylene) pipe used in 

the soil box was determined by testing a 1.5 m long pipe, as shown in Fig. 5.  The pipe was 

attached with 11 strain gauges (nine gauges to measure longitudinal strain and two gauges to 

measure hoop strain) and was tested in a flexural bending test configuration, as shown. Ten 

strain gauges were attached symmetrically on the top and the bottom of the pipe at five 

different sections along the pipe. Assuming simply supported conditions, the central load was 

increased until the central deflection of 15 mm was achieved. The measured strain and the 

central load were recorded during the test. 

 

Young’s Modulus of Polyethylene pipe 

Fig. 6 shows the measured longitudinal strains on the pipe at five sections during loading. 

Longitudinal stresses, σ on the pipe surface at strain measuring locations were calculated 

using Equation 1, assuming simple bending conditions. 
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2
* oD

I

M=σ                                                                                                                             (1) 

 

where M  is the bending moment calculated using applied load and assuming simply 

supported conditions,I is the second moment of area of pipe cross section, and oD is the 

external pipe diameter. Fig. 7 shows the plot of calculated stress and measured strain at the 

bottom of section 1. An approximate linear relationship of stress and strain is used to find the 

Young’s modulus according to Hook’s law. Similarly, Young’s moduli were calculated at 

each strain measuring location and as a result, the average Young’s modulus was calculated to 

be approximately 700 MPa, which is within the recommended range of the Young’s Moduli  

reported (300~1300 MPa) for polyethylene pipes (Bilgin et al., 2007). Hence, a Young 

Modulus of 700 MPa was used in the numerical analysis described later in the paper.  

 

Poisson’s ratio of Polyethylene pipe 

The ratio between the lateral (hoop) strain and the longitudinal strain can be used to calculate 

the Poisson’s ratio. As shown in Fig. 8, the measured hoop and longitudinal strains at the 

bottom of sections 2 and 4 are plotted and the Poisson’s ratio of the pipe is given by the 

gradient of these graphs. The average value of the calculated Poisson’s ratio is approximately 

0.473 and it is within the range of the Poisson’s ratios (0.42 ~ 0.50 (Bilgin et al., 2007)) 

reported  for polyethylene pipes. 

 

Model box test 

 

The soil box used for the experiment was modified from a plastic water storage tank. As 

shown in Fig. 9, the soil box measured 1015 mm in depth, 720 mm in width and 1880 mm in 

length. In order to fit a pipe into the box, 112 mm diameter holes were drilled on the side 
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walls at both lateral and longitudinal directions, to allow for two possible pipe arrangements. 

In this experiment, the pipe was installed on the longitudinal direction, therefore the holes on 

other walls were sealed up by the plastic cover with bolts and rubber sleeves to stop possible 

water leakage. A transparent perspex sheet (Fig. 9) was also installed on one side of the box 

to observe the water level and soil movement during the experiment. The modified box was 

restrained by a steel frame with thick timber sheets fixed within the frame to provide adequate 

lateral restraints to the plastic box. It was aimed to minimise the soil swelling in the horizontal 

direction, making the soil movement to be mainly in the vertical direction, representing one-

dimensional swelling conditions. Lateral deflection of the box has not been measured but the 

closely spaced steel frame along with thick timber sheet backing would be sufficiently stiff to 

restraint fully any horizontal swelling of the soil. Visual observations indicated that timber 

backing did not experience in visual deformations, in contrast to tens of millimetres of 

vertical movement experienced by the wetting soil, and therefore, the horizontal strains 

experienced by the soil over its length and width may be considered to be nearly zero.  

   

Model box preparation 

A 2180 mm long polyethylene pipe measuring the inner and outer diameters of 85 mm and 

110 mm, respectively, was instrumented with 56 uniaxial strain gauges. Seven sets of strain 

gauges were installed at every 300mm along the pipe. Each set consisted of eight strain 

gauges measuring strain at four locations on the pipe circumference: top, bottom, left 

springline, and right springline. There were two gauges at each location: one gauge was 

oriented along the longitudinal axis of the pipe to measure the longitudinal strain and the 

other gauge was oriented perpendicular to the first gauge to measure the circumferential strain. 

After installing the strain gauges on the pipe and attaching wires with them, a waterproofing 

material (SEMKIT®) was applied on the strain gauges and surrounding area to protect the 
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gauges against moisture. It was then allowed approximately 24 hours for the waterproofing 

material to be cured, before the pipe was installed longitudinally in the box as shown in Fig. 

10.  The pipe ends were kept open and was accessible from both ends. 

 

A 170 mm thick layer of gravel was placed on the base of the box in order to provide a 

permeable base. A layer of geotextile was then placed on the gravel as a separator between the 

soil and the gravel. The box was filled with Merri Creek clay, which had an initial water 

content of 13 % by using a wet-compaction method. The amount of wet soil required for pre-

determined volume (layer) to achieve a dry density of 1.15 g/cm3 was measured and placed in 

the box. After spreading the soil uniformly over the plan area of the box, the compaction was 

done in order to bring the soil surface to the pre-determined level. This procedure was 

followed until the box was filled completely. Three core samples have been then obtained by 

pushing a tube into the compacted clay, and on this basis, gave an average dry density of 1.15 

g/cm3 down the depth of the soil profile. During the filling of the box, strainpots, thermal 

conductivity sensors, theta probes and thermocouples were installed at designated depths to 

measure respectively the pipe and soil deformation, soil suction, volumetric soil water content, 

and soil temperature, as shown in Fig. 10. The surface of clay was covered up with wetted 

newspaper and plastic sheets after soil filling and compaction. The experiment was started by 

suppling water to the bottom of the box approximately 30 days after soil placement. 

 

Experimental results and discussion 

 

After setting up of the soil box as shown in Fig. 10, the wetting of the clay was started by 

supplying water from a Mariotte bottle so that zero water pressure was maintained at the 

bottom of the clay layer. In reality, wetting of soil is likely to occur from the top due to 
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rainfall and irrigation, except when there is a leak in the pipe. However in this instance, 

wetting from the bottom was adapted due to several reasons, main ones being to reduce the 

overall time for the testing and to facilitate better interpretation of results. It was considered to 

take much longer for water to infiltrate from the top through compacted clay, all the way to 

the bottom. And with any water pressure applied at the top to accelerate the water flow, as has 

been done with capillary rise method, water may bypass through (possible gaps in) sidewalls 

which could cause the interpretations very difficult.  

 

As the experiment proceeded, the water level in the Marriotte bottle was raised to accelerate 

the soil wetting, as shown in Fig. 11 (change of zero water pressure level). The wetting 

process was continued for 136 days, and the responses of the installed sensors were recorded 

continuously. In the following section, the responses of sensors are presented and discussed.  

 

Soil suction and water content 

Three Campbell thermal conductivity sensors (TCS) calibrated to measure soil suction in kPa 

were used to measure soil suction in this experiment. The responses of these Campbell 

thermal conductivity sensors (TCS), installed in the soil box (see Fig. 10), are shown in Fig. 

12. Suction sensors at different levels showed a similar response when the soil moisture 

content increased as the experiment proceeded.  TCS-1, which is located 75 mm above the 

bottom of the clay layer, responded almost immediately when water was supplied to the box, 

as the suction decreased to zero corresponding to almost full saturation state and subsequently 

remained constant. The soil above the water level could be saturated due to capillary rise of 

water and therefore, TCS sensors could indicate the decrease in soil suction before the water 

external level was raised up to the sensor. Once the wetting water front reached a TCS sensor, 

the reading of the sensor drastically decreased to a value which is corresponding to saturated 
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soil. About 1 day after TCS-1 has responded to the change of moisture content, TCS-2 which 

was located 125 mm above the TCS-1 started to respond to the approaching wetting front. 

TCS-3 which was close to the surface stayed constant at the initial suction (100 kPa) for the 

first 36 days then showed a decrease in suction, about 10 days after raising the zero pressure 

level in the Marriotte bottle by 280 mm from its initial level. Eventually, TCS-3 reached zero 

suction (full saturation) about 66 days after starting the wetting of the soil box. These 

response times are consistent with capillary rise in low permeable materials as reported by 

(Lee et al., 2004), who indicated that water rose to 75 mm height less than a half day and 

200mm  in about 2 to 3 days and the rate of rise decreased dramatically with time as water 

rose higher.  

 

Six moisture probes (MC) calibrated for Merri Creek clay to measure volumetric moisture 

content were installed in the soil box to measure the moisture content change during the test. 

However, only two probes (see Fig. 10) functioned well while the other four probes failed to 

function properly. As shown in Fig. 13, the moisture probe at 75 mm from the bottom of the 

clay layer (MC-1) measured an increase in moisture content immediately after the experiment 

had started and was reasonably constant throughout the experiment. This probe was close to 

the base of the soil where the moisture content was maintained by the water supply.  MC-2 at 

610 mm from the bottom of the clay layer responded in a delayed fashion but in harmony 

with water level increase. When comparing the responses of the suction probes and the 

moisture probes shown in Figs. 12 and 13, respectively, the suction and water content at the 

same level appear to change simultaneously without a time lag between them. The responses 

of both the suction and water content probes indicate the upward advancement of the wetting 

front with time. 
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Soil temperature 

The locations of four temperature sensors (TP) buried at different depths within the soil box 

are shown in Fig. 10. Fig. 14 clearly highlights that the fluctuation of soil temperature at the 

various depths during the experiment was similar suggesting that change of temperature was 

largely due to surrounding temperature changes and was not significantly affected by the 

increase in soil moisture content.   

As shown in Fig. 14, a significant drop of temperature can be identified from 64th day to 

136th day after the experiment had started. During this period, the temperature decreased from 

a maximum of 23 °C to a minimum of 18.5 °C. On the basis of the measured ambient 

temperature generally, this temperature drop appears to coincide with the ambient temperature 

change.  

 

Soil and pipe displacement 

Soil displacements were measured from the movements of steel rods using strain pots (SP). 

Locations of some of the strain pots installed in the soil box are shown in Fig. 10. The soil 

displacement measurement was started when water was supplied at the bottom of the soil box. 

As shown by the solid lines in Fig. 15, with the start of soil wetting from the bottom, SP-1 and 

SP-2 located respectively at 230 mm and 330 mm above the soil bottom, progressively 

recorded upward movement indicating the swelling of soil with the increase in water content. 

SP-3 and SP-4, which were located on the top of the pipe, initially showed a slight (less than a 

one mm) downward movement. The reason for this small downward movement is not exactly 

clear, but could be due to soil settlement or possible shrinking of soil due to drying prior to 

wetting. It should be noted, however, that the soil was protected from drying by placing 

wetted newspaper and plastic on the top surface, prior to starting of the wetting experiment. 

With the rise of the water table, SP-3 and SP-4 started to show upward movement which 
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would be generated by the upward deflection of the pipe due to swelling of the soil below the 

pipe. As shown in Fig. 15, it is clear that the soil moves upward (swells) with an increase in 

water content. The pipe embedded in this swelling soil deflected upward with the soil 

movement as the swelling pressure built up under the pipe. Fig. 15 indicates that the degree of 

swelling depends on the confining pressure. In other words, as the confining pressure 

increases, the swelling displacement decreases. Though, water content and suction changed 

simultaneously as the wetting proceeded (Figs. 12 and 13), the soil swelling started with a 

certain time lag possible due to higher confining pressure at the bottom of the box. 

 

Forty days after the experiment had started, the movements of the strainpot rods attached with 

measuring tapes graduated in mm were monitored by using a surveying level. This was 

undertaken as a back-up measurement. Fig. 15 shows that these level measurements (shown 

by symbols) and indicates that these measurements agree reasonably well with the strain pot 

measurements. However, human error in using survey level and the possible deformation of 

the measuring tapes attached with the strainpots could lead to the differences in these two 

measurements.  

 

Since the strain gauges failed to respond accurately, the pipe deflection was measured along 

the pipe inserting a specially designed device into the pipe and using a surveying level, after 

136 days of the commencement of wetting. The device used to measure the deflection on the 

pipe is shown in Fig. 16. This consisted of a ruler which is graduated in mm, which was fixed 

on a shuttle attached to a 2.5 m long steel rod and the ruler is pressed upward by a spring to 

maintain contact with the top of the pipe inside. The rod was pushed along the bottom of the 

pipe while the ruler in contact with the top of the pipe. A land surveying level was set up so 

that the line of sight was set through the pipe was used to read the ruler at every 100 mm 
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along the pipe. The measured deflection was plotted with the deflection of the pipe obtained 

from SP-3 and SP-4 and is shown in Fig. 17. As shown in this figure, the pipe deflection 

measured by the strain pots (SP-3 and SP-4) located directly on top of the pipe agreed well 

with the internal deflection of the pipe. The deflection of pipe measured this way is used for 

the numerical analysis described in the next section. This special device used to measure the 

pipe deflection was designed after realizing that the strain gauges had malfunctioned, hence, 

was used at the end of the test, but not at different stages of the wetting process. 

 

Numerical procedure to predict the deflection of buried pipes 

 

The distribution of measured internal pipe deflection (see Fig. 17) shows significant upward 

bending of a pipe buried in reactive soil.  It may be at the mid pipe section, soil above the pipe 

may have experienced an average strain of about 6% (for 12 mm deflection over 200 mm soil), 

which may have led to shear failure of the soil at some locations (see Fig. 5). The pipe uplift 

prediction model for shallow buried pipes (Cheuk et al., 2005) shows that for a buried pipe to 

be deflected upward the uplift force of the pipe has to be greater than the uplift resistance 

force acting above the pipe. The ultimate uplift resistance can be considered to be the 

combination of the overburden load and the in situ shear stress along the inclined plane 

extending outwards from the pipe at the angle of soil dilation as shown in Fig. 18. This mode 

of deformation was verified by centrifuge testing on model pipe systems (Cheuk et al., 2005).  

Although they did not consider reactive soils in their study, the developed modes of failure 

can be considered to be applicable. In this study, the angle of dilation is assumed to be zero as 

applicable for undrained clay.  
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Fig. 19 shows the upward deflected pipe in equilibrium under the uplift and uplift resistance 

forces. The uplift force is caused by swelling of the soil under the pipe. The maximum 

swelling pressure is applied at the supports where the pipe upward deflection is restrained 

(zero swelling strain) and the minimum swelling pressure is applied at the mid pipe section 

where the maximum soil swelling occurs. As the upward pipe deflection increases, the soil 

strain above the pipe increases and subsequently the shear resistance of the soil above 

increases. 

 

 Swelling pressure acting on the pipe  

The uplift force of the buried pipe is caused by the soil swelling pressure acting on the bottom 

of the pipe. The swelling pressure profile can be obtained by considering the measured 

deflection inside the pipe as presented in Fig. 17. Since the upward deflection of the pipe was 

due to swelling of the soil, the magnitudes of the soil displacements beneath the pipe were the 

same as the pipe deflection. The average swelling strain profile along the pipe is assumed to 

arise uniformly from the 430 mm thick soil layer below the pipe, although actual soil strains 

would vary with the soil depth. Therefore, the swelling strain profile can approximately be 

obtained by dividing the measured deflected profile from the thickness of the soil below the 

pipe (430 mm). The swelling pressure profile acting on the pipe can be obtained from the 

oedometer test results of the soil specimen with a dry density of 1.15 g/cm3 in Fig. 3. The 

swelling pressure can be converted to a unit load along the pipe by multiplying by the pipe’s 

outer diameter (110 mm). Fig. 20 shows the strain profile and swelling load profile acting on 

the pipe (uplift force) used for this simplified numerical analysis. 

 

Soil resistance above the pipe  

The average soil strain profile above the pipe is approximated by dividing the measured 

deflection of the pipe by the soil thickness above the pipe (200 mm). The resisting shear stress 
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profile can be obtained from the triaxial test result shown in Fig. 4. The soil shear stress 

corresponding to the pipe deflection was calculated as half of the deviator stress at 

corresponding strain level. The shear force considered in the analysis is calculated according 

to the model (Cheuk et al., 2005), where the shear force is considered to be acting along the 

shear planes extending outwards from the pipe at the angle of dilation. Since the angle of 

dilation is zero for undrained clay, the shear plane is considered to be extended vertically 

from the pipe to the soil surface. Therefore, the soil resistance (kN/m) on top of the pipe may 

be calculated using Equation 2. 

 

Soil resistance = Shear stress × 2 ×soil depth to the pipe                                                 (2) 

  

where the soil resistance is equal to the shear stress acting at the two shear planes along the 

depth of the pipe.   

 

Surcharge load due to soil above the pipe  

Apart from the swelling and resistance force, the overburden load of soil is also acting on the 

pipe. The analysis considered the soil moisture content at 45 % with dry density of 1.15 g/cm3.  

The uniformly distributed surcharge load, P (kN/m) is then calculated using Equation 3, 

 

ob DHP ××= ρ                                    (3) 

 
where bρ  is the bulk density of soil, H is the depth of the pipe and oD  is the pipe external 

diameter. 
 

Results of analysis 

All the calculated soil loads were applied to the pipe with the measured Young’s modulus of 

700 MPa, Poisson’s ratio of 0.48, and moment of area of the pipe of 7.402 × 10-5 m4 for 
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computer structural analysis. The pipe was analysed for bending using PROKON structural 

analysis software (Prokon Software Consultant, 2003) assuming two end support conditions, 

i.e., pinned and fixed. 

 

A comparison of the experimental and analysed pipe deflections shown in Fig. 21 indicates 

that the distribution of pipe deflection predicted using the simplified theoretical analysis is 

reasonably close to the measured deflection values. It is worth noting that maximum 

deflection occurred at the mid span in the theoretical results, where the measured maximum 

deflection is slightly shifted to the right side of the pipe possibly due to differential swelling 

of the soil. The numerical analysis results also confirm that the experimental buried pipe 

support is better represented by a pinned end support condition, as expected from the physical 

condition that was provided in the pipe box test set up.  

 

The analytical results show that the upward pipe deflection occurred when the soil swelling 

stress increased while the soil resistance on top of the pipe reduced due to increase of the 

moisture content. Despite the significant approximations made, the pipe deflection predicted 

by the simplified theoretical analysis provides reasonable agreement with the measured values 

and therefore the theoretical procedure may be used to predict the approximate behaviour of 

pipe in the field when the required properties of pipe and soil are available. In the field 

analysis, it may be possible to apply an iterative numerical procedure, where the computation 

is preceded until the predicted and assumed deflections are matched.  For example, when 

more deflection than actual is assumed, the pipe will deflect less because of the reduction of 

soil swelling pressures. So this procedure can be repeated until convergence is obtained in the 

predicted and assumed soil pressures following the non-linear swelling process. This 

analytical procedure is schematically shown in Figure 22. Some preliminary analyses 
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undertaken on field scenarios involving cast iron and plastic pipes with spans of 6 m indicate 

that pipe middle displacements of several millimetres for the cast iron and tens of millimetres 

for the plastic pipes may be possible. It should be noted that more accurate analysis of the 

pipe behaviour in this experiment will require resorting to a more standard numerical 

technique such as the finite element method.  This would require a more detailed parametric 

input, characterising the unsaturated soil behaviour under large deformations.  

 

It should be noted that for relatively rigid pipes like cast iron pipes, the upward deflection will 

be much smaller although the swelling pressure acting on the pipe will be higher. Furthermore, 

cast iron is much more brittle than plastic pipes and can experience failure at relatively low 

strain levels. The wetting events in the field are most likely from rainfall events on the top 

instead of capillary rise from the bottom, the rate of soil swelling may provide different stress 

profile for the pipe. Having said this, a major difference of soil/pipe interaction behaviour in 

wetting from top and bottom is the way wetting progresses with time. In order for pipe to get 

stressed due to wetting, the soil below the pipe should get wet. Hence, final result will be 

pretty much the same, when the soil below the pipe gets wetted by both methods. However, it 

is possible that the transient stages will be somewhat different due to the differences in the 

moisture regime down the soil profile. 

 

Conclusions 

 

This paper demonstrates the behaviour of a Polyethylene pipe buried in clay soil box 

subjected to wetting from the base. A simplified numerical procedure was developed to 

predict the deflection of a buried pipe in reactive soil using pipe and soil properties. Soil and 

pipe properties were obtained in the laboratory and the proposed iterative numerical 
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procedure was employed to predict the deflection of the buried Polyethylene pipe. The 

following conclusions can be drawn from the results of this study. 

 

(1) It is clear that the water content and suction changed simultaneously as wetting 

proceeded, but the swelling movement is dependant on the overburden pressure, 

confinement and also displayed a certain time lag.  Therefore it is necessary to take 

these into account in detailed and more rigorous modelling of the pipe/reactive soil 

interaction using standard continuum analysis methods.   

 

(2) Both free swelling displacement and swelling stress increase with the increase in soil 

density. 

 

(3) The simplified numerical analysis of pipe deflection capturing some of the essential 

mechanics has generated comparable results with the soil box experiment. This 

numerical procedure has provided information on the pipe bending mechanisms, 

which proved that the pipe movement was directly related to the properties of the pipe 

material and soil.  

 

(4) When comparing with the field situation, the large scale soil box experiment did not 

consider the internal pressure of the pipe and the greater buried depth of the pipe in the 

field. These factors can provides higher resistance on the pipe and possibly reduce the 

upward deflection. But relatively rigid pipes like cast iron pipes, the upward deflection 

will be much smaller although the swelling pressure acting on the pipe will be higher. 

The soil box experiment has provided a useful simulation of a buried pipe bending due 

to change of soil moisture content in a laboratory situation, while the simplified 
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theoretical analysis was found to provide reasonable results comparable with the 

measured values, and may be applied to simulate the field conditions approximately.  
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Table 1: Properties of Merri Creek caly 
Liquid limit, wl [%]   73.30 
Plastic limit, wp [%]   33.00 
Plasticity index, Ip [%]   40.30 
Linear shrinkage [%]   13.30 
Specific gravity, Gs     2.62 
% passing sieve No. 200 (425 µm) 100.00 
Clay content [<0.002 mm: %]     0.90 
Silt content  [%]   99.10 
Maximum dry density ρd(max)  [g/cm3]     1.36 
Optimum water content [%]   26.40 
Swelling stress [kPa] for ρd=1.15 g/cm3   98.10 

 
 

 
 
 

Table 2: Mineralogy content of Merri Creek clay 

Quartz Albite Orthoclase Kaolin Smectite Calcite Halite Ilmenite Anatase 

41 2 3 3 51 - - 1 <1 
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Figure 1: Standard proctor compaction curve for Merri Creek clay 
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Figure 2: Variation of swelling pressure curves with initial dry density of soil samples 
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Figure 3: Swelling curve used for the numerical analysis of the pipe 
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Figure 4: The triaxial test result used in the numerical analysis of the pipe 
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Figure 5: Strain gauge locations on the Polyethylene pipe used for three-point loading test 
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Figure 6: Time histories of responses of strain gauges used in three-point loading tests 
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Figure 7: The relationship between the measured longitudinal strain at the bottom of section 1 
(L-B-1) and corresponding calculated stress 
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Figure 8: The relationships between hoop and longitudinal strains measured at the bottom of 
section 2 and 4. 
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Figure 9: The box used for the experiment 
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Figure 10: The schematic diagram of the soil box with sensor positions 
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Figure 11: Rise of the level of zero water pressure against time 
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Figure 12: Change of volumetric water content against time 
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Figure 13: Soil suction change against time 
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Figure 14: Time history of soil temperature change at different levels 
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Figure 15: Time history of measured soil displacement at different levels (Solid lines show 
the continuous strain pot measurements, whereas the symbols show intermittent 
measurements taken by a survey level) 
 
 
 
 
 

 
 
 
Figure 16: The device used in the pipe to measure its deflection 
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Figure 17: Comparison of pipe deflection measured internally using the specially designed 
device and strainpots located on the pipe 
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Figure 18: A model for predicting the peak uplift resistance (Cheuk et al. 2005) 
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Figure 19: External stresses acting on a deflected buried pipe 
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Figure 20: Swelling strain and swelling load used for the numerical analysis 
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Figure 21: Comparison of analytical and experimental pipe deflections 
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Figure 22: The schematic diagram of the proposed iterative analytical procedure to predict 
buried pipe deflection due to soil swelling 
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