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Abstract

Nonhealing wounds are a major burden for health care systems worldwide. In ad-
dition, a patient who suffers from this type of wound usually has a reduced quality
of life. While the wound healing process is undoubtedly complex, in this paper
we develop a deterministic mathematical model, formulated as a system of partial
differential equations, that focusses on an important aspect of successful healing:
oxygen supply to the wound bed by a combination of diffusion from the surrounding
unwounded tissue and delivery from newly-formed blood vessels. While the model
equations can be solved numerically, the emphasis here is on the use of asymptotic
methods to establish conditions under which new blood vessel growth can be initi-
ated and wound-bed angiogenesis can progress. These conditions are given in terms
of key model parameters including the rate of oxygen supply and its rate of con-
sumption in the wound. We use our model to discuss the clinical use of treatments
such as hyperbaric oxygen therapy, wound bed debridement, and revascularisation
therapy that have the potential to initiate healing in chronic, stalled wounds.
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1 Introduction

Lazarus et al. (1994) define a chronic wound to be one which either fails to proceed

through an orderly and timely process to produce anatomic and functional

integrity, or proceeds through the repair process without establishing a sustained

anatomic and functional result. A recent estimate suggests that the US health care

system spends in excess of US$25 billion annually treating patients with nonhealing

wounds (Sen et al., 2009). Figure 1 shows typical data illustrating how wound

closure varies between healing and non-healing wounds Roy et al. (2009). It should

be noted that these data are from porcine wounds, such animal wounds being

thought accurately to reflect equivalent human wound data (Sullivan et al., 2001).

Fig. 1. Experimental data showing the percentage of the initial wound area over time in
nonischemic wounds (data shown in circles) and ischemic wounds (data shown in squares).
Data are means ± SD. ∗P < 0.05 compared with time zero postwounding. This figure was
reproduced with permission from Roy et al. (2009).
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Wound healing is a highly-regulated and complex process, consisting of four stages

(haemostasis, inflammation, proliferation and remodelling using the terminology of

Grey and Harding (2006)) and requiring the coordination of the activites of many

chemical and cellular species. Haemostasis typically lasts for a few hours and

involves the control of blood loss in the damaged region. The inflammation stage

lasts several days and coincides with inflammatory cell migration into the wound

space and the release of chemical factors such as vascular endothelial growth factor

(VEGF). These chemicals provide the stimulus that ultimately leads to the

formation of new blood vessels (angiogenesis), an important step in the

proliferative stage of healing. During this healing phase, there is a surge in the

proliferation rate of fibroblasts, endothelial and epithelial cells and the rate at

which collagen is deposited by fibroblasts (Jeffcoate et al., 2004). The final stage of

healing sees the wound increase in tensile strength via remodelling of the

extracellular matrix. The healing process is tightly regulated by many factors

including oxygen supply and new capillary development. Grey and Harding (2006)

provide a recent review of human wound healing and the factors that modulate it.

Most mathematical models of wound healing can be categorised as either

population-based (or continuum) or cell-based (or discrete). An advantage of

adopting a discrete approach is that it is possible to incorporate details that

cannot easily be included within a continuum framework (see for example,

Anderson and Chaplain, 1998; Cumming et al., 2010). These features include

cell-cell interactions, individual cell cycles, positioning of daughter cells after

proliferation and discrete collagen fibres with individual orientations. However,
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continuum models are often more amenable to analysis than discrete ones. Geris

et al. (2010) review in silico treatment strategies for wound healing together with

some of the mathematical models that have been used to describe the healing

process. Mathematical models that closely relate to experimental and/or clinical

data have been the focus of recent modelling research applied to angiogenesis and

vasculature development (Machado et al., 2011; Aubert et al., 2011).

One of the earliest continuum models of angiogenesis in wound healing is a

six-species, partial differential equation (PDE) model (chemoattractant, tips,

oxygen blood vessels, fibroblasts and extracellular matrix) developed by Pettet

et al. (1996b) to simulate the ingrowth of blood vessels. By performing numerical

simulations they identified parameter sets for which healing stalled (by looking at

mechanisms such as new capillary tip sprouting and chemoattractant production).

In other work, Pettet et al. (1996a) used perturbation methods to derive

approximate expressions for the wavespeed of a soft-tissue healing and Byrne et al.

(2000) used the same model to compare to experimental data. More recently,

Schugart et al. (2008) developed a seven-species model of angiogenesis (the six

species from the model by Pettet et al. (1996b) and additionally macrophages) in

order to investigate the role of oxygen tension in cutaneous wound healing.

Schugart et al. used their model to generate several predictions. For example, they

claim that wounds will not heal in extremely hypoxic environments and that the

use of hyperbaric oxygen therapy may stimulate angiogenesis. These predictions

are consistent with earlier experimental work (Hopf et al., 2005; Kim et al., 2007).

Xue et al. (2009) extended the model of Schugart et al. (2008) by incorporating
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mechancal effects in that they treated the ECM as a viscoelastic material. To the

best of our knowledge, Xue et al. (2009) is the first mechanochemical model of

wound healing angiogenesis. Vermolen (2009) has developed a system of nonlinear

reaction-diffusion equations for oxygen, growth factors, epidermal cells and

capillaries and simulated healing in two spatial dimensions. While these models

give considerable insight into wound healing, they do not lend themselves to the

derivation of simple expressions relating the success (or failure) of wound healing

to the system parameters.

There have been several discrete models of the related phenomenon of

tumour-induced angiogenesis, including important work by Chaplain and

Anderson (1999) that is based on a finite difference approximation of PDEs and

Bauer et al. (2007) who use the cellular Potts model framework. It is worth noting

that wound healing angiogenesis is a regulated process whereas tumour-induced

angiogenesis is uncontrolled (Byrne and Chaplain, 1996). For a detailed review of

mathematical models of tumour-induced angiogenesis, see Mantzaris et al. (2004).

In this paper, we develop a mathematical model based on the assumption that

revascularization of the wound bed is the rate-limiting step in successful healing.

While other processes, such as ECM deposition and remodelling, are undoubtedly

important, restoration of a good oxygen supply is vital for the repair of damaged

tissue (Hunt and Gimbel, 2002). Our aim is to derive simple criteria, in terms of

the model parameters, for which successful healing will be initiated. We then use

these criteria to assess common treatment therapies such as debridement,

revascularistion, and hyperbaric oxygen therapy (Thackham et al., 2008; Flegg
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et al., 2009).

In the next section we develop our mathematical model and present the governing

partial differential equations. In Section 3, we present typical numerical

simulations while in Section 4 we analyse the model and identify regions of

parameter space in which we predict healing will succeed or fail. In Section 5, we

discuss the implications of our results and make suggestions for further work.

2 Description of the Mathematical Model

Our mathematical model comprises three partial differential equations: one for the

oxygen concentration, w, one for the capillary tip density, n, and one for the blood

vessel density, b. The equations are based on the principle of mass conservation

and are stated below in dimensional form. For simplicity, we consider a

one-dimensional wound whose edge is located at x = 0 and whose centre lies at

x = L, with symmetry about x = L. It is worth noting that in our one-dimensional

model, the capillary tip density is effectively averaged in the plane perpendicular

to the direction in which the healing front advances. The model is based on the

previous work by Pettet et al. (1996a,b).

2.1 The Model Equations

Oxygen concentration, w(x, t);
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We assume that oxygen diffuses through the wound space with diffusivity Dw, is

supplied locally by the blood vessels at rate k2b and is consumed by the tissue at

rate k4w, where Dw, k2 and k4 are non-negative constants. Combining these ideas

we deduce the equation describing the evolution of the oxygen concentration:

∂w

∂t
= Dw

∂2w

∂x2
+ k2b− k4w. (1a)

Implicit in Eq. (1a) is the assumption that the oxygen concentration in the fully

healed tissue, which we denote by whealed, is maintained at a baseline level at which

supply and demand balance so that, whealed = k2b0/k4 where b0 denotes the blood

vessel density in unwounded tissue.

Capillary tip density, n(x, t);

The evolution of the capillary tip profile is assumed to be dominated by

chemotaxis, tip-sprouting from vessels and tip regression so that

∂n

∂t
= χ

∂

∂x

(

n
∂w

∂x

)

+ k5bH(w − wL)H(wH − w)− k6n. (1b)

In Eq. (1b) H(x) is the Heaviside function which we define as follows: H(x) = 1 for

x ≥ 0 and H(x) = 0 otherwise. Several different approaches to modelling capillary

tip chemotaxis within the wound space have been proposed. Typically, it is

assumed that a chemoattractant, such as VEGF, is produced by macrophages or

other inflammatory cells during early wound healing and in response to hypoxia.

Capillary tips then migrate up spatial gradients of the chemoattractant (see for

example, Pettet et al. (1996a,b); Schugart et al. (2008)). Gaffney et al. (2002) used
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a different (but equivalent) approach, modelling the migration of endothelial cells

(ECs) down spatial gradients in the blood vessel density.

Since VEGF production appears to be triggered by hypoxia (Al-Waili and Butler,

2006), we anticipate that the oxygen and VEGF profiles will be complementary.

Hence, migration up the spatial gradients in VEGF will be equivalent to migration

down spatial gradients of oxygen (in a similar way to that in which Gaffney et al.

(2002) model endothelial cell migration down the spatial gradients in blood vessel

density). With this in mind, we model the chemotactic motion of capillary tips as

in Eq. (1b), with a constant chemotactic coefficient, χ. While the model could be

extended to include new species, namely macrophages and VEGF, we argue that

our approach is sufficient to incorporate the salient features of angiogenesis, such

as oxygen-regulated ingrowth of new vessels. We assume further that if the oxygen

concentration is too high (that is, hyperoxia, w > wH) or too low (that is, chronic

hypoxia, w < wL) then no capillary tips will be produced while for intermediate

values (i.e, wL < w < wH) they sprout from existing vessels at rate k5b. Finally, we

assume that tip death occurs at rate k6n, which is independent of the local oxygen

concentration. We remark that capillary tip loss due to anastomosis with other

tips and blood vessels could be modelled by including terms proportional to nb

and n2 in Eq. (1b), for which Edelstein (1982) provide details: here we neglect such

effects and assume instead that apoptosis dominates capillary tip removal. The

way we model chemotaxis and capillary tip production and their dependence on

the oxygen concentration distinguishes this work from previous models.

Blood vessel density, b(x, t);
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The blood vessel density b(x, t) is assumed to evolve as follows:

∂b

∂t
= −χn

∂w

∂x
+ k3b(b0 − b). (1c)

In Eq. (1c) we follow Balding and McElwain (1985), using the “snail trail” concept

to model the deposition of blood vessels by the migrating capillary tips. This

approach, which was originally developed by Edelstein et al. (1983) to investigate

fungal growth, assumes that new blood vessels are laid down behind the advancing

capillary tips at rate nv where v = −χ
∂w

∂x
≥ 0 is the speed with which the

capillary tips move (see Eq. (1b)). Remodelling of the newly formed blood vessels

is accomplished through the logistic term, with carrying capacity b = b0 and

growth rate k3. This remodelling term is similar to those employed by other

authors, including Gaffney et al. (2002).

Boundary and initial conditions

The following boundary and initial conditions are imposed to close Eqs. (1):

∂w

∂x

∣

∣

∣

∣

∣

x=0

=
∂w

∂x

∣

∣

∣

∣

∣

x=L

= 0, n(0, t) = 0, (2a)

w(x, 0) =



























k2b0
k4

0 < x < ε

0 ε < x ≤ L,

b(x, 0) =



























b0 0 < x < ε

0 ε < x ≤ L,

n(x, 0) = 0, 0 ≤ x ≤ L.

(2b)

At the wound centre, x = L, a zero-flux condition is imposed on the oxygen

concentration due to the assumed spatial symmetry of the wound domain. We

assume that there are no capillary tips at the wound edge, x = 0, and that oxygen
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levels equilibrate rapidly with uninjured levels so that the oxygen flux there will be

zero. We further assume that initially there are no tips within the wound space,

the blood vessel density is that of normal tissue within a certain distance from the

wound edge (0 < x < ε) and that the wound is oxygenated throughout this

vascularised region such that demand for oxygen (at rate k4w) balances supply (at

rate k2b0). We assume that the width of the wound margin, ε, that separates the

wounded and healthy tissues is small so that ε ≪ L.

2.2 Nondimensionalisation of the Model

We nondimensionalise the model by taking

w = w̄w∗, x = x̄x∗, n = n̄n∗, b = b̄b∗ and t = t̄t∗,

where the asterisks denote dimensionless variables and the bars denote

characteristic values of the variables. We choose

b̄ = b0, n̄ =
b0
x̄

and t̄ =
1

k3b0
.

We do not specify a characteristic value for the oxygen concentration since we

want to vary k2b and k4w, the rates of supply and and demand for oxygen, in order

to investigate how these mechanisms govern the success or failure of the healing of

a wound. The characteristic lengthscale, x̄ is also left arbitrary since we want the

wound centre to be far enough away from the advancing healing front so that the

symmetry condition at the wound centre does not effect the numerical solution.
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We also introduce the following dimensionless parameters:

k∗

2
=

k2
k3w̄

k∗

4
=

k4
k3b0

k∗

5
=

k5x̄

k3b0
k∗

6
=

k6
k3b0

w∗

H =
wH

w̄

w∗

L =
wL

w̄
ε∗ =

ε

x̄
D∗

w =
Dw

k3b0x̄2
χ∗ =

χw̄

k3b0x̄2
L∗ =

L

x̄
.

Under the above scaling and omitting the asterisks for notational simplicity, Eqs.

(1) and (2) transform to give the following system of PDEs and boundary and

initial conditions:

∂w

∂t
= Dw

∂2w

∂x2
+ k2b− k4w, (3a)

∂n

∂t
= χ

∂

∂x

(

n
∂w

∂x

)

+ k5bH(w − wL)H(wH − w)− k6n, (3b)

∂b

∂t
= −χn

∂w

∂x
+ b(1− b), (3c)

∂w

∂x

∣

∣

∣

∣

∣

x=0

=
∂w

∂x

∣

∣

∣

∣

∣

x=L

= 0, n(0, t) = 0, (4a)

w(x, 0) =



























k2
k4

0 < x < ε

0 ε < x ≤ L,

b(x, 0) =



























1 0 < x < ε

0 ε < x ≤ L,

n(x, 0) = 0, 0 ≤ x ≤ L.

(4b)

3 Numerical Results

Eqs. (3) and (4) are solved numerically using a finite volume method, with a

Roe-flux limiting approach employed to discretise the chemotaxis term in Eq. (3b)

(Thackham et al., 2009). Unless otherwise stated, the dimensionless parameters

are fixed at the following values:
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Dw = 10, χ = 1, k2 = 150, k4 = 150, k5 = 100,

k6 = 100, wH = 0.5, wL = 0.3, ε = 0.1, L = 2.

We stress that this choice of parameter values is employed for illustrative purposes

only, since our main goal is to derive conditions, in terms of arbitrary but

reasonable, parameter values, for the initiation of successful healing. While the

above values are used to generate a typical simulation in which successful healing

occurs, order of magnitude estimates for each system parameter can be obtained

from existing mathematical models in which parameter values were derived from

the experimental literature (Flegg et al., 2009).

The spatio-temporal evolution of the three species during a typical simulation of

successful healing is shown in Fig. 2. Oxygen diffuses into the wound space from

the surrounding healthy tissue and establishes a local oxygen gradient, down which

capillary tips migrate. As the capillary tips move into the wound, they leave behind

them a network of new blood vessels, which deliver additional oxygen to the wound

and allow the capillary tips and blood vessels to move further into the wound. In

this way, we observe a steadily advancing wave of invasion from left (wound edge)

to right (wound centre) in the capillary tip and blood vessel profiles. When the

capillary tips reach the centre of the wound, they are removed via anastomosis.

Hence, the initial wound space will eventually be completely revascularised and

oxygen levels returned to normal, indicating the completion of the healing process.

We performed a sensitivity analysis by increasing and decreasing each of the

system parameters by a factor of 5 (see Table 1). We run the full numerical
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Dimensionless parameter Relative change Percentage healed

baseline – 17%

Dc ↑ ×5 No healing

↓ ×5 34%

χ ↑ ×5 92%

↓ ×5 < 1%

k2 ↑ ×5 No healing

↓ ×5 No healing

k4 ↑ ×5 No healing

↓ ×5 No healing

k5 ↑ ×5 75%

↓ ×5 2%

k6 ↑ ×5 < 1%

↓ ×5 90%

Table 1
Summary of the predicted changes that occur if the baseline parameter values are varied
by a factor of 5. The percentage healed represents the percentage of the domain that has
a dimensionless blood vessel density exceeding 0.5 at time t = 5.

simulation of Eqs. (3) and (4) until t = 5 and compare the outputs for the different

parameter values at this time by calculating the percentage of the wound domain

(0 < L < 2) which has healed. Here, we define the healed tissue to be when the

dimensionless blood vessel density reaches a threshold value of 0.5. This analysis

revealed two processes are critical to successful wound healing: the supply of

oxygen from the blood vessels (k2b) and the consumption of oxygen (k4w). Guided

by these results, the (k2, k4) parameter space is explored in detail in the next

section. The baseline parameter set is 17% healed at time t = 5, however all of the

changes to parameters k2 and k4 result in stalled healing (see Table 1).

Using our model it is possible to simulate situations for which healing stalls

because angiogenesis fails to occur. For example, fixing all parameters, except k2,
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Fig. 2. Results from numerical solution of Eqs. (3) subject to the conditions (4) showing
the distributions of oxygen, capillary tips and blood vessels at dimensionless times t = 5, 10
and 15. The solution profiles evolve rapidly to fixed profiles which travel from left to right
at constant speed until the wound space is completely revascularised and oxygen levels
return to normal. Parameter values are: Dw = 10, χ = 1, k2 = 150, k4 = 150, k5 = 100,
k6 = 100, wH = 0.5, wL = 0.3, ε = 0.1, L = 2. Using a value of k3b0 = 1.3/day used
previously (Flegg et al., 2009), a dimensionless time of 25 corresponds to approximately
19 days.

at the values used in Fig. 2, healing stalls if the rate at which oxygen is supplied to

the wound through the blood vessels is decreased by a factor of 5, from k2 = 150 to

k2 = 30 (see Fig. 3). Healing fails because the wound space becomes so severely

hypoxic that the oxygen concentration everywhere is too low to stimulate tip

production. Similarly, fixing all parameters, except k4, at the values used in Fig. 2,

healing stalls if the oxygen consumption rate is increased, from k2 = 150, by a

factor of 5. Healing fails because the wound space is hyperoxic in the region where

existing blood vessls are and hence no capillary tip production can occur.
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Fig. 3. Results from numerical solution of Eqs. (3) subject to the conditions (4) showing the
distributions of oxygen, capillary tips and blood vessels at dimensionless time t = 5. The
solution profiles show that no capillary tips are produced within the wound. Parameter
values are: Dw = 10, χ = 1, k2 = 30, k4 = 150, k5 = 100, k6 = 100, wH = 0.5, wL = 0.3,
ε = 0.1, L = 2.

4 Establishing Necessary Conditions for Initiating Healing

The early behaviour is known to be an accurate predictor of the ultimate success

or failure of a wound to heal (Margolis et al., 2004). In this section we investigate

whether the success or failure of healing can be predicted from the early time

dynamics of our model. We can then use our results to predict those types of

nonhealing wounds that would benefit from treatment. Guided by our numerical

simulations we consider cases for which the parameters Dw, k2, k4, k5 and k6 are

large. More precisely, we introduce a small parameter 0 < δ ≪ 1 and assume

Dw =
D̂w

δ2
, k2 =

k̂2
δ2
, k4 =

k̂4
δ2
, k5 =

k̂5
δ
, k6 =

k̂6
δ
,
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where the hats represent O(1) quantities. We investigate the early time behaviour

by rescaling on the short timescale t = δτ so that Eqs. (3) transform to give

δ
∂w

∂τ
= D̂w

∂2w

∂x2
+ k̂2b− k̂4w, (5a)

∂n

∂τ
= δχ

∂

∂x

(

n
∂w

∂x

)

+ k̂5bH(w − wL)H(wH − w)− k̂6n, (5b)

∂b

∂τ
= −δχn

∂w

∂x
+ δb(1− b). (5c)

Henceforth, we omit the hats for notational simplicity. We seek approximate

solutions to Eqs. (5) which are regular power series expansions in δ so that, for

example,

w = w0(x, τ) + δw1(x, τ) +O(δ2).

The solution of the leading order equations yields the following approximate

expressions for the oxygen concentration (w0), the capillary tip density (n0) and

the blood vessel density (b0):

w0(x) =































k2
k4

(

1−
sinh (θ(L− ε))

sinh (θL)
cosh (θx)

)

for 0 ≤ x < ε,

k2
k4

sinh (θε)

sinh (θL)
cosh (θ(L− x)) for ε < x ≤ L,

(6a)

where θ2 =
k4
Dw

and we have demanded continuity of oxygen and its first spatial

derivative at x = ε.

b0 = b(x, 0) = H(ε− x), (6b)
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n0(τ) =



















































0 for 0 ≤ x < xleft(τ),

k5
k6

(

1− e−k6τ
)

for xleft(τ) < x < xright(τ),

0 for xright(τ) < x ≤ L.

(6c)

where xleft(τ) and xright(τ) are the left and right-most extremes of the wound in

which capillary tip production occurs.

On this early time scale, the leading order response of capillary tips is production

in the region xleft(τ) < x < xright(τ) and no response outside of this region. At

leading order the blood vessels remain at their initial distribution while for

ε < x < L, the dominant processes for oxygen are diffusion and consumption and

for 0 < x < ε diffusion, supply and consumption dominate.

We note here that this early time approximation for the capillary tips is

discontinuous at x = xleft(τ) and x = xright(τ) for τ > 0. Here x = xleft(τ) and

x = xright(τ) mark the left and right-most extremes of the wound in which

capillary tip production occurs (that is, the oxygen concentration is such that

capillary tip production occurs in xleft(τ) < x < xright(τ)). Their locations will

change with time, τ . Since we are investigating the early time behaviour of the

model we shall suppose that xleft(τ) = xleft(0) + δxleft,1(τ) +O(δ2), with a similar

expression for xright(τ). If we focus on the leading order behaviour so that

xleft(τ) ≈ xleft(0) and xright(τ) ≈ xright(0) and the boundaries between the healing

zone and outer regions move slowly at early times, then it is straightforward to

show that six different cases can arise depending on the initial oxygen

concentrations at x = xleft(0) and x = xright(0). These cases are summarised in
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Table 4 and are discussed in turn below.

We note that without explicitly solving for the O(δ) correction terms we cannot

determine whether the leading order behaviour remains valid for large τ . However,

in Fig. 4 we present numerical evidence that confirms our early time

approximations are in good agreement with the numerical solutions for large times.

Case Number Condition/s xleft(0) xright(0) Healing initiated

1 w0(0) ≤ wL, ∀x ∈ (0, L) — — No

2 w0(ǫ) ≤ wH , ∀x ∈ (0, ε) — — No

3 w0(ǫ) ≤ wL ≤ w0(0) ≤ wH 0 xL Yes

4 wL ≤ w0(ǫ) ≤ w0(0) ≤ wH 0 ε Yes

5 w0(ǫ) ≤ wL < wH ≤ w0(0) xH ε Yes

6 wL ≤ w0(ǫ) ≤ wH ≤ w0(0) xH xL Yes

Table 2
Summary of the six possible cases that can arise and predictions about the onset of an-
giogenesis.

Case 1: Chronic hypoxia. If w0(0) < wL then healing does not occur

because the oxygen concentration throughout the wound is too low to stimulate

angiogenesis. Using Eq. (6a) we deduce that a necessary condition for this case

to arise is that the parameters satisfy:

k2
k4

< wL

(

1−
sinh (θ(L− ε))

sinh (θL)

)

−1

,

where θ =

√

k4
Dw

. In this case,

n(x, t) = n(x, 0) = 0, b(x, t) = b(x, 0) = H(ε− x), w(x, t) → w0(x) as t → ∞.

Case 2: Chronic hyperoxia. If w0(ε) ≥ wH then healing does not occur

18



because the oxygen concentration is everywhere too high to stimulate

angiogenesis. A necessary condition for this case to arise is:

k2
k4

>
wH sinh (θL)

sinh (θε) cosh (θ(L− ε))
.

In Case 2,

n(x, t) = n(x, 0) = 0, b(x, t) = b(x, 0) = H(ε− x), w(x, t) → w0(x) as t → ∞.

Case 3: Tip production is restricted by wound edge (x = 0) and oxygen

falling below lower threshold value. If wL ≤ w0(0) ≤ wH and w0(ε) ≤ wL

then healing is successful and tip production takes place on the interval

x ∈ [0, xL], where 0 < xL < ε and w0(x = xL) = wL. Using Eq. (6a), it is

straightforward to show that this case will arise if the system parameters are

such that:

wL

(

1−
sinh (θ(L− ε))

sinh (θL)

)

−1

≤
k2

k4
≤ min

[

wL sinh (θL)

sinh (θε) cosh (θ(L− ε))
, wH

(

1−
sinh (θ(L− ε))

sinh (θL)

)

−1
]

.

Case 4: Tip production occurs throughout the entire wound margin. If

wL ≤ w0(ε) ≤ w0(0) ≤ wH then healing is successful and tip production takes

place on the interval x ∈ [0, ε]. This case arises if the parameters satisfy:

wL sinh (θL)

sinh (θε) cosh (θ(L− ε))
≤

k2
k4

≤ wH

(

1−
sinh (θ(L− ε))

sinh (θL)

)

−1

.

Case 5: Tip production is initiated by oxygen concentration falling
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below upper threshold value and halted by wound margin (x = ε). If

w0(0) ≥ wH and wL ≤ w0(ε) ≤ wH then healing is successful and tip

production occurs for x ∈ [xH , ε], where 0 < xH < ε and w0(x = xH) = wH . The

conditions on the model parameters for this case to arise are as follows:

max

[

wL sinh (θL)

sinh (θε) cosh (θ(L− ε))
, wH

(

1−
sinh (θ(L− ε))

sinh (θL)

)

−1
]

≤
k2

k4
≤

wH sinh (θL)

sinh (θε) cosh (θ(L− ε))
.

Case 6: Tip production is initiated and restricted only by oxygen

concentration falling below upper threshold and lower oxygen

threshold values, respectively. If w0(0) ≥ wH and w0(ε) ≤ wL then healing

is successful and tip production takes place on the interval x ∈ [xH , xL], where

0 < xH < xL < ε, w0(x = xL) = wL and w0(x = xH) = wH . This case arises if

the parameters satisfy:

wH

(

1−
sinh (θ(L− ε))

sinh (θL)

)

−1

≤
k2
k4

≤
wL sinh (θL)

sinh (θε) cosh (θ(L− ε))
.

We now use the inequalities derived above to classify (k2, k4) parameter space into

distinct regions, based on whether or not healing is successful and further

sub-characterised by the six cases defined in Table 2. With the exception of k2 and

k4, we hold fixed all other system parameters so that: wL = 0.3, wH = 0.5, L = 2,

Dw = 10 and ε = 0.1. For this choice of parameter values and for the range of

values of k2 and k4 considered, only cases 1-5 were observed. It was possible to

observe case 6 by increasing the lower oxygen threshold from wL = 0.3 to

wL = 0.45, and holding wH , L and Dw fixed. Fig. 4(a) shows the predicted regions
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of unsuccessful healing (cases 1 and 2) and successful healing (cases 3, 4 and 5).

Cases 1 and 2 are undesirable extremes where healing fails due to insufficient and

excessive oxygen, respectively. While cases 2, 3 and 4 lead ultimately to successful

wound healing, our analysis does not enable us to determine which case gives rise

to the fastest healing. We therefore constructed numerical solutions to the full

problem (see Eqs. (3) and (4)) for a range of values of k2 and k4 and estimated the

healing speed from the numerical solutions. By following the location in the wound

space at which the blood vessel density was 10% of its normal levels (that is,

b = 0.1 in dimensionless terms) and then averaging over the simulation until

0 ≤ t ≤ 5 (see Fig. 4(b)). The wavespeed calculated in this way was found to be

comparable to the speed of the points where w = wH and w = wL. That is, by

comparing the results in Figs. 4(a) and 4(b) we can see that the small-time

analysis is a good predictor of the success of healing for t ≫ 0.

Fig. 5 shows plots of the numerical speed (calculated from the full numerical

simulation of Eqs. (3) and (4)) when keeping k4 constant and varying k2 over

[0, 350] (upper subplot) and in the lower plot, keeping k2 constant and varying k4

over [0, 250]. Fig. 5 clearly shows that the healing speed for k2 and k4 that lie in

cases 1 and 2 are indeed 0 (in agreement with our analysis) and that the other

cases yield non-zero speeds. The increase in k2 increases the oxygen concentration

so that capillary tip production can occur and allows the wound to heal.
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Fig. 4. (a) Sketch of (k2,k4) parameter space, showing, for a particular set of parameter
values, 5 distinct healing regimes arise based on the analytic analysis (see Table 2 in
Section 4 for a description of these cases). Cases 1 and 2 give unsuccessful healing (U),
while cases 3-5 yield successful healing (S). Parameter values: wL = 0.3, wH = 0.5, L = 2,
Dw = 10 and ε = 0.1. For a description of the meaning of the points labelled U1, S1 and
S2, see Section 5. (b) Contour plot obtained by numerical solution of original model out
to t = 5 (see Eqs (3) and (4)) showing how the wavespeed changes as (k2,k4) vary.

5 Clinical Implications and Discussion

Regardless of their aetiology, many chronic wounds are hypoxic and this can

compromise healing (Mathieu, 2002). We can use our model to compare the
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Fig. 5. Pair of plots showing how the numerical wave speed of the healing front varies
with k2, the oxygen supply rate from the blood vessels (upper subplot) and k4, the ox-
gyen consumption rate by the healing tissue (lower subplot). In the upper subplot we fix
k4 = 150 and vary k2 whereas in the lower subplot we fix k2 = 150 and vary k4. The speed
is estimated from the full numerical simulation of Eqs. (3) and (4). Both subplots show
that healing is restricted to a range of the parameter values.

efficacy of different treatments that are routinely used to treat nonhealing wounds.

We note that if a wound has stalled due to a lack of oxygen (see point U1 in Fig.

4), it should be possible to initiate healing by either sufficiently increasing the

oxygen supply rate, as characterised by the parameter k2 (the point S2) or

sufficiently decreasing the oxygen consumption rate, as characterised by the

parameter k4 (the point S1).

Diabetic wounds are often low in oxygen due to an over-abundance of

oxygen-consuming inflammatory cells and bacteria. A common treatment for these

types of wounds is debridement where the infected tissue is removed (Lerman

et al., 2003). This will effectively decrease the local oxygen consumption rate, k4.

Provided that the decrease in k4 is sufficient to shift the wound condition from its

current position in Case 1 of (k2, k4) parameter space into one of the Cases 3-5,

but not into Case 2 parameter space, then our model predicts that the treatment
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will yield successful healing. The simulation results presented in Fig. 6 illustrate

the effect of an intermittent increase in oxygen supply (that is, increasing k2). We

observe that when the oxygen supply is at its initial level (for times in the range

0 < t < 1) no healing occurs. An increase in oxygen supply (for 1 < t < 2) is

sufficient to initiate a propagating healing front. When the oxygen supply is

returned to its original level (for 2 < t), the healing speed does not return to its

initial speed. That is, the wound continues to heal after the treatment is completed.
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Fig. 6. Plot showing how the numerically-computed wave speed evolves over time where
k2 = k2(t). Here k2(t) = 100 for 0 < t < 1, k2(t) = 200 for 1 < t < 2 and k2 = 100 for
t > 2. The wave speed is estimated from the full numerical simulation of Eqs. (3) and (4).

Arterial leg wounds are also associated with low oxygen levels. However this is

typically due to poor arterial flow and a common treatment is revascularisation

surgery wherein the arterial flow is improved (Grey et al., 2006). In this case,

revascularisation will effectively increase the oxygen supply rate parameter, k2.

Provided that the increase in k2 is sufficiently large that the critical parameters are

in the parameter space covered by Cases 3-5 (but not increased too much so that

the system enters the Case 2 parameter regime), we predict that treatment will

successfully stimulate healing.
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Hyperbaric oxygen therapy aims to correct chronic hypoxia by allowing patients to

breathe oxygen at high pressure (typically 2.4 atmospheres) for approximately 90

minutes each day over a time period of about six weeks (see Thackham et al., 2008

for a comprehensive review). Hyperbaric oxygen therapy is often used to treat

diabetic patients with stalled chronic wounds (Thackham et al., 2008; Flegg et al.,

2009) and attempts to facilitate healing by increasing the peripheral oxygen supply

to the wound bed. We can incorporate HBOT into our model by assuming that

during its application the oxygen supply increases so that kHBOT

2
= k2 +∆k2,

where ∆k2 > 0. The early time analysis presented in Section 4 suggests that

HBOT, modelled in the way described above, will have a positive effect on the

stalled wound if the treatment causes a sufficient rise in the oxygen supply rate, k2.

However, care is needed in specifying a suitable treatment protocol since an

exposure that increases k2 too much will prevent healing due to excessive oxygen

in the wound space (causing the system parameters to enter the region associated

with Case 2 in Fig. 4(a))

Previous theoretical studies of wound healing (such as that by Schugart et al.

(2008) and Flegg et al. (2010)) have focussed on more detailed models which

permit a more thorough investigation of the effect of interactions between

chemicals and cells. In this paper we have developed a 3-species mathematical

model that captures the essential elements of wound healing angiogenesis, while

being simple enough to allow analytical analysis. Specifically, we have derived

conditions, in terms of key model parameters, for which healing will be successful

and others for which it will fail. The results from our analysis compare very well
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with the numerical solution of the full set of PDEs. We can use our model to make

predictions about the efficacy for treatments of chronic wounds. We are now in a

position to tailor our model to specific wound aetiologies and even specific patients

and use it to compare the outcomes of different therapies. We plan to extend the

current model to higher spatial dimensions and investigate the other possible

benefits and impacts that HBOT has on the healing process (such as reactive

oxygen species, hypoxia inducible factor pathway and nitric oxide).
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