| 1  | Thermal stability of stercorite $H(NH_4)Na(PO_4)\cdot 4H_2O - a$ cave mineral from Petrogale           |
|----|--------------------------------------------------------------------------------------------------------|
| 2  | Cave, Madura, Eucla, Western Australia                                                                 |
| 3  | Ray L. Frost * and Sara J. Palmer                                                                      |
| 4  | Chemistry Discipline, Faculty of Science and Technology, Queensland University of                      |
| 5  | Technology, GPO Box 2434, Brisbane Queensland 4001, Australia.                                         |
| 6  |                                                                                                        |
| 7  | ABSTRACT                                                                                               |
| 8  | Thermogravimetric analysis has been used to determine the thermal stability of the mineral             |
| 9  | stercorite $H(NH_4)Na(PO_4)\cdot 4H_2O$ . The mineral stercorite originated from the Petrogale Cave,   |
| 10 | Madura, Eucla, Western Australia. This cave is one of many caves in the Nullarbor Plain in             |
| 11 | the South of Western Australia. The mineral is formed by the reaction of bat guano                     |
| 12 | chemicals on calcite substrates. Upon thermal treatment the mineral shows a strong                     |
| 13 | decomposition at 191°C with loss of water and ammonia. Other mass loss steps are observed              |
| 14 | at 158, 317 and 477°C. Ion current curves indicate a gain of CO <sub>2</sub> at higher temperature and |
| 15 | are attributed to the thermal decomposition of calcite impurity.                                       |
| 16 | KEYWORDS: thermogravimetric analysis, stercorite, 'cave' mineral, brushite,                            |
| 17 | mundrabillaite, archerite.                                                                             |
| 18 |                                                                                                        |
| 19 |                                                                                                        |
| 20 |                                                                                                        |
| 21 |                                                                                                        |
| 22 |                                                                                                        |
| 23 |                                                                                                        |
|    |                                                                                                        |

<sup>•</sup> Author to whom correspondence should be addressed (r.frost@qut.edu.au)

#### 24 Introduction

- 25 The mineral stercorite originated from the Petrogale Cave, Madura, Eucla, Western
- Australia. Many minerals may form in these caves, some of which include archerite
- 27  $(K_1NH_4)(H_2PO_4)$  [1] and mundrabillaite  $(NH_4)_2Ca(HPO_4)_2 \cdot H_2O$  [2]. These minerals occur as
- 28 stalactites and as crusts on the walls and floors of the caves. Other minerals found in the
- Petrogale cave include aphthitalite (K,Na)<sub>3</sub>Na(SO<sub>4</sub>)<sub>2</sub>, halite NaCl, syngenite
- 30  $(K,Na)_3Na(SO_4)_2$ , oxammite  $(NH_4)_2(C_2O_4) \cdot H_2O$ , weddellite  $Ca(C_2O_4) \cdot 2H_2O$ , whitlockite
- Ca<sub>9</sub>Mg(PO<sub>4</sub>)<sub>6</sub>(HPO<sub>4</sub>), guanine C<sub>5</sub>H<sub>5</sub>N<sub>5</sub>O, newberyite Mg(HPO<sub>4</sub>)·3H<sub>2</sub>O and calcite CaCO<sub>3</sub>.
- 32 These minerals are formed through the chemical reactions of calcite with bat guano or with
- chemicals from bat guano which are water soluble and crystallise out on the calcite surfaces.
- 34 The mineral stercorite is water soluble and may translocate through the Petrogale cave
- 35 network[3].
- 36 Thermal analysis offers an important technique for the determination of the thermal stability
- of minerals [4-13]. Importantly the decomposition steps [13-15] can be obtained and
- mechanisms of decomposition of the mineral ascertained. There have been almost no studies
- of the thermal analysis of 'cave' minerals. In this research, we report the thermal
- 40 decomposition of the mineral stercorite, a mineral common to caves worldwide.

## 41 **Experimental**

## 42 Minerals

46

- The mineral stercorite was supplied by The Australian Museum and originated from
- 44 Petrogale Cave, Madura, Western Australia. Details of the mineral have been published
- 45 (page 561) [16].

### Thermogravimetric analysis

- 47 Thermal decomposition of stercorite was carried out in a TA® Instruments incorporated
- high-resolution thermogravimetric analyser (series Q500) in a flowing nitrogen
- 49 atmosphere (80 cm<sup>3</sup>/min). Approximately 28 mg of sample was heated in an open
- platinum crucible at a rate of 5.0 °C/min up to 1000°C at high resolution. With the quasi-
- isothermal, quasi-isobaric heating program of the instrument the furnace temperature was
- 52 regulated precisely to provide a uniform rate of decomposition in the main decomposition

- 53 stage. The TGA instrument was coupled to a Balzers (Pfeiffer) mass spectrometer for gas
- analysis. Only selected gases such as water and sulphur dioxide were analysed. X-Ray
- diffraction patterns were collected using a Philips X'pert wide angle X-Ray
- of diffractometer, operating in step scan mode, with Cu Kα radiation (1.54052 Å).

#### **Results and Discussion**

- 58 The thermogravimetric and differential thermogravimetric analyses of stercorite are displayed
- in Figure 1. The ion current curves of the evolved gases are shown in Figure 2. The dTG
- 60 curve shows maxima at 158 and 191, 317, 477 and 567°C with measured mass losses of
- 61 21.75, 14.92, 5.17 and 1.11%. A small mass loss of 1.17% is found at temperatures from
- ambient up to 83°C and is attributed to the loss of adsorbed water. The ion current curves
- clearly show that water is the evolved gas at 170, ~190 and 305°C. The theoretical mass loss
- for water based upon the formula is 34.44%. The total mass loss over the 83 to 405°C
- temperature range is 14.92 + 21.75% = 36.67%, which is higher than the calculated figure. It
- is considered that NH<sub>3</sub> is lost at the same time as the water. If this is the case, then this mass
- should be included in the calculation. The calculated mass for NH<sub>3</sub> is 8.61%. This makes the
- total mass for evolved NH<sub>3</sub> and water as ~43% which is too high. The thermal stability of
- 69 stercorite is determined by the temperature of the first mass loss at 191°C. It is proposed that
- water and ammonia is lost at this temperature. The total theoretical mass loss for stercorite is
- 71 43.05%. The measured mass loss for stercorite is 41.84% which is close to the calculated
- value. Stercorite is found on calcite stalactites and thus CaCO<sub>3</sub> may be an impurity in the
- 73 mineral. The higher temperature mass losses as is indicated by the ion current curves appear
- 74 to be due to the decomposition of calcite.

## 75

76

57

## Mechanism of formation of stercorite H(NH<sub>4</sub>)Na(PO<sub>4</sub>)·4H<sub>2</sub>O

- 77 In the laboratory, the mineral is readily synthesised by mixing aqueous solutions of sodium
- hydrogen phosphate Na<sub>2</sub>HPO<sub>4</sub> and ammonium hydrogen phosphate (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub> [3]. The
- reaction is displayed below. Platford [3] showed that the two chemicals were in congruency
- 80 with their components. It is likely that low temperatures aid the formation of stercorite, as
- 81 might occur in caves on the Nullarbor Plains in Western Australia. Whether or not the
- 82 mineral stercorite is formed by solubility effects from undersaturated solutions is open to

- question, but it does seem likely. The presence of the calcite surface serves as a template
- surface for the crystallisation of stercorite.
- 85  $Na_2HPO_4 + (NH_4)_2HPO_4 + 4H_2O \rightarrow 2H(NH_4)Na(PO_4)\cdot 4H_2O$

86

#### 87 **CONCLUSIONS**

- 88 The mineral stercorite is an ammoniated hydrogen sodium phosphate and is found in caves in
- 89 Western Australia and is especially known from the Petrogale Cave, near Madura, Western
- 90 Australia. The mineral has also been found at Ichaboe Island, Namibia and Gua nape Island,
- 91 Peru. It is a mineral formed by the reaction of calcite with bat (or bird) guano. The mineral is
- associated with other phosphate minerals including struvite, archerite, and brushite.
- According to Platford [3], the mineral is formed from solution. Hence, the basic components
- of the mineral can be translocated through a cave system.
- 95 The thermal stability of stercorite is determined by the temperature of the first mass loss at
- 96 191°C. It is proposed that water and ammonia is lost at this temperature. The total theoretical
- 97 mass loss for stercorite is 43.05%. The measured mass loss for stercorite is 41.84% which is
- 98 close to the calculated value. In other words the 'cave' mineral stercorite would not be stable
- if the temperature of the cave system was elevated.

## 100 Acknowledgements

- The financial and infra-structure support of the Queensland University of Technology,
- 102 Chemistry discipline is gratefully acknowledged. The Australian Research Council (ARC) is
- thanked for funding the instrumentation.

#### References

105

- 106 [1] Bridge, P. J., Archerite, (K,NH4)H2PO4, a new mineral from Madura, Western
- 107 Australia, Mineralogical Magazine 41 (1977) 33-35.
- 108 [2] Bridge, P. J., Clark, R. M., Mundrabillaite a new cave mineral from Western
- Australia, Mineralogical Magazine 47 (1983) 80-81.
- 110 [3] Platford, R. F., Thermodynamics of system water-disodium hydrogen phosphate-
- diammonium hydrogen phosphate at 25.deg, Journal of Chemical and Engineering Data 19
- 112 (1974) 166-168.
- 113 [4] Cheng, H., Yang, J., Frost, R. L., Liu, Q., Zhang, Z., Thermal analysis and Infrared
- emission spectroscopic study of kaolinite-potassium acetate intercalate complex, J. Therm.
- 115 Anal. Calorim. 103 (2011) 507-513.
- 116 [5] Bakon, K. H., Palmer, S. J., Frost, R. L., Thermal analysis of synthetic reevesite and
- 117 cobalt substituted reevesite (Ni,Co)6Fe2(OH)16(CO3) · 4H2O,J. Therm. Anal. Calorim.
- 118 100 (2010) 125-131.
- 119 [6] Cheng, H., Liu, Q., Yang, J., Frost, R. L., Thermogravimetric analysis of selected
- 120 coal-bearing strata kaolinite, Thermochim. Acta 507-508 (2010) 84-90.
- 121 [7] Cheng, H., Liu, Q., Yang, J., Zhang, J., Frost, R. L., Thermal analysis and infrared
- emission spectroscopic study of halloysite-potassium acetate intercalation
- 123 compound, Thermochim. Acta 511 (2010) 124-128.
- 124 [8] Cheng, H., Liu, Q., Yang, J., Zhang, Q., Frost, R. L., Thermal behavior and
- decomposition of kaolinite-potassium acetate intercalation composite, Thermochim. Acta
- 126 503-504 (2010) 16-20.
- 127 [9] Frost, R. L., Palmer, S. J., Grand, L.-M., Synthesis and thermal analysis of indium-
- based hydrotalcites of formula Mg6In2(CO3)(OH)16·4H2O,J. Therm. Anal. Calorim. 101
- 129 (2010) 859-863.
- 130 [10] Frost, R. L., Palmer, S. J., Kristof, J., Horvath, E., Dynamic and controlled rate
- thermal analysis of halotrichite, J. Therm. Anal. Calorim. 99 (2010) 501-507.
- 132 [11] Frost, R. L., Palmer, S. J., Kristof, J., Horvath, E., Thermoanalytical studies of silver
- and lead jarosites and their solid solutions, J. Therm. Anal. Calorim. 101 (2010) 73-79.
- 134 [12] Grand, L.-M., Palmer, S. J., Frost, R. L., Synthesis and thermal stability of
- hydrotalcites containing manganese, J. Therm. Anal. Calorim. 100 (2010) 981-985.
- 136 [13] Grand, L.-M., Palmer, S. J., Frost, R. L., Synthesis and thermal stability of
- hydrotalcites based upon gallium, J. Therm. Anal. Calorim. 101 (2010) 195-198.
- 138 [14] Palmer, S. J., Frost, R. L., Thermal decomposition of Bayer precipitates formed at
- varying temperatures, J. Therm. Anal. Calorim. 100 (2010) 27-32.
- 140 [15] Yang, J., Frost, R. L., Martens, W. N., Thermogravimetric analysis and hot-stage
- 141 Raman spectroscopy of cubic indium hydroxide, J. Therm. Anal. Calorim. 100 (2010) 109-
- 142 116.
- 143 [16] Anthony, J. W., Bideaux, R. A., Bladh, K. W., Nichols, M. C., Handbook of
- Mineralogy Vol.IV. Arsenates, phosphates, vanadates Mineral Data Publishing, Tucson,
- 145 Arizona, Mineral data Publishing, Tucson, Arizona, 2000.
- 147

# **List of Figures**

- 150 Figure 1 Thermogravimetric and differential thermogravimetric analysis of stercorite.
- Figure 2 Selected ion current curves of the evolved gases resulting from the thermal
- decomposition of stercorite

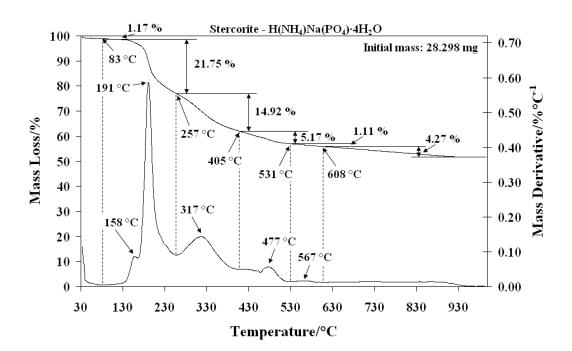
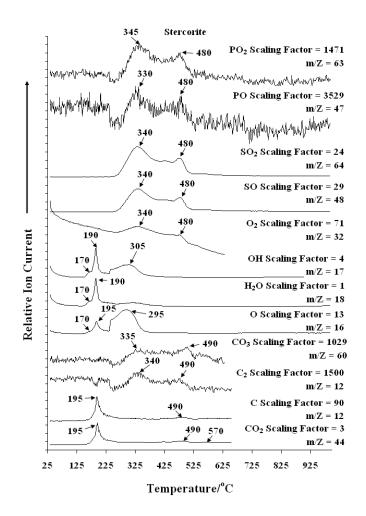




Figure 1



**Figure 2**