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Abstract. To provide privacy protection, cryptographic primitives are
frequently applied to communication protocols in an open environment
(e.g. the Internet). We call these protocols privacy enhancing protocols
(PEPs) which constitute a class of cryptographic protocols. Proof of the
security properties, in terms of the privacy compliance, of PEPs is de-
sirable before they can be deployed. However, the traditional provable
security approach, though well-established for proving the security of
cryptographic primitives, is not applicable to PEPs. We apply the for-
mal language of Coloured Petri Nets (CPNs) to construct an executable
specification of a representative PEP, namely the Private Information
Escrow Bound to Multiple Conditions Protocol (PIEMCP). Formal se-
mantics of the CPN specification allow us to reason about various privacy
properties of PIEMCP using state space analysis techniques. This inves-
tigation provides insights into the modelling and analysis of PEPs in
general, and demonstrates the benefit of applying a CPN-based formal
approach to the privacy compliance verification of PEPs.

1 Introduction

To achieve privacy-enhancing features, cryptographic primitives employed in a
privacy enhancing protocol (PEP) normally have rich features (e.g. verifiable en-
cryption) which extend the common encryption and signature capabilities often
used in other types of cryptographic protocols (e.g. authentication protocols).
For example, emulating the off-line anonymity afforded by cash transactions,
a PEP can ensure that when a user purchases goods on-line, the on-line seller
does not learn the identity of the user, but at the same time can be assured that
the user’s identity has been previously verified by a known trusted entity such
that the identity can be revealed when needed. Recently, the Trusted Platform
Module (TPM) technology - which provides secure hardware storage of cryp-
tographic keys and implementation of cryptographic primitives - has also been
used in PEPs [24].

An important issue in the design of applied cryptographic protocols, such as
PEPs, is to ensure that they work correctly and do not contain errors that may
weaken the security protection provided by the cryptographic primitives em-
ployed. While the provable security approach [15] is a widely-accepted method
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used to prove the security properties of cryptographic primitives, it is not suit-
able to verify privacy compliance properties of PEPs. The main reason is that
provable security emphasizes on proving the properties of a cryptographic al-
gorithm (as evidenced by the use of ideal cryptographic models, such as the
random oracle model - see [5, 18]), while the privacy compliance properties of a
PEP are behavioural and can be more naturally reasoned as properties of com-
munication protocols. For example, one of the privacy properties verified in this
paper is the enforceable conditions property (detailed in Sect. 4.3). This prop-
erty is concerned with whether the messages exchanged between protocol entities
are such that enough safeguards are included to ensure that a user’s PII is in-
deed only revealed when certain conditions are satisfied, even in the presence of
malicious behaviours from the entities involved. Consequently, attacks in PEPs
normally arise from the existence of multi-party entities who attempt to exploit
weaknesses in the design of a protocol, not directly at the algorithms of the cryp-
tographic primitives employed. Furthermore, due to the lack of computer-aided
tool support, the provable security approach is prone to errors [17].

Formal methods and languages allow the construction of unambiguous and
precise models that can be analysed to identify errors and to verify correctness
before implementation. Some of them, such as Coloured Petri Nets (CPNs) [14],
provide a graphical modelling capability, and have tool support. The application
of formal methods has been demonstrated to lead to reliable and trustworthy
security protocols [2, 8]. However, to the best of our knowledge, verification of
PEPs using formal methods is yet to mature.

In this paper, we propose a CPN-based approach to construct a formal speci-
fication of a representative PEP, namely the Private Information Escrow Bound
to Multiple Conditions Protocol (PIEMCP) [21], and to verify its privacy com-
pliance properties.3 CPNs are a widely-used formal language for system specifi-
cation, design, simulation and verification. CPNs provide a graphical modelling
language capable of expressing concurrency and system concepts at different lev-
els of abstraction. With the support of CPN Tools, basic constructs of Petri nets
are enriched with the functional programming language Standard ML (SML) [13]
such that various high-level data type definition and functions can be defined
and used in the model.

PIEMCP involves non-trivial multi-party communication (6 or more entities
in general) and employs complex cryptographic primitives and TPM functional-
ities. The hierarchical structuring mechanism of CPNs supports a modular ap-
proach in capturing the behaviour of PIEMCP at different levels of abstraction.
Using SML, the essential structures and behaviours of a wide variety of privacy-
enhancing cryptographic primitives can be captured through a “black-box-style”
abstraction such that only the essential features remain. By parameterising the
protocol model with different types of attacks, a large number of attack scenarios
are captured for analysis. The CPN model of PIEMCP is executable and can be
analysed to verify the privacy properties of the protocol using the state spaces
generated from the parameterised CPN model.

3 This paper is an extension from our earlier work [22].
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The contributions of this paper are two-fold. Firstly, it demonstrates the
use of a CPN-based approach to model and verify the privacy properties of a
PEP. To our knowledge, our work so far has been the only attempt at the formal
verification of PEPs using CPNs. Secondly, the paper proposes several modelling
and analysis approaches that have been (or can be) applied to other PEPs [20,24].
These can be used as preliminary guidelines for a general CPN-based approach
for modelling and verification of PEPs.

This paper is structured as follows. Sect. 2 briefly explains PIEMCP. Sect. 3
proposes the modelling approach and describes selected parts of the CPN model
of PIEMCP. Based on this CPN model, Sect. 4 details the verification of PIEMCP
focusing on a set of privacy compliance properties. Related work is discussed in
Sect. 5 with conclusions provided in Sect. 6. We assume that the reader has basic
knowledge of CPNs. While we endeavour to explain the basic idea of PIEMCP,
given the space constraints, prior knowledge in the area of information security
and privacy is useful.

2 Overview of PIEMCP

PIEMCP [21] is used in a federated single-sign on (FSSO) environment whereby
a user only has to authenticate once to an identity provider (IdP) to access
services from multiple service providers (SPs). The entities involved are users,
IdPs, SPs, and an anonymity revocation manager (ARM) or referees. An IdP
assures SPs that although users are anonymous, when certain conditions are
fulfilled, the users’ identity can be revealed. A user’s identity refers to a set of
personally identifiable information (PII). Although the services that SPs provide
can be delivered without the need of PII, they require the PII to be revealed
by an ARM or referees when certain conditions are satisfied. An example of
conditions would be “the user X’s PII should only be revealed to SP1 if the
user has posted some inflammatory/illegal messages/pictures on the forum”.

PIEMCP consists of four stages, namely PII escrow (PE), key escrow (KE),
multiple conditions (MC) binding, and revocation. An execution of the protocol
involves two distinct sessions: the escrow session which consists of a sequential
execution of the PE, KE and MC stages, and the revocation session which con-
sists of an execution of the revocation stage. A user can run n escrow sessions,
during which his/her PII is hidden (anonymous). At least one escrow session
has to be completed before a revocation session can start. During the revoca-
tion session, the user’s PII linked to a specific SP in a specific escrow session
is revealed. For n escrow sessions, each with m-number of SPs, up to n × m
revocation sessions can be performed.

PIEMCP has two variants: one uses a trusted ARM for anonymity revoca-
tion while the other uses a group of referees instead of ARM. While these two
variants do overlap to a certain degree, in this paper, we only consider the second
variant of PIEMCP because it involves concurrent behaviours which highlight
the relevance of CPN as the modelling language. Figure 1 depicts the main
message exchanges between the different entities of this protocol. For simplicity,
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a double-arrowed line is an abstraction of an exchange of one or more messages
which collectively achieve a single cryptographic operation (normally a proof-of-
knowledge operation).

The PE stage begins when a user requests a service from a service provider
SP1. This triggers the agreement between user and SP1 of conditions (denoted
Cond1) whose fulfillment allows the PII to be revealed to SP1, and a set of
UCHVE parameters (explained in the ensuing paragraphs). SP1 then sends a
message NT-PE-1 containing Cond1 and UCHVE parameters to the IdP to es-
crow the user’s PII. The IdP contacts the user to obtain his encrypted PII (NT-
PE-2). The user then encrypts his PII using a Verifiable Encryption (VE) scheme
under a freshly generated public (pubkVE ) and private (privkVE ) key pair.
The output of this VE operation is a ciphertext denoted as VE(PII)pubVE . The
user sends to the IdP, NT-PE-3 which comprises of VE(PII)pubVE and pubkVE .
The user keeps privkVE which is needed to decrypt VE(PII)pubVE

. Next, the
user and the IdP engage in a cryptographic “proof-of-knowledge” (PK) protocol
(NT-PE-4). This is to prove to the IdP that the VE ciphertext given correctly
hides some certified PII without letting the IdP learn the value of the PII itself.
We denote this operation as PKVE. The output of PKVE is an acceptance or
rejection of VE(PII)pubVE

. A successful PKVE operation will lead to the IdP
generating and sending a pseudonym to the user (NT-PE-5).

NT-KE-2 (n pieces of UCHVE{privk_ve, Cond1} +

                TPM Proof {UCHVE, Cond1}

User SP1 SP2 IdP n-Referees

   PII 
Escrow
  (PE)

NT-PE-1 (Cond1 + UCHVE parameters))

NT-PE-3 (VE{PII, pubk_ve})

NT-PE-4 (PKVE)

NT-KE-1 (DAA)

NT-KE-3 (VE{PII, pubk_ve},

                 n pieces of UCHVE{privk_ve, Cond1}

NT-MC-1 (Cond2 + UCHVE 

                   parameters)

NT-REV-1 (Cond1, UCHVE{privk_ve, Cond1}^1, ... ,UCHVE{privk_ve, Cond1}^n)

NT-REV-2 (decrypted_UCHVE^1,...,decrypted_UCHVE^t)

  Key 
Escrow
  (KE)

  Multiple 
Conditions
  Binding
    (MC)

Revocation

service request

service request

NT-PE-2 (PII request)

NT-PE-5 (user pseudonym)

NT-MC-2 (UCHVE of privk_ve request)

NT-MC-3 (n pieces of UCHVE{privk_ve, Cond2} +

                TPM Proof {UCHVE, Cond2}

NT-MC-4 ( VE{PII, pubk_ve},

 n-UCHVE{privk_ve, Cond2}

Confirm PII Escrowed

Confirm PII Escrowed

Fig. 1: Message exchanges within the four stages of PIEMCP.
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The KE stage is started after the user receives and stores the pseudonym.
The IdP and the user now engage in another PK protocol - the Direct Anony-
mous Attestation (DAA) (NT-KE-1). This is to convince the IdP that the user
is using a valid TPM device while concealing the identity of the TPM device. A
successful DAA prompts the user’s TPM to generate (1) a universal custodian-
hiding verifiable group encryption (UCHVE) of privVE under Cond1 (denoted
as UCHVE(privkVE)

1...n
Cond1 and (2) a TPM proof of a correct UCHVE execu-

tion. In the rest of this paper, the generation of such UCHVE ciphertext with
the TPM proof are represented by a TPM module, called TPM Module 2. The
UCHVE(privkVE)

1...n
Cond1 actually is a group of n distinct ciphertext pieces which

can later be given to a group of n referees among whom there are t (t ≤n)
designated referees. Only the designated referees can decrypt their respective
ciphertext pieces. At least k (k ≤ t) decrypted pieces are required to recover the
VE private key (i.e. k is the threshold value). Both UCHVE(privkVE)

1...n
Cond1 and

the corresponding TPM proof are sent to the IdP in NT-KE-2. The IdP then ver-
ifies the proof and if correct, prepares a response NT-KE-3 to SP2 which includes
the VE(PII)pubVE

and UCHVE(privkVE)
1...n
Cond1. Having obtained VE(PII)pubVE

and UCHVE(privkVE)
1...n
Cond1, SP1 now can, with the help of referees, recover the

user’s PII when Cond1 is fulfilled, but cannot do so until that time. SP1 then
confirms to the user that his/her PII has been escrowed successfully.

In the MC stage, the user goes to another service provider SP2 to request
service. This time SP2 requests the IdP to escrow the privkVE in NT-MC-1

under conditions Cond2 (i.e. Cond1 6= Cond2) and UCHVE parameters that
have been agreed between user and SP2. The IdP requests the user’s TPM to
produce UCHVE(privkVE)

1...n
Cond2 (that is, a new UCHVE encryption of privkVE

under Cond2) and the associated TPM proof (NT-MC-2). The user then per-
forms the requested operation and sends UCHVE(privkVE)

1...n
Cond2 with the cor-

responding TPM proof in NT-MC-3 (in other words, the TPM Module 2 is exe-
cuted again). The IdP verifies the TPM proof of UCHVE(privkVE)

1...n
Cond2, and if

correct, prepares a response NT-MC-4 to SP2 which includes VE(PII)pubVE
and

UCHVE(privkVE)
1...n
Cond2. Similar to SP1, SP2 now has the necessary ciphertexts

which, with referees’ help, can reveal the user’s PII when Cond2 are satisfied,
but cannot do so yet at this point. SP2 then confirms to the user that his/her
PII has been escrowed successfully.

For any subsequent service providers that the user contacts within an es-
crow session, the user and the service provider only need to execute the MC
stage activities. Therefore, the MC stage activities are specific to the second and
subsequent service providers visited by the user, while the PE and KE stage
activities are specific to only the first SP visited by the user.

The revocation stage is executed when the agreed conditions are satisfied and
when a user has completed at least one escrow session. Assuming that Cond1 is
satisfied, SP1 sends a revocation request NT-REV-11...n to each of the n referees.
For each referee ri, the message NT-REV-1i consists of UCHVE(privkVE)

i
Cond1

and Cond1. Each referee then checks if Cond1 is fulfilled, and if so, the referee
tries to decrypt the given ciphertext piece. Only the designated referees can de-
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crypt the ciphertext pieces. If decryption is successful, each designated referee
sends the decrypted data NT-REV-21...t to SP1. When k (k ≤ t) or more de-
crypted data are received, SP1 can recover privVE , and subsequently decrypt
VE(PII)pubVE to recover the user’s PII.

Above we described the normal execution of PIEMCP (i.e. without attacks).
However, each of the parties involved may behave maliciously resulting in various
attack scenarios. The design goal of PIEMCP is to achieve the required security
behaviour with and without considering the attacks. In the next section, a CPN
model of PIEMCP is presented which can be configured to capture both normal
scenario and attack scenarios.

3 CPN Model of PIEMCP

3.1 modelling Approach

We introduce two modelling approaches that are specific to PEPs: the Cryp-
tographic Primitive Abstraction and the Model Parameterization with Attacks.
We have also captured the TPM Provable Execution modelling approach in our
model but it is not described in this paper (the details are available at [19, Sec-
tion F.2]).

Cryptographic Primitive Abstraction. To capture complex cryptographic beha-
viours, we firstly model the representation of a ciphertext as a CPN colour set,
and then capture its operations using SML functions. This approach is flexible
and inclusive as virtually any type of cryptographic primitives can be captured.
The CPN record type can encode the necessary information to represent a
primitive properly, and SML can be used to simulate the operations. The cryp-
tographic operations captured by SML functions are “symbolic” rather than an
actual operation. For example, an encryption function defined in our approach
does not perform the actual encryption, rather, we impose certain restriction on
what the recipient of this ciphertext can do with this message (such as not being
able to extract the message without having a correct decryption key).

Our approach of expressing cryptographic operations as functions promotes
reuse which leads to a cleaner and more concise model. However, a disadvantage
of this approach is that the modeler has to consciously follow the restriction
imposed on cryptographic messages produced by these functions as CPN Tools
does not automatically enforce these restrictions. In Sect. 3.2, we demonstrate
this approach by modelling a VE ciphertext and a zero-knowledge operation
(PKVE). The complexity of UCHVE ciphertext prevents us from describing it
due to space constraint; however, it is available in the referenced thesis [19, pp.
196].

We also propose a technique to capture the commonly-used message sign-
ing and verification operations. We define a CPN colour set for the message
to be signed, followed by a definition of its signature. A signed message is a
pair consisting of the message and its signature. The verification of a signed
message upon the receipt of the message is enforced within a transition guard.
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If the signature verification fails, the message integrity and/or authenticity are
compromised. As a result, the guard returns a false value, thus preventing any
further processing on the message – a so-called fail-stop mechanism.

Model Parameterization with Attacks. We propose the parameterisation ap-
proach to modelling attacks such that one or more attacks can be switched
on or off depending on the environmental assumptions. At this point, we scope
our work to only consider malicious insiders - which we consider to be a greater
concern in PEPs. The Dolev-Yao intruder model [12] (which represents an ex-
ternal intruder), while relevant, is not considered in this paper. There are many
attacks that a malicious insider could launch. Creating a new model to capture
each type of attack (existing or new) scales poorly as the number of attacks
grows. Parameterisation allows the re-use of the existing model while allowing it
to behave differently according to the attacks being set - virtually allowing thou-
sands of possible attack scenarios to be captured. We have modelled 14 types
of attacks using 14 parameters, each with a boolean value of “true” (on) or
“false” (off), which theoretically can capture 214 possible attack scenarios. The
attack parameters are then referred to in the arc-inscriptions, transition guards,
or transition code-regions. Note that although it is not necessary to consider
all attack scenarios (see Sect. 4), the ability of our model to capture a compre-
hensive attack scenario may be exploited in the future to allow other types of
analysis.

The advantage of this approach is that we do not have to change the model
(e.g. adding/deleting transitions) to obtain different behaviours. The disadvan-
tage however is that it may reduce the readability of the model due to the
addition of parameter inscriptions (such as if/else statements) and may make
model debugging more difficult as the number of attacks increases. This ap-
proach risks the introduction of complexity during model validation in compar-
ison to having two separate models (one without attacks and one with attacks).
However, this risk is somewhat compensated with an easier model maintenance
practice: changes to the basic behaviour of the model only need to be applied
once to the model and its effect will apply to all other parameterized behaviours.
This is not the case when we have two or more separate models.

3.2 Model Description

The PIEMCP model is a hierarchical CPN consisting of 4 levels: 1 main (top-
level) page, 5 second-level pages, 13 third-level pages, and 1 fourth-level page.
As detailed in Sect. 2, a sequential execution of the PE, the KE, and the MC
stage forms one escrow session. For simplicity, our model covers a minimum full
protocol execution: the PIEMCP CPN model allows sequential execution of a
certain number of escrow session (determined by the model parameter session)
followed by one revocation session. Note that it is possible for both the escrow
and revocation session to run in parallel, however, modelling such concurrency
does not capture any additional behaviour of the protocol as these two sessions
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are assumed to be distinct, i.e. they do not interfere with each other.4 Therefore,
our model currently does not capture this parallelism.

The revocation page can be executed after the completion of at least one
escrow session. Selected parts of the PIEMCP CPN model are described to
demonstrate the modelling approaches detailed in Sect. 3.1. Relevant CPN colour
sets definitions and functions are provided in Table 1.

Main page. Figure 2 shows the top-level page which captures the protocol en-
tities (represented as substitution transitions) and the communication channels
between any two entities (as places with thick lines). Since these communication
channels represent application-layer communication, we assume the existence of
no errors commonly associated with lower-layer communication channels (such

4 While it may be interesting to model and analyze the security properties of our
protocol in the presence of parallel escrow and revocation sessions, we reserve this
for future work.

1 CRYPTOGRAPHIC COLOUR SETS DEFINITION
2 ====================================
3 colset K_PUB_VE = INT;
4 colset K_PRIV_VE = INT;
5 colset K_SIGN_GEN = INT;
6 colset PII = STRING;
7 colset LABEL = STRING;
8 colset PROVABILITY = BOOL;
9 colset COMMITMENT_PII = record message:PII * random:RANDOM;

10 colset CIPHER_VE_PII = record message:PII * key:K_PUB_VE * label:LABEL*provable:PROVABILITY;
11

12 PIEMCP MESSAGES DEFINITION
13 ==========================
14 colset SP_REQ = record genCond:STRING * conditions1:STRING * <other fields omitted>
15 colset SP_REQ_SIG = record message:SP_REQ * key:K_SIGN_GEN;
16 colset SIGNED_SP_REQ = record message:SP_REQ * signat:SP_REQ_SIG;
17 colset SIGNATURE_GEN = record message:MSG * key:K_SIGN_GEN * provable: PROVABILITY;
18 colset SIGNED_MSG = record message:MSG * signat:SIGNATURE_GEN;
19 colset DEC_REQ = record conditions:LABEL * uchvePiece:CIPHER_UCHVE_KVE_PIECE;
20 colset DEC_REQ_SIGNATURE = record message:DEC_REQ * key:K_SIGN_GEN * provable:BOOL;
21 colset SIGNED_DEC_REQ = record message:DEC_REQ * signat:DEC_REQ_SIGNATURE;
22 colset DECRYPT_OUTPUT = product BOOL * MSG;
23

24 COMMUNICATION CHANNEL DEFINITION
25 ================================
26 colset IDP_SP1 = union msgEscrow:SIGNED_SP_REQ + signedSPResponse1:SIGNED_SP_RESPONSE;
27

28 FUNCTIONS and PARAMETERS
29 ========================
30 fun veKeysRel(privKey:K_PRIV_VE, pubKey:K_PUB_VE)= if privKey=pubKey then true else false;
31 fun veEnc(msg:PII, pubKey:K_PUB_VE,cond1:LABEL)=
32 {message=msg,key=pubKey,label=cond1,provable=true};
33 fun decVE(key:K_PRIV_VE, cipherVE:CIPHER_VE_PII, cond1:LABEL)=
34 if veKeysRel(key, #key(cipherVE)) andalso cond1 = (#label(cipherVE)) then
35 1‘(true, #message(cipherVE)) else 1‘(false, "");
36 val condActually = true;
37 val session=2;
38 val threshold=2;
39 val honestRef=1;
40 val toRevoke=1;

Table 1: Colour set definition
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as data loss). While it may be possible to fold the three SP1 REFEREE chan-
nels into one, we decided to split them into three to improve readability (i.e. to
explicitly separate distinct logical communication channels between entities).

As explained in Sect. 2, the PE and KE stage activities are specific to the
first service provider (e.g. SP1) visited by the user, while the MC stage activities
are specific to the second and subsequent service providers (e.g. SP2). Therefore,
we decided to separate the modelling of SP activities into two substitution tran-
sitions (SP1 and SP2) due to their non-overlapping activities.

ALL_REFEREES

ALL_REFEREES

SP1

SP1

IDP

IDP

USER

USER

1

INT

SP1_REFEREE2

SP_REFEREE

SP1_REFEREE3

SP_REFEREE

SP1_REFEREE1

SP_REFEREE

REVOCABLE

SESSION

INTUSER_SP2

USER_SP2

IDP_USER

IDP_USER

IDP_SP1

USER_SP1

USER_SP1

USER IDP

SP1

ALL_REFEREES

SESSION

IDP_SP2

IDP_SP2

IDP_SP1

SP2

SP2SP2

Fig. 2: The PIEMCP CPN – Top-level page

SETUP

SETUP USER_PE

USER_PE

INT

UNIT

PSEUDONYM
STORED

UNIT

1`()

UNIT

1

INT

IDP_USER

USER_SP1

Out

USER_SP1

Out

USER_PE

SETUP

IDP_USER

I/OI/O

USER_KE

USER_KEUSER_KE

CAN START
SP2 INTERACTION

USER_MC

USER_MC

USER_SP2

SESSION

I/OI/O

USER_MC

START
SETUP

REVOCABLE
SESSION

OutOut

USER_SP2

I/OI/O

Fig. 3: The PIEMCP CPN – USER second-level page

Second-level Pages. The multi-stage operation of PIEMCP is detailed on the
second-level pages for each of the entities. For example, the second-level page for
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the user is shown in Figure 3 whereby the sequential execution of the PE, KE
(with SP1), and MC (with SP2) stages is modelled. The completion of the MC
stage signals the completion of one escrow session and may trigger the execution
of another escrow session by marking the place START SETUP. The determination
of whether or not to execute another escrow depends on the model parameter
session and is explained in detail in the Appendix A.2. Furthermore, the com-
pletion of an escrow session also means that, theoretically, the user PII for that
particular escrow session is now revocable. However, as explained in the begin-
ning of Sect. 3.2, our model will only allow the execution of the revocation stage
after the completion of a certain number of escrow sessions as determined by the
parameter session. Similar second-level pages for IdP, SP1, and SP2 have also
been modelled (detailed in Appendix A.1).

Third-level Pages. The details of the IdP’s, SPs’, and user’s activities during
the PE, KE, MC, and revocation stages are provided on the third-level pages.
Four examples of such pages are provided in Figures 4 to 7. Note that the main
transitions in Figures 4 to 6 have been annotated with a number (located at
the bottom-right corner of each of the transitions) indicating the normal order
(i.e. all attack parameters switched off) in which they occur.

Figure 4 depicts the model of the IdP’s activities during the PE stage. This
page demonstrates the message signing and verification approach. The input
arc to the transition IDP VERIFIES SP1 REQ AND STARTS PII ESCROW (Figure 4, top
centre) contains a variable escrowReqSig of colour set SIGNED SP REQ within the
union colour set IDP SP1 (see Table 1 lines 14, 15 and 26). The escrowReqSig vari-
able represents an SP1-signed message whose content is the conditions string.
This message is equivalent to message NT-PE-1 in Figure 1. As the IdP receives
this message, it verifies the signature validity which is captured in the transition
guard of the same transition. If the guard expression (verifyEscrowReqSig(escrowReqSig))
returns true, the signature is valid and the transition is enabled, allowing the
IdP to contact the user to proceed with the PE stage.

Figure 5 depicts the details of the user’s activites. This page models the
generation of necessary cryptographic data by the user. Here, we demonstrate
how complex cryptographic primitive behaviours can be modelled. The VE ci-
phertext is defined as the colour set CIPHER VE PII (see Table 1 line 10) which is
a record consisting of four fields: the message itself, the public encryption key,
the label under which the message is encrypted, and the provability property. A
provable ciphertext means that the recipient of the ciphertext can validate that
the received ciphertext correctly encrypts some claimed value (in this case the
user’s PII) without the recipient learning the value of either the PII itself or the
decryption key. We consider the message field inside a colour set that represents
a ciphertext to be unreadable. The model in Figure 5 captures the generation of
a VE ciphertext of PII, the result of which will trigger the placement of a token
in the PII VE CIPHER place (Figure 5, top-right).

The VE operations, including the encryption and decryption operations, are
captured as functions (see Table 1 lines 30-35). As stated in Sect. 3.1, our encryp-
tion operation does not perform the actual message encryption and decryption



11

operation. Rather, these operations are abstracted into two functions – veEnc

and decVE – and an auxilliary function veKeysRel. The function veEnc trans-
forms the main inputs for a VE encryption algorithm and outputs a token typed
by the colour set CIPHER VE PII. The decryption operation (1) takes as input
a representation of a VE private key and the ciphertext to be decrypted, (2)

e

uProof(
pkveProof)

1`uCipherVe(userVeCipher)++
1`uVePub(userVePub)

msgEscrow(escrowReqSig)

startPKVE(true)

startPE(true)

signedPseudo

signedPseudo

result

pkve(idpVeCipher,
#cert(pkveProof),
#commit(pkveProof),
idpVeKey,idpGenCond,
idpRec)

pkveProof

idpGenCond

idpVeCipher
idpVeKey

userVeCipher

userVePub true

(#genCond((#message(escrowReqSig))))

SEND
PSEUDONYM

TO USER

IDP GENERATES
PSEUDONYM AND
SEND TO USER

[result]

IDP RECEIVE
PKVE PROOF

RECEIVE ONE 
TIME DATA

IDP VERIFIES SP1 
REQ AND STARTS 

PII ESCROW

[verifyEscrowReqSig(escrowReqSig)]

CAN START
KE STAGE
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IDP_USER
I/O
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SIGNED_MSG

PKVE RESULT

BOOL
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PUB KEY
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BOOL

IDP 
GENERAL 
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I/O

I/O

Out

(1)*

(2)

(6) (7)

pseudonym(
signedPseudo)

(4)

IDP PKVE
PROOF RECEIVED

VERIFY
PKVE PROOF

(5)

pkveProof

START
PKVE

(3)

true

Fig. 4: The PIEMCP CPN – IDP PE page.

e

signedPseudo

uProof(pkveProof)

pkveProof

commitment

cert
startPKVE(true)

1`uCipherVe(userVeCipher)++
(if not USER_ATTACK2 then 
1`uVePub(userVePub) else 
1`uVePub(0))

userVeCiphertrue
U STORES

PSEUDONYM

[verify(signedPseudo, 
(#idpVerifyKey(#verifyKeys(
readUserRecord("user.txt")))))]

input (signedPseudo);
output ();
action
let
 val userRec = readUserRecord("user.txt")
 val pseudo = #message(signedPseudo)
 val userRec = USER_RECORD.set_pseudo
                        userRec pseudo
in
 updateUserRecord("user.txt", userRec)
end;

USER RECEIVE
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SEND
PKVE PROOF

GENERATE
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ESCROW DATA
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ONE TIME

DATA
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signedPseudo)
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(2)

(4)

{commit=commitment,
cert=cert}

(5)

Fig. 5: The PIEMCP CPN – USER PE page
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checks if the private key and the public key used to produce the ciphertext satis-
fies some relation (as captured by veKeysRel) and if the condition string given
is indeed the same as the one used for producing the ciphertext, then it outputs
the result (3) in the form of the DECRYPT OUTPUT colour set (Table 1 line 22):
the first element indicates the success/failure of the decryption, and the second
element contains the decrypted message (in case of success).

Next, the user sends the NT-PE-3 message (containing the VE ciphertext
of PII, and the public VE key) to the IdP - represented by the transition
U SENDS PII ESCROW DATA (Figure 5, middle-right). When the IdP receives this
message, the PKVE operation is triggered (NT-PE-4). Here, we demonstrate how
a complex zero-knowledge proof protocol like PKVE is modelled in CPN. We
break this operation into three transitions across the USER PE and the IDP PE

pages (indicated with grey-filled transitions): the START PKVE transition triggered
by IdP to signal the user the start of such a protocol (Figure 4, centre), the
GENERATE PKVE PROOF transition executed on the user side to generate the re-
quired PKVE proof data (Figure 5, middle-bottom), and the VERIFY PKVE PROOF

transition executed by the IdP to verify the given PKVE proof data (Figure 4,
middle-left). The result of PKVE is represented by the place PKVE RESULT. The es-
sential processing required by the IdP to verify the correctness of the proof is
captured by the function pkve5, which is invoked in the arc inscription from the
transition VERIFY PKVE PROOF to the place PKVE RESULT. Upon a successful PKVE,
the IdP generates a pseudonym and sends it to the user to be used for that
particular session.

Figure 5 also shows the attack parameterisation approach mentioned in
Sect. 3.1. The USER ATTACK2 parameter (see the output arc inscription from the
transition U SENDS PII ESCROW DATA to the place IDP USER around the centre of
Figure 3) depicts the behaviour of a malicious user who falsifies/gives an incor-
rect VE public key to the IdP in the NT-PE-2 message. Thus, when USER ATTACK2

is set to “true”, the user will send an incorrect VE public key value (represented
as “0”), otherwise, a correct value is sent.

Figure 6 shows the model for the revocation stage. The first transition (top)
SP1 RETRIEVES FULFILLED CONDITIONS is only enabled if the total number of exe-
cuted escrow sessions (represented by the variable counter) is greater than the
value of the parameter session. The completion of an escrow session increases
the value of counter by one, and as a result, the completion of session-number
of escrow sessions will result in the value of counter to be session+1. Hence,
the guard to the above transition essentially ensures that there must be at least
x-number of escrow sessions completed before the revocation stage can start
(whereby x is determined by the session parameter).

Next, SP1 firstly retrieves the condition string of a completed escrow session
which is deemed to have been fulfilled (the model parameter toRevoke - Table 1
line 40 - determines the corresponding completed escrow session). This data
is retrieved from the stored session data executed through the code segment
associated with the transition SP1 RETRIEVES FULFILLED CONDITIONS (which is not

5 Definition of this function is available in the referenced thesis [19, pp. 305].



13

(8)
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decVE(vePriv,#cipherVE(
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Fig. 6: The PIEMCP CPN – SP1 REV page (revocation stage initiated by SP1)

shown in Figure 6). Note that the session data were previously stored by SP1
at the completion of the KE stage (details available in Appendix A.4). Figure 6
also demonstrates the parameterisation of another attack parameter SP ATTACK3

whereby a service provider may attempt to revoke a user’s PII by including the
trivial “easy to fulfill” condition string (which is different from what was agreed
with the user previously during the escrow stage). This is captured in the two
output arcs from the transition SP1 RETRIEVES FULFILLED CONDITIONS. The setting
of SP ATTACK3 will mark the place ATTACK CONDITIONS (Figure 6, top left) with
the “easy to fulfill” condition string and no token will be sent to the place
ACTUAL CONDITIONS (Figure 6, top right). In the absence of this attack, the place
ACTUAL CONDITIONS will be marked with the actual condition string as read from
the session data file and the place ATTACK CONDITIONS will not have any token.

SP1 then sends a PII revocation request to all referees, modelled by the tran-
sition SP1 SENDS REVOKE REQUEST (Figure 6, middle right), by sending the condi-
tion string and the UCHVE pieces which are retrieved by reading the session
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data stored previously (achieved through code-region not shown in Figure 6).
The details of each referee’s model are described later in this section; at this
stage, when the SP1 receives the decrypted UCHVE pieces, it will then attempt
to recover the VE private key. This is captured by the input arc to the tran-
sition SP1 RECOVERS VE PRIVATE KEY (Figure 6, bottom left). This arc inscription
requires t (representing the threshold value) successfully decrypted pieces of the
UCHVE ciphertext by referees before the message (i.e. the VE private key) can
be decrypted. This page also demonstrates how CPN can be used to capture the
concurrent processing required (amongst the referees) during the UCHVE de-
cryption process. The combination of the modelling approach used on this page
and the referee pages (desribed in the ensuing text) therefore demonstrates how
we can captures a threshold decryption process using CPN.

The details of the referees’ model are described below. Figure 7 (left-hand
side) shows the detailed referees’ activities during the revocation stage. Since the
operations of each referee are the same, we decided to create one REFEREE page
which can be instantiated for individual referees. An example of a REFEREE page
instance is shown in Figure 7 (right-hand side). To capture the different runtime
behaviour of individual referees, we parameterise each REFEREE page instance (on
the ALL REFEREE page) with two main parameters: the referee number (ID) and
the condition fulfillment decision (the REFEREE NUMBER i and COND FULFILLMENT i

places respectively, where i={1,2,3}). The later parameter is used to capture
the (non-)malicious behaviour of a referee and is determined through the setting
of its initial value. For example, the initial marking of COND FULFILLMENT 1 (Fig-
ure 7, top left) states that when all attack parameters which affects the referees’

ALL_REFEREE Page    REFEREE Page Instance
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Fig. 7: ALL REFEREES page (left) and a REFEREE page instance (right)
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decision of conditions fulfillment (i.e. REF ATTACK1 and SP ATTACK3) are false,
the model considers both situations whereby the 1st Referee (REFEREE 1) agrees
and disagrees to the fulfillment of the conditions; hence the place is initialized
with both a true token and a false token.

When any one of the attacks listed above is set to true, we now need to
be able to differentiate between “honest” referee and “malicious” referee. The
REF ATTACK1 parameter captures the behaviour of malicious referees which agree
on some conditions fulfillment even when it is not the case. An honest referee will
state the actual fulfillment of the conditions, hence, for REFEREE 1 (which repre-
sents an honest referee - consistent with our protocol assumption that there exists
at least one honest designated referee), the value of the place COND FULFILLMENT 1

(Figure 7, top left) is set according to the model parameter condActually. For
malicious referees (REFEREE 2 and REFEREE 3), the initial value of their correspond-
ing places, COND FULFILLMENT 2 and COND FULFILLMENT 3 (Figure 7, left middle),
will be set to true (when REF ATTACK1 is set to true) to capture the mali-
cious behaviour decsribed before. The attack parameter SP ATTACK3 is defined
to capture the behaviour of a service provider attempting to launch a revocation
session using a set of made-up conditions which will most likely cause the refer-
ees to agree to their fulfillment. When this parameter is switched on, the initial
marking for the above-mentioned places of all referees is a true token.

Figure 7 (right) also shows the parameterization of malicious referees who
attempt to pool all decrypted UCHVE pieces amongst themselves with the
hope of being able to recover the VE private key (captured by the parame-
ter REF ATTACK2). By studying the inscription of the arc from the transition
REF DECRYPTS AND SENDS UCHVE PIECE to place REFEREES UCHVE DECRYPT EXTRA COPY

(Figure 7, bottom right) and by observing the parameter honestRef set to 1 (Ta-
ble 1 line 39), this malicious behaviour only applies to REFEREE 2 and REFEREE 3.

4 Verification of PIEMCP

4.1 Analysis Approach

We conduct the verification of PIEMCP using state space analysis. The verifi-
cation can be complex due to the numerous avenues by which attackers could
attempt to break the privacy protection provided by PIEMCP. We propose to
scope the verification within a set of plausible known attack scenarios.

The verification of PIEMCP takes into account both the absence and pres-
ence of attack behaviours, and is carried out in two stages: the baseline behaviour
analysis (Sect. 4.2) and privacy compliance verification (Sect. 4.3). Firstly, the
baseline behaviour analysis is performed through standard state space analy-
sis, including the inspection of proper session termination, deadlock/livelock
freedom, and absence of unexpected dead transitions. As a result, the analysis
informs us about the baseline correctness of PIEMCP. Next, we specify a set
of common privacy compliance properties of PIEMCP using ASK-CTL [10], a
dialect of Computational Tree Logic (CTL), supported by CPN Tools. These
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property statements are then interpreted into queries for model-checking the
state spaces generated from the PIEMCP CPN model to prove if the privacy
compliance holds for the protocol.

The PIEMCP CPN model has an initial state where the protocol can begin
the setup process and the session number is initialised with the first session’s
identifier and the three referee identifiers are specified. This is captured by the
initial marking M0 where the places START SETUP and SESSION on the USER page
(Figure 3, bottom) and the three REFEREE NUMBER i (i = 1, 2, 3) places on the
ALL REFEREES page (Figure 7, left-hand side) are marked accordingly. Further-
more, our model has a session parameter to execute two sequential escrow
sessions before a revocation is started (see Table 1 line 37).

In the absence of attack behaviour (that is, all attack parameters are set to
false), the state space generated from the above configuration has 606 nodes
and 1374 arcs, and contains no cycles (given the fact that the SCC graph has the
same number of nodes and arcs). The PIEMCP CPN model is then configured
to include a number of known attacks, and is executed under each of the config-
urations. A set of state spaces is generated capturing the behaviour of PIEMCP
with the corresponding attack scenarios.

We introduce some notations to be used. CPNM0

P denotes the PIEMCP CPN

model with an initial marking M0. P
PageName
PlaceName and T

PageName
TransitionName refer to a specific

place and transition in the CPN model, respectively. The marking of a place is
then written as M(P PageName

PlaceName).

4.2 Baseline Behaviour Analysis

The standard state space report generated from CPNM0

P without any attack be-
haviour (when all the attack parameters are set to false) shows that there are 8
dead markings. A close inspection of these markings indicates that they reflect all
8 different protocol termination points based on the dynamic conditions fulfill-
ment decision (boolean decision) by the 3 referees modelled on the ALL REFEREES

page (Figure 7). Also, there are three dead transitions: T SPI REV
USE ATTACK COND (Figure 6),

T ALL REFEREES
REFEREE FILTERS DECRYPT RESULT, and T ALL REFEREES

REF RECOVERS VE PRIVATE KEY (Figure 7-left). These
are expected dead transitions because they reflect attack behaviours.

Moreover, the report shows that both the upper and the lower integer bounds
of the place P USER

SESSION is 1 (i.e. a place invariant). This is expected since the place
is marked with the identifier of an ongoing escrow session throughout the pro-
tocol execution (where sessions are executed one by one without interruption).
Also, the place P ALL REFEREES

REF RECOVERED VE PRIVATE KEY is always empty, which is expected as
it reflects the modelling strategy for capturing problems (which then marks this
place) with the basic design of the PIEMCP itself. In conclusion, the state space
report confirms the expected baseline behaviour of PIEMCP without attacks.

For the PIEMCP with attacks (when one or more attack parameters are set
to true), the expected baseline behaviour is to stop the protocol execution as
soon as an attack is detected - a fail-stop behaviour. We would like to validate
that the PIEMCP CPN model exhibits such behaviour when taking into account
all possible attack scenarios.
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Table 2 details all the 14 attack parameters considered, and the particular
stage of PIEMCP where each attack may take place. As mentioned in Sect. 3,
the PIEMCP CPN model captures sequential executions of the four stages in
the order that PE is followed by KE, then MC and optionally Revocation stage
at last. Following this order, we first allow only the attacks to occur in the PE
stage. There are 23−1 attack scenarios resulting from combinations of 3 attack
parameters (USER ATTACK1, USER ATTACK2 and SP ATTACK1). These are captured by
7 configurations of CPNM0

P which then lead to the generation of 7 state spaces.
Analysis of these state spaces shows that the protocol detects the above attacks
and terminates within the PE stage. Similarly, we allow only the attacks to occur
in the subsequent KE, MC, and Revocation stages, respectively, and the analysis
results show that for each of the stages the protocol detects the relevant attacks
and terminates within that stage.

From the above analysis, it follows that due to the sequential execution of
the four stages of PIEMCP and the fact that the fail-stop mechanism does work
within each of these stages, once an attack occurs in an earlier stage (e.g. PE) the
protocol terminates within that stage, regardless of whether or not the attacks
are allowed to happen in a subsequent stage (e.g. KE, MC, or Revocation).
Therefore, the total 44 attack scenarios that pass the above fail-stop behaviour
validation cover the behaviour of all possible 214 attack scenarios in PIEMCP
based on the list of 14 attack parameters specified in Table 2.

4.3 Privacy Compliance Verification

We define four privacy compliance properties for PIEMCP. These are formalised
as ASK-CTL statements over CPNM0

P . CPN Tools support ASK-CTL [10] as
an implementation of a subset of CTL (mainly the “until” operator) over the
state spaces of CPN models. ASK-CTL implements two basic path quantification
operators to capture this logic: Exist Until(A1, A2) and Forall Until(A1,
A2). The Exist Until operator means that there must be at least one path,
from a given state, whereby predicate A1 holds for every state in the path until
the state where predicate A2 holds. The Forall Until operator is similar,
except that it requires all paths to fulfill A1 until A2 is true. From these, two
derived path quantification operators are Pos(A)=Exist Until(true, A) and
Ev(A)=Forall Until(true, A), which check the reachability of a state in
which predicate A holds. More specifically, Pos(A) checks if there is at least
one path that leads to a state where A holds (i.e. it is possible to reach such
a state), while Ev(A) checks if all paths lead to a state where A holds (i.e. it
must eventually reach such a state).6

Below, we use the above ASK-CTL temporal operators, a dialect of those in
CTL, to specify four privacy compliance properties in the context of PIEMCP.
We introduce some notations to be used in the property definitions. Firstly,
we divide the 14 attack parameters into two groups: Ases for the set of attack

6 ASK-CTL provides many other operators, which we do not use in the compliance
property specification.
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Entity Parameter Escrow Session Revc. Description
PE KE MC

User USER ATTACK1 T Incorrect PII and Cond1 used to

generate VE(PII)pubVE

USER ATTACK2 T Incorrect pubkV E sent to IdP

USER ATTACK3 T Incorrect UCHVE parameters used

USER ATTACK4 T Non-agreed “hard to fulfill”

conditions used in TPM Module2

Service SP ATTACK1 T Non-agreed “easy to fulfill”

Provider conditions forwarded to IdP

SP ATTACK11 T during PE and KE respectively

SP ATTACK12 T Non-agreed UCHVE parameters

forwarded to IdP

SP ATTACK2 T Non-agreed “easy to fulfill”

conditions forwarded to IdP at MC

SP ATTACK22 T Non-agreed UCHVE parameters

forwarded to IdP at MC

SP ATTACK3 T See explanation for Figure 6, pp. 12

SP ATTACK6 T SP2 uses invalid signature key

SP ATTACK7 T SP1 and SP2 use the same

condition within an escrow session

Referee REF ATTACK1 T See explanation for Figure 6 and

REF ATTACK2 T Figure 7, pp. 12

Number of attack 23-1 24-1 24-1 23-1
scenarios to consider

Table 2: The set of attack parameters, their effects on the PIEMCP stages, and
the number of attack scenarios to consider.

parameters targeting an escrow session, and Arev for the set of attack parameters
targeting a revocation stage. More specifically,

– Ases = {USER ATTACK1, USER ATTACK2, USER ATTACK3, USER ATTACK4, SP ATTACK1,
SP ATTACK11, SP ATTACK12, SP ATTACK2, SP ATTACK22, SP ATTACK6, SP ATTACK7}

– Arev = {SP ATTACK3, REF ATTACK1, REF ATTACK2}

Next, we define two predicates with respect to an escrow session or a revocation:

– S is the set of escrow sessions, ∀s ∈ S, SessionsM = (M(P Main
SESSION) = 1‘s)

– R is the set of revocable sessions, ∀r ∈ R, RevokingrM = (M(P SP1 REV
BEING REVOKED) = 1‘r)

We refer to various places and transitions in the formalization of properties.
Given the space constraints, only the formalization of the enforceable conditions
can be followed using the CPN pages that have been described in Sect. 3.2.
Other properties refer to certain places/transitions located within those CPN
pages which are described in the Appendix.

Multiple Conditions. In PIEMCP, when no attack occurs during an es-
crow session, the multiple conditions property requires that the protocol always
reaches the end of the session, and also each SP should receive an escrowed PII
that is cryptographically bound to conditions which are different from one SP to
another. Any attacks which may comprimise this property must be detected and
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caused a premature ending of the protocol. We have configured the CPN model
with one attack parameter that may compromise this property, SP ATTACK7, which
depicts the scenario of SPs colluding to use the same condition string with the
same user in a session. The goal of this attack is to make sure that all SPs in-
volved in an escrow session share the same condition string such that when it is
satisfied, all SPs within that escrow session are authorized to learn the user’s PII.
Therefore, in such a scenario, we expect the user to detect it and prematurely
end its interaction with the malicious SP.

We formalize the above informal property definition as follows: In CPNM0

P ,
in the absence of attack behaviour, when the protocol runs to the end of an
escrow session, the place P USER MC

CAM START NEXT SESSION is marked signaling the end of a
MC stage (i.e. the end of a session - see Figure 16 in Appendix A.5), and the
place P Main

SESSION (Figure 2) is marked by the session identifier of that escrow session.
The two places, P SP1 KE

UCHVE COND (Appendix - Figure 15) and P SP2
UCHVE COND (Appendix -

Figure18), which are used to store the above conditions regarding an escrowed
PII for SP1 and SP2 respectively, should be marked by different conditions at
the end of an escrow session. Informally, this means that the value of Cond1 and
Cond2 (referred to in Section 2) must not be the same (Cond1 6= Cond2).

When SP ATTACK7 is switched on, the desired behaviour of our protocol (re-
flecting the non-violation of this property) is captured by those execution paths
which lead to a marking where P USER MC

CAN REQUEST SP2 SERVICE (Appendix - Figure 16) is
marked with a false token.

Property 1 (Multiple Conditions). With the following predicates:

– SessionEnd M = (M(P USER MC
CAM START NEXT SESSION) = 1‘e)

– DiffCondSP M = (M(P SP1 KE
UCHVE COND) 6= ∅ ∧ M(P SP2

UCHVE COND) 6= ∅ ∧
M(P SP1 KE

UCHVE COND) 6= M(P SP2
UCHVE COND))

– ReqSP2Fail M = (M(P USER MC
CAN REQUEST SP2 SERVICE) = 1‘false)

PIEMCP has multiple conditions property iff CPNM0

P has the following be-
haviour:

– if all the attack parameters Ases are false, then
∀s ∈ S, ∀M ∈M0>: Ev(Sessions M ∧ SessionEnd M ∧ DiffCondSP M)

– otherwise, if SP ATTACK7 (and others in Ases are false), then
∃s ∈ S, ∃M ∈M0>: Ev(Sessions M ∧ ReqSP2Fail M) ut

Zero-knowledge. In PIEMCP, when there are no attacks during an escrow
session, and before the revocation of a user’s PII for that escrow session, the
zero-knowledge property requires that the IdP must validate that the cipher-
texts (and the corresponding parameters) it possesses are correct while at the
same time does not learn the value of the user’s PII. When there are attacks
which may compromise this property, we require our protocol to be able to detect
it. A malicious entity (such as user) may falsify the ciphertexts or their related
parameters with the hope that the IdP does not detect it and still accepts the
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ciphertexts and the related parameters. If this situation occurs, then this prop-
erty is violated due to flaws in the design of our protocol. We have modelled six
attacks that may compromise this property with the parameters: USER ATTACK1,
USER ATTACK2, USER ATTACK3, USER ATTACK4, SP ATTACK12, and SP ATTACK22. All of
these attacks involve either the user or SPs sending to the IdP some incorrect/fal-
sified ciphertexts and/or related parameters. For example, USER ATTACK1 involves
the user sending to the IdP a ciphertext which encrypts some “garbage” data.
The details of how we model these attacks are available in Appendix B (among
which USER ATTACK2 was described in Sect. 3.2).

We formalize this property as follows: In CPNM0

P , three places, P IDP PE
PKVE RESULT

(Figure 4, bottom-left corner), P IDP KE
TPM PROOF VERIFICATION RESULT (Figure 14, bottom-

left), and P IDP MC
TPM PROOF VERIFICATION RESULT (Figure 17, bottom-middle), capture the cor-

rectness of the encryption. When there are no attacks, all three places must be
marked by a true token; when any of the above-mentioned attacks is switched
on, at least one of the three places must be marked by a false token.

Property 2 (Zero-knowledge). With the following predicates:

– UsrVE-T M = (M(P IDP PE
PKVE RESULT) = 1‘true)

– UsrVE-F M = (M(P IDP PE
PKVE RESULT) = 1‘false)

– UchveKE-T M = (M(P IDP KE
TPM PROOF VERIFICATION RESULT) = 1‘true)

– UchveKE-F M = (M(P IDP KE
TPM PROOF VERIFICATION RESULT) = 1‘false)

– UchveMC-T M = (M(P IDP MC
TPM PROOF VERIFICATION RESULT) = 1‘true)

– UchveMC-F M = (M(P IDP MC
TPM PROOF VERIFICATION RESULT) = 1‘false)

PIEMCP has zero-knowledge property iff CPNM0

P has the following behaviour:

– if all the attack parameters in Ases are false, then ∀s ∈ S:
Ev(Sessions ∧ UsrVE-T ∧ UsrTPM-T ∧ UchveKE-T ∧ UchveMC-T) ∧
¬Pos(Sessions ∧ (UsrVE-F ∨ UsrTPM-F ∨ UchveKE-F ∨ UchveMC-F))

– if USER ATTACK1 ∨ USER ATTACK2 (and others in Ases are false),
then ∃s ∈ S: Ev(Sessions ∧ UsrVE-F) ∧ ¬Pos(Sessions ∧ UsrVE-T)

– if USER ATTACK3∨ USER ATTACK4∨ SP ATTACK12 (and others in Ases are false),
then ∃s ∈ S: Ev(Sessions ∧ UchveKE-F) ∧ ¬Pos(Sessions ∧ UchveKE-T)

– if SP ATTACK22 (and others in Ases are false),
then ∃s ∈ S: Ev(Sessions∧UchveMC-F) ∧ ¬Pos(Sessions∧UchveMC-T) ut

Enforceable Conditions. The enforceable conditions property requires that
a user’s PII should never be revealed unless all designated referees agree that
the cryptographically bound conditions are satisfied and that the referees must
not be able to learn the value of the PII themselves (they can only decrypt
UCHVE ciphertext pieces which does not allow them to learn the PII - at
least k decrypted UCHVE pieces are needed). This requirement applies regard-
less of whether there are any attack behaviours or not. Possible attacks that
can be launched to compromise this property include those parameterised by
REF ATTACK1 and REF ATTACK2 (both attacks have been described in Sect. 3.2).
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We formalize this property as follows. Note that the fulfilment status of cer-
tain revocation conditions for a session is captured by parameter condActually

(Table 1 line 36). In CPNM0

P , if condActually does not hold, then: (1) the num-
ber of decrypted UCHVE pieces (|M(P SP1 REV

UCHVE DECRYPT SUCCESS)| in Figure 6, bottom
left) by the designated referees must be fewer than the minimum number of ref-
erees (k) needed for a successful PII revocation, and (2) the user PII must not be
revealed by checking the marking which indicates the revelation of the user PII
(M(P SP1 REV

RECOVERED USER PII) 6= ∅ in Figure 6, bottom right corner) in each revoking ses-
sion must not be reached too. When condActually holds, we expect the number of
decrypted UCHVE pieces to be greater or equal to k, and that the user’s PII must
eventually be revealed. Finally, we must ensure that the marking indicating ille-
gal recovery of private VE key by the referees (M(P ALL REFEREES

REF RECOVERED VE PRIVATE KEY) 6= ∅
in Figure 7, bottom left corner) is not reachable.

Property 3 (Enforceable Conditions). With these predicates and notations:

– HasRefVEKey M = (M(P ALL REFEREES
REF RECOVERED VE PRIVATE KEY) 6= ∅)

– HasRecUsrPII M = (M(P SP1 REV
RECOVERED USER PII) 6= ∅)

– HasRevocation M = (M(P SP1 REV
SESSION BEING REVOKED) 6= ∅)

– k = 2, ..., n specifies the minimum number of referees who need to confirm
the fulfilment of revocation conditions for a successful PII revocation

– [M0> is the set of reachable markings (from the initial marking M0)

PIEMCP has enforceable conditions property if and only if CPNM0

P , with all
the parameters in Ases being false, has the following behaviour:

– ¬Pos(HasRefVEKey)
– if ¬condActually, then
• ∀M ∈ [M0>: HasRevocation(M)⇒ |M(P SP1 REV

UCHVE DECRYPT SUCCESS)| < k
• ∀ r ∈ R: ¬Pos(Revokingr ∧ HasRecUsrPII))

– otherwise (condActually)
• ∃M ∈ [M0>: HasRevocation(M)⇒ |M(P SP1 REV

UCHVE DECRYPT SUCCESS)| ≥ k
• ∀ r ∈ R: Ev(Revokingr∧HasRecUsrPII)) ut

Conditions Abuse Resistant. The conditions abuse resistant property re-
quires that an SP and an IdP must not be able to make the user to encrypt the
PII or the VE private key, under a set of conditions different from those orig-
inally agreed. Similarly, an SP or IdP must not be able to successfully revoke
the user’s PII using conditions different from those originally agreed. Various
attacks which may compromise this property have been modelled (USER ATTACK1,
SP ATTACK1, USER ATTACK4, SP ATTACK11, SP ATTACK2, and SP ATTACK3). From the
brief explanation of these attacks shown in Table 2, we can see that these at-
tacks all involve manipulating the condition string at various stages of PIEMCP.
The details of how we modelled these attacks are available in Appendix B (with
the exception of SP ATTACK3 which have been explained in detail in Section 3.2).

We formalize this property as follows: When there are no attacks, the crypto-
graphically bound conditions used to produce a VE ciphertext must be the same
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as the one originally agreed (EqGenVEConds, EqSP1UchveConds, EqSP2UchveConds).
When there are attacks targeting the general conditions used in the PE stage
(parameterised by USER ATTACK1 and SP ATTACK1), we expect that the IdP is able
to detect such an attempt to use incorrect conditions (different from those orig-
inally agreed, which is captured by ¬EqGenVEConds) thus resulting in the incor-
rect encryption (UsrVE-F). Similar behaviour applies to the scenarios involving
USER ATTACK4 and SP ATTACK11 as well as those involving SP ATTACK2.

For attacks targeting the use of invalid conditions during the revocation
stage (parameterised by SP ATTACK3), we expect that the transition T SP1 REV

USE ATTACK COND

(Figure 6, middle-left) is not a dead transition anymore, and that the marking
which indicates the revelation of user’s PII (HasRecUsrPII), or the illegal revelation
of VE private key (HasRefVEKey) should not be reached.

The following CPN pages (and the corresponding figures in which these pages
are shown) are used in the property definition: SETUP (Appendix Figure 10),
USER PE (Figure 5), USER KE (Appendix Figure 13), USER MC (Appendix Figure
16), IDP PE (Figure 4), IDP KE (Appendix Figure 14), and IDP MC (Appendix
Figure 17).

Property 4 (Conditions Abuse Resistant). With these predicates and notations:

– HasGenCond M = (M(P SETUP
GEN COND) 6= ∅)

– HasVECond M = (M(P USER PE
PII VE CIPHER) 6= ∅)

– HasSP1Cond M = (M(P SETUP
SP1 COND) 6= ∅)

– HasSP1UchveCond M = (M(P USER KE
KVE UCHVE CIPHER) 6= ∅)

– HasSP2Cond M = (M(P USER MC
SP2 COND) 6= ∅)

– HasSP2UchveCond M = (M(P USER MC
KVE UCHVE CIPHER) 6= ∅)

– EqGenVEConds(M,M ′) = (M(P SETUP
GEN COND) = M ′(P USER PE

PII VE CIPHER))
– EqSP1UchveConds(M,M ′) = (M(P SETUP

SP1 COND) = M ′(P USER KE
KVE UCHVE CIPHER))

– EqSP2UchveConds(M,M ′) = (M(P USER MC
SP2 COND) = M ′(P USER MC

KVE UCHVE CIPHER))

– EqVECondIDP M = (M(P IDP PE
GEN COND) 6= ∅ ∧ M(P IDP PE

IDP VE CIPHER) 6= ∅ ∧
M(P IDP PE

GEN COND) = M(P IDP PE
IDP VE CIPHER))

– EqUchve1CondIDP M = (M(P IDP KE
CIPHER UCHVE KVE) 6= ∅ ∧ M(P IDP KE

AGREED COND) 6= ∅ ∧
M(P IDP KE

CIPHER UCHVE KVE) = M(P IDP KE
AGREED COND))

– EqUchve2CondIDP M = (M(P IDP MC
CIPHER UCHVE KVE) 6= ∅ ∧ M(P IDP MC

AGREED COND) 6= ∅ ∧
M(P IDP MC

CIPHER UCHVE KVE) = M(P IDP MC
AGREED COND))

– UsrVE-F, UchveKE-T, and UchveKE-F, refer to definitions in Property 2
– HasRefVEKey and HasRecUsrPII, refer to definitions in Property 3

– BE(T ) is the set of all binding elements for a transition (instance) T

– ∀M,M ′∈[M0>, ∀be∈BE, M
be→M ′: M ′ is reachable from M upon firing be

PIEMCP has conditions abuse resistant property if and only if CPNM0

P has the
following behaviour:

– if all the parameters Ases ∪ Arev are false, then for each escrow session
s ∈ S, and for markings M,M ′ ∈ [M0> such that SessionsM and SessionsM ′:
• HasGenCondM ∧ HasVECondM ′ ⇒ EqGenVEConds(M,M ′)
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• HasSP1CondM ∧ HasSP1UchveCondM ′ ⇒ EqSP1UchveConds(M,M ′)
• HasSP2CondM ∧ HasSP2UchveCondM ′ ⇒ EqSP2UchveConds(M,M ′)

– if USER ATTACK1 ∨ SP ATTACK1 (and others in Ases ∪Arev are false), then
∃ s ∈ S: Ev(Sessions ∧ UsrVE-F) ∧ ¬Pos(Sessions ∧ UsrVE-T ∧ EqVECondIDP)

– if USER ATTACK4 ∨ SP ATTACK11 (and others in Ases ∪Arev are false), then
∃ s ∈ S: Ev(Sessions ∧ UchveKE-F) ∧

¬Pos(Sessions ∧ UchveKE-T ∧ EqUchve1CondIDP)
– if USER ATTACK2 (and others in Ases ∪Arev are false), then
∃ s ∈ S: Ev(Sessions ∧ UchveMC-F) ∧

¬Pos(Sessions ∧ UchveMC-T ∧ EqUchve2CondIDP)
– if SP ATTACK3 (and others in Ases ∪Arev are false), then

• ∃ be ∈ BE(T SP1 REV
USE ATTACK COND): ∃M,M ′∈[M0>[M

be→M ′]
(i.e. T SP1 REV

USE ATTACK COND is not a dead transition)
• ¬Pos(HasRefVEKey)
• ∃ r ∈ R: ¬Pos(Revokingr ∧HasRecUsrPII) ut

The above four property specifications have been implemented into ASK-
CTL queries (based on the full syntax of ASK-CTL) in CPN Tools for model-
checking the state spaces of CPNM0

P . The results of the execution of these queries
over the 45 state spaces in total (capturing the protocol without attack or with
various attacks, refer to Table 2) demonstrate that PIEMCP satisfies these four
privacy compliance properties.

5 Related Work

Formal methods based on process algebra have been used to model and ver-
ify security protocols (such as LySa [8]). Process algebra allows the modelling
of a system’s behaviour as a set of algebraic statements. Common verification
techniques used with process algebra include equational reasoning and model
checking [4]. For example, the Pi-Calculus [16] supports labeled transition se-
mantics in modelling a system. This allows the verification of protocols through
state exploration techniques such as model checking. However, we choose not to
use process algebra approach because of its complexity which tends to (unneces-
sarily) complicate even simple things [1]. In comparison to the graphical-based
modelling approach in CPNs, the pi-calculus approach is a less intuitive ap-
proach to model a large distributed system such as PEPs. Model validation can
only be performed by users who are experts in both the protocol itself and the
process algebra syntax. Nevertheless, pi-calculus-based approach has been used
to verify privacy-related technologies, such as the DAA protocol [3].

State exploration techniques (such as state space analysis and model check-
ing) have also been widely used for security protocol analysis. Examples belong-
ing to this category are Scyther [11], and ProVerif [7]. These are state-of-the-art
tools capable of automatically detecting attacks in many security protocols. The
main reason we do not use these tools is because the types of security properties
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verifiable by these tools are not relevant to PEPs. Instead, they are mostly rel-
evant to authentication and key agreement protocols, i.e. secrecy, authenticity,
and their variants. When protocols related to privacy are verified using these
tools, the privacy property is reduced to confidentiality and authenticity. We
argue that this is a simplistic approach to verifying privacy and that privacy
does not simply equate to confidentiality and/or authenticity. The behaviour of
a protocol in preserving or violating a user’s privacy is just as important. These
tools also lack the rich graphical and simulation support of CPNs.7 Therefore,
we do not find these tools to be suitable for our purpose. Although CPNs have
been widely used to analyze industrial communication protocols (such as Trans-
mission Control Protocol (TCP) [6]), its use in the area of security protocols is
still new with limited documented cases. For example, Al-Azzoni et al [2] used
CPN to model and verify the Tatebayashi, Matsuzaki, and Newman (TMN) key
exchange protocol [23]. The main difference between our work and theirs is that
they focus on verifying the secrecy property of the TMN protocol, while our
work focus on verifying the privacy behaviour of PEPs. The work presented in
this paper is an extension of our earlier work [22]. The main differences include:
(1) the improvement of the PIEMCP CPN model by re-structuring the model
in terms of modularisation of individual entities, their communication channels,
and different stages of operations; (2) the inclusion of the dynamic referee be-
haviour, i.e. the ALL REFEREES page and instantiation of the one REFEREE page
according to the number of referees involved; (3) a detailed analysis of the at-
tack scenarios, which leads to the finding of a set of necessary configurations of
the PIEMCP CPN model capturing all possible attack behaviours; (4) the elab-
oration of privacy compliance properties in terms of an improved formalisation
of property definitions which we believe is more precise and fine-grained (e.g.
each property is now defined in terms of a set of relevent attack behaviours,
instead of a “blanket” approach used in the previous work [22]); and (5) analy-
sis and verification of PIEMCP based on the updated CPN model and privacy
compliance property definitions.

6 Conclusion

We have shown that CPNs can be used to model complex PEPs, a class of
cryptographic protocols, and support the verification of their privacy compliance
properties based on state space analysis. We have also proposed several modelling
techniques, notably the cryptographic primitive abstraction (capturing complex
primitives and zero-knowledge proof protocol) and parameterised attacks. We
have also shown how we can formalise and verify privacy compliance properties
using standard state space analysis techniques and ASK-CTL queries.

Future work involves refinement and generalization of the modelling and
analysis approaches proposed in this paper such that they can be applied to other
PEPs. We also hope to build a better user front-end to simplify and automate the

7 Scyther provides some static graphical support. However, it falls short of interactive
protocol simulation and graphically-driven protocol specification.
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tasks required in the modelling and verification of PEPs. The function of such
a front-end could be as simple as aiding users with the configuration of attack
parameters without the need of knowing CPNs. Another long-term goal is to
achieve automated attack detections for PEPs using a CPN-based approach.
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A Description of Relevant PIEMCP CPN Model

In this section, relevant PIEMCP CPN pages which are used in this paper are
shown and described.

A.1 Second-level Pages

To provide the overall picture of the PIEMCP CPN model, the second-level pages
of SP1 and IDP (which have not been shown in the main paper) are displayed
in Figure 8 and Figure 9 respectively. Note that since SP2 is only involved in
the MC stage, the second-level page of SP2 is at the same level of granularity as
the third-level pages of other entities. The details of the SP2’s second level page
are provided in Section A.5.

A.2 Setup Page

Figure 10 depicts the setup phase that runs at the user side. It is used to generate
the necessary condition string as well as to control the number of escrow session
to be executed by the model. The transition SETUP’USER GENERATES CONDITIONS

is the very first transition that is executed in an escrow session, and its transition
guard ensures that the transition can only be enabled if the number of session
counter counter is less or equal to the model parameter session (see Table 1).

If the transition is enabled, the user then starts generating the necessary
agreed condition strings between user and SP1. Note that in Section 2 and in
Figure 1, it is depicted that only one condition string is used between user and
SP1; however, the protocol actually requires another condition string that needs
to be used to generate VE ciphertext (called GenCond). This information has
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Fig. 9: IDP Second Level Page

been omitted in the main paper to simplify the protocol description. Further-
more, the agreement process between SP1 and user in the condition string has
been abstracted out from the model as our model assumes that both parties
know the agreed conditions before the start of the PE stage.

A.3 PE Pages

The USER PE page and IDP PE page have been described in the main paper
(Section 3.2), therefore, in this section, we only describe the SP1 PE page as
shown on Figure 11, as well as a fourth-level page which is used inside the USER
PE page (see Figure 12).
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Fig. 11: SP1 PE Page

Figure 11 shows the operation of SP1 as it receives a service request from the
user. It prepares the PII escrow request (see transition SP1 PE’SP1 PREPARES

PII ESCROW REQUEST), signs the request (see transition SP1 PE’SP1 SIGNS

PII REQ) and sends the request to the IdP. This request then triggers various
operations involved during both PE and KE stage. SP1 will receive a response
to this request at the end of the KE stage (the details of which are described in
the next section).

Figure 12 shows the operation of the user who generates a per-session data,
including a one-time pubk ve and privk ve key pair, as well as the corresponding
VE ciphertext of the PII.
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if not USER_ATTACK1 then
veEnc(#pii(readUserRecord("user.txt")),
userVePub, #genCond(#conditions(
readUserRecord("user.txt")))) else
veEnc("bogusPII",userVePub,"arbitraryCond")

Fig. 12: A fourth-level page GENERATE ONE TIME DATA Page

A.4 KE Pages

Figure 13 and Figure 14 show the PIEMCP CPN Model of the USER and IDP
KE stage. Upon receiving the request to start the DAA from the IDP, the user
and IDP engage in PK-DAA protocol (NT-KE-1 on Figure 1). This operation re-
quires the user’s TPM to generate some proof which consists of (1) a set of
attestation identity key (AIK) keys which are then signed using the correspond-
ing DAA key (see USER KE’BLINDED AIK PUB KEY SIG, and a set of session keys
which are signed using the corresponding AIK key (see USER KE’SESSION KEY),
and a blinded representation of the original DAA signature (see USER KE’DAA SIGNATURE).8.
This operation is captured as code-region within the transition USER KE’TPM

GENERATES AIK KEY AND SESSION KEY. This proof is then sent to the IdP.
Upon receiving the DAA proof, the IDP then verifies the proof (see Figure

14) (captured as a code-region attached to the transition IDP KE’VERIFY PKDAA

PROOF. Assuming the verification operation returns a “true” value, the IDP then
signals the user to generate UCHVE pieces (see Section 2 for details).

The generation of the UCHVE pieces and the corresponding TPM Proof
(NT-KE-2) are captured by the transitions USER KE’TPM EXECUTES MODULE 2 and
USER KE’TPM GENERATES CORRECT EXECUTION PROOF in Figure 13. These mes-
sages are then sent to the IdP who will verify their correctness as captured by
the transition IDP KE’IDP VERIFIES MODULE 2 TPM PROOF in Figure 14. Upon a
successful verification of the generated UCHVE pieces, the IdP then generates
a response to be sent to SP1 (NT-KE-3).

Upon receiving the message from IdP, SP1 then contacts user to indicate the
completion of the KE stage (see Figure 15). SP1 also stores the session data
(captured as a code-region for the transition SP1 KE’SEND RESPONSE in Figure
??). Once the user receives such a confirmation, theoretically, the user can start

8 Readers who are interested in the details of the DAA protocol should refer to [9]
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Fig. 13: PIEMCP CPN USER KE Page

receiving services from SP1; however, we are not interested in the actual services
being consumed by the user, therefore, in our model (see the bottom part of
Figure 13), we abstract out such an interaction and simply models the situation
whereby the user ends the interaction with SP1 and ready to request service
from another service provider (SP2).
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A.5 MC Pages

Figure 16, Figure 17, and Figure 18 show the MC-stage pages for user, IDP, and
SP2 respectively. Upon the completion of the KE Stage, the user then proceeds
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to SP2 to request some services (see transition USER MC’SENC REQUEST TO SP2

in Figure 16) in which another set of condition string is included.
SP2, upon receiving this message, then proceeds to request for user’s PII to

be escrowed under another set of conditions (agreed between the user and SP2)
to the IdP via redirection through the user (see transition SP2’SP2 REDIRECTS

ESCROW REQ TO IDP VIA USERS in 17). Again, the process of agreeing on a set of
conditions has been abstracted out from the model and it is assumed that both
parties always know the agreed set of conditions prior to the start of the MC ses-
sion. User then forwards the request to the IdP, and at the same time, provide the
session pseudonym that the IdP gave earlier at the completion of PE stage (see
transition USER MC’USER FORWARDS SP2 REQ WITH SESSION PSEUDONYM) which
corresponds to (NT-MC-1 message in Figure 1 - note that such a redirection
technique has been omittted in Figure 1 for simplicity).

IDP then checks if such a pseudonym exists and that its corresponding session
is still active. If so, it then contacts the user (see transition to provide another
set of UCHVE pieces, this time encrypted under the condition string agreed with
SP2 (NT-MC-2 message). This effectively triggers the execution of another TPM
provable execution Module 2 (see IDP MC’IDP STARTS MODULE 2 WITH USER in
Figure 17).

The user then executes the TPM Module 2 in order to generate the UCHVE
pieces, and the corresponding TPM correct execution is also generated. Message
NT-MC-3 (from Figure 1 is then sent to the IdP (see transition USER MC’U SENDS

TO IDP MODULE 2 RESULT AND TPM PROOF in Figure 16).
Once the IdP verifies the correctness of the UCHVE pieces, it indicates the

end of the escrow session on the IdP side: it prepares a response to SP2 and stores
the session data (see transition IDP MC’IDP STORES AND PREPARES SP RESPONSE

in Figure 17). IdP then sends the response to the SP2 (message NT-MC-4 in Fig-
ure 1).
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SP2 then verifies the IdP response and if all verification checks pass, stores
the information and sends a signal to user to confirm that the user’s PII has
been successfully escrowed. The receipt of the confirmation from SP2 marks
the end of the escrow session for the user, thus, it stores the session data (see
transition USER MC’COMPLETE ESCROW SESSION AND STORE DATA in Figure 16).
The purpose of the storage of session data is to facilitate session data analysis
such that state-independent properties (that is, those properties which are not
dependent on the state and other behavioural information of the model) may be
analyzed or verified following the simulation of the model. For example, through
session data analysis, one may be able to analyze if there exists any protocol
data that may link a user to multiple escrow sessions, hence, may jeopardise
his/her privacy. Such an analysis is not detailed in this paper, but an example
of which can be obtained from [19]. The session data are also used during the
revocation stage to retrieve necessary escrow data needed to revoke a user’s PII.

Furthermore, the end of one escrow session also means that the user can now
start the next escrow session if he/she wishes to. Therefore, in our model, we
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allow such a repeat of the escrow session by increasing the session counter by
one and thus preparing the model to execute another escrow session (that is,
the place USER MC’CAN START NEXT SESSION will be populated with a token).
The decision on whether another round of escrow session should be executed is
determined in the SETUP page (see Section A.2).

B Modelling Attacks

In this section, our approach in configuring the model to capture various types
of attacks is detailed. Those attacks whose modelling have been described in the
main part of the paper are not repeated here. These attacks include USER ATTACK2
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(explained on pp. 12), SP ATTACK3, REF ATTACK1, and REF ATTACK2 (the last
three attacks are detailed from pp. 12 onwards).

B.1 Modelling Attacks by User

The USER ATTACK1 parameter captures the behaviour of a user who attempts to,
during the PE stage, generate a VE ciphertext containing incorrect PII and under
condition ArbitraryCond which is not the same with the agreed conditions wiht
SP1 (that is, Cond1 6= ArbitraryCond). This malicious behaviour is captured on
the fourth-level page GENERATE ONE TIME DATA shown on Figure 12 in the arc in-
scription from the transition GENERATE ONE TIME DATA’U GENERATES PII CIPHER

to the place GENERATE ONE TIME DATA’PII VE CIPHER. This arc inscription states
that if the USER ATTACK1 parameter is switched off, then the user will generate
a VE ciphertext containing correct PII and conditions (as read from the user’s
record); otherwise, random PII values and conditions are used. The notion of
“arbitrary condition” and random PII values is captured by simply using a con-
dition string which is not the same as the value originally generated by the user
in Figure 10 during the SETUP phase and by using the PII values that are not
the same as the one stored in the user’s session data (which is a value of m a).

The USER ATTACK3 parameter captures the behaviour of a user who attempts
to provide an incorrect UCHVE parameters during the execution of TPM Module

2. The USER ATTACK4 parameter captures the behaviour of a user who attempts
to use an incorrect condition in the generation of the UCHVE ciphertext during
the execution of TPM Module 2. To capture these attack behaviours, we use a
code-region linked to the transition USER KE’TPM EXECUTES MODULE 2 (see Fig-
ure 13 for the transition). The code-region is detailed in Table 3. The notion
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of incorrect UCHVE parameters and condition are captured by using a set of
UCHVE parameters (inluding the value of k, t, n, and privkV E) which are dif-
ferent from what have been agreed upon (as reflected in the user’s session data
record: k=2, |t|=2, |n|=3, ).

Code-region for transition USER_KE’TPM_EXECUTES_MODULE_2
========================================================
input ();
output (uchveCipher1);
action
let
val userRec = readUserRecord("user.txt")
val groupKeys = if not USER_ATTACK3 then #uchvePubKeys(userRec)

else [7,8,9]
val msg = if not USER_ATTACK3 then #priv(#veKeys(userRec)) else 0
val desigMembers = if not USER_ATTACK3 then #desigMembers(userRec) else [7,8,9]
val k = if not USER_ATTACK3 then #k(userRec) else 99
val t = if not USER_ATTACK3 then length (#desigMembers(userRec)) else 99
val n = if not USER_ATTACK3 then length (#uchvePubKeys(userRec)) else 99
val label = if not USER_ATTACK4 then #conditions1(#conditions(userRec)) else

"hardToFulfillConditions"

val pub = #pub(#veKeys(userRec))
val correct = msg = pub

val uchveCipher1 = uchveEnc(msg, groupKeys, correct, desigMembers, t, k, n, label)
in
uchveCipher1

end;

Function definition of ’uchveEnc’
=================================
fun uchveEnc(msg:K_PRIV_VE, groupKeys:K_PUB_UCHVE_LIST, correct:BOOL,

desigMembers:DESIG_MEMBERS_LIST, t:INT, k:THRESHOLD, n:INT,
label:LABEL) =

{message=msg, groupKeys=groupKeys, desigMembers=desigMembers,
t=t,k=k, n=n,label=label,provable=true};

Table 3: Code-region and function capturing USER ATTACK3 and USER ATTACK4

B.2 Modelling Attacks by SP1 and SP2

The SP ATTACK1 and SP ATTACK11 parameters captures the behaviour of a ma-
licious SP1 who attempts to send an incorrect conditions to the IdP during PE
and KE stage. As explained in Section A.2, there are actually two types of con-
dition strings used during user’s interaction with SP1: the GenCond used during
the PE stage and Cond1 used during the KE stage (although we abstracted out
the GenCond parameter in Figure 1 for simplicity). The SP ATTACK12 captures
the behaviour of a malicious SP1 who attempts to provide IdP with a set of
UCHVE parameters which are different from what were agreed with the user.

All these three attacks are captured in the SP1 PE page, as the outgoing
arc inscription from the transition SP1 PE’SP1 PREPARES PII ESCROW REQUEST

- see Figure 11. Because of the length of the arc inscription required to capture
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these attacks, we have instead captured the required inscription as a function
to improve readability of the model. This function, called generatePEReq(), is
detailed in Table 4. The notion of incorrect condition and UCHVE parameters
is the same as the one used in Section B.1.

Details of function ’generatePEReq()’
=====================================
fun generatePEReq()=
if SP_ATTACK1 then
{genCond="EasyGenCond",
conditions1=(#conditions(readSPRecord("sp1.txt"))),
uchvePubKeys=(#groupKeys(#cipherUCHVE(readSPRecord("sp1.txt")))),
k=(#k(#cipherUCHVE(readSPRecord("sp1.txt")))),
t=(#t(#cipherUCHVE(readSPRecord("sp1.txt")))),
n=(#n(#cipherUCHVE(readSPRecord("sp1.txt"))))} else

if SP_ATTACK11 then
{genCond=(#genCond(readSPRecord("sp1.txt"))),
conditions1="EasyToFulfillConditions",
uchvePubKeys=(#groupKeys(#cipherUCHVE(readSPRecord("sp1.txt")))),
k=(#k(#cipherUCHVE(readSPRecord("sp1.txt")))),
t=(#t(#cipherUCHVE(readSPRecord("sp1.txt")))),
n=(#n(#cipherUCHVE(readSPRecord("sp1.txt"))))} else

if SP_ATTACK12 then
{genCond=(#genCond(readSPRecord("sp1.txt"))),
conditions1=(#conditions(readSPRecord("sp1.txt"))),

uchvePubKeys=[7,8,9],
k=1, t=1, n=3} else

{genCond=(#genCond(readSPRecord("sp1.txt"))),
conditions1=(#conditions(readSPRecord("sp1.txt"))),

uchvePubKeys=(#groupKeys(#cipherUCHVE(readSPRecord("sp1.txt")))),
k=(#k(#cipherUCHVE(readSPRecord("sp1.txt")))),
t=(#t(#cipherUCHVE(readSPRecord("sp1.txt")))),
n=(#n(#cipherUCHVE(readSPRecord("sp1.txt"))))};

Table 4: Details of the function generatePEReq() capturing SP ATTACK1,
SP ATTACK11, and SP ATTACK12 attacks

The SP ATTACK2 and SP ATTACK22 parameters capture the same attack be-
haviour as SP ATTACK11 and SP ATTACK12 respectively, except that the former
two attacks happen in the interaction between the user and SP2 during the MC
stage. These two attacks are therefore modelled in the SP2! (SP2!) page in the
outgoing arc inscription of the transition SP2’SP2 PREPARES MC REQUEST. This
arc inscription contains a function generateMCReq() whose details are provided
in Table 5.

The SP ATTACK6 parameter captures the behaviour of a malicious SP2 who
attempts to use an invalid signature key to sign the NT-MC-1 message (see Figure
1). This attack is captured in the outgoing arc inscription (as a function called
generateSignedMCReq(sp2Req)) of the transition SP2’SP2 SIGNS MC REQ - see
Figure 18. The details of this function are provided in Table 5.

Finally, the SP ATTACK7 represents the behaviour of malicious SP1 and SP2
who collide to use the same condition string between the KE and MC stage.
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Details of the function ’generateMCReq()’
=========================================
fun generateMCReq()=
if SP_ATTACK2 then
{conditions2="EasyToFulfillConditions",
uchvePubKeys=(#groupKeys(#cipherUCHVE(readSPRecord("sp2.txt")))),
k=(#k(#cipherUCHVE(readSPRecord("sp2.txt")))),
t=(#t(#cipherUCHVE(readSPRecord("sp2.txt")))),
n=(#n(#cipherUCHVE(readSPRecord("sp2.txt"))))} else

if SP_ATTACK22 then
{conditions2=(#conditions(readSPRecord("sp2.txt"))),
uchvePubKeys=[7,8,9],
k=1, t=1, n=3} else

{conditions2=(#conditions(readSPRecord("sp2.txt"))),
uchvePubKeys=(#groupKeys(#cipherUCHVE(readSPRecord("sp2.txt")))),
k=(#k(#cipherUCHVE(readSPRecord("sp2.txt")))),
t=(#t(#cipherUCHVE(readSPRecord("sp2.txt")))),
n=(#n(#cipherUCHVE(readSPRecord("sp2.txt"))))};

Details of the function ’generateSignedMCReq(sp2Req:MCReq)’
===========================================================
fun generateSignedMCReq(sp2Req:MC_REQ)=
if not SP_ATTACK6 then 1‘{message=sp2Req,
signat={message=sp2Req,
key=(#signKey(readSPRecord("sp2.txt"))),
provable=false}} else
1‘{message=sp2Req,
signat={message=sp2Req,
key=999, provable=false}};

Table 5: Details of the function generateMCReq() capturing SP ATTACK2 and
SP ATTACK22, and the function generateSignedMCReq(sp2Req:MC REQ) captur-
ing SP ATTACK6.

This is an attack because condition used between KE, MC, and subsequent MC
stages within an escrow session should be specific to a particular SP to whom the
user is interacting. Sharing the same condition string means that the fulfillment
of one will allow all other SPs within the same session to receive the user’s PII
information (which may be a violation of user’s privacy).

This attack is captured on the code-region linked to the transition USER MC’

U SP2 GENERATE CONDITIONS (see Figure 16). The details of this code-region are
provided in Table 6. If this attack parameter is switched on, the condition string
to be used will then be the same condition string as the user used with SP1.
This code-region implicitly captures the sharing of data between SP1 and SP2
(otherwise, SP2 will not be able to learn the condition string that SP1 used
earlier).
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input();
output (helper1);
action
let
val condRandom = getRandom()
val userRec = readUserRecord("user.txt")
val userRec1 = readUserRecord("user_sess1.txt")
val userRec2 = readUserRecord("user_sess2.txt")
val sp1Rec = readSPRecord("sp1.txt")

val condSP1 = #conditions(sp1Rec)
val condSP2 = if SP_ATTACK7 then condSP1 else "Conditions SP2"^condRandom
val conditions = #conditions(userRec)
val conditions1 = #conditions(userRec1)
val conditions2 = #conditions(userRec2)
val proceed = validCond(condSP2, conditions1, conditions2, conditions)
val conditions = USER_CONDITIONS.set_conditions2 conditions condSP2
val userRec = USER_RECORD.set_conditions userRec conditions
val userRec = updateUserRecord("user.txt", userRec)
val spRec = readSPRecord("sp2.txt")
val spRec = SP_RECORD.set_conditions spRec condSP2
val spRec = updateSPRecord("sp2.txt", spRec)

in
createHelper1(proceed, readUserRecord("user.txt"))

end;

Table 6: Details of the code-region for the transition
USER MC’U SP2 GENERATE CONDITIONS to capture SP ATTACK7.


