
Computational Approaches to

the Visual Validation of 3D

Virtual Environments

Alfredo Nantes

Laurea (BSc + MSc) in Computer Engineering

a thesis submitted in fulfillment

of the requirements for the degree of

Doctor of Philosophy

Faculty of Science and Technology

Queensland University of Technology

October 2011

frontmatter/figures/logo.eps

c© Copyright by Alfredo Nantes 2011

All rights reserved

Declaration

The work contained in this thesis has not been previously submitted to meet

requirements for an award at this or any other higher education institution.

To the best of my knowledge and belief, the thesis contains no material pre-

viously published or written by another person except where due reference

is made.

Signature:

Date:

Keywords

Virtual Environment Testing, Virtual Environment Validation, Virtual En-

vironment Consistency, Rendering System Validation, Computer Game Test-

ing, Visual Bug Detection, Visual Inconsistency Detection, Synthetic Image

Processing.

Abstract

Virtual environments can provide, through digital games and online social

interfaces, extremely exciting forms of interactive entertainment. Because

of their capability in displaying and manipulating information in natural

and intuitive ways, such environments have found extensive applications in

decision support, education and training in the health and science domains

amongst others.

Currently, the burden of validating both the interactive functionality and

visual consistency of a virtual environment content is entirely carried out

by developers and play-testers. While considerable research has been con-

ducted in assisting the design of virtual world content and mechanics, to

date, only limited contributions have been made regarding the automatic

testing of the underpinning graphics software and hardware.

The aim of this thesis is to determine whether the correctness of the im-

ages generated by a virtual environment can be quantitatively defined, and

automatically measured, in order to facilitate the validation of the content.

In an attempt to provide an environment-independent definition of visual

consistency, a number of classification approaches were developed.

First, a novel model-based object description was proposed in order to en-

able reasoning about the color and geometry change of virtual entities dur-

ing a play-session. From such an analysis, two view-based connectionist

approaches were developed to map from geometry and color spaces to a

single, environment-independent, geometric transformation space; we used

such a mapping to predict the correct visualization of the scene. Finally, an

appearance-based aliasing detector was developed to show how incorrect-

ness too, can be quantified for debugging purposes.

Since computer games heavily rely on the use of highly complex and in-

teractive virtual worlds, they provide an excellent test bed against which

to develop, calibrate and validate our techniques. Experiments were con-

ducted on a game engine and other virtual worlds prototypes to determine

the applicability and effectiveness of our algorithms. The results show that

quantifying visual correctness in virtual scenes is a feasible enterprise, and

that effective automatic bug detection can be performed through the tech-

niques we have developed. We expect these techniques to find application

in large 3D games and virtual world studios that require a scalable solution

to testing their virtual world software and digital content.

Publications

1. Towsey, M., Planitz, B., Nantes, A., Wimmer, J., & Roe, P. (2011). A

Toolbox for Animal Call Recognition. In Bioacoustics. Impact factor:

1.44. In Print.

2. Nantes, A. and Brown, R. A. & Maire, F. D. (2010). Measuring Vi-

sual Consistency in 3D Rendering Systems. Paper presented at the

Thirty-Third Australian Computer Science Conference (ACSC-2010),

Queensland University of Technology, Brisbane.

3. Pham, B. L., Zhang, J., & Nantes, A. (2009). Semantic and context-

based retrieval of digital cultural objects [Published in Chinese]. In

X. Zhang & M. A. Keane (Eds.), International Perspectives on the

Creative Economy (Vol. 1, pp. 205-229): Sunchime Publishing.

4. Nantes, A., Brown, R., & Maire, F. D. (2008). A Framework for

the Semi-Automatic Testing of Video Games. Paper presented at the

Artificial Intelligence and Interactive Digital Entertainment (AIIDE-

08), Stanford University, Palo Alto, California.

To Alex, Vera, Lory and daddy

Acknowledgements

I am greatly indebted to my supervisor Ross Brown for his patience, guid-

ance and support over the course of this PhD journey. Ross continuously

encouraged and trusted me in all my experimental endeavours, and helped

me with everything I needed in order to complete and consolidate my work.

The interest he showed in the material, his patience with my many delays

and his willingness to listen to all my phenomenological digressions were

beyond the call of duty. It is from Ross I learned that great work requires

passion, creativity and dedication, and a stationary target.

I am also grateful to Frederic Maire, for his invaluable help and advice

for any technical difficulty I experienced during this project. His extensive

mathematical background and brilliant insights have always been a constant

source of motivation and inspiration for me. Frederic is one of those minds

who see obvious solutions to supposedly impossible problems. Luckily for

me, he was my associate supervisor.

Thanks to the entire BPM group; to Michael Rosemann in particular, for

the prompt and unquestioned support to this non-IS member of the IS disci-

pline; to Jan Recker and Marcello La Rosa, for being inspirational to many

of my important decisions; to Stephan Clemens and Thomas Kohlborn,

for their entertaining and optimistic attitude that gave my stressful days a

positive twist.

I am also grateful to Michael Towsey and Paul Roe, for offering me to work

with them on their ambitious Sensor Networks project. Their incessant en-

thusiasm and dedication to rigorous research influenced my own work. I

will go so far as to claim that this dissertation would have taken a different

shape, had I not made Michael’s acquaintance. I should say the same goes

for Christian Flender, the most knowledgeable person in matters of philos-

ophy of science I have ever encountered. Christian deeply influenced my

own thinking about mind, the universe and everything.

Thanks to Chiara, Ian, Jesse, Julie, Sam and Andrea for showing me that

life is immeasurably easier if you are well equipped with amazing friends.

Special thanks go to my family, my ever present supporters, for their per-

manent understanding of my mood swings and for being avid listeners of

all my failures and successes. Anything good that I am, I owe to my family.

They have always been the epitome of perseverance, sacrifice and love.

Glossary

χ
2 Chi-Square Distribution

AI Artificial Intelligence

AIFD Affine Invariant Fourier Descriptor

ANN Artificial Neural Network

ANOVA Analysis of Variance

API Application Programming Interface

AUC Area Under Curve

BMU Best Matching Unit

BN Bayesian Network

COM Component Object Model

CPU Central Processing Unit

CSS Curvature Scale Space

DCT Discrete Cosine Transform

DLL Dynamic Link Library

DoG Difference of Gaussian

FN False Negative

FP False Positive

FPR False Positive Ratio

GHTD Generalized Hough Transform De-

scriptor

GLOH Gradient Location and Orientation

Histogram

GMM Gaussian Mixture Model

GPU Graphics Processing Unit

HMM Hidden Markov Model

HN Hopfield Network

HOT High Order Tangents

HSV Cylindrical-coordinate representa-

tions of points in an RGB color

model. HSV stands for Hue, Sat-

uration, and Value

ICA Independent Component analysis

IQR Inter Quartile Range

kNN k-Nearest Neighbor

LOR Level of Realism

MGD Multivariate Gaussian Distribution

MLP Multi-Layer Perceptrons

MST Minimum Spanning Tree

NDC Normalized Device Coordinates

NMF Non-negative Matrix Factorization

NPC Non-Player Character

OBJ Object or Geometry

PCA Principal Component Analysis

QA Quality Assurance

RAM Random-Access Memory

RBF Radial Basis Function

RGB Color space defined by the three

chromaticities of the red (R), green

(G), and blue (B) additive primaries

RNN Replicator Neural Network

ROC Receiver Operating Characteristic

SDK Software Development Kit

SIFT Scale-Invariant Feature Transform

SOM Self-Organizing Map

SPSD Symmetric Positive Semidefinite

SSE Sum Squared Error

SURF Speeded Up Robust Features

SVM Support Vector Machine

TN True Negative

TP True Positive

TPR True Positive Ratio

v

GLOSSARY

vi

Contents

Glossary v

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Motivation . 1

1.2 Research Problem . 3

1.2.1 Towards Making the Game Testing Automatic 6

1.2.2 Scope . 7

1.3 Research Questions . 8

1.4 Significance . 8

1.5 Main Contributions and Organization 9

2 Measuring Virtual Environment Consistency 11

2.1 Unintended Artifacts in Virtual Environments 11

2.1.1 High Level Entertainment Issues 12

2.1.2 Usability Issues . 13

2.1.3 Environment Inconsistencies . 14

2.2 Targeted Environment Inconsistencies 17

2.2.1 Geometry Representation and Mesh Corruption 17

2.2.2 Color Synthesis and Corruption 19

2.2.3 Shadow Aliasing . 20

2.2.4 On Game States, Functions and Rendering Systems 22

2.3 Appearance Based versus Behaviour Based Detection 23

2.4 Experimental Environments and System Validation 27

vii

CONTENTS

2.5 Summary . 27

3 Related Work on Pattern Recognition 31

3.1 The Pattern Recognition Problem . 31

3.2 Novelty and Anomaly Detection . 33

3.3 Anomaly Detection Techniques . 35

3.3.1 Classification Based Approaches 36

3.3.2 Nearest Neighbor Based Approaches 39

3.3.3 Statistical Approaches . 40

3.3.4 Information Theoretic Anomaly Detection Techniques 42

3.4 Object Recognition in Real and Synthetic Images 43

3.4.1 Model Based Approaches . 44

3.4.2 Shape Based Approaches . 44

3.4.3 Appearance Based Approaches 45

3.5 Summary . 46

4 Model Based Classifiers 47

4.1 Stages of Image Synthesis . 47

4.2 Defining Visual Consistency . 49

4.2.1 Colored Point Clouds Synthesis 51

4.2.2 Visual Consistency Definition . 52

4.2.3 Some Necessary Epistemological Considerations 53

4.3 Building the Model through the Game Engine 54

4.4 Visual Consistency Error in Object Space 58

4.4.1 Geometry Errors . 58

4.4.2 Color Errors . 61

4.5 Visual Consistency Error in Screen Space 63

4.5.1 Color Errors . 67

4.6 Results . 73

4.6.1 Geometry Tests . 76

4.6.2 Color Tests . 80

4.7 Summary . 85

5 View Based Classifiers 89

5.1 General Approach . 89

5.2 Appearance Description . 90

viii

CONTENTS

5.2.1 Geometry and Color Descriptors 91

5.2.2 Object Space Segmentation . 93

5.3 Consistent Appearance Acquisition . 97

5.3.1 Connectionist Models of Consistent Visualization 97

5.3.2 Modelling Object Appearance through Feed-Forward ANN . . . 98

5.3.3 Appearance Modelling through Self Organizing Maps 100

5.4 Implementation and Results . 103

5.4.1 Estimator Parameters . 103

5.4.2 Dimensionality Reduction for the Geometric Transformation Ma-

trix . 105

5.4.3 Accuracy Measurements . 106

5.4.3.1 Geometry Tests . 106

5.4.3.2 Color Tests . 113

5.4.4 Model based vs. View Based . 118

5.5 Summary . 120

6 Appearance Based Classifiers 125

6.1 A Shadow Aliasing Detector . 127

6.1.1 Background: The Shadow Mapping Technique 128

6.2 Problem Formulation . 129

6.2.1 Implementation . 131

6.3 Results . 135

6.4 Summary . 138

7 Towards the Autonomous Retrieval of Debugging Data 141

7.1 Human-Like Action Acquisition . 143

7.2 Graphics Data Extraction and Modification 145

7.2.1 Intercepting Training and Testing Data 146

7.3 Summary . 151

8 Discussion and Conclusion 153

8.1 Limitations . 156

8.2 Computational Complexity of the Detectors 157

8.3 Future Research . 157

8.4 Summary . 159

ix

CONTENTS

References 161

x

List of Figures

1.1 Modern 3D Virtual Environments . 1

1.2 Game Software components . 3

1.3 Action spaces in combinatorial games and virtual environments 5

2.1 Levels of realism in modern computer games 15

2.2 Texture Corruption . 15

2.3 Shadow Anomaly . 16

2.4 Geometry Anomaly . 16

2.5 Collision Detection Anomaly . 17

2.6 Polygon mesh example . 18

2.7 Texture coordinates mapping . 19

2.8 Example of shadow aliasing . 21

2.9 Appearance based scheme . 24

2.10 Model Based and View Based scheme 25

2.11 Microsoft Racing Game . 28

2.12 Shadow Mapping Sample Environment 28

3.1 Pattern Recognition design stages . 32

3.2 A simple example of anomalies . 35

4.1 Stages of image synthesis . 48

4.2 Model based classifier scheme . 50

4.3 Pixel projection in clip space . 53

4.4 Examples of Colored Point Clouds . 54

4.5 Extraction of matrix and pixel information 57

4.6 Hausdorff distance . 59

4.7 Extraction of color histograms . 62

xi

LIST OF FIGURES

4.8 Object segmentation . 65

4.9 Object space vs. screen space pixel volumes 67

4.10 New frame and model frame . 68

4.11 Color error in screen space . 71

4.12 Color anomaly detection is screen space 72

4.13 Target objects and levels or realism . 74

4.14 Introduction of visual anomalies . 75

4.15 ROC curves from the model based classifiers 77

4.16 Geometry tests . 78

4.17 Color descriptors . 80

4.18 Color tests . 82

4.19 Number of clusters versus cluster radius 85

5.1 View based consistency estimation scheme 91

5.2 Geometry and color descriptors of appearance 92

5.3 Extraction of matrix and pixel information 94

5.4 Object segmentation . 96

5.5 Training and Testing in ANNs . 99

5.6 ANN Architecture . 100

5.7 Training in SOMs . 102

5.8 SOM Architecture . 103

5.9 PCA of transformation matrices . 105

5.10 ROC curves from the view based classifiers 107

5.11 Descriptor tables . 108

5.12 ANN geometry tests . 109

5.13 SOM geometry tests . 110

5.14 Performance of ANNs in geometry classifiers 111

5.15 ANN color tests . 115

5.16 SOM color tests . 116

5.17 Performance of ANN in color classifiers 117

5.18 Model based vs. view based detection 119

6.1 Appearance based detection scheme . 126

6.2 Common shadow anomalies . 127

6.3 Illustration of the Shadow Mapping algorithm 128

6.4 Example of corner detection in a synthetic image 131

xii

LIST OF FIGURES

6.5 Potentially anomalous shadow regions 132

6.6 Shadow map aliasing detection . 133

6.7 Shadow Aliasing detection . 136

6.8 Robustness to affine transformations . 137

7.1 Debugging System - Virtual Environment Interaction 142

7.2 Avatar Action Acquisition . 144

7.3 Graphics data interception through Microsoft Pixr 147

7.4 Example of Shadow Texture Extraction 150

7.5 Extraction of shadows from an image . 152

xiii

LIST OF FIGURES

xiv

List of Tables

4.1 Best Performing Model Based Classifiers 85

4.2 Model Based Classifiers - ANOVA - Geometry Tests 87

4.3 Model Based Classifiers - ANOVA - Color Tests 87

5.1 Parameter set for ANNs and SOMs . 104

5.2 Best performing View Based geometry classifiers 113

5.3 Best performing View Based color classifiers 118

5.4 View Based classifiers - ANOVA - ANN geometry tests 122

5.5 View Based classifiers - ANOVA - SOM geometry tests 122

5.6 View Based classifiers - ANOVA - ANN color tests 123

5.7 View Based classifiers - ANOVA - SOM color tests 123

xv

LIST OF TABLES

xvi

1

Introduction

Figure 1.1: Modern 3D Virtual Environments

1.1 Motivation

Virtual environment technology today covers a large component of the entire entertain-

ment industry, especially in the area of video games [5]. Present game worlds differ from

early generations where the graphics consisted of very few polygons and the user-game

1

introduction/figures/dig_games.eps

1. INTRODUCTION

interaction was restricted to a few commands entered through the keyboard. Today,

virtual environments are composed of thousands of objects, defined with thousands of

polygons [81] which gives the environment a remarkably realistic appearance. In such

virtual worlds, a great deal of entities interact with each other in real time, according

to complex physical models, or by following sophisticated logics. This advanced en-

tertainment technology has emerged from years of ongoing research in, amongst other

disciplines, computer graphics, artificial intelligence and computational physics [34].

In addition to entertainment, 3D virtual environments are used for therapeutic,

educational and work-related purposes. Indeed, virtual reality has been successfully

used to develop new diagnostic tools for psychology and neuro-psychology [64]; to

facilitate surgical procedures, medical therapies and patient education [122]; and for

distance education and collaboration purposes [7].

A game environment1 is synthesized by a 3D application, which in turn, is a complex

collection of software and hardware components that work in orchestration to produce

the experience of a game (Figure 1.2). The most common element that a game applica-

tion provides is graphics rendering facilities. The graphics engine includes scene graph

management routines, geometry partitioning and search algorithms, and a graphics

pipeline. Realistic interactive game environments also include, amongst others, system

engines (containing memory and CPU management libraries); sound engines (enabling

real-time audio mixing and filtering); AI modules (encoding the behaviour of the virtual

entities); and physics engines (implementing numerical solution to physics models).

The more complex the software, the more crucial the effort of the companies in

testing their product in order to ensure high enough quality in terms of functionality,

stability and robustness in general. Furthermore, in the case of computer games, the 3D

application is not only expected to work properly, but it has to be, amongst other things,

fun, challenging, realistic and well animated [51]. Assessing individual software modules

for robustness and efficiency certainly contributes to meeting design requirements about

specific game assets such as interface elements, menu screens, use cases, sound and

visual effects. However, it cannot guarantee that the integration of such modules with

other (externally manufactured) software and hardware will not introduce artifacts.

Testing is a crucially important step in the development of interactive virtual en-

vironments. Yet, there is no known best testing practice that can be followed to draw

1Computer games represent a specific application of virtual environment technology. However, so
far as this work is concerned, both virtual environments and games can be regarded as mechanisms
for generating visually realistic scenes. Thus, we shall use these two terms interchangeably in this
document.

2

1.2 Research Problem

Figure 1.2: Game Software components - Modern computer games are typically
made of several software components. The schematic diagram (inspired by the Quake III
Arena engine (http://www.quake3arena.com/) shows how such components interact with
one another. Game engines are constantly called upon by the Virtual Environment Core,
according to the user input. Engines are used to load, display, and animate models; to
detect collision between objects and to manage memory and CPU resources. The behaviour
of virtual characters (e.g. action selection, steering and locomotion) is typically computed
by the AI engine. The physics interaction of the environment content, is modeled through
the physics engine. Sound engines are also common in interactive virtual environments.
Music and audio effects are used to promote immersion, thus, increasing the realism of the
scene.

up effective test plans. As a matter of fact, different studios have different strategies

for assessing the quality of their products and none of them seems to have an optimal

methodology which works for every situation [65].

1.2 Research Problem

There are many reasons why video game testing is a concrete research problem. On

the one hand, the entertainment experience, virtual or otherwise, is a highly complex

phenomenon involving perception and cognition [142], both considered open problems

in science. In the case of realistic, interactive virtual environments, the user experience

seems to be determined by a combination of psychological mindsets such as immer-

sion, flow and curiosity [88]. Numerous quantitative studies have been conducted to

3

introduction/figures/game_engine.eps

1. INTRODUCTION

quantify such components and determine under which conditions they may emerge or

be triggered; yet, no general theory of entertainment has been formulated [1]. Without

good and general models of entertainment it is hard to determine and communicate, in

a non-ambiguous manner, the fun level of a game.

Along with established methods for assessing entertainment, there is also a need

to find good strategies for exploring or visiting the game world. In modern virtual

environments the user is free to move in arbitrary directions, perform a variety of

actions and interact with various virtual entities in a number of different ways. This

contributes to endowing the player with a sense of immersion [86]. The consequence of

such realism is a dramatic game space expansion with respect to any combinatorial game

such as Chess, Tic-Tac-Toe or Hex. In such games, the number of legal moves is quite

limited and the game is discrete, meaning that no simultaneous move between players is

allowed. Yet, the number of possible outcomes (play experiences) that can emerge from

such fairly simple games can be astronomically high. The game of Chess, which provides

for only 30 legal moves, enables a number of possible variations from the initial position,

the so called game-tree complexity, of the order of 10120 [127]. Interactive environments

are typically not discrete, they can have “boards” of arbitrarily complex 3D geometries

and, differently from most combinatorial games, the legal moves (combination of legal

atomic actions) they provide for are essentially infinite in number, for they are defined

in a continuous time domain.

In a combinatorial game, the final position of a piece is completely determined

by the initial position and the sequence of symbols or actions describing the move

to perform. In a virtual environment, the final position of an object or an agent is

completely determined by the initial position and the timed actions performed by the

object or the agent. As such, the same move — specified as a mere sequence of actions

— can position a character at an infinite number of different locations on the map

(Figure 1.3). In effect, it is this enormous variety that contributes in making a game

realistic in that, as we stated earlier, it lets the user freely explore the virtual world.

The problem for both combinatorial games and virtual environments is that there is

no guarantee that all branches of the game-tree are exciting, challenging or meaningful

enough to engage the user in the playful interaction. Unfortunately, we do know yet of

any general search strategy which can be followed to find such faulty branches, in case

of complex virtual environments, within reasonable time.

Yet, digital games need to be verified to ensure they are at high enough quality to

be released commercially. And given that no automated testing mechanism is currently

available, game companies can only rely on human testing resources. Before the title

4

1.2 Research Problem

is released, a number of play testers are typically hired to continuously play the game

and report on the bugs they find [65]. The advantage of this solution it that it is

simple and quick to employ. The disadvantages, however, are manifold. Firstly, given

that the time allocated for testing is limited, it becomes necessary to determine which

parts of the game-tree are convenient to explore and up to which depths. However,

the optimal traversal strategy depends on what to test; thus, as long as mechanisms

of automatic testing and bug detection will not become available, the effectiveness

and efficiency of the traversal will always depend on the experience and skills of the

game testers, producers and QA managers. Secondly, as noted earlier, it may be hard

to communicate the causes of non-entertaining game-play; percepts like mood of the

scene or sense of realism are hard to quantify and may be difficult to clearly report.

Finally, the performance of the testing activity is strongly influenced by factors peculiar

to humans, such as frustration and boredom, amongst others. Testing may become a

frustrating activity, especially with early software builds when the game cannot run

for more than a few minutes before crashing. Even when the testing task is clearly

understood and unambiguous, making testers perform the same sequence of actions or,

in general, making them play the same game over and over again, could push them to

overlook defects due to the haste of getting their job done.

Figure 1.3: Action spaces in combinatorial games and virtual environments - A
move, in a combinatorial game, is specified as a discrete sequence of actions mapping from
a specific initial position to a specific final position. For example, the move < u, u, r >
will always move the piece two tiles forward and one tile right. By contrast, the same
move, if not timed (i.e. < (u, t1), (u, t2), (r, t3) >), can position the piece anywhere in the
right-upper quadrant of the Cartesian coordinate system with origin at the current board
position of the piece.

5

introduction/figures/actions.eps

1. INTRODUCTION

1.2.1 Towards Making the Game Testing Automatic

We believe that three major steps need to be considered in order to build any game

testing mechanism. First and foremost, the type of artifacts to examine need to be

clearly specified and defined; this can be anything from a flaw in the game rules (e.g.

rules that enable easy wins or draws), to a flaw in the AI engine (e.g. nonsensical AI

behaviours), to an instability in the physics engine (e.g. unrealistic locomotions), to

a bug in the graphics engine (e.g. unrealistic or unappealing visualizations). Then,

models of the correct or incorrect behaviours of the game need to be ascertained on the

basis of the information available from the game software. Finally, strategies are to be

found to traverse the game tree so as to emulate some human-like gameplay and expose

the testing mechanism to scenarios that are likely to be experienced by human players.

As we noted earlier, there is no way a highly complex game-tree can be thoroughly

visited; a good option is to traverse it as a human would do. Such a strategy has

proven successful in a number of cases: for measuring quality and viability of board

games and facilitating the creation of new games [18]; for building mechanisms to detect

unwanted AI behaviours in simple environments [32; 149] and for the on-line content

creation for simple platform games [126; 137]. These can all be regarded as attempts

to assess or measure quality features of a game so as to keep the player engaged in the

interactive experience.

We present a general definition of virtual environments introduced by Fink et al.

[40], to better describe the aforementioned steps. The authors proposed that any vir-

tual environment can be seen as a two function system: an update function embodying

the behaviour of the game and an output function, producing the output we perceive.

Specifically, let S, A and O be the set of states, actions and outputs of a game respec-

tively. With the passage of time the game takes on a sequence s0, s1, s2, ..., (si ∈ S)

of states through the update function

ftr : S ×A→ S (1.1)

For each index i ∈ N, si+1 = ftr(si, ai), where ai ∈ A is the action taken by the player

between si and si+1. As noted by Fink, such a formulation is still valid even when the

update function contains random components, provided that the seeds of the random

number generators are included in the states. The output of the game can be described

by another function

fout : S → O (1.2)

6

1.2 Research Problem

that is while the game is in state si, it produces the output oi = fout(si), yielding the

observable sequence o1, o2, ..., (oi ∈ O) of outputs.

The aim of building mechanisms for the automatic testing of virtual environments

can be then fulfilled once:

• we agree on the relevant behaviour of ftr or fout to capture or model, given the

problem at hand;

• we determine what type of information is convenient to extract from S and/or O

and what methods to use in order to model the target behaviour;

• we develop an effective strategy to control the update function as a human player

would normally do.

In this thesis, we shall focus on the automatic detection of visual artifacts in O, caused

by malfunctions in the output function fout. As it will become clear in the following

chapters, the information that is best suited for the automatic assessment of visual

consistency will concern a small subset of S. Finally, the behavior of the avatar (i.e.

the human-controlled character) will be captured during a normal human-play session,

and replayed later for debugging purposes. This will enable us to stimulate the update

function in a human-like manner.

1.2.2 Scope

Most of the current research in the area of computer game testing is focused on the

qualitative and quantitative description of the player-opponent interaction; the aims

of such investigations are typically fulfilled via modelling some relevant features of the

update function and a view (a small set) of the complete states it handles [32]. The

actual output perceived by the player is very often neglected. In part, this stems from

the belief that entertainment can be fully captured through the symbolic information

directly available from the game, with no need for audiovisual features and context

[151]; in part, the choice may be justified by our limited understanding of the biological

processes underpinning human perception and cognition, which enable us to make sense

of the images we perceive.

In this work, we do not aim at capturing or enhancing the entertainment features

of computer games. Rather, we seek to characterize and measure the consistent scene

content in order to detect incorrect visualizations, that is, textures, meshes and shad-

owing artifacts. We postulate that anomalous visualizations can turn an entertaining

7

1. INTRODUCTION

interactive experience into an unpleasant or non-immersive one. Thus, the description

of the visual output of the game — rather than its internal states — becomes the

paramount problem of our analysis.

As we shall see, the corruption of the environment content is a concrete problem,

well-known to both the developer and player sectors of the games industry. Yet, com-

putational approaches to assist such a specific testing activity have, to our knowledge,

never been investigated.

1.3 Research Questions

Under the main question of “Can the correctness of content in 3D virtual environments

be automatically assessed?”, we have to answer the following more specific research

questions:

• Can environment anomalies be defined independently from the environment in

which they appear?

• What mechanisms and descriptors are good to effectively discern between anoma-

lous and valid visualizations?

• Will such descriptors have an object space or an image space representation?

• How can we develop a generalized approach to environment anomaly detection

that treats the engine as a black box in the process of finding visual errors?

1.4 Significance

This work introduces innovative applications of machine learning and image processing

research to video game and virtual environment testing. To the best of our knowledge,

this possibility has never been explored. It is our belief that the solutions proposed

in this work can be used to effectively assist game companies and developers of 3D

applications in assessing the quality of their products. Firstly, the automatic detection

of visual inconsistencies will lighten the load of inspecting the environment thoroughly

and carefully to find and report as many visual artifacts as possible. Also, research

conducted in this direction will stimulate the development of specific, unambiguous

languages to describe artifacts that are otherwise communicated through ambiguous

terminology. Finally, the use of fast estimators of environment consistency will enable

a more thorough exploration of the game tree (i.e. the set of states that can be reached

8

1.5 Main Contributions and Organization

during a play session) for debugging purposes. The maximum number of states that

can be effectively tested will depend on the hardware (e.g. consoles and computers)

available during the testing phase of the product. An arbitrarily high number of visual

anomaly detectors can run in parallel on the available hardware, in order to report

bugs, continuously and relentlessly.

1.5 Main Contributions and Organization

This thesis makes four main contributions:

1. A model-based method for representing image consistency: This thesis

proposes an alternative representation of the scene geometry in object space which

turns out to be suitable for making predictions about the appearance of virtual

entities. Based on such a representation, we propose a screen space probabilistic

approach to color anomaly detection, and a combined object space geometry and

color anomaly detector.

2. A view-based approach to capture the consistent behaviour of render-

ing systems: In this thesis, we develop two general connectionist approaches to

color and geometry anomaly detection based on the object representation intro-

duced by this research work. These mechanisms are able to detect mesh, color

and texture corruption anomalies.

3. An example of anomaly modelling: This thesis introduces a new approach

of shadow aliasing recognition in synthetic images based on an established image

processing technique of corner detection. Despite the context-dependent nature of

shadows, the context-unaware algorithm proposed exhibits efficient and accurate

response to the target anomaly.

4. Theoretical analysis of an autonomous approach to game content test-

ing: This thesis presents plausible approaches to the automatic extraction of

testing data, from any rendering system, without significantly interfering with the

3D application to test. The proposed scheme draws from established techniques

of graphics data interception and shows how such methods can be employed for

automatic testing purposes.

The thesis is organized as follows. Chapter 2 presents an overview of the visual anoma-

lies which commonly affect modern virtual environments. In this chapter, the target

9

1. INTRODUCTION

anomalies will be presented and an introduction to the approaches used to detect them

will be given. In Chapter 3, we shall review published research in pattern recognition,

relevant to this work. In particular, previous work in the areas of anomaly detection

and object recognition will be presented. Next, in Chapter 4, the model based approach

to visual anomaly detection will be introduced. The model based approach represents

a first attempt to visual anomaly detection via reversing the graphics pipeline. More

advanced visual anomaly detectors will be investigated in Chapter 5; we shall refer

to such detectors as view based classifiers. The inference that view based classifiers

make is based on more accurate models of color synthesis, compared to model based

approaches. In Chapter 6, we will present an example of inconsistency modelling,

through an appearance based detection scheme. A case study on a shadow-related

anomaly will be used to show how appearance based techniques can be effectively used

to detect environment-dependent anomalies. In Chapter 7, approaches to automatic

retrieval of debugging data will be discussed. Throughout this document, the graphics

data used for anomaly detection is assumed to be available during training and testing.

The aim of this chapter is to show how such debugging information can be extracted

without modifying and interfering with the game engine. Finally, conclusions will be

drawn in Chapter 8, about the methods and techniques introduced, in terms of an-

swers to the research questions posed earlier. The limitations of our approaches will be

discussed, along with guidelines for future research.

10

2

Measuring Virtual Environment

Consistency

With this chapter, we wish to give an analysis of the bugs commonly affecting computer

games and 3D virtual environments in general, explaining some of their causes and

consequences. This will set the stage for reasoning about the automatic detection

of visual environment inconsistencies, which is the focus of this research work. In

particular, in this chapter we will present the type of artifacts we want to quantify and

detect, and the approach we will use to fulfill our research aims.

2.1 Unintended Artifacts in Virtual Environments

The aim of this section is twofold: to show what type of anomalies are commonly

reported by the game community and therefore considered as non-negligible artifacts

from the user perspective; and to briefly review the research that has been conducted

in order to address them.

In order to obtain a quality sample of game bug statistics, we identified and clas-

sified game issues posted on Steamr1, one of the most popular communication and

distribution platforms2 that gamers use to report bugs in the products they purchase.

From the discussion forum of Steam, we observed that the number of issues-related

posts opened every day ranged from 0 to over 60, across all games. Out of a total of

1http://store.steampowered.com/
2It has been estimated that Steam has a 70% share of the video game distribution market [50].

According to the statistics reported by the website, at the time of preparation of this document, such
a platform accounts for roughly 3 million users logged in daily.

11

2. MEASURING VIRTUAL ENVIRONMENT CONSISTENCY

1100 game titles on Steam, we selected 100 and found that each one had at least one

assiciated bug-related report. We grouped the anomalies on the basis of the aspect of

the game experience that was involved and the affected components of the game. The

major bug categories we have identified are:

• High Level Entertainment Issues;

• Game Usability Issues;

• Environment Inconsistencies.

2.1.1 High Level Entertainment Issues

Anomalous high level entertaining features concern bugs in the AI and physics, me-

chanics, play and balance of the game. Game AI and physics are the set of mechanisms

embedded in the update function used to generate realistic behaviors in non-player

characters (NPCs) and other virtual entities. The game mechanics can be defined as a

set of rules intended to produce specific game experiences. This differs from gameplay

which refers to the overall experience of playing the game. For example, the game-

play of a shooting or fighting game is to hit while not being hit. The mechanics are

the processes in which such a goal is achieved, that is, attack and defense, or punch,

kick, block and dodge. Finally, game balance describes the fairness of power in a game

between multiple players or strategic options [33].

Bugs affecting such aspects of the game are caused by malfunctions of the update

function and may have the effect of turning the entertaining experience into a boring,

frustrating or meaningless exercise. An example of such anomalies are either nonsensical

or superhuman behaviours of the AI controlling the NPCs, generating extraordinarily

boring or otherwise difficult tasks to perform. Typical unrealistic AI behaviours result

in NPCs engaging in meaningless exercises such as endless runs into objects and walls, or

opponents being able to shoot enemies from remarkably long distances with extremely

high precision and success. Bugs affecting game balance also belong to this category;

in multiplayer experiences it is important that the map does not favor one team versus

another. For instance, bad game balancing can be overcome by appropriately spawning

weaponry and other items over the environment on the basis of the map geometry and

the objectives of the game. Finally, even if the behaviour of the opponents is of the

right level of challenge for the user to engage in the play experience, and the game

is perfectly balanced, there is still the risk that the tasks given to the player are not

12

2.1 Unintended Artifacts in Virtual Environments

particularly meaningful, in that they do not relate or fit well with the game mechanics

or story progression.

In recent years, researchers have been proposing a number of qualitative and quanti-

tative approaches to describe and quantify these issues. Perhaps, the work most closely

related to ours is that of Denzinger [32], who developed evolutionary learning strate-

gies to help human testers to detect unwanted behaviours in multi-agent systems. In

particular, Denzinger assumes there are components of the system that can be selected

for testing, such as the agents to test and their states (e.g. position, velocity, energy

and health). From the knowledge of the task the agents are supposed to carry out (e.g.

scoring a goal or rescuing other agents), Denzinger proposed to use a fitness function

to evolve new testing agents, so as to optimize their performances towards their test

goal. Unwanted behaviour is determined by the (manual) evaluation of the history

of events generated by such agents. For example, in the case of a soccer game, the

optimized agents may manage to always score a goal if performing a specific sequence

of actions. Such pitfalls in the game AI are difficult to detect by a human, due to the

enormous combinatorial complexity of the interactive environment. Xiao et al. [149]

introduced a different strategy to semi-automated gameplay analysis. In their work

they collected labeled samples from the testing system about the space of initial states

and user actions. Such a training set was then used to learn, through decision trees, a

model of the behaviour of the system. The decision of whether the learned behaviour is

acceptable or not is left to the game designer. From a theoretical perspective, Aponte

et al. [4] proposed a general definition of difficulty level which takes into account the

user experience, assuming that the challenges of the game are clearly specified. Fu-

ture developments of such work may enable quantitative evaluations of challenge and

boredom in digital games.

2.1.2 Usability Issues

Usability issues arise whenever the game becomes unplayable, very hard to play or

prevent the game mechanics unfolding normally. Software crashes and freezes are

perhaps the worst case of usability issues, for they cause abrupt interruptions of the

play experience and possible data loss. Framerate dropping is a less severe form of

playability issue resulting in the scene being rendered at an insufficient number of

frames per second. Anomalies of this kind result in a sharp motion of the camera and

all animated objects in the scene; as a consequence the environment becomes difficult

to control and navigate.

13

2. MEASURING VIRTUAL ENVIRONMENT CONSISTENCY

A rigid help system is also an example of a usability issue which may entail a poor

usage of the entertaining assets featured by the application. Other usability problems

commonly reported in game forums include poor customization options, wherein the

user does not have direct control upon the appropriate difficulty level or game pace;

obstructed views of the environment due to inappropriate camera angles; and complex

command sequences to perform actions. Finally, usability bugs also include game con-

trolling issues where the user-environment interaction becomes unpredictable due to a

high response time, that is, the time the application takes to react to a given input

action1.

Game usability issues can be caused by faults in the game engine (i.e. the update

function and its internal states), malfunctions in the game controllers or integration

issues between the application and the operating system, amongst other things. To

date, research investigating game usability issues is mostly qualitative, often based on

questionnaires to develop heuristics that can be used to carry out usability inspection

in video games. An example of such research is the work carried out by Pinelle et al.

[113]. Through the analysis of 108 games from the GameSpot2 website, the authors

categorized the game anomalies found into 10 assessment heuristics. The aim of the

work was to offer the possibility of evaluating the usability of games, without reviewing

unnecessary technical details. In general, such a type of qualitative research aims at

explaining, from a user perspective, relevant usability impediments in order to enable

the design of more entertaining games.

2.1.3 Environment Inconsistencies

The third family of commonly reported bugs is what we call environment inconsistency

issues. We understand consistency as the property of the virtual world to maintain

the level of realism meant to be offered throughout the play experience. We use the

term level of realism to refer to the computer graphics technique (or set of techniques)

used for rendering the scene. Figure 2.1 shows examples of different levels of realism

implemented in modern computer games. In order to preserve the immersive expe-

rience offered, it is important that the environment does not present the gamer with

unpleasant renderings such as incorrect textures, geometries and shadows. An environ-

ment is consistent if its geometry, textures and lighting effects look correct according

1In game community terminology, a high response time, upon user commands, is commonly referred
to as lagging.

2www.gamespot.com

14

2.1 Unintended Artifacts in Virtual Environments

Figure 2.1: Levels of realism in modern computer games - Today, game environ-
ments can be rendered using many different styles. Some examples are: graphic novel (a),
pencil sketch (b), photo-realistic (c) and cartoon-like (d) fashion.

to the level of realism and meaning the entities acquire in the virtual world. In the fol-

lowing sections, we will discuss some of the most common environment inconsistencies

reported by the game players. These are incorrect texturing, shadowing, geometry and

collision detection.

Incorrect texturing/coloring

Figure 2.2: Texture Anomaly

Texturing is a critical component of

virtual environments, for it is a fast

and remarkably effective way of deceiv-

ing the eyes of the user into perceiving

materials rather than just plain poly-

gons [21]. Such an illusion, however,

breaks in case of distortion and cor-

ruption by which the mapping of the

texture on the mesh typically results

in overly elongated stripes of uniform

color, or in the texture being acciden-

15

methods/figures/env_aesthetics.eps
methods/figures/texture_bug.eps

2. MEASURING VIRTUAL ENVIRONMENT CONSISTENCY

tally replaced with some other information from the video memory. In theory, any

method that relies on texture mechanisms (e.g. bump mapping [12] and displacement

mapping [132]) may undergo texture issues, resulting in unrealistic renderings.

Incorrect shadowing

Figure 2.3: Shadow Anomaly

Shadowing is an important aspect of

realism as shadows provide vital vi-

sual clues that communicate spatial

relationships and information to the

viewer. It is therefore not surprising for

players to be particularly pedantic on

the correct, or at least plausible, visu-

alization of shadows in the virtual envi-

ronment they are exploring. Since ren-

dering highly accurate shadows in real-

time demands high computing power, a

number of fast approaches to shadowing have been proposed over the years. For a sur-

vey on real-time shadow algorithms, the reader is referred to [56] and [124]. Each one

of these techniques has some known issues that, if neglected by the designer, may lead

to visually unappealing renderings. Common shadow anomaly reports include aliasing

effects such as jagged edges and Moiré patterns, missing shadows and shadows cast

onto invisible geometries.

Incorrect object geometry

Figure 2.4: Geometry Anomaly

Virtual environments are visually de-

fined by the geometric entities popu-

lating them. Such entities represent

models of real or fictional objects with

which the user interacts and by which

she carries out her own tasks. From

the player perspective, the objects may

present an awkward shape according to

their texture or they may be displayed

in improper locations and poses, given

their purpose and the context in which

16

methods/figures/shadow_bug.eps
methods/figures/geometry_bug.eps

2.2 Targeted Environment Inconsistencies

they appear. Such artifacts, as we shall see shortly, are typically the by-product of

software bugs (at the application and/or driver level) or hardware malfunctions.

Incorrect bounding volumes and collision detection

Figure 2.5: Collision Detection Anomaly

Collision detection is the mechanism by

which virtual environments emulate the

solidity property of objects, typically,

through physics engines. To give the

illusion of solidity, bounding volumes

(e.g. boxes or spheres) are used. These

are meshes circumscribing the target

object and representing regions within

which the rest of the geometries are not

allowed to enter. If the mechanism is

not properly implemented, objects will

clip into each other, producing visually unappealing artifacts. Other collision issues

concern the interaction between the camera and the environment; for example, im-

proper bounding volumes may allow the camera to travel and see through walls.

2.2 Targeted Environment Inconsistencies

As stated at the beginning of this chapter, the aim of this research is to address envi-

ronment inconsistencies. In particular, in this work the inconsistencies we will target

are geometry corruption, color corruption and shadow aliasing. This type of anomalies

will be presented in the following sections. A brief background on the relevant terms

and concepts of current real-time computer graphics technology will also be given, in

order to reinforce understanding of the virtual environment components affected by the

aforementioned anomalies.

2.2.1 Geometry Representation and Mesh Corruption

In real-time computer graphics, the most common representation of a virtual geometry

is the polygonal mesh or simply mesh [43]. A mesh is a set of connected polygonally

bounded planar surfaces made of vertices and polygons connected such that each edge

is shared by at most two polygons (Figure 2.6). A vertex is a point where two edges of a

polygon meet; an edge, in a polygonal mesh connects two vertices and a vertex is shared

17

methods/figures/cDetection_bug.eps

2. MEASURING VIRTUAL ENVIRONMENT CONSISTENCY

by at least two edges. Three-dimensional vertices are defined through position vectors,

but they can also be augmented by other information such as color, normal and tangent

vectors. The position of a vertex is expressed through an (x, y, z, w) vector, were w is

a homogeneous component, included in order to express any geometric transformation

through matrix multiplication [58].

The main advantage of a mesh lies in its capability in linearly approximating any

geometry with arbitrary accuracy [14]. In general, the greater the vertex density of

the mesh, the better the approximation of the equivalent surface, but also the more

computing power is needed for its real-time rendering. The set of meshes composing

a virtual object is typically stored into a file called a model file [43] so as to be easily

imported and used by any 3D application. Color and textures associated with the

object are typically stored in the model file.

Figure 2.6: Polygon mesh example - Meshes are sets of vertices (V) and polygons (P)
connected such that each edge between two vertices is shared by at most two polygons.

Geometry or mesh corruption is a common visual artifacts, which we ascribe to the

family of environment inconsistencies. Corrupted meshes can ultimately be attributed

to anomalous video memory (or video RAM) contents, caused by either software or

hardware malfunctions, or both. The video memory holds, amongst other things, the

position, normals and tangents of vertices that make up the object meshes. This

information is stored in vertex buffers, a sequence of contiguous video memory locations

that contains vertex data. Corrupted information in the memory buffers can therefore

result in the vertex properties being changed (i.e. translated, rotated and/or scaled).

Common geometry issues result in spike patterns (Figure 2.4); these are the result

of vertices being displaced away from from the intended position on screen. As for

18

methods/figures/polygon_mesh.eps

2.2 Targeted Environment Inconsistencies

the vertex position, normals, tangents and indices1 can too become corrupted. The

visual implications of such malfunctions in the final images are very hard to predict.

Geometry anomalies of severe magnitude, in general, result in severe occlusions and

clutter, thus preventing the user correctly perceiving, and therefore interacting, with

the 3D application.

2.2.2 Color Synthesis and Corruption

A large number of environment inconsistencies fall into the broad category of color

corruption. The color of virtual objects can is typically represented through textures

and/or color vectors, to be mapped to the underpinning mesh. Textures are 2D matrices

of pixels addressed through two-dimensional coordinate systems. Such coordinates are

used to map the texture onto the geometry, thereby significantly increasing the realism

and detail of the object (Figure 2.7).

Figure 2.7: Texture coordinates mapping - The coordinates (u, v) identify the element
or texel on the texture image which will be sampled according to the pixel position. The
(xi, yi, zi) vertex coordinates are mapped, by the application, to the (ui, vi) coordinates.

All pixels lying within the triangle V0V̂1V2 are textured by using the triangular texture
patch t0t̂1t2.

Colors can also be assigned to each vertex of the object mesh, via (R, G, B, α) vectors

representing the red, green, blue and alpha channels respectively; where alpha is the

opacity percentage (transparency) of the vertex. The final color of the object pixels is

then computed by the GPU via interpolating the color values from nearby vertices.

The color distribution over the objects surface, in the final image, varies according

to the lighting of the scene. In computer graphics, light models are typically computed

1Index buffers indicate the order in which the related vertices in the vertex buffer are to be assembled
by the GPU.

19

methods/figures/Texturing.eps

2. MEASURING VIRTUAL ENVIRONMENT CONSISTENCY

by additive mixtures of diffuse, ambient and specular contributions [90]. Lights can be

represented by points (e.g spotlights) or surfaces. In the latter case, each point within

the surface is a light source. Finally, lights are also used to add shadows and global

illumination effects such as caustics [87], radiosity [80] and bloom [110].

In order to increase surface details of the objects, and therefore the photo-realism of

the scene, displacement mapping [132] and bump mapping [12] techniques are often used.

The former, consist of changing the original mesh by displacing vertices and/or pixels

along their normals, according to some height map (a 2D texture). Similarly, bump

mapping techniques perturb vertex normals during lighting calculations (the actual

geometry is not modified), simulating small protrusions or ’bumps’ on the surface.

Color vectors, textures, height and bump maps are all stored in the video memory of

the rendering system. The video memory also holds an area called frame buffer, a linear

array containing the image that has been, or will be, rendered (i.e. the red, green and

blue color intensities of the final pixels on screen). Color corruption or inconsistency

occurs when the color content of the video memory becomes corrupted. Accordingly,

the anomalous content of texture, color and frame buffers can all result in visually

displeasing artifacts (see Figure 2.2 for an example).

From a testing perspective, it would be desirable to have mechanisms to detect

whether the color and shape of virtual objects has been properly rendered. Our aim

is to investigate how color and geometry corruption can be described and modeled by

extracting the content of the video memory, as the scene is synthesized by the GPU.

The main advantage of performing this type of analysis is that colors and geometries

can be defined and extracted in an environment or application-independent manner.

Such an extraction process is facilitated by the use of standard graphics libraries with

enforced data formats.

2.2.3 Shadow Aliasing

As stated earlier, shadows contribute to the realistic appearance of virtual environ-

ments. In order for shadows to endow the player with a sense of realism, it is important

that such artifacts themselves appear realistic. A critical step in the implementation

of numerous game assets is the tuning of various software parameters to produce the

intended appearance under a large enough number of environment configurations. This

is the case of many texturing, shadowing and lighting techniques, among others. For

those effects whose output does not depend on the entire content of the scene, the

appropriate parameters can be easily determined by heuristics concerning the object

20

2.2 Targeted Environment Inconsistencies

geometry and its position with respect to the camera only. As an example, consider

the texture mipmapping method used for mapping textures to different triangle sizes

on screen [90]. In the mipmapping algorithm, the original texture is resized to smaller,

filtered copies to be used for rendering distant triangles. The right texture level or

resolution, with respect to the triangle size on screen, is typically decided by the algo-

rithm proposed by Williams [145], which guarantees smooth, relatively imperceptible

transitions between different resolutions.

For other visual effects, such as shadowing, the final output depends on scene con-

tent rather than on the individual entities. As such it is hard to find methods which

guarantee that no artifacts will ever affect the rendering. Simply put, the more envi-

ronmental influence on synthesizing the final image, the more variables will need to be

considered for a bug-free rendering. As a consequence, such effects and their tuning pa-

rameters need to be tailored to the specific environment, at testing time. An improper

tuning may lead to unrealistic appearances like the ones depicted in Figure 2.8.

Figure 2.8: Example of shadow aliasing - Shadowing algorithms need to be tuned
according to the environment so as to avoid visual artifacts. The pictures shows an example
of a shadow aliasing anomaly (a), resulting in blocky edges of the shadow silhouette, with
respect to a realistic shadow (b).

The shadow mapping algorithm, at the time of this work, represents one of the most

commonly employed techniques for generating realistic shadows in interactive 3D en-

vironments [125]. Numerous improvements and modifications to the original shadow

mapping algorithm have been proposed to reduce the visual artifacts peculiar to the

original version of the algorithm proposed by Williams [144]. These improvements gen-

erally produce more realistic visualizations, but they entail more complex algorithms

and extra parameters to tune.

21

methods/figures/shadow_aliasing.eps

2. MEASURING VIRTUAL ENVIRONMENT CONSISTENCY

From a testing perspective, it is interesting to determine whether the final image con-

tains shadow aliasing artifacts, independently from the complexity of the scene or of the

underpinning algorithm. As with color and geometry issues, shadows will be assessed

by extracting and analyzing the related data from the video memory of the rendering

system. As discussed earlier, this approach enables the construction of environment-

independent, effective anomaly detection systems.

2.2.4 On Game States, Functions and Rendering Systems

Under the formal definition introduced in Chapter 1, any virtual environment can be

seen as a two-function system. These two functions being the update function, ftr

(Equation 1.1), and the output function fout (Equation 1.2). This latter, operates

on the game states in S and produces the sequence of images in O that the user

perceives. In fact, the output function can be further decomposed into three modules:

the one producing the visual output, the one producing the acoustic output, and the

one producing the haptic (or tactile) feedback (e.g. forces and vibrations) to the user,

given the previous game states. In this work, we are only interested in studying the

visual correctness of virtual entities; thus, we shall use the symbol fout as to indicate

the visual output module only. We will use the terms output function and rendering

system interchangeably, in order to indicate the overall process of image synthesis.

The game states in S can be thought of as the content of the (CPU and video)

memory addressed by the 3D application. However, the subset of S, input to fout, is

the graphics data used by the pipeline to render the scene. This includes vertex and

index buffers, textures, transformation matrices and light sources. The set O, is the set

of frames generated by the game, that is, the content of the frame buffer. The function

fout is partially implemented via software and partially via hardware. The software

part corresponds to the graphics interfaces used by the application, such as DirectX

and OpenGL; the hardware side is the GPU of the machine in which the application

runs. Because a game is typically expected to run on a number of different GPUs, fout

is typically implemented in many different ways. The graphics code need to be tailored

to the GPU on which the 3D application is expected to run, because different GPUs

feature different rendering capabilities. Thus, given that fout may ultimately denote a

collection of implemented graphics algorithms, the same input state S may results in

different outputs O: unrealistic renderings for poorly performing machines, and highly

realistic scenarios for highly performing hardware.

22

2.3 Appearance Based versus Behaviour Based Detection

2.3 Appearance Based versus Behaviour Based Detection

The main focus of this work is the detection of visual anomalies via the analysis of

the images in O and other graphics data in S contained in the video memory of the

rendering system. To fulfill our aim, we will investigate various techniques from the

field of computer vision and machine learning. In particular, through image process-

ing mechanisms, we aim at describing the appearance of objects and effects. Then,

when necessary, we shall employ pattern recognition algorithms to model the consis-

tent behaviour of the rendering system and discriminate between anomalous and correct

visualizations. The rationale behind such a strategy is to maintain the amount of in-

formation required from the game (e.g. vertices, textures, lights and graphics code)

to a minimum, and therefore make the solution as general as possible. The amount

and type of data needed from the game to build robust classifiers is indeed one of our

research questions (see Chapter 1). Specifically, the problem we will be facing is the

following:

Given the anomaly we wish to target, what type of information is good to

extract from the application to test, and how do we process it so as to effec-

tively discern between anomalous and valid visualizations?

A characteristic common to both objects and related anomalies is their ever changing

appearance. As for real objects, 3D virtual geometries are subjected to camera state

changes producing geometric transformations which result in changes in the two di-

mensional shape we perceive. The color of the object may change too, according to

the light models implemented in the environment, and the properties of the surfaces of

the objects. An incorrect object (texture or shape) changes as much as a correct one

does, as both correct and anomalous entities are likely to undergo the same rendering

processes. The challenge is to correctly discriminate an ever changing correct rendering

from an ever changing artifact.

One way to look at this problem is through an appearance based pattern recognition

scheme, considering the anomaly as a target object or event to recognize. To this

end, one can look for relevant properties or features in the image at hand, that are

characteristic to the artifact and possibly to nothing else in the scene. We use this

approach in Chapter 6 for detecting shadow mapping aliasing. In our method, we

make use of a computer vision technique to extract features characteristic to the target

artifact. As we shall see, such features can be extracted from images that have been

preprocessed so as to remove irrelevant information and to make the system more robust

(Figure 2.9).

23

2. MEASURING VIRTUAL ENVIRONMENT CONSISTENCY

Figure 2.9: Appearance based scheme - The approach aims at detecting patterns
peculiar to the target anomaly. To make the system more robust, the target image is first
pre-processed to remove irrelevant information. Then, characteristic features are extracted
to determine whether the anomaly is present or not. In the appearance based scheme the
a priori knowledge of the anomaly is embedded in the classifier.

A different approach to anomaly detection can be based on the knowledge of the cor-

rect behaviour of the rendering system. Such a behaviour can be either encoded by the

designer of the detector, or learned by the detector itself. This problem is very similar

to the novelty detection problem, for which a number of techniques exist. These ap-

proaches are reviewed in the next chapter and some of them used in this research work.

As for any ordinary novelty detection problem, we are faced with the challenge that we

can never train a learning system on all possible events (visualizations) that the target

environment can produce. Nevertheless, it becomes important to differentiate between

normal and anomalous information during testing, even for samples that have never

been observed, such as objects seen from different camera angles.

To address such a camera-related issue we will follow two different approaches: a

model based method and a view based method. Following the model based scheme

(Chapter 4), we will aim at modelling the visual data about the objects on the basis

of its geometric and color properties and use this information to estimate whether a

test scene is consistent or not. To that end, we treat geometry and color separately.

Geometry will be assessed in a canonical space, that is, the 3D local space in which the

objects are defined. Color will be assessed in another metric space (the HSV space)

through color histograms. We will also introduce a statistical approach to measure

color consistency to predicting consistent visualizations on the basis of the statistical

color properties of the objects. The probability estimate will be used to denote visually

novel (inconsistent) events.

24

methods/figures/Appearance_based_scheme.eps

2.3 Appearance Based versus Behaviour Based Detection

The view based approach we will explore is based on connectionist technology. We

propose two different architectures for our problem; these are neural-networks and self-

organizing map based architectures. In the former case, we train a neural network to

find a good mapping between the internal information available from the game about

the individual object to render, and the visual appearance of the object itself. The

detection of the anomaly will then be based on thresholding the Euclidean distance be-

tween the output from the trained network and the target visualization. High distance

values will indicate novel, or otherwise inconsistent, samples. In the self-organizing-map

approach, the state of the object is combined with the description of the object appear-

ance in order to learn the distribution of the consistent visualization in an unsupervised

and robust manner. After training, the detection of the anomaly will be based on the

Euclidean distance computed between the target sample and the closest unit (neuron)

to it. Similar to the neural-network approach, high distance values will indicate incon-

sistent renderings. In all novelty detection approaches we present, the training data is

some information from the game (e.g. images and internal variables) that is assumed

to be correct or consistent. The general architecture of the behaviour-based scheme is

depicted in Figure 2.10.

Figure 2.10: Model Based and View Based scheme - Both model based and view
based approaches aim at modelling some behaviour of a bug-free rendering system to
predict what the consistent appearance is going to be in new images and graphics data.
The process involves two stages: a training phase and a test phase. During training, the
target behaviour is modeled from a set of consistent images and internal graphics data.
During testing the new appearance is predicted using new graphics data and compared to
the actual one for bug detection.

25

methods/figures/Behaviour_based_scheme.eps

2. MEASURING VIRTUAL ENVIRONMENT CONSISTENCY

All novelty detection strategies presented in this work are based on the assumption

that the only information about the game states disclosed to the testing system is

the geometric transformation operations used by the rendering system to render the

objects and matrix maps, that is, images which enable the classifier to uniquely identify

the geometric transformations applied to visible objects in the scene. This choice of

extracting only a limited amount of data is motivated by two main reasons. On the one

hand, we wish to treat the game engine as a black box, so as to minimally interfere with

the normal process of image synthesis and introduce in this way additional artifacts to

the final rendering. The black box assumption, by providing the appropriate testing

interfaces, will also reduce the effort from the developers of the environment in making

their application compliant to our testing system1. On the other hand, the more

information we retrieve from the application, the higher becomes the complexity of

the detectors used for classifying the output of the rendering system. Furthermore, as

the number of variables to consider increases, the number of minimum training samples

required for learning increases too. As Markou and Singh noted [94], the amount of

training data required for a neural network, as the input dimensionality increases, may

increase as a power of the number of dimensions. As we shall see in Chapter 4, in order

to learn the consistent behaviour of the output function, some consistent information

needs to be available for training the detectors. Such information, to be considered

consistent, needs to be validated by a human. Hence, smaller amounts of training

data will make our solution more feasible due to less time spent visually validating the

training set.

The novelty detection algorithms learn the consistent appearance of individual ob-

jects based only on the information from the game related to the objects themselves.

This implies the assumption that the information from the game not directly related

to the target object will not affect the appearance of the object itself. Moreover, we

will assume that the states previous to the current one do not influence the current

rendering. Clearly, all these assumptions do not hold true in general. For example, the

target object may be occluded by the content of the scene; an occlusion involves an

object shape on screen which cannot be described solely on the state (e.g. position and

orientation in the 3D world) of the object itself. Also, for highly realistic environments,

the color of the target object may depend on the color and position of the surrounding

geometries; this is, for example, the case of specular and refractive surfaces of the ob-

jects and light occluding geometry generating shadows. Finally, the game may feature

1Techniques of automatic, environment-independent graphics data extraction will be discussed later
in Chapter 7.

26

2.4 Experimental Environments and System Validation

visual effects — such as motion blur — whose output depends on both the current

and the previous state of the game — for example the previous position and current

velocity of the objects. As we shall see, however, environment influence in the data set

(i.e. set of images from the game) can be treated as noise. If this noise is mild and the

detectors do not overfit the data (i.e. do not learn the noise), robust inference can be

made even in the case of photo-realistic environments.

2.4 Experimental Environments and System Validation

Our novelty detectors have been calibrated and validated on a freely available game

environment which we modified to generate the information needed by our algorithms

and to reproduce the artifacts we wanted to target. Such an environment is the Mi-

crosoft Racing Game, a close to professional quality game developed by Microsoft as a

starter kit for the Microsoftr Xnar1 development framework. This environment fea-

tured several objects (more than 70) and two different levels of realism. In particular,

the basic level of realism (Figure 2.11 (a)) featured displacement mapping, environment

mapping and shadow mapping, amongst other effects. The advanced level of realism

included post-process blooming and blurring (Figure 2.11 (b)). We modified the engine

so as to include a third rendering approach. This was the cartoon-like cel shading,

which endowed the virtual entities with a cartoon-like appearance (Figure 2.11 (c)).

As we shall see in later chapters, the validation of all model based and view based

algorithms is performed upon three different objects of different geometric complexity.

Also, color tests were carried out across the three levels of realism presented earlier, so

as to measure the effectiveness of our systems under different lighting conditions.

The shadow aliasing detector, instead, was validated on a Microsoftr DirectXr SDK

virtual environment called ShadowMap (Figure 2.12). Such an environment imple-

mented the standard version of the shadow mapping algorithm [144].

2.5 Summary

In this chapter we have presented a broad overview of the anomalies that most com-

monly affect computer games and virtual environments in general. We have shown that,

although quantitative and qualitative approaches have been proposed to address high

level entertainment and usability issues, no contribution has been made towards easing

1http://creators.xna.com/en-US/education/starterkits/

27

2. MEASURING VIRTUAL ENVIRONMENT CONSISTENCY

Figure 2.11: Microsoft Racing Game - To test our system, we used the Microsoft
Racing Game. Besides the two levels of realism implemented by the standard version of
the game — i.e. basic (a) and advanced graphics effects (b) — then extended the game
engine and implemented a cartoon-like version of it (c).

Figure 2.12: Shadow Mapping Sample Environment - Our shadow aliasing detector
was validated on a virtual environment sample bundled with the Microsoft DirectX 10 SDK,
called ShadowMap.

the manual testing of the environment integrity. In general, drawing a clear boundary

between what is visually wrong or unpleasant and what is not is a fairly hard task.

Ultimately, the perception of correctness may change depending on what is expected

from, or known about, the game. The level of realism of the scene is a good example

of such a phenomena; a cartoon-like visualization of an object should not be consid-

ered anomalous if the game is entirely rendered with such a technique. In contrast, if

an object is rendered in some cartoon-like fashion within a photo-realistic scene, that

object is likely to be perceived as anomalous, unless the peculiar appearance serves a

specific purpose or, simply, looks more visually appealing that way. In the following

chapters, we will develop methods whose effectiveness can be calibrated to the level or

realism featured by the environment. We will target issues such as color and geometry

corruption and shadow aliasing.

Assessing virtual environments for defect detection is ultimately a classification

problem which, as we shall see, can be addressed through what we have named appear-

28

methods/figures/exp_environment1.eps
methods/figures/exp_environment2.eps

2.5 Summary

ance-based methods, aiming at detecting patterns peculiar to the target anomaly; and

model and view based approaches, aiming at modelling some behaviour of the rendering

system.

29

2. MEASURING VIRTUAL ENVIRONMENT CONSISTENCY

30

3

Related Work on Pattern

Recognition

In Chapter 2, we reviewed quantitative and qualitative approaches to autonomous

game testing. The purpose of this chapter is to present relevant work that has been

carried out in the domain of pattern recognition. The task of recognizing patterns in

images is central to this research work, for the detection of anomalous visual events

ultimately is a pattern recognition problem. In our case, the patterns of interest are

those that significantly differ from the patterns emerging from the normal behaviour

of the rendering system. Specifically, in this chapter we shall review:

• current methods to novelty and anomaly detection, in image processing and ma-

chine learning research;

• current mechanisms of object recognition, in computer vision research.

3.1 The Pattern Recognition Problem

Pattern recognition is a scientific discipline, covering developments in the areas of

statistics and machine learning, computer vision, psychology and physiology, amongst

others [135]. The ultimate goal of all pattern recognition problems is to classify ob-

served events into a number of categories or classes. The nature of the target events

can be arbitrary, ranging from acoustic signals, to images, to sequences of words or

letters, to DNA strands. More formally, a pattern is often defined as a p-dimensional

data vector x = (x1, x2, . . . , xp)
T of features (or attributes) of the event of interest.

Examples of such attributes are Discrete Cosine Transform (DCT) coefficients from

31

3. RELATED WORK ON PATTERN RECOGNITION

acoustic waveforms [156], raw pixels from an image [148] or nucleotides from a DNA

sequence [116]. Associated with each pattern there may be a categorical variable z,

denoting the class membership of the feature vector. Assuming there exist C classes,

if z = i then the related pattern belongs to the ith class, i ∈ {1, . . . , C}. The set of

patterns of known classes is typically denoted by {(xi, zi) | i = 1, 2, . . . , n}, where n is

the number of classified patterns. This set is often referred to as training set1. The

task of building a pattern recognizer consists in building a model that allows a mapping

from the feature space of x to the set of classes, for any unknown pattern. If the class

labels are not available, patterns are grouped into classes according to some similarity

measure. The general stages involved in building a pattern classifier are depicted in

Figure 3.1. These are sensing, feature extraction/selection, modelling and validation.

Figure 3.1: Pattern Recognition design stages - Stages involved in the design of a
pattern recognition system. Illustration inspired by Theodoridis and Koutroumbas [135]

A sensor is a device (e.g. a microphone, a camera or a thermometer) that converts

real world phenomena into analog and/or digital signals (e.g. a sequence of bits).

Clearly, if the information is already available in a digital format, the sensor stage

will not be present. The feature extraction and selection is critical to any pattern

recognition task. This stage includes all processes involved in reducing the complexity

(i.e. dimensionality) of the incoming row data, removing redundant information and

transforming it into a more appropriate form for the problem of interest. For example,

in some acoustic and visual pattern recognition tasks, the input signal is projected

onto orthonormal bases, via using Discrete Cosine Transform, Principal Component

Analysis and Wavelet Decomposition [115]. Next, a model is trained in order to build

the mapping between the feature vectors and the classes to which they belong. Learning

can be carried out in a supervised or unsupervised manner, depending on the availability

of the class labels in the training set. Finally, the output of the classifier is evaluated

and the system parameters adjusted or changed in order for the predicted value to be

as close as possible to the true value, in some optimal sense [135]. In the following

sections, we will discuss two areas of pattern recognition relevant to our research work,

1The training set may or may not contain the class labels zi.

32

literature/figures/pattern_recognition.eps

3.2 Novelty and Anomaly Detection

that is, anomaly detection and object recognition. However, before doing so we need

to point out the issues that are common to the design of any classifier.

Firstly, if a classifier is too complex (i.e. it has too many parameters to tune) it

may overfit the data, that is, learn random errors or noise. Conversely, if the model is

too simple, it may fail to represent complex structures of the data set (underfitting).

An example of overfitting is given by a polynomial curve used to fit a set of points.

If the degree of the polynomial is too high, the curve will fit the data set “too well”

(in the fitting error sense), by modelling every fluctuation of the data, possibly due to

noise. On the other hand, if the degree of the polynomial is too low, the fitting error

will be large and the underlying variability of the data will not be captured. Choosing

the appropriate model is an exercise in model selection. In general, high dimensional

input spaces require complex models in order to fit the data. This is why, the input

complexity is often reduced via appropriate feature selection. The difficulty in selecting

the appropriate model comes also from the fact that it is hard to determine what is

structure and what is noise in the data.

Secondly, the performance of a particular classifier on a given data set depends on

both the classifier and the data [139]. Typically, trial-and-error processes are required

to find the model that best describes a given data set.

Finally, even the best fitting model for the given training set may perform badly

on the test set, that is, the set of unobserved events. The reason being, the training

and test data may be significantly different. For example, the test data may be subject

to more noise, with respect to the training data. These are all factors that should be

accounted for in classifier design.

3.2 Novelty and Anomaly Detection

Our research work aims at detecting defects in realistic images generated by 3D appli-

cations. Assessing correctness is similar to the general problem of novelty or anomaly

detection for which several approaches already exist. In image processing and machine

learning research, anomaly detection refers to the problem of finding patterns in data

that are new or unknown, that is, not conforming to some well defined notion of nor-

mal behaviour [23]. Anomalies in the data may translate to significant events in the

real world. For instance, novel traffic patterns in a computer network may result from

attacks or intrusions [27]; anomalous electroencephalogram (EEG) scans may indicate

seizures [46]; anomalous readings from space craft sensors could signify defects in some

component of the space craft [45]. The problem of detecting novelty is an extremely

33

3. RELATED WORK ON PATTERN RECOGNITION

challenging classification task [94]. Typically, detection of novelty is performed by defin-

ing regions representing normal behaviour and ascribing “interestingness” to the data

not belonging to such regions. However, defining regions encompassing every possible

normal behaviour may be extremely difficult, especially when the data is dynamic (e.g.

audio and video signals) and the samples available are limited in number. Moreover,

the notion of anomaly differs across application domains, and so does the definition

of noise which typically contaminates the data. For these reasons, there is no single

optimal model for detecting anomalies. The success of the detection depends on both

the technique used and the statistical properties of the observations.

Anomalies are typically classified into two main categories, these are point anomalies

and contextual anomalies. If the anomaly can be defined independently from the context

in which it appears, then it is referred to as a point anomaly . Otherwise, if the data

instance is anomalous in some contexts but not otherwise, then the related anomaly

is called a contextual anomaly [24]. One example of a point anomaly is a very high

(or low) expenditure, among the average expenditures in credit card transactions. By

contrast, the abnormal behaviour of the time-varying temperature of an area is an

example of contextual anomaly. Here, the contextual attribute is time, whereas the

non-contextual attribute (observation) is the temperature. Any point anomaly can be

turned into a contextual anomaly by incorporating context information into the data.

In detection tasks, the data used for generating the model is generally associated

with labels denoting whether the instance is anomalous (novel) or not. Labeling is of-

ten a tedious process, for it requires the effort of human experts who need to carefully

inspect the training set and tag what is perceived as anomalous or otherwise. In some

cases, labeling is carried out only for positive samples, as a comprehensive set of anoma-

lous events may be hard to collect and hence the anomalous set would be considerably

smaller than the set of normal events [23]. Based on what type of labels are avail-

able, anomaly detectors can operate in a supervised, semi-supervised or unsupervised

manner. Supervised anomaly detectors require that both positive and negative labels

are available denoting known and anomalous events respectively. A typical supervised

anomaly detector consists of a predictive model built on a set of labeled (normal and

anomalous) samples. The supervised anomaly detector then clusters new observations

into normal versus anomalous classes. In the semi-supervised scheme, labels are as-

sumed to be available only for the normal class. Because semi-supervised approaches

do not require labels for the anomaly class, they are typically more appealing than

supervised techniques. The semi-supervised classifier will ultimately be a model of the

normal behaviour. Bad predictions from the model will be ascribed to anomalous ob-

34

3.3 Anomaly Detection Techniques

servations. Finally, unsupervised techniques do not require labels as these methods rely

on unsupervised clustering techniques [84]. These methods first try to find anomalies

“buried” in the unlabeled data set, in which the normal instances are assumed to be

far more frequent than the anomalies. Upon the labels produced by the unsupervised

mechanism, ordinary supervised anomaly detectors are than used. Figure 3.2 depicts a

simple two-dimensional example of normal versus anomalous events and related labels.

Figure 3.2: A simple example of anomalies - Anomalies are patterns in data that do
not conform to a well defined notion of normal behaviour. If the set of normal (N) and
anomalous (A) events is labeled, supervised techniques can be used to learn the boundaries
of the two sets. In some other cases, only the set of N normal events is known a priori.
In such cases, the anomaly detection task can be accomplished by using semi-supervised
learning techniques. Finally, if neither N nor A is labeled, unsupervised approaches are
used in order to determine which events are most frequent (therefore, supposedly normal)
in the data set.

Besides architecture and type of anomaly handled, detectors are also defined by the

way the anomalies are reported. In particular, the output of a detector can be a score

value, indicating the level of novelty detected or a binary label, indicating whether the

instance belongs to the normal class or not.

3.3 Anomaly Detection Techniques

Novelty detection approaches fall into five major categories. These are classification-

based, nearest neighbour-based, clustering-based, statistical-based and information theoretic-

based approaches [23]. Such techniques will be reviewed in the following sections.

35

literature/figures/anomaly_detectors.eps

3. RELATED WORK ON PATTERN RECOGNITION

3.3.1 Classification Based Approaches

Classification based anomaly detection operates under the assumption that normal and

anomalous classes in the given feature space can be discriminated, via some classifica-

tion technique. Depending on the detection problem and on the availability of training

labels, classification based approaches can be further grouped into one-class or multi-

class techniques [60]. In multi-class techniques, the normal data is assumed to fall

within a number (> 1) of clusters. Accordingly, a classifier is trained to distinguish

between each normal class and the rest of the classes. If a test instance is rejected by

all classifiers, then it will be considered anomalous. By contrast, under the one-class

assumption, all normal data instances fall within one class. Training a one-class classi-

fier typically requires the determination of the discriminative boundary of the normal

class. Any test instance lying outside the normal region will be declared to be anoma-

lous. The majority of classification based approaches are based on Bayesian Networks,

Connectionist techniques and Support Vector Machines.

Bayesian Network Based Approaches

Bayesian Networks (BNs), or belief networks belong to the family of probabilistic graph-

ical models [123]. Such networks are used to represent knowledge about uncertain

domains. In particular, each node in the graph represents a random variable; the

edges between nodes represent probabilistic dependencies amongst the random vari-

ables. BNs have been employed to address multi-class anomaly detection problems.

The näıve Bayesian approach to anomaly detection consists in estimating the posterior

probability of observing a class label, given a test data instance, for each class label.

The class label with largest posterior probability is chosen as the one to which the

test instance belongs [38]. The prior probability for each class and the likelihood of

observing the test instance given a class, are estimated from the training set. The näıve

Bayesian assumption consists in considering the attributes or features of a data point

conditionally independent, given a class. More complex Bayesian Networks methods

have been proposed in order to account for conditional dependencies between attributes

[29].

Connectionist Approaches

Connectionist strategies to anomaly detection include all neural network-based tech-

niques used to model the normal data instances. To that end, the network is first

trained to learn the boundaries between normal classes, or the distribution of the nor-

36

3.3 Anomaly Detection Techniques

mal class. The trained model is then used to accept a test instance as normal or reject

it as anomalous. The connectioninst approaches most commonly used for novelty de-

tection are Multilayer-Layer Perceptrons, Radial Basis Functions, Hopfield Networks,

and Self Organizing Maps.

Multi-Layer Perceptrons (MLPs) are neural networks with one or more layers of

neurons sitting between input and outputs neurons. The goal of training the network

is to find a good approximation to the actual mapping between feature vectors and the

class to which they belong. As Bishop [11] pointed out, one should expect this mapping

to be accurate in dense regions of the input space. Conversely, if a data point falls in

a region with low density then it is likely that the point comes from a class that is not

represented by the training data. In this latter case, the output of the network should be

rejected as unreliable. A different MLP approach to novelty detection involves the use

of Replicator Neural Networks (RNN) [57]. An RNN is a multi-layer perceptron where

the number of input and output neurons is the same. The choice on the number of

hidden layers and hidden neurons is however arbitrary. Training an RNN is equivalent

to forming an implicit model of the training data. During testing, the input data

instance is “reconstructed” using the trained network. The distance between actual

and reconstructed input is used as a novelty score.

Radial Basis Functions (RBFs) represent another type of neural network that have

been used for novelty detection. In RBFs the activation of hidden units is determined

by the distance between inputs and center vectors [11]. The position of centers can

be computed through unsupervised clustering (e.g. k -means), as has been shown by

Fredrickson et al. [44]. Anomaly detection in RBFs can be carried out in many different

ways. We report here the strategy suggested by Li et al. [85], consisting in assigning

the test vector to the class represented by the best matching neuron. For instance, a

network of two output neurons can be used to discriminate between normal and faulty

events. After training, inputs lying within the region of the corresponding neuron will

result in high values for that neuron and low values for the other neuron. Classification

of normal versus anomalous events can then be performed via selecting the neuron

with highest value. When the output of both the normal and faulty neuron exceeds a

threshold, then the related input is interpreted as unknown.

Hopfield Networks (HNs) or Associative Networks are recurrent Neural Networks,

that is to say, networks whose output is fed back to the input units using feedback

connections [119]. These networks have been shown to have good novelty detection

properties [67]. Two strategies can be followed when using HNs [13]. One approach

consists of having a single output neuron win N inputs, where N is the dimensionality

37

3. RELATED WORK ON PATTERN RECOGNITION

of the input space. The output neuron takes values between −1 (inactive state) and +1

(active state). When the Hebbian rule [59] is used to update the weights of the inputs to

the neuron, the average output (membrane potential) value for stored (normal) patterns

is 1 while for novel patterns is 0. Therefore, novelty detection can be performed by

using a threshold of 0.5 on the output neuron. This approach works well if the noise

is smaller than the absolute value of the threshold. The second approach based on HN

uses the energy function to discriminate between normal and anomalous instances. As

Bogacz et al. have shown [13], the value of the energy function is typically lower for

stored (normal) patterns and higher for new patterns. If the noise has zero mean, a

known pattern will yield an average energy value 2E = −N (where E is the network

energy and N is the number of input neurons); whereas for a novel pattern 2E = 0.

Therefore, by using a threshold of −N/2, normal data instances can be effectively

discriminated from anomalous observations.

Self-Organizing Maps or Kohonen networks [77] represent an alternative method

for statistical clustering. They operate in an unsupervised manner and produce a low-

dimensional, discretized representation of the training data. As for any neural network,

SOMs are composed of neurons and weights associated to neuron inputs. Weight vectors

are of the same dimension as the input data. Neurons are usually organized in hexagonal

or rectangular grids. The Self Organizing Map defines a mapping between the input

space and lower dimensional map space defined through the grid of neurons. Such a

mapping is generated through training, by which the neuron weights are adjusted so

as to represent the topological structure of the input manifold. After training, similar

input samples will be mapped close together, dissimilar apart. One early approach

to novelty detection via SOMs was presented by Harris [55]. This approach consists

in first training a SOM on normal data instances. Once the map has organized itself,

neurons will represent the classes or reference vectors of the input data. During testing,

the distance between a test vector and all neurons can then be computed. The distance

to the closest neuron — often referred to as Best Matching Unit — can be used as a

measure of novelty. In SOMs, the topology of the input space is preserved as opposed

to using some other unsupervised clustering algorithms, such as the k -means algorithm.

This enables the definition of a more confident anomaly score. A different use of SOMs

for novelty detection is the one presented by Emamiam et al. [36]. The authors showed

that a novel input can be detected by observing the sequence of activated neurons in

the SOM. After the map is trained, it is expected that anomalous transient inputs will

activate different nodes of the SOM, with respect to normal stimuli.

Other connectionist contributions to novelty detection include oscillatory networks,

38

3.3 Anomaly Detection Techniques

based on models of neocortical computation [61]; habituation approaches, aiming at

imitating the behaviour of the brain when learning to ignore repeated stimuli [95]; and

competitive learning trees performing novelty detection on the basis of the adaptive

density estimation of the input data [96].

The popularity of connectionist approaches to novelty detection is perhaps to be

attributed to the very limited number of parameters that need to be optimized for

training. Also, connectionist techniques do not require the distribution of the data

instances to be known a priori. However, the best number of units (neurons) and

training technique are always dependent on the problem and the data at hand. It is

known that small networks have difficulties in learning, while large networks may over-

generalize (overfit the training data). To address this issue, a number of techniques

have been developed such as pruning, regularization and early stopping [94].

Support Vector Machines Based Approaches

Support Vector Machines (SVMs) are techniques used to determine hypersurfaces in any

dimensional space, for separating data into clusters [140]. Hypersurfaces are selected

in such a way so as to minimize the distance from them to the nearest data point on

each side of the separation. A simple SVM method to one-class novelty detection has

been proposed by Campbell and Bennett [19]. The authors model the data distribution

through a binary function, which is positive in the normal regions of the input space

and negative elsewhere. To achieve this, separating hypersurfaces are defined to be

positive on one side and negative on the other. The aim of such a technique is to find

a surface to wrap the entire training data. Any test instance outside this surface can

be considered as novel. This basic technique is used in numerous application domains

and has been extended to detect anomalies in temporal sequences [91].

3.3.2 Nearest Neighbor Based Approaches

Nearest Neighbor based anomaly detectors are based on the assumption that normal

data points are more closely packed with respect to anomalous data instances. The

density estimation of the neighbourhood of a point it is achieved via measuring the dis-

tance from the point to its nearest points. For non-categorical, low dimensional feature

spaces, the Euclidean distance is often used [133]. However, the Euclidean distance

is not the only possible similarity measure. In fact, the Euclidean metric requires the

input space to be isotropic, which is rarely valid in practical applications [143]. Nearest

neighbor based techniques have been proposed, based on pseudo-distance measures (i.e.

39

3. RELATED WORK ON PATTERN RECOGNITION

non-metric distances). These distances can be predetermined or learned in such a way

as to maximize the performance of the classifier [147]. Finally, distances can be also

defined in hybrid feature spaces, composed of both continuous and categorical data, as

shown by Otey et al. [106].

Nearest Neighbor based anomaly detectors often use the k -nearest neighbour al-

gorithm (kNN) to determine the anomaly score of a test instance. In particular, an

anomaly score can be defined as the distance from the test data to the kth nearest

neighbor in the training set. With this basic approach, k is often set to 1 and a thresh-

old is applied to the anomaly score to decide whether the test instance is anomalous or

not [52]. Yang et al. used this approach for document classification [150]. The authors

defined novelty between documents on the basis of some similarity measure (e.g. cosine

similarity score). As a new document became available, its content was compared to

all the previously stored documents (document history). This was achieved through

topic-specific stop word removal, weighted use of named entities and topic-sensitive

feature weighting. If the nearest neighbour to the new document, in the document

history, had a similarity score below a threshold, the document was labeled as novel.

Otherwise it was labeled as old. The threshold was set using cross-validation.

An alternative to using k (the index of the nearest neighbour to the test point)

as a parameter for the detectors, is to select a fixed number of test points with the

largest anomaly score instead, and classify them as anomalous [117]. Yet another way

of performing kNN anomaly detection consists in counting the number n of nearest

neighbours of a test point that are within a distance s. The number n can be seen as a

density measure of the training set around the test point. The inverse of n can then be

used as anomaly score for the test instance [76]. Finally, Some nearest neighbor based

techniques partition the training set prior to classification, for reducing computational

complexity. To that end, only the candidate partitions (i.e. the partitions that may

contain outliers) are retained for further computation [117].

3.3.3 Statistical Approaches

Statistical Anomaly detectors operate under the general assumption that normal data

points lie within high probability regions of the feature space, whereas anomalies occur

in low probability regions. In order to determine regions of high and low probability,

statistical models are first fitted to the training data. Inference is therefore made for

unseen data samples, in order to determine if the instance belongs to the trained model

or not. These models can be built via both parametric and non-parametric techniques,

40

3.3 Anomaly Detection Techniques

which shall be discussed in the following sections.

Statistical Parametric Approaches

Statistical parametric methods assume that the underlying distribution of the normal

data is known and can be fitted to the observations via estimating the distribution pa-

rameters. The inverse of the probability density function, computed on a test instance,

gives the anomaly score; that is, the less likely the observation — given the density

function — the bigger the anomaly score for that observation.

Simple statistical parametric techniques consist in constructing Gaussian distribu-

tions, with single or multiple kernels, from the training data [93]. In such cases, pa-

rameter (means and variances) are commonly determined using Maximum Likelihood

Estimates (MLE). As Roberts and Tarassenko [118] showed, the number of Gaussian

kernels can be decided automatically, on the basis of the (Mahalanobis) distance be-

tween a training vector and each Gaussian of the model. The anomaly can then be the

distance of the test data instance to the estimated mean (or the closest of all means).

The standard deviation can be used as a threshold to discriminate between normal and

anomalous data instances [129]. For example, all test instances that are more than

3σ away from the closest mean µ can be declared as anomalous. The problem with

Gaussian models, especially Gaussian Mixtures Models (GMM), is that they require a

very large number of samples when the dimensionality of the data is high.

Box plots have also been explored for detecting univariate and multivariate anoma-

lies [141]. Through the 5-point summary minimum (min), lower quartile (Q1), median,

upper quartile (Q3) and maximum (max)) provided by box plots, it is possible to dis-

tinguish normal data from anomalous instances. For example, the difference between

the upper quartile and lower quartile IQR = Q3 − Q1 (referred to as Inter Quartile

Range) can be used to determine outliers. Points lying more than 1.5 IQR above Q3

or below Q1 can be considered anomalous, under the Gaussian distribution assumption

for the data set.

Hidden Markov Models (HMM) are another parametric model which can be used

for novelty detection [23]. HMMs are temporal probabilistic models in which the state

of an event is described by a single discrete random variable. The possible values of the

variable or observations are functions of the possible states of the model which are said

to be hidden because their sequence is not directly observable. To estimate the param-

eters of a HMM for modeling a normal system behaviour, an expectation-maximization

algorithm (EM) is used [123]. This algorithm estimates the model parameters upon

41

3. RELATED WORK ON PATTERN RECOGNITION

sequences of normal events from the training set. A trained HMM can return the

probability for the model to generate a given observation sequence. The probability

measures obtained from the test data instances can therefore be used as anomaly score.

Statistical Non-Parametric Approaches

Statistical non-parametric methods do not make any assumptions about the model

structure (e.g. Gaussian). The density function of the data set is determined from

the training data, through assumptions that are typically fewer in number, with re-

spect to parametric techniques [23]. Examples of non-parametric anomaly detectors

are Histogram based and Kernel Function based techniques.

The simplest non parametric technique consists in building histograms to describe

the profile of the normal data. Histograms bins denote the frequency with which

features or attributes of the data are observed. For univariate data, the histogram based

technique checks if a test instance falls in any one of the histogram bins. Depending on

the bin height (frequency), an anomaly score is returned. Histogram based approaches

can also be applied in the case of multivariate data. In this case, a per-attribute

anomaly score is computed as the height of the related histogram bin. The overall

score results from an aggregation of the various per-attribute scores [23]. In general,

as noted by Chandola and Kumar [23], the amount of bins used is a key factor for

anomaly detection. Indeed, too many bins could produce many false alarms; too few

bins may result in too many misses.

The Parzen windows method [35] represents another non-parametric data density

estimation approach. In particular, the actual density function is approximated via Ker-

nel functions1. This approach is very similar to that of fitting Gaussian distributions to

the normal data. The difference in this method is the density estimation technique. In

statistics, kernel density estimation is considered a non-parametric method for estimat-

ing the probability density function of a random variable. Similar to the parametric

approaches, a test instance is classified as anomalous if it lies in the low probability

region of the computed density function.

3.3.4 Information Theoretic Anomaly Detection Techniques

The last family of anomaly detectors concern Information Theoretic techniques. In-

formation theoretic approaches are based on the assumption that anomalies increment

the complexity of the dataset. Common complexity measures used are the Kolmogorov

1A Kernel is a symmetric but not necessarily positive function that integrates to one.

42

3.4 Object Recognition in Real and Synthetic Images

Complexity, the entropy and the relative entropy. Formally, given a dataset D of com-

plexity C(D), the problem of finding anomalies in D is posed as finding the minimal

subset, I, of D such that C(D) − C(D − I) is maximum [23]. The instances in I thus

obtained are regarded as anomalous. This problem of finding I is, in effect, a dual

constraint satisfaction problem. In particular, the size of I needs to be minimum and

the complexity of the reduced data set is maximized. Optimal solutions to this prob-

lem require an exhaustive search among all possible subsets of the data set; this makes

the basic technique unappealing. However, heuristics have been proposed in order to

reduce the search time [3].

3.4 Object Recognition in Real and Synthetic Images

As it will be shown in later chapters, in some cases, the detection of unintended artifacts

in synthetic images is best posed as an object recognition problem. This is the case, for

instance, of anomalies featuring highly characteristic spatial or spatio-temporal patterns

in image space. In image processing and computer vision research, the detection of

objects in real images it typically considered to be a hard task. The difficulty is due

to many factors such as the continuous change of 2D object shape depending upon the

angles under which the object is observed; the change of light conditions and therefore of

colors over the object surface; and the object clutter and occlusions from the rest of the

environment. For these reasons, it becomes hard to find robust representations suitable

to model generic objects. Yet, the problem of object recognition is critical in many

important application scenarios. Over the fairly recent history of machine vision, a

large body of algorithms has been developed to address the object recognition problems.

Such algorithms are typically divided into three major categories; these are model based,

shaped based and appearance based approaches, which shall be reviewed shortly. Almost

all techniques base their behaviour on the common principle of describing images and

objects by sets of feature vectors. These vectors can be composed simply by raw

pixel intensities or they can represent other more complex properties of the image.

However, it is generally agreed that good descriptors should exhibit some invariance

property (e.g. invariance to illumination change, noise and geometric transformation).

Ultimately, the task of object detection is to assign a set of feature vectors to one of the

classes or labels denoting the various objects to recognize. Often, this is accomplished

by finding a correspondence between the image descriptors and comparable features of

the model used [114].

43

3. RELATED WORK ON PATTERN RECOGNITION

3.4.1 Model Based Approaches

In model based schemes, the knowledge of the appearance of an object is provided by

an explicit 3D model of its shape, defined either as a collection of three dimensional

primitives [75], or through point clouds [97]. The task of the majority of model based

approaches is to correctly identify objects in a scene and estimate their pose, that is,

location and orientation, even in the presence of clutter and occlusion. The 3D object

recognition paradigm is often an appealing alternative to 2D recognition techniques, for

objects undergoing illumination, scale and pose change as well as occlusion and shad-

ing. Three-dimensional models of the objects are typically constructed offline, from

multiple 2D visualizations, and stored in a database. During recognition, test images

are converted into the same representation and matched with the database models [97].

The challenge of model based approaches is the reconstruction of the 3D geometry

from the set of (often unordered) overlapping views. To that end, correspondences

need first to be found among the images. Correspondence techniques range from pair-

wise approaches [25], to the less computationally expensive multiview algorithms [97].

Through a correspondence process, the 3D object is registered in a common coordinate

basis. Recognition is then performed through feature matching, by using B-Splines

[26], High Order Tangents (HOT) curves [70] and Spin Images [68], amongst others.

The assumption the model based scheme makes is that a three dimensional model (e.g.

a set of connected vertices or a point cloud) of the target object is available or can be

extracted during both training and detection, from example, from 3D scanner data.

3.4.2 Shape Based Approaches

In shape based approaches, objects are recognized by either their shape [105; 138] or

contour [48]. As with the model based scheme, input objects are assumed to be in

some 3D representation, at least during the training phase, to form the database or the

objects. Shape descriptors can then be extracted either in 3D space (i.e. through spin

images [68]) or in image space (i.e. through SIFT points [89]). Recognition is performed

through descriptor matching or silhouette matching, depending on the way the object is

described. When the number of descriptors is large, codebooks are typically generated by

partitioning the feature space. In such cases, the object will be described by histograms

representing the frequency with which features appear in each visualization. For highly

complex scenes (e.g. urban environments) it has been shown that the detector accuracy

can improve if contextual information (e.g. the object position with respect to its

environment) is included into the object descriptors [48].

44

3.4 Object Recognition in Real and Synthetic Images

3.4.3 Appearance Based Approaches

In appearance based methods, the objects are modeled through feature vectors (de-

scriptors) extracted from a set of images. Recognition is performed by matching the

feature vectors of the new input image to the model set [121]. This can be accomplished

through either local or global approaches, depending on the type of features used to

describe the objects of interest. Local features, describe properties of small, local im-

age patches. Such descriptors are selected to be invariant to illumination change, noise

and affine transformation changes. To endow a descriptor with all these properties,

typically, various simpler descriptors are combined into a single more complex feature

vector. Conversely, global features relate to the entire object or image. Examples of

global descriptors are histograms of features (such as colors and gradients), and vec-

tors resulting from dimensionality reduction methods, such as Principal Component

Analysis (PCA) [69], Independent Component analysis (ICA) [63] and Non-negative

Matrix Factorization (NMF)[83]. Dimensionality reduction of high dimensional images

onto subspaces is very common in object recognition and pattern recognition tasks in

general. Working with lower dimensional feature spaces has the enormous advantage

of reducing issues like data overfitting, curse of dimensionality and computational com-

plexity [130]. In order to classify an object through global features, template matching

techniques are typically used [121]. The word template is used to indicate the repre-

sentation — typically through vectors — of the target object or scene. Given a set

of templates representing an object, any unknown sample can be classified by finding

the correlation between the new template and the set of training templates. If the

correlation is above some threshold for at least one training template, then a match is

found. As Roth and Winter pointed out [121], global approaches are considered to be

more robust than local approaches. However, local methods represents the entire object

locally, hence, they are more effective at coping with partial occlusions and clutter.

As far as local approaches are concerned, local features are computed over inter-

esting points of the images, that is to say, points in the image that can be found in

some highly repetitive manner. The most popular algorithms for computing interest-

ing points are Harris-based, Difference-of-Gaussian (DoG) and Hessian affine invariant

point detector, amongst others [121]. The idea behind such detectors is to find, in the

image, regions where the (first or second) derivatives along both x and y directions

have high values. The rotational invariance property of such descriptors is achieved by

considering only the values of the two principal image gradients (curvatures), rather

than their direction. To make the description scale invariant, gradients are computed

45

3. RELATED WORK ON PATTERN RECOGNITION

at different integration scales. The local extremum of the descriptor’s response with

respect to the integration scale is used as scale selection criterion.

Once the interesting points of the image are computed, invariant feature descriptors

are extracted from small image patches centered at the interesting points. The most

common feature descriptors are Scale-Invariant Feature Transform (SIFT) [89], Prin-

cipal Component Analysis-SIFT (PCA-SIFT) [73], Gradient Location and Orientation

Histogram (GLOH) [100] and Speeded Up Robust Features (SURF) [9]. Object recogni-

tion is then performed by matching the features from the test image with the features in

the database, collected during training. Matching is typically performed through three

different strategies; these are threshold-based matching, nearest neighbor-based match-

ing and distance ratio-based matching [100]. In the case of threshold-based matching,

two interesting points from two images (e.g. the test image and the database image) are

matched if the Euclidean distance between the related descriptors is below a threshold.

With the threshold method a descriptor can have several matches. In order to make

the matching more accurate, typically the nearest neighbor-based method is used, in

which two points A and B are matched if the descriptor DB is the closest to DA in

the Euclidean sense, and the distance between them is below a threshold. The third

type of matching is similar to nearest neighbor matching, except that the threshold is

applied to the distance ratio between the first and the second nearest neighbor. Thus,

two points A and B are matched if ‖DA −DB‖/‖DA −DC‖ < t, where DB and DC

are the first and the second nearest neighbour to DA, and t is a threshold.

3.5 Summary

In this chapter we have reviewed the underlying theory involved in the pattern classifi-

cation approaches of novelty detection and object recognition. Some of the techniques

presented here will be incorporated into the consistency detection solutions presented

in subsequent chapters. In particular, the object representations commonly used in

model based object classifiers will be similar to the one we will use in Chapter 4.

Novelty-detection techniques based on Artificial Neural Networks and Self-Organizing

Maps will be used to build robust inconsistency detectors in Chapter 5. Finally, the

appearance based classifier we will present in Chapter 6, will be based on a common

point descriptor (the Harris descriptor) used in appearance based object recognition.

46

4

Model Based Classifiers

In the previous chapter, we explained the difficulties of current object recognition ap-

proaches in accounting for severe geometry and color changes in real objects. Fortu-

nately, when dealing with rendering systems we can exploit extra information available

from the virtual world as the scene is rendered. The anomaly detection approaches

presented in this chapter are all based on a fundamental concept common to the vast

majority of 3D rendering systems. While the visualization of an object may change in

screen space (as it does in real images) its geometric description never changes in local

space. This property will be clarified in the next section.

The aim of this chapter is to show that, under circumstances in which the light

contribution from the environment is mild and the state of the lights sources does not

greatly vary, it is possible to make plausible inferences about the appearance of the

objects by exploiting their canonical model based representation, while ignoring the

color synthesis process used by the rendering system.

4.1 Stages of Image Synthesis

The vast majority of current rendering systems synthesize images through stages. These

stages operate in a pipeline, that is, in parallel and in a fixed order [39]. Each stage

receives its input from the prior stage and sends its output to the subsequent stage

(Figure 4.1 (a)). This mechanism assumes virtual entities to be represented through

meshes. The vertices of a mesh are assumed to be in local or object space, the local

coordinate system in which the 3D object is defined.

Virtual objects, in their original local space description, are passed from the applica-

tion to the graphics pipeline. The screen position of the input vertices is then computed

47

4. MODEL BASED CLASSIFIERS

Figure 4.1: Stages of image synthesis - The final 2D appearance of an object is the
result of a number of stages in the graphics pipeline. These are the per-vertex operations,
which transform the vertices from local to clip space according to the instructions written
by the programmer. The primitive assembly then generates triangular faces from the
list of vertices defined in screen space. Next, the faces are converted into pixels by the
rasterizer. Finally, pixels are colored according to the fragment shader (code) written by
the 3D application programmer (a). The local to screen space transformation is carried
out partially by the vertex processors (world, view and projection transformations), and
partially by the fixed pipeline (homogeneous divide and viewport transformation), before
the primitives are passed to the rasterizer (b).

according to the world, view and projection transformation and other transformation

parameters passed by the application. Specifically, the World and View stages of the

pipeline are the affine geometric transformations that give the position in eye or camera

space. To perform affine transformations through matrices, a homogeneous component,

w, is introduced so that any vector (x, y, z) becomes (x, y, z, w), where w is typically

set to 1. The Projection transformation then gives a position in a coordinate system

bounded by the homogeneous unit cube: the clip space. The clip space position of a

vertex of original position (x, y, z, 1) is therefore be computed as follows:

[x′, y′, z′, w] = [x, y, z, 1]WV P = [x, y, z, 1]Mwvp (4.1)

Here, the 4× 4 matrix Mwvp results from the multiplication of the world, W , view, V ,

48

model_based_classifiers/figures/pipeline_stages.eps

4.2 Defining Visual Consistency

and projection, P , matrices. Such per-vertex operations are typically carried out by the

vertex shaders (processor), which run user-defined graphics code for manipulating the

original object geometry. Next, the position in Normalized Device Coordinates (NDC)

is given by the Homogeneous Divide. This step brings the homogeneous component

back to 1 after carrying out the projection matrix multiplication. Finally, the View-

port transformation stretches and translates the projected coordinates to fit a specific

position on the screen (Figure 4.1 (b)). Once the vertices have been computed by the

vertex processors, the primitives are assembled and the boundaries filled in with pixels

by the rasterizer. It follows, that the final shape of any virtual object is ultimately

decided by the World, View and Projection matrices, which map from an invariant

canonical local space representation to the final shape of the objects on screen.

The color distribution over the surface of an object, from a physics viewpoint, is a

property of the object material and geometry, of the light hitting the surface and the

angle under which the object is observed. As discussed in Chapter 2, rendering systems

perform real-time color synthesis, via texturing and local and/or global illumination

techniques which are typically per-pixel operations implemented via fragment shaders

[90]. The image thus generated can be either written to the frame buffer memory and

displayed or it can be written to texture memory (Figure 4.1 (a)). The render-to-texture

mechanism is the way current GPUs implement direct feedback from output to input

without passing the data through the CPU again [54]. Having access to the output from

the pipeline is useful for performing random-access to fragment and vertices as localized

gathering operations. Motion blur [120] and Shadow Mapping [82] are two examples of

visual effects that base their functionality on the render-to-texture mechanism.

GPUs also feature mechanisms designed to avoid computing the color of pixels that

will not be seen. One of these is known as Z-culling [112]. This technique consists in

comparing the depth (z value) of the input fragment with the depth of the fragment

already present in the frame buffer. If the incoming fragment fails the depth-test (or

z-test), it is discarded before the pixel color is computed in the fragment processor.

The depth value of all pixels in the frame buffer is stored in an array called a depth

buffer or Z-buffer. The z-test is part of a set of steps known as raster operations.

4.2 Defining Visual Consistency

The aim that we wish to fulfill is to exploit the canonical space representation of virtual

objects for assessing both geometry and color consistency. In particular, we want to

re-construct the original geometry and color of the objects, given their correct screen

49

4. MODEL BASED CLASSIFIERS

space appearance perceived by the user, throughout a play session. To this end, the

screen space information will need to be extracted from trusted or validated frames,

that is, images that have been previously assessed against visual inconsistencies —

for example, by the designer or the developer of the environment. To re-construct the

original object appearance, we will need to invert the geometric transformations carried

out by the rendering system (Figure 4.1 (b)), thus bringing both screen shape and color

back to local space.

We call the models of the object created in such a manner colored point clouds.

The reason being that, as we shall see shortly, our objects will be represented by

3D colored points, forming cloud-like structures in object space. Since the validated

frames are assumed to be correct, the clouds will constitute the ground truth database

for our system and will be used to make inferences about new visualizations. Figure

4.2 depicts the general process of visual inconsistency detection we aim to build. As

the information we use to make inference concerns the (3D) models of the objects, we

call this approach model based classification.

Figure 4.2: Model based classifier scheme - The diagram shows the process of mea-
suring consistency through 3D point cloud structures. Test images are first converted to
point clouds in object or local space, encoding the original spatial and color information of
pixels. This is done by using the same rendering system fout used by the virtual environ-
ment. As new objects arrive, their point cloud is computed and compared with the ground
truth database in order to establish correctness.

50

model_based_classifiers/figures/OSDetector.eps

4.2 Defining Visual Consistency

4.2.1 Colored Point Clouds Synthesis

As stated earlier, the object space representation of our target objects can be gener-

ated by inverting the geometric transformations carried out by the rendering system.

Assuming we have observed n pixels of the object, for a given frame, let Ps be the n×4

matrix, with row i equal to (xi, yi, zi, 1), containing the screen space coordinates of all

such pixels; and Mwvp the 4× 4 world-view-projection matrix transforming the object

geometry from object space to screen space. Moreover, let Mr be the 4 × 4 viewport

matrix of the observed frame; T the n×4 matrix of non-scaled object space coordinates

relative to Ps; and “./” the operator denoting an element-wise division. The following

relations hold:

T = Ps ×M−1
r ×M−1

wvp (4.2)

Po = T./ W (4.3)

where Po is the scaled object space version of Ps, that is, the matrix containing the

object space coordinates of the points equivalent to the pixels of coordinates Ps. Po

is of the same dimensions as Ps. The matrix W contains the homogeneous coordinate

components of T ; the columns of W are identical to each other and equal to the last

column of T .

Since we want to measure both geometry and color consistency, we will also need to

include the pixel colors into our description of virtual objects. To that end, we append

a new matrix C next to Po; such a new matrix will denote the final color of the pixels

on screen. This process produces the combined n × 7 matrix D, whose row i is equal

to (pi, ci). Here, p ∈ Po denotes the position of the pixels in object space and c ∈ C is

a vector of dimension 3 whose column components indicate the color of the pixel (e.g.

in RGB space) as it appears on screen. The matrix D is what we shall refer to as the

colored point cloud.

Throughout this chapter we shall use the terms points and pixels interchangeably.

Note, however, that a rectangular pixel of a certain position (x, y) and depth (distance

camera-pixel) z, in screen space, projects to a three-dimensional volume, in clip space,

as shown in Figure 4.3. Similarly, all clip space points of an object lying within such

a volume will always project to the same pixel. The size of such a volume is decided

by the resolution of the buffers used to store the screen positions of pixels and their

depth. The coarser the resolution of the buffer, the more information will be lost

about the original geometry of the objects, the less accurate will be our point clouds

51

4. MODEL BASED CLASSIFIERS

in representing the actual object geometry. Later in this chapter, we will see the

implication of this discretization problem.

The reader may have noticed that the perspective-projection transformation —

encoded in the world-view-projection matrix Mwvp — is singular due to the loss of the

z dimension; individual points in eye space that lie along the same line of projection

will project to a single point. This is true, as long as the 3D object space coordinates

are transformed into 2D pixel coordinates. However, the projection carried out by

rendering systems preserves the z component. Such a value becomes the depth of

the pixel and is stored in a data structure often referred to as the depth or Z buffer

(see Figure 4.3). Finally, note that the rescaling operation performed by Equation 4.3

should take place after inverting the Projection transform and before multiplying by the

inverse of the World-View matrix. However, because no affine transformation (World

and View) can alter the homogeneous component of a coordinate vector, this operation

can be performed at the end of the reversing process. The advantage of postponing

the rescaling operation is to compute the inverse of two matrices (the Viewport and

the combined World-View-Projection) instead of three (Viewport, Projection and the

combined World-View).

4.2.2 Visual Consistency Definition

By applying Equation 4.2 and 4.3 over a set of frames we effectively build a canonical 3D

representation of color and geometry for the target object (Figure 4.4). The information

contained in this representation depends on the conditions (camera angles and lights)

under which the object is rendered across the frames. Once the point clouds have been

built, consistency can be assessed through them. To that end, we propose the following

general definition of consistency between colored point clouds:

Definition 4.1. Given a colored point cloud D′ of an object relative to a single frame

and a colored point cloud D of the same object relative to some collection of frames; we

say that D′ is ε consistent with D if

d(D′, D) ≤ ε (4.4)

We call d(D′, D), the visual consistency error of D′ relative to D. Here d is some

distance function and ε is some (small) constant. If D is the ground truth database for

the target object and D′ its colored point cloud from the new frame, we say that the

object of the new frame is visually inconsistent if d(D′, D) > ε. In the coming sections,

52

4.2 Defining Visual Consistency

Figure 4.3: Pixel projection in clip space - During the geometric transformation
operations of the graphics pipeline, the position of points in object space is converted into
screen space coordinates (x, y, z); the (x, y) components indicate the position on screen, the
z coordinate denotes the distance of the 3D point from the camera (in the figure only the
Y Z plane is considered). Because such coordinates are computed and stored into buffers of
finite resolution, discretization errors are introduced. In particular, all points of an object
within the same pixel volume will project to the same pixel coordinates in screen space.

we will show how to build the ground truth database D and how to measure the error

d in both object space and screen space.

4.2.3 Some Necessary Epistemological Considerations

The inconsistency detectors we will present in this and the next chapter, are based on

the assumption that a number of validated views of the target objects are available,

that is, views that are perceived as consistent by some observer. This assumption

enables us to treat consistency merely as a physical property of the environment; the

subjective component of what is right or wrong in the scene is implicit to the choice of

the observer when selecting the consistent frames.

Furthermore, the consistency will be assessed at the level of individual entities,

rather than the scene in its wholeness. This will exonerate us from performing the

analysis at different scales. Indeed, it is important to point out that even though, at a

low level, the information from all parts of an object may appear consistent with the

53

model_based_classifiers/figures/pixel2point.eps

4. MODEL BASED CLASSIFIERS

Figure 4.4: Examples of Colored Point Clouds - 3D representation of the colored
point cloud D for four different objects observed in a collection of frames; a car (a), the
trunk of a palm tree (b), the leaves of a palm tree (c) and a segment of the track (d).

user expectation, at a higher level, the parts may appear in an odd mutual relation.

As an example, imagine a car whose wheels, windows and body are properly visualized

but in the wrong position or size. Finally, note that even if an object in its wholeness

may appear as consistent, its relation with the rest of the scene may not.

4.3 Building the Model through the Game Engine

From the definition of consistency given earlier, it follows that in order to decide whether

an object is visually correct or not we first need to compute the matrix D from some

given collection of frames in which the object appears as correct. Such a process requires

Ps and Mwvp to be known for each one of the validated frames. The viewport matrix

Mr is, in general, constant throughout the play session.

During the rendering process, a graphics application passes the vertices that need to

be rendered to the GPU, as well as their geometric transformation matrices, amongst

54

model_based_classifiers/figures/RC_vectors.eps

4.3 Building the Model through the Game Engine

other things. The screen space coordinates of the pixels are then computed by the GPU.

Therefore, to determine both Ps and Mwvp for each object, we need the GPU to disclose

which pixels have been rendered by which matrix. This can be done by making the

GPU produce one additional image in which colors denote the geometric transformation

that the pixels have just undergone. We call such an image the matrix map. One way

to generate the matrix map through shader code1 is described in Algorithm 4.1.

Algorithm 4.1: Shader code used to generate matrix maps

struct VSOutput1

{2

float4 Pos : POSITION;3

float2 Depth : TEXCOORD0;4

}5

VSOutput OMMap VS(float3 Pos : POSITION)6

{7

VSOutput outVS = (VSOutput)0;8

outVS.Pos = mul(float4(Pos.xyz, 1.0f),worldViewProjMat);9

outVS.Depth = float2(outVS.Pos.z,outVS.Pos.w);10

return outVS;11

}12

float4 OMMap PS(VSOutput In) : COLOR13

{14

float4 outPS = (float4)0;15

outPS.xyz = matColor.xyz;16

outPS.w = (In.Depth.x)/(In.Depth.y);17

return outPS;18

}19

To make the process of generating the matrix maps as game software independent as

possible, we created a class, MatrixMapShader, that inherits from the same class used

to initialize any other shader effect in the game. The purpose of MatrixMapShader

is twofold. Firstly, it creates an interface between the game and the shader code and

ensures that the objects in both the final image and the matrix map are rendered by

using the same graphics data (i.e. matrices and vertices). Secondly, it produces a

data structure (a hash table) which stores the matrices Mwvp of the objects and their

identifying colors (labels). As for the other render classes of the game, our class is

instantiated once and used whenever an object needs to be rendered. The class func-

tionality is turned on and off by debug flags in the game source code. The pseudocode

of such a class is shown in Algorithm 4.2.

The matrix map, denoted by the attribute matMap, is drawn through the function

1Recall that a shader is a set of software instructions that is executed by the GPU.

55

4. MODEL BASED CLASSIFIERS

GenerateMap via the draw function provided by the graphics interface. When an

object needs to be rendered, the game calls the function UpdateMap first, which adds

the object name and matrix, along with the associated colors, to an internal hash table

called matColTab. The function UpdateMap then instructs the GPU to render to the

texture matMap, rather than the frame buffer, and passes the current transformation

matrix Mwvp and its discriminative color to the shader. The function GenerateMaps,

which is called by the game right after calling the function UpdateMaps, sets the

shader code to use, and sends a draw request to the GPU to draw the current object

obj. Here, the shader code is the one reported in Algorithm 4.1. Once the rendering of

the object is complete, the depth buffer is cleaned to avoid introducing artifacts to the

final image1.

Algorithm 4.2: MatrixMapShader class

Attributes:1

matMap: texture, of the same size as the frame buffer2

matColor: (R,G,B) array used for coloring matMap3

matColTab: hash table containing matColor arrays4

key: char array, denoting the hash table key5

Methods:6

MatrixMapShader()7

matMap← new texture of the same size as the frame buffer8

UpdateMap(obj,Mwvp)9

matColor← Colorize(Mwvp)10

key← Append(Mwvp, obj)11

if key not in matColTab then12

add tuple < key,matColor > to matColTab13

end14

set render target to matMap15

set shader WorldViewProjection matrix to Mwvp16

set shader matColor to matColor17

commit changes to the GPU18

GenerateMap(obj)19

draw obj20

clean depth buffer21

The unique color for the matrix Mwvp is computed by the function Colorize. In

our implementation, Colorize returns the value of an internal counter incremented

whenever the input matrix is novel, that is, it is not contained in a database maintained

1The depth buffer is a resource frequently utilized in current real-time rendering techniques. Be-
cause there is no guarantee that such a buffer is cleared before being used by the application to test,
it is good practice to clean it before exiting the testing functions.

56

4.3 Building the Model through the Game Engine

internally. The hash table matColTab is queried and updated upon a key which combines

the name of the mesh to render and the string version of the vectorized matrix Mwvp.

The operation of string concatenation and vectorization of Mwvp is carried out by the

function Append. Finally, the hash table is updated only if the current key is not in

the table already.

Once rendered, the matrix map will enable later algorithms to pinpoint which pixels

in the image have been rendered by which matrix. More precisely, a pixel at screen

position (x, y) will have an associated color in the matrix map at the same position.

The associated color, thanks to the table matColTab, can be used to identify both the

matrix Mwvp and the mesh name to which the pixel belongs.

Figure 4.5: Extraction of matrix and pixel information - In order to retrieve and
store Mwvp and Ps, a matrix map is generated for each frame. The pixel coordinates
(x, y, z) ∈ Ps are taken from the frame and depth buffer. The matrix Mwvp retrieved from
the game engine and stored in the matrix table, along with its color. The color of the
matrix is read from the matrix map.

We have seen how to determine Mwvp for each pixel of a frame. However, in order to

compute the colored point cloud D, we still need to determine Ps. Recall that Ps is

the matrix containing the screen space coordinates (x, y, z) of all pixels of the target

object. The components (x, y) are simply the position of the pixel on screen, z is

the distance camera-pixel which can be read from the depth or Z-buffer (see Section

4.1, if available, or can be computed through the same shader used to generate the

57

model_based_classifiers/figures/obj_maps.eps

4. MODEL BASED CLASSIFIERS

matrix map. In our work, the depth buffer is computed through the code presented in

Algorithm 4.1. Specifically, the depth value is computed in the vertex shader OMMap VS

and normalized in the pixel shader OMMap PS. The result is written to the α channel

of the matrix map, the shader variable outPS.w. Figure 4.5 depicts an example of

matrix map and depth buffer of a frame. Note that, with this implementation, the

object map can map up to 23d matrices per frame where d is the color depth used. For

a 32-bit truecolor image (8 bits per channel) the maximum number of matrices that

can be stored for a single frame is ≈ 1.6× 107.

4.4 Visual Consistency Error in Object Space

Given the consistent point cloud D (the ground truth database) and a new point cloud

D′ from a new frame, we are now interested in measuring the error d introduced earlier.

In particular, we wish to formulate d in such a way as to make it return plausible

outputs; if the target object in a new frame is visually different from the one observed

in the validated frames, we should expect the error d to be big. Conversely, if the object

looks similar to the one from the validated frames, d is expected to be small.

4.4.1 Geometry Errors

One of the two components of the point cloud is the matrix Po of pixel coordinates

in object space. Such a matrix is defined in the (three dimensional) Euclidean metric

space. A possible choice for our geometry error is then the Hausdorff distance [16],

defined as:

dH(X, Y) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)} (4.5)

where X and Y are two non-empty subsets of a metric space and sup and inf represent

the supremum and infimum element of the related subset. The distance d in Equation

4.5 is, in our case, the Euclidean distance. Intuitively, if the target object from a new

frame has an anomalous geometry, its anomalous points will be displaced far away from

the closest points of the ground truth database D, no matter how topologically complex

the original geometry is (Figure 4.6). Thus, we can say that the geometry of a new

point cloud is ε consistent with the validated point cloud, in the Hausdorff metric, if

dG(D′, D) = dH(P ′, P) ≤ ε (4.6)

58

4.4 Visual Consistency Error in Object Space

Figure 4.6: Hausdorff distance - Components of the calculation of the Hausdorff dis-
tance between the database points P of an object and the set of points P ′ of the same
object from a new frame.

where dG is the geometry error of D′ given D; P ′ and P are the pixel position matrices of

D′ and D respectively. In order to compute the Hausdorff metric, the distance between

all points of the validated point clouds and all points of the new point cloud needs to

be evaluated. The validated point cloud can be extracted by an arbitrary number of

frames, thus, it may contain an arbitrary number of points. The more points in the

point cloud, the more memory is needed to store the database, the more computing

power is required to evaluate dG. Strategies need to be developed in order to mitigate

both memory and computing complexity.

The solution we propose consists in replacing the entire point cloud with repre-

sentative points or centers. We compute such centers via adaptively clustering the

point cloud as new validated frames arrive. The representative points of the cloud will

coincide with the cluster centers. This process is described in Algorithm 4.3.

Ada-Clustering accepts a new point cloud, P ′

o, as an input along with the position

matrix, Po, of the colored point cloud database. Both P ′

o and Po are defined in object

space. The function also expects the user to specify a threshold, ρ, indicating the

maximum radius of clusters; for a point to belong to the closest cluster, its distance

from the cluster center must be less than ρ. This function should be called whenever new

valid pixels of the object of interest are available in order to update the ground truth

database with new centers. When called for the first time, the database is obviously

empty, hence a first partitioning needs to be performed with a minimum number of

clusters (in our experiments, min centers is set to 1). This operation is carried out

by the function Cluster which can be any partitional clustering algorithm (in our

implementation we used K-means). Next, the rows of the matrix P ′

o are clustered

according to the centers in Po. This is accomplished by computing the minimum

59

model_based_classifiers/figures/Hausdorff.eps

4. MODEL BASED CLASSIFIERS

Algorithm 4.3: Adaptive Point Cloud Clustering

function Ada-Clustering(P ′

o,Po,ρ) returns a matrix of cluster center coordinates1

inputs:
matrix P ′

o of l -dimensional point coordinates, of size k × l
matrix Po of the colored point cloud
cluster radius ρ

locals :
number min centers of initial cluster centers for empty databases
index array pixelClstIdx of clustered points, of size k
array pixelClstDist of distances from points to nearest centers, of size k
index array currPixelClstIdx of points belonging to the current cluster
matrix currPointCloud of point coordinates belonging to the current cluster
max distance cloudMaxDist from the point cloud to the current cluster center
matrices tmpCenters and updCenters of cluster centers, initially empty
flag updateCBook indicating whether Po needs to be updated, initially false

if Po is empty then2

Po ← Cluster(P ′

o,min centers)3

end4

for i← 1 to k do5

pixelClstIdx[i]← index of the min value of ‖Row(P ′

o, i)− Po‖6

pixelClstDist[i]← min value of ‖Row(P ′

o, i)− Po‖7

end8

for c← 1 to number of centers in Po do9

currPixelClstIdx← indices j of pixelClstIdx such that pixelClstIdx[j] = c10

currPointCloud← Row(P ′

o, currPixelClstIdx)11

cloudMaxDist← max value of the array pixelClstDist (currPixelClstIdx)12

if cloudMaxDist ≤ ρ then13

tmpCenters← Row(Po, c)14

else15

updateCBook← true16

tmpCenters← Split-Cluster(currPointCloud,ρ)17

end18

concatenate new cluster centers tmpCenters to updCenters19

end20

if updateCBook then Po ← updCenters21

return Po22

60

4.4 Visual Consistency Error in Object Space

Euclidean distances between the elements (rows) of P ′

o and the database centers (lines

6 and 7); the indices of such minimum distances will indicate the centers to which the

points of P ′

o belong. The algorithm is adaptive in that the number of centers of Po may

grow if the point cloud grows. The reason why the point cloud may grow as new frames

are observed is related to the fact that not all parts of an object can, in general, be

viewed from a single camera angle. If the new camera angle reveals new object parts,

then the point cloud database will be extended accordingly. We grow the number of

centers by looking for outer points, that is, points lying outside the sphere described

by ρ. If a cluster contains outer points then its center is replaced with a number of

new centers (lines 16 and 17). To this end, the iterative function Split-Cluster

is called to ensure that none of the newly created sub-clusters contains outer points.

The function Split-Cluster uses the same partitioning algorithm as Cluster. Once

Ada-Clustering terminates, the database is updated and the point cloud P ′

o from

the current frame can be discarded. Because we only retain the coordinates of the

cluster centers, rather than the entire point clouds, we are able to generate databases

for virtually any geometry from any number of frames; the final position and number

of clusters in Po will only depend on the original size of the object and on the cluster

radius ρ but not on the total number of pixels processed.

4.4.2 Color Errors

As colors too are defined in a metric space (e.g. RGB), the color consistency could as

well be computed by using the Hausdorff metric through mechanisms similar to the ones

we presented in the previous section. However, in our work we decided to describe color

in a way that is quite common in image processing research, viz, through histograms.

In natural images, color histograms are often used to represent color distributions of

the entire image or small regions of it [128]. In our case, we use histograms to describe

the color of the target object only.

To determine the pixel coordinates of the target object we use the matrix map

and the matrix table introduced earlier, as depicted in Figure 4.7. The object color is

therefore extracted directly from the frame, at the position specified by the extracted

coordinates. The color consistency error can then be defined as the distance between

color histograms. In our implementation, such an error reads:

dC(D′, D) = min{d(H ′, Hi) | i = 1, . . . , m} (4.7)

where H ′ and H are the color histograms computed from the color component C (see

61

4. MODEL BASED CLASSIFIERS

Figure 4.7: Extraction of color histograms - To compute color histograms, the tar-
get object is first searched in the matrix map table. The color of the related matrix is
retrieved and used to identify the position of pixels belonging to the object (the track in
this example). Finally, the color of the object is read from the frame, at the pixel position
determined via the matrix map, and converted into histograms.

Section 4.2.1) of the incoming point cloud D′ and of the point cloud database D respec-

tively. In Equation 4.7, it is assumed that the database contains m color histograms

of the target object, collected from m validated visualizations. The color consistency

error is therefore equal to the minimum distance between the color histogram of the

target object, in the current frame, and the histograms of the same object extracted

across the entire collection of validated frames. The different metrics we considered for

comparing histograms are the Normalized Cross Correlation [30], the χ2 (Chi-square)

[103], the Intersection [131] and the Bhattacharyya [74]. Such distances, as well as the

type of histograms considered will be described in detail in Section 4.6.2.

As stated earlier, histograms are generally found to be good at describing colors in

natural images. Such descriptors are relatively invariant to rotation and vary little with

respect to scale changes [78]. In our synthetic images, objects undergo various geometric

transformations but, thanks to the matrix map and the matrix table, we can always find

where the objects are in the scene. Thus, the variance of the histograms to translation

and non-affine transformations causes no difficulties in our case. Nevertheless, issues

may arise for objects exhibiting complex textures. Textures of non-homogeneous color,

62

model_based_classifiers/figures/histg_extraction.eps

4.5 Visual Consistency Error in Screen Space

present intensity gradients that can be defined at different spatial scales [99]. Since

histograms do not account for the spatial organization of color gradients, different

textures (i.e. textures with different gradient distributions) may feature similar color

histograms. In our approach, colors are assessed through histogram matching (i.e. by

computing the distance between histograms), hence, any bug affecting only the gradient

organization of textures is unlikely to be detected by our system. To overcome this

shortcoming, we split the original object shape into a number of smaller segments

before computing the histograms. The purpose of this object segmentation is to reduce

big, complex texture patches to smaller patches of possibly more homogeneous color.

We perform segmentation in object space by clustering the incoming point cloud

from the current frame according to the centers of the database previously computed

(see Algorithm 4.3). This process is shown in Algorithm 4.4. The algorithm produces a

matrix, L, of the same size as the current frame. The elements of this matrix indicate

(through integers) the various segments (clusters) of the original object. The points

from the incoming point cloud P ′

o are clustered by computing the minimum Euclidean

distances to the database centers (line 3). Indices of such minimum values denote the

clusters of the database to which the points P ′

o belongs. The matrix L is therefore a

cluster map which can be used to determine the location of the various segments of

the target in the final image. Upon these regions, the color histograms are extracted

(Figure 4.8).

4.5 Visual Consistency Error in Screen Space

In the previous sections, we have shown how geometry and color consistency can be

assessed through Definition 4.1. In doing so, we have assumed that matrix maps and

matrix tables are available during the building of the colored point cloud database

as well as when performing bug detection. In this section, we will show that if the

rendering pipeline cannot be modified or interrupted during testing, colors can still be

assessed in screen space.

To that end, the object space position matrix Po of the database D needs first to be

first converted to the equivalent screen space position matrix Ps. Equations 4.2 and 4.3

apply here as well, though in reverse order. In effect, this point cloud transformation

we seek is what the graphics pipeline normally does for vertices. The object space to

screen space conversion of D is shown in Algorithm 4.5 At its onset, the function

TransformRC performs the homogeneous divide (division of the (x, y, z) components

by w) through the function Normalize. After this operation, the matrix devCoords will

63

4. MODEL BASED CLASSIFIERS

Algorithm 4.4: Object Segmentation

function Segment(P ′

o,Po,Mwvp) returns a matrix of connected components1

inputs:
matrix P ′

o of pixel positions in object space, of size k × 4
matrix Po of cluster center coordinates in object space, of size n× 4
World-View-Projection matrix Mwvp, of size 4× 4

locals :
index array pixelClstIdx of clustered pixels, of size k
index array currPixelClstIdx of pixels belonging to the current cluster
array fRow of the Y pixels component, of size k
array fCol of the X pixels component, of size k
matrix L of n connected components, of frame size, initially zero

for i← 1 to k do2

pixelClstIdx[i]← index of the minimum value of ‖Row(P ′

o, i)− Po‖3

end4

for c← 1 to n do5

currPixelClstIdx← indices j of pixelClstIdx such that pixelClstIdx[j] = c6

fRow← P ′

o (currPixelClstIdx; 2)7

fCol← P ′

o (currPixelClstIdx; 1)8

L (fRow, fCol)← c9

end10

return L11

contain the same points of Po transformed to Normalized Device Coordinates (NDC)

(line 2). Points outside the normalized unit cube (i.e. (x, y, z) points outside the interval

[−1, 1]) are clipped through the binary mask generated by the function XYZClipMask.

The color information about the points too needs to be updated, that is, if the i -th

element (row) of Po has been clipped, the i -th element of C needs to be clipped too.

This ensures that the i -th element of both Po and C will refer to the same pixel.

To this end, the color matrix is masked with the same index vector cMask used for

clipping the device coordinates (lines 4 and 5). The function Row(X, Y) selects the

rows of the matrix X specified by the index vector Y . After applying the viewport

transformation (line 6), the variable srcCoords will contain the screen space version of

Po. From the device coordinates, the GPU typically performs backface culling [90].

However, as our database D is made of points rather than polygons, there are no faces

to cull but sets of points that model them. This is where the depth buffer Z of the frame

comes in useful. Through the function ZTest, we remove from the matrix scrCoords

those points whose z value does not match with the value of the depth buffer at screen

position (scrCoords.x,scrCoords.y). The variable zMask is then a binary vector whose

64

4.5 Visual Consistency Error in Screen Space

Figure 4.8: Object segmentation - To reduce texture gradient issues, objects are seg-
mented before computing the color histograms. This is achieved by splitting the incoming
point cloud of the target object (the track in this example) into clusters whose centers are
the points of the point cloud database. The cluster indices of the pixels in P ′

o are used
to populate the cluster map, which is then used to extract the color histograms from the
frame. In this example, the cluster map contains only 7 clusters representing 7 different
segments of the target object.

elements are 1 if the relation

Z(scrCoords.x, scrCoords.y) = scrCoords.z (4.8)

holds; and 0 otherwise. Finally, the screen space colored point cloud Ds is returned

(line 10).

As note earlier, Po approximates the original object geometry due to the finite

resolution of frame and depth buffers. The approximation errors, or aliasing, can be

observed in the scattered points visible in Figure 4.4. Because of this aliasing, Equation

4.8 needs to be modified so as not to clip too many valid points from the scrCoords

matrix. That is, we need to allow for some tolerance τ when performing the z-test.

Due to the non-linearity of the depth buffer [90] this tolerance will be a function ZTest

of τ and of the pixel depth, which will be read from the depth buffer Z.

65

model_based_classifiers/figures/obj_segment_hist.eps

4. MODEL BASED CLASSIFIERS

Algorithm 4.5: Object space to screen space point cloud conversion

function TransformRC(D = (Po, C),Mwvp,Mr, τ) returns Ds = (Ps, C
′)1

inputs:
matrix Po denoting the database position matrix, of size k × 4
matrix C denoting the database color matrix, of size k × 3
matrix Mwvp denoting the world-view-projections matrix, of size 4× 4
matrix Mr denoting the viewport matrix, of size 4× 4
matrix Z denoting the depth buffer, of the same size as the current frame
scalar τ indicating a tolerance threshold

locals :
matrix devCoords of points in Normalized Device Coordinates, of size k × 4
binary vector cMask denoting a clipping mask, of size k × 1
vector colorSet storing (R,G,B) color values, of size k × 3
matrix srcCoords of points in screen space, of size k × 4
binary vector zMask denoting a clipping mask, of size k × 1

devCoords← Normalize(Po ×Mwvp)2

cMask← XYZCLipMask(devCoords)3

devCoords← Row(devCoords, cMask)4

colorSet← Row(C, cMask)5

srcCoords← devCoords×Mr6

zMask← ZTest(srcCoords, Z, τ)7

srcCoords← Row(srcCoords, zMask)8

colorSet← Row(colorSet, zMask)9

return Ds = (srcCoords, colorSet)10

It is important to point out that, besides the database D, the transformation matrix

Mwvp, the viewport matrix Mr and the depth buffer Z of the new frame also need to be

known in order to turn D into its screen space version. Note, however, that Mwvp, Mr

and Z can be extracted from the input and output of the rendering pipeline without

modifying the rendering process itself.

The purpose of building the screen space database Ds is to generate a correct or

consistent visualization of the target object, for the new frame. In such a way, a screen

space comparison can be performed for consistency assessment purposes. Because the

position matrix of D and therefore of Ds approximates the actual shape of the target

object, we should expect the image synthesized through Ds to be an approximated

version, or model, of what we will see in the new frame. For this reason, we shall call

the image generated through Ds, the model frame.

Due to the approximation errors discussed earlier, the model frame may not be the

exact copy of the new frame. A pixel of the new frame at screen position (x, y) coincides

with a number of pixels of the screen space database at the same position. These are

the pixels contained in the pixel volume depicted in Figure 4.3. The density of the pixel

66

4.5 Visual Consistency Error in Screen Space

volume depends on the z-distances, in screen space, at which the same region of D has

been observed across the set of validated frames; the bigger such a distance, the sparser

the region. The relation between number of pixels and density of D is illustrated in

Figure 4.9. If the number of pixels in the pixel volume is zero, the related pixel in the

model frame will be empty. Empty regions in the model frame will be further discussed

in Section 4.5.1. Finally, it should be noted that the color of the pixels of the model

Figure 4.9: Object space vs. screen space pixel volumes - Any screen space position
(x, y) has an equivalent region in object space; that is the cube in the picture. The number
of pixels of D lying within the cube are the points that will be projected at (x, y) in the
model frame.

frame may not be the same as the color of the pixel of the new frame. This is due to

the different light conditions under which the same region of the target object may be

observed.

Once we have computed the screen space database Ds we can measure the visual

consistency error d(D′

s, Ds) in screen space. Here, D′

s denotes the position and color

of pixels of the target object in screen space relative to a new frame and Ds the screen

space colored point cloud database. In the next section, we will propose an algorithm

for measuring the color consistency error in screen space and present some preliminary

results. A comprehensive validation of our model based classifier has been performed

on the object space approach presented earlier, as this enables the measurement of both

geometry and color anomalies. The results of such a validation are presented in later

sections.

4.5.1 Color Errors

Before reviewing the algorithm we used for measuring color anomalies in screen space,

we wish to clarify the concept of model image density and explain why it is factored

67

model_based_classifiers/figures/R_C-S_C.eps

4. MODEL BASED CLASSIFIERS

into the error measurement process. To that end, we will first explain how a screen

space colored point cloud is converted to a (model) frame.

Formally, the screen space cloud is represented through the matrix Ds, whose i-th

row is equal to (pi, ci). Here, ci ∈ C is the color of the pixel at screen position pi ∈ Ps.

A model frame can then be generated by creating a color image (i.e. a 3D matrix)

whose pixels at positions Ps will have colors C. Now, consider the model synthesized

frame in Figure 4.10 (right), generated through the process just described. It can be

noted that the model frame has some sparse regions compared to the new frame. As

Figure 4.10: New frame and model frame - A model frame is generated through the
screen space database Ds, which is built according to the graphics information used by the
game to render the new frame.

argued in the previous Section, sparse or empty regions in Ds may be due to equivalent

sparse or empty regions in D. However, an empty region in the model frame can also

be caused by an object that does not have a related database D because it has never

been observed in the collection of validated frames. If an object is not present in such

a collection we cannot claim that the related empty region is an anomaly as we are

not assuming that the validated frames contain all possible objects of the game. Nor

should we claim that the region is correct as the information we need for measuring the

visual consistency is missing. We can then say that empty regions in the model image

are areas of high uncertainty with respect to the visual consistency error that can be

measured on them. Finally, sparse regions of the model frame may partially be caused

by the aliasing errors introduced in the previous section. Although we allow for some

tolerance when computing equation 4.8, if the error exceeds that threshold valid points

may be clipped resulting in empty regions of the model frame.

Conversely, a dense region of the model frame is a region that has been observed

from the same or a closer distance in the collection of validated frames and/or from

different camera angles. Hence, the measure of its visual consistency is expected to

be accurate. Dense regions in the model frame are then areas of high certainty. The

68

model_based_classifiers/figures/density_issues.eps

4.5 Visual Consistency Error in Screen Space

sparseness of a region in the model can therefore be used as a measure of confidence

with which we should accept the visual consistency error computed on the same regions.

In this work we used a simple statistical approach to novelty detection similar to the

one we reviewed in the previous chapter, Section 3.3.3). In particular, we used the

Multivariate Gaussian Distribution (MGD) to measure the visual consistency error

in screen space, assuming that the color is normally distributed over the surface of

the object sub-parts. Instead of performing anomaly detection on a pixel basis, we

consider rectangular supports resulting from a quadtree subdivision [41] applied to the

new frame. Algorithm 4.6 shows the pseudocode of our implementation.

The function ConsistencySS accepts the new frame and the model frame as in-

puts, among others. The model frame is the one computed from the screen space point

cloud, as explained earlier. The algorithm first performs a quadtree partitioning of the

new colored point cloud A (line 2). A quadtree node is no longer subdivided if the

difference between the maximum and the minimum values of each color component

in the node is smaller than its respective threshold in τp. In our experiments such a

threshold was set to (0.5, 0.5, 0.5). We found this to be a good trade-off between speed

and accuracy. The output of the partitioning is the set setQ of nodes that make up

the quadtree. New and model frames share the same partitioning. For each node,

the mean color is extracted through the function Mean which takes, as an input, the

(R, G, B) colors of A lying within the node n. The node density, computed by the

function Density, is a measure of the sparseness of the model B for the current node,

that is, the number of points in B within the node region. Because nodes have been

partitioned on the basis of their color homogeneity and not their sparseness, the equiv-

alent region of a node in B may be sparse or even empty. To allow for some tolerance

in computing the density of a node, we build a patch of radius ρ centered at the cen-

troid of the current node (line 7). If the equivalent region of the patch in B still does

not contain any point, then the node is considered empty and it will be assigned the

maximum distance and uncertainty (i.e. ∞) (lines 10 and 11). Otherwise, to find the

most appropriate nearby points by which to measure the consistency error we use the

k-Nearest Neighbours (kNN) algorithm. Specifically, we compute the k nearest model

points in the neighbourhood of the node centre nCentre were k is the minimum value

between 10 and the set of model points in the patch (line 14). By storing in distO the

mean radius of such a set, the variable distO will represent the confidence in making

any inference about the node. If the node is dense, there will be enough points in B to

compute the visual consistency error and to expect it to be accurate (distO = 0) (lines

17 and 18).

69

4. MODEL BASED CLASSIFIERS

Algorithm 4.6: Consistency Detector in Screen Space

function ConsistencySS(A,B, τp, τd,r) returns two gray-scale images1

inputs:
matrix A denoting the new frame, of size k × l
matrix B model frame, of size k × l
vector τp indicating a (R,G,B) partitioning threshold
scalar τd indicating a density threshold
scalar ρ denoting a image patch radius

locals :
vector mColorN of (R,G,B) values, of size 1× 3
vector nCentre of screen position coordinates (x, y), of size 1× 2
matrix patch of screen position coordinates (x, y), of size r × r
matrix setP of screen position coordinates (x, y), of size n× 2
matrix vConst of consistency values, of size k × l
matrix spDist of confidence values, of size k × l
matrix setO of screen position coordinates (x, y), of size i× 2
scalar distO denoting a screen space distance
matrix setC of (R,G,B) values, of size 10× 3

setQ← QTreePartition(A, τp)2

foreach node n in setQ do3

mColorN←Mean(Color(A,n))4

if Density(B,n) < τd then // node is sparse5

nCentre← Centroid(n)6

patch← Patch(nCentre, ρ)7

setP← pixels of B within patch8

if setP is empty then // no info in the database about node n9

vConst(n)←∞10

spDist(n)←∞11

continue12

end13

setO← kNN(nCentre, setP,Min(k, 10))14

distO← mean of Euclidean distances from nCentre to setO15

else // node is dense16

setO← pixels of B within node n17

distO← 018

end19

setC← kNN(mColorN,Color(B, setO),Min(Size(Color(B, setO)), 10))20

vConst(n)←MDG(mColorN,Mean(setC),Covariance(setC))21

spDist(n)← distO22

end23

return vConst, spDist24

70

4.5 Visual Consistency Error in Screen Space

Finally, the error is computed with the k colors of the model frame closest to the mean

color of the node. The parameter k, again, is set to be the minimum value between 10

and the number of colors of points in B lying either within the current node n or the

squared region patch (line 20). From the set of colors extracted, the mean and variance

are computed. The consistency error is returned in terms of likelihood, through the

multivariate probability density function MDG, of the mean color of the node given

the nearby pixels observed in the collection of validated frames (line 21). This process

is shown in Figure 4.11 Low probabilities correspond to high inconsistencies. The

Figure 4.11: Color error in screen space - Color anomalies are expressed in terms of
probabilities. As new test frames arrive, they are first partitioned in quadtrees. Then, for
each node of the quadtree, the mean color from the new frame is extracted. This value
is used to determine the probability value from the multivariate Gaussian distribution,
computed from the colors of the node of the model frame.

algorithm generates two images namely, vConst encoding the visual consistency error

for all nodes of the partitioned frame; and spDist representing the confidence about the

consistency measured for each node. We call the image vConst the Visual Consistency

Map and the image spDist the Confidence Map. Figures 4.12 (b) and (c) show the

output of the algorithm for the test image (a). In order to make the vConst image

visually interesting we only displayed those nodes whose consistency error was below

71

model_based_classifiers/figures/screeSp_classifier.eps

4. MODEL BASED CLASSIFIERS

Figure 4.12: Color anomaly detection is screen space - Example of original new
frame (a), visual consistency map (b) and confidence map (c). Black regions in the Vi-
sual Consistency Map correspond to high inconsistencies with respect to the ground truth
database. Dark regions in the Confidence Map correspond to areas of low confidence about
the consistency measure.

72

model_based_classifiers/figures/MB_pre_results.eps

4.6 Results

a certain threshold (1 · 10−6 in this case). Areas of high uncertainty (dark regions) in

the Confidence Map are located in the correspondence of empty or sparse regions of

the model frame. The first row of the Figure contains a bug-free image whereas rows 2,

3 and 4 are images affected by texture corruption (the texture of the palm tree leaves

in the background is wrong) and polygon corruption (polygons from the small palm

tree and the rocks in the background are wrongly projected). As can be observed, the

algorithms correctly detects color anomalies but it also reports high inconsistencies for

some consistent pixels in the new frame. For instance, the edges of almost all objects

are detected as buggy. This is due to the sparseness of the equivalent region in the

database, that is, the number of points in the object space region equivalent to the dark

test pixel is not enough to determine the correctness of the color, hence the maximum

inconsistency reported. The sparseness of a region in object space can be visualized

through the Confidence Map (column (c)). Dark pixels represent sparse object space

regions and hence, regions upon which consistency should not be measured. Also, note

how the banner in in the first row of Figure 4.12 (a) is considered buggy. In this case,

the false alarm is caused by a texture that was dynamically mapped to the object

but never observed in the collection of validated Frames. Finally, it should be noted

how the edges of the palm tree, although dense in object space (the related pixels in

confidence map are not dark) are still reported as inconsistent. To render such objects,

the game used the alpha channel “trick”. The apparent complex geometry of the leaves

is rendered by using simple meshes mapped with (R, G, B, α) textures. The α channel

is used to define transparency. In particular, α is 1 (no transparency) in correspondence

of the leaves and 0 (full transparency) elsewhere. The transparent geometry inherits

the color of the otherwise hidden background, making the actual geometry look more

complex than what actually is. This implies that, for such objects, the point cloud

is likely to present high color variance in correspondence of the transparent pixels as

the hidden background can potentially be of any color. In such cases, our Gaussian

distribution assumption breaks; any color a transparent pixel takes will be detected as

improbable.

4.6 Results

In this section, the results from the validation of our algorithms will be presented. In

particular, we will show how the performance of model based approach varies with

respect to the complexity and size of the target geometries, the type of descriptors

and the distance used to match test and database descriptors. The experiments were

73

4. MODEL BASED CLASSIFIERS

Figure 4.13: Target objects and levels or realism - To assess our model based
detectors against geometry and color consistency, different geometries and levels of realisms
were used. For geometry tests, a palm tree (OBJ1), a windmill (OBJ2) and a car (OBJ3)
where used. Color tests, on the other hand, were performed on three different visualizations
of the same environment. These are the basic level of realism (LOR1), the cartoon-like
rendering (LOR2) and the nearly photo-realistic environment (LOR3). To achieve different
levels of realism, several rendering techniques where used. See Chapter 2 for more details.

performed on three different geometries and three different levels of realism. These are

depicted in Figure 4.13.

In order to measure the system accuracy, two test sets were generated; one for

geometry measurements and one for color assessments. Both test sets contained a true

set (i.e. bug-free images) and a false set (i.e. buggy images), in approximately the

same ratio. The geometry and color bugs of the test set were of random magnitude. In

particular, the geometry of the target object was modified by displacing the vertices of

the object along their normals at a random distance. The value of such a distance was

read from a texture of white Gaussian noise1. Similarly, the object color was perturbed

by adding a Gaussian white noise to the final frame (Figure 4.14). These anomalies

resemble the color and geometry inconsistencies introduced in Chapter 2.

Geometry and color detection accuracy was measured through ROC (Receiver Op-

erating Characteristic) curves. ROC curves are defined on sensitivity and specificity

1In computer graphics, the technique of displacing vertices according to the values sampled from
a texture is known as Displacement Mapping. Here, a method similar to the displacement mapping
technique was used for introducing bugs to the original geometry.

74

model_based_classifiers/figures/MB_Objs_Envs.eps

4.6 Results

Figure 4.14: Introduction of visual anomalies - In order to reproduce visual anoma-
lies, both the original geometry and color of the object was modified. To generate spike-like
bugs, the vertex position of the target object was perturbed through a noise map (a). In
particular, the (x, y) value in world coordinates was used as indices to sample the noise
texture. The value from the noise texture at (x, y) was used to displace the related vertex,
along its normal, of a quantity proportional to the value read from the noise texture. Colors
were changed either by adding white Gaussian noise to the frame (b) or by replacing the
original texture with a different one (c) (in this example the original texture of the palm
tree leaves was replaced with a random texture).

75

model_based_classifiers/figures/bug_injection.eps

4. MODEL BASED CLASSIFIERS

domains, measured as:

TPR = TP/(TP + FN) sensitivity (4.9)

FPR = FP/(FP + TN) 1− specificity (4.10)

where TP is the number of true positives (hits), FP is the number of false positives

(false alarms), TN the number of true negatives (correct rejections) and FN the number

of false negatives (misses). False positive rate (FPR) and true positive rate (TPR) are

the domain and co-domain of the ROC curve respectively. To measure accuracy, we

computed the Area Under Curve (AUC), which is the integral of the ROC curve over

the false positive rate. False and true positive rates were computed on true sets and

a false set. Figure 4.15 depicts examples of ROC curves computed for three target

objects and three environments.

All colored point clouds were built via modifying the target game engine, as ex-

plained in Section 4.3. The database point cloud was built on a training set, that is,

a set of validated frames. Target point clouds were extracted from test sets, composed

of a positive set and a negative set. Both training and test sets resulted in a collection

of frames, matrix maps and matrix tables. These latter were stored in xml files to

facilitate their access.

4.6.1 Geometry Tests

Geometry consistency was measured by using Equation 4.6. Accordingly, the target

geometry was considered inconsistent if the Hausdorff distance between the target point

cloud and the database point cloud was bigger than a threshold. In order to build

ROC curves, such a threshold was varied between the minimum and the maximum

distance measured across the test set. The point cloud database underwent an adaptive

clustering (see Algorithm 4.3); this enabled us to reduced the number of points in the

point cloud, and therefore memory and computing complexity. Adaptive clustering

was performed using four cluster radii, of size 15, 30, 60 and 120. The results of the

geometry test are shown in Figure 4.16.

Results are displayed through box plots and decision trees [17]. As it can be noted

from the box plots, the median (denoted by red segments) is very high (close to 1) for

almost all test cases. Also, note that the inter quartile range (the height of the boxes)

is very small for all boxes. This indicates that accuracy does not greatly vary around

the median value, throughout the test set. These results indicate that the system is

highly robust and accurate. In order to determine how the cluster radius influences

76

4.6 Results

Figure 4.15: ROC curves from the model based classifiers - ROC curves were
used to measure the effectiveness of the detectors, in terms of false positive (1 - specificity)
versus true positive ratio (sensitivity). A system performs best if it never reports either
false positives or false negatives. In these cases, the area under the ROC curve (AUC)
is at its maximum (i.e. 1). Poorly performing systems produce ROC curves whose area
approaches 0.5. Low accuracy curves are the ones lying close to the straight, diagonal
gray line in the graphs. The graphs show (a) the geometry results for three different
objects (Car, Windmill and AlphaPalm) and (b) the color results for the same object
(AlphaPalm), rendered using three different level of realism (LOR1, LOR2 and LOR3).
Different curves within the same graph represent different clusters (sub parts) in which
the original geometry was segmented. Because sub parts may have different geometrical
complexity and size, performance may vary amongst them. The graphs title contains
information about the radius, descriptor and distance used. For example, the information
(r15 d1 Bhattacharyya) indicates that the system has been trained and tested with radius
15, color descriptor 1 and histogram distance Bhattacharyya.

77

model_based_classifiers/figures/MB_ROCs.eps

4. MODEL BASED CLASSIFIERS

Figure 4.16: Geometry tests - To validate the system upon geometry issues, three
different objects where tested: a palm tree, a car and a windmill. For each one of such
objects, true and false sets were generated to measure the accuracy via AUC (area under
curve). Tests were performed considering cluster radii of 15, 30, 60 and 120. The box plots
in column (a) show the results from our tests. For all radii considered, the system was
highly accurate (around 99%). To determine how the cluster radius influenced accuracy,
we used regression trees. As it can be observed from column (b). A cluster radius of 15 is
typically the optimal choice as it enables the system to be 100% accurate, for 2 out of 3
objects analyzed. Converselly, a cluster radius of 120 was clustered by the decision trees
as worst choice. The red segments along the branches of the regression trees indicate the
paths of maximum accuracy.

78

model_based_classifiers/figures/geom_tests1.eps

4.6 Results

the system performance, we used two statistics techniques. These being Decision Trees

[17] and the Analysis of Variance (ANOVA) [62].

Decision trees, are often used for predicting the response as a function of predictors.

In our case, the predictors are the cluster radii; the response is the accuracy, measured

as Area Under Curve (AUC). Decision trees are binary trees where each branching

node is split based on the values of the observation (cluster radii and related accuracy).

Decision trees are often pruned in order to reduce the complexity of the final classifier

as well as to endow the classifier with better predictive power. Pruning decision trees

consists in removing branches that give least improvement in error cost. A level 0

pruning equals no pruning; a maximum level pruning produces a tree with only one node

— the root node. All trees where pruned at the n− 2 level, where n was the maximum

pruning level. This allowed us to visualize the factors that best explained the variance of

the accuracy; thus facilitating the interpretation of our results. As it can be noted from

Figure 4.16 (b), a common pattern emerges from the classification. All trees determine

that radius 120 produces lower accuracy values, in general. Likewise, a cluster radius

of 15 is classified as a high accuracy factor. From these observations, it would be

tempting to conclude that smaller cluster radii make geometry classifiers more accurate.

However, there is no guarantee that the accuracy based discrimination between factors

(e.g. cluster radii) produced by the decision trees is statistically significant. In fact,

this seems not to be the case; the medians of the box plots are all close to one another,

regardless of the cluster radius considered.

To determine whether the aforementioned discrimination is statistically significant,

we used the 1-way ANOVA test. Through the ANOVA, we computed the p-values (the

statistical significance) for the null hypotheses on the main factors. Our null hypothesis

stated that there is no radius-sample mean that is significantly different from any other

radius-sample mean. Under such an hypothesis, the mean accuracy produced by cluster

radius 15 is not significantly different from the mean accuracy produced by cluster

radii 30, 60 and 120. Similarly, the mean accuracy produced by cluster radius 30 is not

significantly different from the accuracy mean produced by cluster radii 60 and 120 and

so on. A small p value (e.g. ≤ 0.01) indicates that differences between effects means

(mean accuracy upon different cluster radii) are highly significant. The probability of

this outcome under the null hypothesis is equal to the p value. Therefore, upon small

p values it is safe to reject the null hypothesis. The geometry results from the ANOVA

tests are reported in Table 4.2.

The standard ANOVA table has six columns, these are the source of the variability

(Source); the sum of squares (Sum Sq.) due to each source; the degrees of freedom

79

4. MODEL BASED CLASSIFIERS

(d.f.) associated with each source; the mean squares (Mean Sq.) for the source; the

F -statistic, which is the total variation between and within samples; the p value (Prob

> F), which is the probability of the observation under the null hypothesis, that is, all

observations coming from populations (radii) with the same mean. For more details

on these parameters the reader is referred to [62]. The columns in gray in the table

denote the p values. We reject the null hypothesis if the p-value is less or equal to

0.01 (significance level)1. Values displayed in bold in the table indicate statistically

significant factors (p ≤ 0.01). Because the p values are big for all objects we conclude

that, insofar as what geometry tests are concerned, the (high) performance of the

system does not depend on the choice of the cluster radius.

Figure 4.17: Color descriptors - Color tests were performed on 17 histograms of Hue,
Saturation and Value components. The values of the elements in the table indicate the
number of bins used for the related component. For example, histogram 13 is composed
by 6 Hue bins, 2 Saturation bins and 2 Value bins.

4.6.2 Color Tests

Color consistency was assessed through 17 different color histograms defined in HSV

space (i.e. Hue, Saturation and Color). To this end, RGB colors from the target

object were first transformed to HSV colors. Then, HSV colors were binned into

1In statistics, common significance levels are 0.05 or 0.01 [62].

80

model_based_classifiers/figures/color_descriptors.eps

4.6 Results

the histograms according to the histogram type. Figure 4.17 illustrates the types of

histograms used in this work. The similarity between database and test histograms was

performed according to Equation 4.7, that is, the distance between target histogram

and database histograms was computed and its minimum value considered. In this

work, we explored four different metrics for histogram matching, formulated as:

d(H1, H2) =

∑
I(H1(I)−H1)(H2(I)−H2)√∑

I(H1(I)−H1)2
∑

I(H2(I)−H2)2
(4.11)

d(H1, H2) =
∑

I

(H1(I)−H2(I))2

H1(I) + H2(I)
(4.12)

d(H1, H2) =
∑

I

min(H1(I), H2(I)) (4.13)

d(H1, H2) =

√
1−

1√
H1H2N2

∑

I

√
H1(I)H2(I) (4.14)

These are the Normalized Cross Correlation (Equation 4.11), χ2 (Equation 4.12), In-

tersection (Equation 4.13) and Bhattacharyya (Equation 4.14) distances. In the above

set of equations, Hk(I) represents the I-th bin of the k-th histogram and

Hk =
1

N

∑

J

Hk(J) (4.15)

where N is the total number of histogram bins.

As for the geometry tests, the color information concerned sub-geometries or seg-

ments computed as shown in Algorithm 4.3, with cluster radii 15, 30, 60 and 120. The

purpose of segmenting the original shape of the object was to reduce the texture com-

plexity of the original object, as explained in Section 4.4.2. We validated our system on

one complex object (a palm tree) across three different levels of realism (Figure 4.13).

These are:

• Level of Realism 1 (LOR1): diffuse, ambient and specular light contributions

• Level of Realism 2 (LOR2): sharp threshold on diffuse, ambient and specular

light components

• Level of Realism 3 (LOR3): diffuse, ambient, specular light contributions; motion

blur and bloom

Figure 4.18 shows the outcome from the color test performed. As for the geometry

81

4. MODEL BASED CLASSIFIERS

Figure 4.18: Color tests - Color tests were performed on the object (AlphaPalm),
rendered with different techniques or levels of realism. The first row refers to level of
realism 1 (LOR 1); the second row to LOR 2 and the third row to LOR 3. The parameters
of the system where the cluster radius (rad) of values 15, 30, 60 and 120; the color descriptor
(descr) taking values from 1 to 17; and the histogram distance, that is, Correlation (corr),
χ2 (chis), Intersection (inte) and Bhattacharyya (bhat). The box plots (a) computed on
the test data, show how each parameter influences the final accuracy of the system. The
decision trees (b) predict the accuracy value as a function of the parameters. In this
example, trees are pruned at the n− 2 level, where n is the maximum pruning level.

82

model_based_classifiers/figures/color_tests1.eps

4.6 Results

tests, box plots and decision trees were used to facilitate the interpretation of the

results. However, compared to the geometry tests, the amount of test cases was much

larger for color assessments, for two additional parameters needed to be accounted for,

besides the cluster radius. These were the color descriptor and the histogram distance.

The color descriptor took values from 1 to 17; the histogram distance took values from

the domain Normalized Cross Correlation, χ2, Intersection and Bhattacharyya. The

box plots show the influence of each one on the aforementioned parameters to the final

system accuracy. As with geometry tests, the decision trees predict the system accuracy

as a function of the parameters.

By looking at the box plots, it can be observed that the Bhattacharyya, the In-

tersection and the Correlation distances produce more accurate results, compared to

the χ2 distance. This result is confirmed by the decision trees, which tend to classify

χ2 as a variable that produces lower accuracy. The decision trees also show that the

choice about the cluster radius is subject to the level of realism considered. For nearly

photo-realistic environments (LOR1), radii of 15 or 120 represent an optimal choice,

producing systems which are 88% accurate, on the average. For cartoon-like rederings

(LOR2) or when post-processing effects are used (LOR3), the cluster radius does not

seem to play a major role in the sytem accuracy, if a good distance is used. In such

cases, the Bhattacharyya or the Intersection distances can make the system about 90%

accurate, regardless of the radius used. In general, however, cluster radii of 15 and 120

seem to perform best.

As for geometry tests, we performed the ANOVA test in order to measure the

statistical significance for the null hypotheses on the main factors. In fact, besides being

interested in computing the p-values just for the main effects (i.e. radius, descriptor

and distance), we now also wish to test whether the accuracy is related to multiple

factors (grouping variables). For example, we want to know if the accuracy depends on

the radius as well as the descriptor; or on the radius and the distance; or on the radius,

the distance and the descriptor, considered jointly; and so on and so forth. This type

of test it is called N -way ANOVA [62]. As with the 1-way ANOVA test, small p values

will cast doubt on the associated null hypothesis.

The results from the N -way ANOVA test are reported in Table 4.3. The gray column

is relative to the p values. Values displayed in bold indicate statistically significant

factors (p ≤ 0.01). In accordance with our observations from the box plots and decision

trees, we note that the accuracy depends significantly on the choice of the radius and

the distance, for all environments considered (i.e. LOR1, LOR2 and LOR3). We also

note that cluster radius and distance measure, together, play an important role in the

83

4. MODEL BASED CLASSIFIERS

effectiveness of the system, as far as LOR2 is concerned. The color descriptor becomes

discriminative only for LOR2, that is, the cartoon-like environment. This result can be

observed in the middle box plot of Figure 4.18 (a). Indeed, note that descriptors 1 to

8 — the ones containing the Hue component mostly — perform better than others, for

the cartoon-like environment (LOR2). Such descriptors have high median and small

inter quartile range, compared to the rest of the descriptors.

It is worth noting that the inter quartile ranges of the color box plots are typically

bigger than those of the geometry box plots. Likewise, the medians are generally lower.

This indicates that the system is not as accurate at detecting color inconsistencies as the

geometry detector. Such a result should not be surprising, however. As mentioned at

the onset of this chapter, the object geometry does not change in object space, regardless

of the environment used. Because the geometry error is computed in object space, the

accuracy is expected to be high. Conversely, in photo-realistic environments, the color

over the object surface is influenced by many factors and does not have an environment-

invariant representation. Nevertheless, very effective model based color detectors can

be built upon a careful selection of the system parameters. Table 4.1 reports the

parameters of the best performing geometry and color detectors, for the objects and

the levels of realism considered in this work. The values reported in the table have

been determined by considering the best performing branch of the aforementioned

decision trees. In particular, the best accuracy value for each object or rendering

level is the one corresponding to the leaf of the rightmost branch of the related non-

pruned tree (see Figure 4.16 and 4.18 (b) for a reference). Best radii, descriptors and

clusters correspond to the parent nodes of such a leaf. For example, the best accuracy

leaf for LOR 3 (95.88%) was the one having the nodes {Distance = Bhattacharyya},

{Descriptor ∈ {9, 10, 11, 12}} and {Radius = 120} as ancestors. Note that the table

contains multiple values for some parameters (e.g. the best system for LOR 2 can

be built with color descriptors 9, 10, 11 and 12). Such values have been clustered

under the same node by the decision tree and therefore produced similar accuracy

values, given the rest of the nodes. Finally, note that the only parameter to tune for

building accurate model based geometry classifiers is the cluster radius. Geometries are

described through point clouds; the distance between a test geometry and the related

database point cloud is computed through the Hausdorff metric, as explained earlier.

When multiple radius choices are available (as for LOR 2 in the table) the biggest

values (i.e. 120) should be selected for building the classifier. Bigger cluster radii

produce smaller number of clusters or sub-geometries (Figure 4.19). A smaller num-

ber of clusters entails a smaller number to elements to process and store, thus less

84

4.7 Summary

Figure 4.19: Number of clusters versus cluster radius - The smaller the cluster
radius, the larger the number of parts into which the original geometry will be split. The
graphs refer to three different geometries, i.e. a car, a windmill and a palm tree.

computational and memory loads.

Table 4.1: Best Performing Model Based Classifiers

Geometry Color

Object Radius Accuracy (AUC) Environment Radius Descriptor Distance Accuracy (AUC)

AlphaPalm 30 1.00000 LOR 1 120 16 Bhattacharyya 0.95211
Windmill 15 1.00000 LOR 2 60,120 2 Bhattacharyya 0.99516

Car 15 0.99646 LOR 3 120 9,10,11,12 Bhattacharyya 0.95881

4.7 Summary

In this chapter we have shown that visual consistency can be quantitatively measured

for both geometry and color assessment purposes. Such a measure can be highly ef-

fective if we assume to have matrix maps and matrix tables available for building

both training and test sets. If the graphics pipeline cannot be modified or interrupted

during testing, however, the consistency error can no longer be computed in object

space. We have suggested a way to overcome this difficulty in probabilistic terms, by

measuring the consistency error in screen space directly. To that end, we employed

a Multivariate Gaussian Distribution to express the color probability of pixel regions.

This approach turned out to be effective for non-photorealistic environments. For more

complex environments, however, more complex distributions are required (e.g. Multi-

variate, Gaussian Mixture models).

In validating the model based classifiers, we noted that the two most important

parameters to tweak are the cluster radius and histogram distance. In fact, as far as

geometry assessments are cons, the only parameter to determine is the cluster radius.

Using an appropriate parameter set, the model based detector can reach very high

accuracy levels — between 95% and 99%. Color inconsistency detectors performed

85

model_based_classifiers/figures/geom_tests1_numClust.eps

4. MODEL BASED CLASSIFIERS

slightly worse, most often when testing the highest quality environments. Color clas-

sifiers store the color histograms from the target objects of the training set and use

them later to match test color histograms. In the case of photo-realistic environments,

however, objects are hardly ever rendered with the exact same colors more than once.

Rather, in such environments the color of the surface of an object depends on a number

of environment factors, such as the color of the scene lights, the color of nearby objects

and the position and pose of the object with respect to the camera.

By contrast, the object space representation builds arbitrarily accurate point clouds

to model the original consistent geometry. Given that the shape of virtual objects never

changes in object space, anomalous points will necessarily lie far from the consistent

point cloud. Such anomalies can be effectively identified through the Hausdorff metric.

86

4.7 Summary

T
a
b
le

4
.2

:
M

o
d
e
l
B

a
se

d
C

la
ss

ifi
e
rs

-
A

N
O

V
A

-
G

e
o
m

e
tr

y
T
e
st

s

A
lp

h
aP

al
m

(O
B

J
1
)

W
in

d
m

il
l
(O

B
J

2)
C

ar
(O

B
J

3)

S
ou

rc
e

S
u
m

S
q
.

d
.f
.

M
ea

n
S
q
.

F
P

ro
b

>
F

S
u
m

S
q
.

d
.f
.

M
ea

n
S
q
.

F
P

ro
b

>
F

S
u
m

S
q
.

d
.f
.

M
ea

n
S
q
.

F
P

ro
b

>
F

ra
d
ii

0.
00

02
3

3
7.

52
e-

00
5

0
.8

4
0.

54
0.

00
05

6
3

0.
00

01
9

1.
45

0.
35

44
0.

15
61

5
3

0.
05

20
5

1.
01

0.
43

56
E

rr
or

0.
00

03
6

4
8.

99
e-

00
5

0.
00

05
2

4
0.

00
01

3
0.

41
05

6
8

0.
05

13
2

T
ot

a
l

0
.0

00
59

7
0.

00
10

9
7

0.
56

67
1

11

T
a
b
le

4
.3

:
M

o
d
e
l
B

a
se

d
C

la
ss

ifi
e
rs

-
A

N
O

V
A

-
C

o
lo

r
T
e
st

s

L
ev

el
of

R
ea

li
sm

1
(L

O
R

1)
L
ev

el
of

R
ea

li
sm

2
(L

O
R

2)
L
ev

el
of

R
ea

li
sm

3
(L

O
R

3)

S
o
u
rc

e
S
u
m

S
q
.

d
.f
.

M
ea

n
S
q
.

F
P

ro
b

>
F

S
u
m

S
q
.

d
.f
.

M
ea

n
S
q
.

F
P

ro
b

>
F

S
u
m

S
q
.

d
.f
.

M
ea

n
S
q
.

F
P

ro
b

>
F

ra
d

1.
90

56
3

0.
63

52
0

28
.7

3
0

1.
52

41
3

0.
50

80
3

20
.7

8
0

0.
52

53
3

0.
17

50
9

14
.2

8
0

d
es

cr
0
.5

22
9

1
6

0.
0
32

68
1.

4
8

0
.1

1.
15

99
16

0.
07

24
9

2.
97

0
.0

0
1

0.
08

49
16

0.
00

53
1

0.
43

0.
97

43
d
is

t
3.

53
43

3
1.

17
80

9
53

.2
9

0
4.

15
11

3
1.

38
37

0
56

.6
0

0
5.

29
93

3
1.

76
64

4
14

4.
05

0
ra

d
*d

es
cr

0.
23

33
48

0.
00

48
6

0.
22

1
0.

41
25

48
0.

00
85

9
0.

35
1

0.
05

35
48

0.
00

11
1

0.
09

1
ra

d
*d

is
t

0.
27

11
9

0.
03

01
2

1.
36

0
.2

00
6

0.
60

47
9

0.
06

71
9

2.
75

0
.0

0
3
6

0.
07

92
9

0.
00

88
0

0.
72

0.
69

28
d
es

cr
*d

is
t

0.
1
99

1
48

0.
00

41
5

0.
1
9

1
1.

00
95

48
0.

02
10

3
0.

86
0.

73
85

0.
17

31
48

0.
00

36
1

0.
29

1
ra

d
*d

es
cr

*d
is

t
0.

29
43

14
4

0.
0
02

04
0.

0
9

1
0.

34
38

14
4

0.
00

23
9

0.
10

1
0.

06
62

14
4

0.
00

04
6

0.
04

1
E

rr
or

22
.5

51
4

10
20

0.
02

21
1

21
.6

12
6

88
4

0.
02

44
5

12
.5

08
0

10
20

0.
01

22
6

T
ot

al
32

.0
54

0
12

91
30

.8
75

1
11

55
21

.3
41

0
12

91

87

4. MODEL BASED CLASSIFIERS

88

5

View Based Classifiers

As we have seen in the previous chapter, it is possible, by reversing the graphics pipeline,

to bring the geometry and color information from screen space back to object space

and use it to make some useful inference. We called such an approach model based

classification, for the discrimination between bugs and non-bugs relies solely on the

acquired knowledge (of shape and color) about individual models of the virtual objects.

This knowledge is not conditioned to where the objects are in the world and where the

camera is looking. Since the color over the surface of the objects can, in fact, vary with

both the object and the camera position — among other factors — the model based

approach, in such cases, is liable to make inaccurate predictions. In order to make

robust inference in photo-realistic environments, we further develop our approach by

adding camera-object interactions to our model, to form a view based classifier. We

postulate that allowing for this additional component will improve the detection of

color anomalies in 3D virtual environments.

5.1 General Approach

The camera-object interaction, as well as its visual outcome from the rendering system,

is encoded in the behaviour of the virtual environment. However, in line with the

assumptions we made when building the model based classifier, all we know about the

rendering system is a collection of validated (bug-free) frames. The consistent behaviour

of the system itself is not explicitly given. The approach used in this chapter elicits

knowledge of the camera-object interaction rather than the objects alone. The research

question we pose is:

How can a mechanism “learn” the relationship between the scene camera

89

5. VIEW BASED CLASSIFIERS

and single object appearance and use it to detect visual inconsistencies?

The problem of learning and prediction is ubiquitous in machine learning research

and, indeed, numerous techniques to address these issues have been developed and

refined over the years. In this work, we will consider the two categories within which

all machine learning strategies fall, namely, regression and clustering.

Regression aims at eliciting a mapping between two feature spaces. That is, given

an input feature space, X in R
n, and an output space, Y in R

m, regression algorithms

try to find an estimator which transforms X into Y . In our case, X is the feature

space in which camera-object interactions are defined, and Y is a space denoting the

geometry and color appearance of our virtual entities. The estimator is built in order to

predict the object appearance for debugging purposes. Clustering, on the other hand,

consists of grouping data or observations of a feature space X into subsets (clusters),

based only on the information that can be inferred from the data. Observations in the

same cluster are thus similar in some sense. In our work, we aim at forming clusters

of consistent rendering system inputs and outputs defined on some feature space. The

feature space will need to encode some interesting information about the camera-object

interaction and object appearance. If the feature space is appropriately chosen, then

inconsistent interactions and/or visualizations will lie far from the clusters of normal or

consistent data instances. Hence, anomaly detection will come down to measuring the

distance of a new vector to the nearest consistent cluster. Large distances will indicate

suspicious camera-object interactions and/or visualizations.

Either through regression or clustering, once the mapping between camera-object

information and object appearance has been suitably represented, it can be used to

make inferences about new stimuli from the system to test. By computing the similarity

between the prediction from our testing mechanism and the actual data from the game,

we will be able to quantify the consistency of the appearance (Figure 5.1). Building

and using estimators and clusters for debugging purposes is the subject of subsequent

sections.

5.2 Appearance Description

It is an accepted fact that the effectiveness and robustness of any classifier, whether

estimator or cluster based, strongly relies on the nature of the input data, described

as a set of attributes or descriptors [23]. As our ultimate aim is to build classifiers

of consistency, we will need to turn our data — the relationship between the camera

90

5.2 Appearance Description

Figure 5.1: View based consistency estimation scheme - In order to acquire the
target behaviour of the rendering system, valid input and output samples needs to be
collected. The behaviour can then be modeled, for example, through machine learning
mechanisms. This schematic diagram on the left side of the figure represents this phase.
The knowledge acquired can be used to assess the system behaviour for debugging purposes.
On the right hand side of the figure, a diagram shows the test phase, in which inference is
made by the mechanism upon new stimuli received from the system to test.

and the appearance of the object on screen — into descriptors to use for training our

estimators and building our clusters. In doing so, attention must be paid to control

the complexity of the descriptors. Indeed, empirical evidence shows that the dimen-

sionality of descriptors is a critical factor for both classification and regression prob-

lems [130]. Highly dimensional feature spaces produce, in general, badly performing

inference mechanisms. Therefore, not only should our descriptors be discriminative,

but they should also be of limited dimensionality.

5.2.1 Geometry and Color Descriptors

Since we aim at describing the (2D) appearance of objects on screen, geometry descrip-

tors should ultimately represent the 2D shape of objects. We decided to represent the

object silhouette through seven shape descriptors. These are the object area (in pixels),

the distance from the camera ∈ [0, 1], the coordinates of the silhouette centroid ∈ [0, 1],

the length of the major and minor axes of the ellipse encompassing the object silhou-

ette, and the angle between the x-axis and the major axis of the aforementioned ellipse

∈ [−90◦, 90◦]. A vector of any combination of such descriptors shall be referred to

as a geometry descriptor. The geometry descriptors can therefore keep track of the

object size, its distance from the camera, its eccentricity (ellipse axes) and orientation

(ellipse orientation) (Figure 5.2 left). We decided not to use any affine invariant 2D

91

view_based_classifiers/figures/BBDetector.eps

5. VIEW BASED CLASSIFIERS

shape descriptor such as the affine invariant Fourier descriptor (AIFD) [22] the CSS

descriptor (Curvature Scale Space) [102] or the generalized Hough transform descriptor

(GHTD) [8]. The aim of such popular feature vectors is to extract some shape signa-

ture that is invariant to affine translation, rotation and scaling. However, because we

want to correlate the shape and position change to the camera-object interaction, the

invariance properties of such representations cannot be exploited to serve our purposes.

Moreover, most of these methods are boundary based (i.e. they only rely on the infor-

mation about the contour of the object) and, as such, are strongly affected by shape

irregularities due to occlusions [104]. We postulate that our geometry descriptors —

being region based — are more suitable to fulfill our aims, for the objects and environ-

ments considered feature occlusion and cluttering. Finally, the geometry descriptors

we propose can be computed cheaply, as the most expensive operation is the extraction

of the second moments, which can be efficiently calculated [104].

Figure 5.2: Geometry and color descriptors of appearance - The shape and color
of objects on screen is described using vectors of specially selected components. Geometry
descriptors allow for object area (in pixels), centroid position and other shape properties.
Colors are defined through histograms of Hue, Saturation and Value planes extracted from
the image.

The color distribution is described using color histograms. As in the previous chapter,

color are described in HSV coordinates than RGB. The reason being that the color in the

cylindrical-coordinate representation is more easily clustered than in RGB space [154].

To build the HSV descriptor, histograms were extracted representing the frequency of

92

view_based_classifiers/figures/geom_colour_descriptors.eps

5.2 Appearance Description

Hue, Saturation and Value planes respectively (Figure 5.2 right). As reported by Zarit

et al. [155], a system which uses only the Hue and Saturation information is more stable

with respect to differences in illumination and local variations caused by shadows. The

decision of whether to include the Value component to the color descriptor, in order to

improve the detection accuracy, depends on the realism of the environment. If global

illumination algorithms (e.g. shadows or radiosity) are implemented, the inclusion of

the Value information may degrade the performance of the detection mechanism as

there is no easy way to predict such color dynamics by only looking at the camera-

object interaction. To detect shadow malfunctions we propose a different approach,

reported in Chapter 6. As we shall see later in this chapter, we will show how various

geometry and color descriptors perform upon various levels of realism and geometric

complexity. To extract the information about the target object from the scene, we

segment the image at the object level with a technique similar to that used in the

previous chapter; we use matrix maps and matrix tables in order to identify which

pixels belong to which objects. For convenience, the figure depicting this process is

shown here again (Figure 5.3).

5.2.2 Object Space Segmentation

In order to be useful for real-case scenarios, both geometric and color descriptors should

be common to all objects. Since complex virtual environments are typically composed

of thousands of objects, the one-descriptor-fits-all solution seems to be very practical.

Given that we do not want our descriptors to be any more complex than they already

are (we seek to reduce the dimensionality) we try to reduce the complexity of the ob-

jects instead in order to appropriately describe complex 2D shapes1. In particular, we

will split the geometry of the objects into parts that are small enough to be accurately

described by our feature vectors. By doing this, any object becomes an ensemble of

simple geometric components, each of which will be represented by our color and geom-

etry descriptors. Splitting the original geometry into sub-geometries is advantageous.

On the one hand, the second central moments of sub-geometries, on screen, cannot be

less accurate than the ones computed on the entire shape, that is, convex shapes are

1Different convex geometries may exhibit similar normalized second central moments, and thus, are
circumscribed by similar ellipses. Moreover, the occlusion of background objects from the foreground
clutter may change the geometry and color descriptors, thus negatively affecting training. This is the
case with landscapes, background walls and sky-boxes which are, typically, constantly occluded by the
foreground scene. Finally, some attributes of the descriptors may become non-informative for some
objects — such as the centroid position of the landscapes or the sky — as they may tend to acquire
constant values throughout the game-play experience.

93

5. VIEW BASED CLASSIFIERS

Figure 5.3: Extraction of matrix and pixel information - In order to identify
which pixels belong to which objects, matrix maps and matrix tables are used. The pixel
coordinates (x, y, z) are taken from the frame and depth buffer. The matrix Mwvp is
retrieved from the game engine and stored in the matrix table, along with its color. The
color of the matrix is then read from the matrix map and used to identify the position on
screen of the target object. Finally, color and geometry features are extracted from the
frame at the position determined via the matrix map.

likely to be split and form smaller concave silhouettes. Different concave silhouettes are

likely to exhibit different second central moments which will produce different circum-

scribing ellipses. On the other hand, the area of sub-parts is less likely to be severely

occluded compared to the entire object which may span a considerable screen region,

thus making the description less influenced by the rest of the scene1. As we shall see

in Section 5.4, such a geometry segmentation, in some cases, improves the accuracy of

the detectors. The question that we seek to answer is, logically, how do we split the

object geometry in the first place?

In computer vision, the solution to most object segmentation problems needs to be

found in screen space, as the image is typically the only information directly available

1Object sub-parts that are severely occluded can be easily detected by comparing the observed area
(in pixels) to the mean area from the training samples. If an object part is severely occluded, nothing
can be inferred about its appearance. However, the analysis can still be carried out for the rest of the
ensemble.

94

view_based_classifiers/figures/VB_obj_masks.eps

5.2 Appearance Description

from the real world. Unfortunately, the ever changing shape and color distribution

peculiar to real scenes makes it hard to discriminate between object parts according to

some invariant (shape or color) description of them. However, given that the geometry

of virtual objects never changes in local space, segmenting any object simply reduces

to segmenting the object space into a number of 3D clusters. Each cluster representing

some sub-part of the entire geometry.

We have already seen how this object segmentation can be carried out for the

model based classifier. Recall from Chapter 4 (Section 4.4.2, Algorithm 4.4) that we

can identify objects parts through a cluster map L indicating where the objects parts

are on the screen. Here, however, we also want to make this segmentation screen-

resolution-independent; because geometry and color features will be extracted in screen

space, different screen resolutions may produce different features. One way of doing

this is described by Algorithm 5.1.

Algorithm 5.1: Geometry Segmentation

function Segment(P ′

o,Po,Mwvp,r) returns a matrix of connected components1

inputs:
matrix P ′

o of pixel positions in object space, of size k × 4
matrix Po of cluster center coordinates in object space, of size n× 4
World-View-Projection matrix Mwvp, of size 4× 4
resolution r, in pixels, of the NDC frame

locals :
matrix N of pixel positions in NDC, of size k × 4
index array pixelClstIdx of clustered pixels, of size k
index array currPixelClstIdx of pixels belonging to the current cluster
array fRow of the Y pixels component in NDC, of size k
array fCol of the X pixels component in NDC, of size k
matrix L of n connected components in NDC, of size r × r, initially zero

N ← Round((r − 1)(P ′

o ×Mwvp + 1)/2)2

for i← 1 to k do3

pixelClstIdx[i]← index of the minimum value of ‖Row(P ′

o, i)− Po‖4

end5

for c← 1 to n do6

currPixelClstIdx← indices j of pixelClstIdx such that pixelClstIdx[j] = c7

fRow← N (currPixelClstIdx; 2)8

fCol← N (currPixelClstIdx; 1)9

L (fRow, fCol)← c10

end11

return L12

As for the model based classifier, here we assume that the position P ′

o and the world-

view-projection matrix Mwvp are available, in object space. We have previously shown

95

5. VIEW BASED CLASSIFIERS

how pixels coordinates can be transformed from screen space to object space, through

Mwvp (Equation 4.2 and 4.3). The cluster centers position matrix Po contains a number

of reference points (rows of the matrix) approximating the consistent geometry of the

object, in object space. As for the model based classifier, we shall refer to this matrix as

the database cluster centers matrix. We compute such a matrix through the Algorithm

4.3 presented in the previous chapter.

Figure 5.4: Object segmentation - To improve the accuracy of the detection algo-
rithms, an accurate object segmentation is required. To that end, the object (the track
in this example) is first split into clusters of pixels, in object space. The cluster centers
(bigger red dots) are stored in the database cluster centers matrix Po. The extraction of
features is then performed, in screen space, over the regions of the cluster map L, defined
in NDC. In this example, only the first 7 clusters are represented, resulting from a cluster
radius of size 15.

The function Segment produces a square matrix, L, of r× r integers representing the

various components of the target object in Normalized Device Coordinates (NDC), that

is, in coordinates that do not depend on the final screen resolution. Such a device is

represented by the square matrix N (line 2) computed by first converting the incoming

pixels to clip-space (operation P ′

o × Mwvp). Such a space is defined in the interval

[−1, 1] for both x and y dimensions. The division by 2 then shrinks the 2× 2 device to

96

view_based_classifiers/figures/VB_obj_segment_hist.eps

5.3 Consistent Appearance Acquisition

size 1 × 1, after translating its origin from (−1,−1) to (0, 0) (operation +1). Finally,

the parameter r determines the resolution of the normalized device. To avoid aliasing

problems, r should be smaller than both the vertical and horizontal resolution of the

screen. The incoming pixels are then clustered and the cluster map generated, as

explained in the previous chapter.

Once the segment map is computed, it can be used to segment the object in NDC.

From such segments, geometry and color descriptors are extracted as shown in Figure

5.4. Note how that the various object parts are segmented according to their 3D

geometry rather than their 2D appearance. This is accomplished by clustering the

screen space pixels according to the nearest — in the sense of Euclidean distance —

database cluster center in object space. The result of such a clustering is written in

the cluster matrix L, which is used to perform a feature extraction on the individual

sub-parts rather than on the entire geometry.

5.3 Consistent Appearance Acquisition

In the previous sections, we have seen how objects can be described in screen space.

The camera-object interaction will need to be described as well, through vectors or

descriptors. This will enable us to define the feature spaces for our estimators and

classifiers.

From the previous chapter, we know that the world-view-projection matrix Mwvp

is used by the 3D application for synthesizing the object shape in screen space. Such

a matrix is the result of the multiplication of two affine transformations — typically

know as World and View matrices — and one perspective projection. The combined

affine World and View transformation defines the translation, rotation and scaling of

the object with respect to the camera; the perspective transformation maps the three

dimensional vertices of the object to the two-dimensional image we perceive. Therefore,

both the original object position in local space and the combined matrix Mwvp given

by Mw ×Mv ×Mp fully defines the position and shape of the object in screen space.

The vectorized version of Mwvp is the camera-object descriptor we are looking for. We

are now ready to define our feature spaces for visual consistency detection.

5.3.1 Connectionist Models of Consistent Visualization

Partially inspired by the biological processes underpinning perception, connectionist

techniques have been developed and effectively employed for pattern recognition tasks

97

5. VIEW BASED CLASSIFIERS

such as speech recognition [15], natural language processing [98] and time series predic-

tion [47]. Connectionism refers to those tools, such as Artificial Neural Networks (ANN)

and Self-Organizing Maps (SOM), that model mental or behavioural phenomena as the

emergent process of interconnected networks of simple units [42]. Such networks have

been shown to exhibit interesting aggregate properties. For example, they can be wired

to recognize patterns, to exhibit rule-like behavioral regularities and to realize virtu-

ally any mapping from patterns of input parameters to patterns of output parameters.

Such learning characteristics inspired us to investigate the use of ANNs and SOMs for

building the estimators and clustering approaches we introduced in Section 5.1.

5.3.2 Modelling Object Appearance through Feed-Forward ANN

Neural networks are graphs composed of nodes of units connected by directed links.

Numerical values (weights) are attached to the links of the graph, parameterizing the

input/output function that the network represents. Each unit computes a weighted

sum of its inputs and applies an activation function to this sum to derive the output.

Thus, the output of each unit i is computed as follows:

ini =
n∑

j=0

Wj,iaj (5.1)

ai = g (ini)

= g




n∑

j=0

Wj,iaj



 (5.2)

where Wj,i is the weight associated to the link from unit j to unit i and g is the

activation function.

There are two main categories of network structures: feed-forward networks and

recurrent networks. A feed-forward network describes a function of the current input

with no internal states; the recurrent network, instead, feeds its output back into its

own inputs [123]. Recurrent networks are often used to learn temporal input patterns;

the response of the network to a given input depends on its initial state, which may

depend on previous inputs.

Neural Networks are typically arranged in layers, such that each unit receives input

only from units in the immediately preceding layer (left side of Figure 5.6). Learning,

in multilayer feed-forward networks, is carried out by back-propagating the error Err =

y−h (x) from the output layer to the hidden layer. Here, y is the output target related

98

5.3 Consistent Appearance Acquisition

to the example input x, that is, the output that the network is expected to produce

upon x; h (x) is the actual response of the network to x (Figure 5.5). A thorough

description of the learning mechanisms for ANNs is beyond the scope of this document;

the interested reader is referred to [11]. As has been shown, the standard multilayer

Figure 5.5: Training and Testing in ANNs - Learning in ANNs is carried out via
adjusting the network weights according to the error between target and actual output.
Once learning has been completed, the network can be used to predict novel data from
new stimuli. Illustration inspired by Demuth and Beale [31].

feed-forward network with a single hidden layer can approximate any function (with

a finite number of discontinuities) arbitrarily well [28]. As such, this connectionist

technique represents a good candidate for solving our regression problem of mapping

camera-object interaction (defined through the world-view-projection matrix) to object

appearance (defined through geometry and color descriptors).

To train the network, we will feed the input units with the vectorized version of

the 4 × 4 transformation matrix Mwvp and correct the network weights according to

the target descriptors extracted from the frame rendered through Mwvp (Figure 5.6).

If the network performs well on the test set (i.e. the set of descriptors different from

the set used for training the network), we can claim that a good mapping between

Mwvp and the target matrix exists and it can be expressed through the network. Thus,

the trained network can be used for predicting the object appearance and therefore to

detect possible visual inconsistencies. Both training and testing stages are depicted in

Figure 5.5. The performance of a trained network can be measured by the error values

99

view_based_classifiers/figures/ANN_objDescription_learning.eps

5. VIEW BASED CLASSIFIERS

Figure 5.6: ANN Architecture - In this work, ANNs are trained on the vectorized
transformation matrices used to render the object. Outputs are the geometry or color
descriptors extracted from the final image.

returned on the training and test sets. However, it is often useful to perform a regression

analysis between the network response and the corresponding targets. To this end, the

Pearson [109] correlation coefficient, r, is usually computed between network output

and corresponding targets. If the outputs are always exactly equal to the targets we

have a perfect fit and r becomes equal to 1. Likewise, a badly performing network

typically exhibits a correlation coefficient close to 0.

5.3.3 Appearance Modelling through Self Organizing Maps

Another type of network which falls into the family of connectionist approaches is the

Self Organizing Map (SOM). SOMs, also known as Kohonen networks, are unsuper-

vised ANNs involving the non-linear projection of some high-dimensional input space

into a low-dimensional discrete output space, typically, a two-dimensional grid. As for

an ordinary ANN, self-organizing maps consist of units called nodes or neurons. Asso-

ciated with each node is a weight vector of the same dimension as the input data and a

position in the map space. The goal of training a self-organizing map is to cause differ-

ent parts of the network to respond similarly to certain input patterns [77]. Therefore,

similar samples are mapped together and dissimilar sample are mapped apart. Under

a different interpretation, a SOM can be seen as a way of generating discrete approx-

imations of the distribution of the training samples. More neurons will point to high

density regions of the input space, leaving fewer where the samples are scarce. To

train a SOM, a competitive learning approach is used. When a training example is fed

to the network, its Euclidean distance to all weight vectors is computed. The neuron

with weight vector most similar to the input is called the Best Matching Unit (BMU).

100

view_based_classifiers/figures/ANN.eps

5.3 Consistent Appearance Acquisition

The weights of all neurons within a certain neighborhood Nci (t) of the BMU are then

updated as follows:

wi(t + 1) = wi(t) + α(t)Nci(t)[x(t)−wi(t)]. (5.3)

Here the neighborhood function Nci(t) is a kernel function (typically a Gaussian) with

maximum value equal to 1 when i = c, where i and c are neuron indices. The width

of the kernel decreases with time. The scalar α is a monotonically decreasing learning

coefficient and x is the input vector. When a vector x is presented, the weights of the

winning neuron and its close neighbors move towards x according to Nci. This process

is repeated for each input vector for a (usually large) number of iterations. The ability

of SOMs to visualize multidimensional data is exploited in many application areas such

as process analysis [2], pattern recognition [72] and novelty detection [153]. Figure 5.7

depicts a typical example of SOM novelty detection; such a scheme is the one we use in

this work. Specifically, we train SOMs to represent the distribution of the input space

in order to make statistical inferences about the correctness of new observations.

Self Organizing Maps and Artificial Neural Networks are inherently different ap-

proaches. SOMs are suitable for carrying out clustering, ANNs for performing regres-

sion. As we stated earlier, SOMs accept target inputs but no target outputs, that is,

they learn without supervisory signals. Ultimately, what SOMs learn is the represen-

tation of the input data; in our case, the input and output vectors sampled from the

consistent behaviour of the rendering system. To be precise, the vectors we used to

train SOMs resulted from the concatenation of the vectorized geometric transforma-

tion matrix Mwvp and the image descriptors (Figure 5.8). Once the output neurons

have moved so as to homogeneously cover this hybrid feature space, the network can

be used for classification purposes. As new vectors are submitted to the trained SOM,

the Euclidean distance between such vectors and their BMUs is computed. If this

distance exceeds a threshold, then the input vector can be labeled as novel and the

related object identified as suspicious. Conversely, any vector close enough to its BMU

can be considered consistent. As we have shown in Chapter 3, this is an example of

SOMs application to novelty detection problems. Note that concatenating Mwvp to the

geometry or color vectors was a choice motivated by the availability of extra data from

the game. SOMs could have been trained and tested on feature spaces defined by color

or geometric descriptors only. We did this because the extra information about the

geometric transformation endows the vectors with more descriptive power.

The reasons for choosing SOMs compared to other partitional clustering algorithm

101

5. VIEW BASED CLASSIFIERS

Figure 5.7: Training in SOMs - Neurons in SOMs move from their original position so
as to cover the input space. Once a high enough number of iterations has been reached,
the network can be used for novelty detection purposes. This can be achieved by using the
distance (weight) between a test vector and its BMU. If such a distance exceeds a threshold,
then the new vector can be considered suspicious. This figure depicts an example of SOM
training performed in our datasets. Dots in light green represent feature vectors of the
color feature space; dots in dark blue represent neurons of the SOM. To visualize the
feature vectors, these were projected to the first two major components of the (10 to 20
dimensional) feature space, extracted through Principal Component Analysis (PCA). Black
dots, indicating anomalous vector, were manually added in the picture for clarity purposes.

102

view_based_classifiers/figures/SOM_plots.eps

5.4 Implementation and Results

Figure 5.8: SOM Architecture - The SOMs are trained on the combined vectors
resulting from the concatenation of the vectorized transformation matrix and the geometry
or color descriptor. During training, the output neurons will move from their original
position in order to best represent the input training set.

(e.g K-means) are manifold. First, due to the effects of the neighborhood function,

SOMs are likely to be less prone to local optima than K-means [6] or, to put it another

way, SOMs are quite insensitive to initial conditions [49]. Second, learning in SOMs can

be performed in an on-line mode, that is, by adding new consistent vectors as soon as

they become available [107]. Finally, the topological map can be used for visualization

purposes; the clustering resulting from SOMs is more visual and easy to comprehend

and analyze.

5.4 Implementation and Results

In the previous sections we have proposed two different classifiers to assess the consistent

behavior of the rendering system. One based on the modelling of some behaviour of the

rendering system through ANNs; the other, consisted in clustering the hybrid feature

space of world-view-projection matrices and object descriptors, through SOMs. Both

approaches have been implemented and thoroughly validated on three different versions

of the Microsoft Racing Game environment presented in Chapter 2. The results are

presented in the following sections.

5.4.1 Estimator Parameters

The ANNs we used in our experiments were two layer neural networks with a variable

number of hidden units. Preliminary tests showed that good predictions could be

obtained from networks with a tan-sigmoid transfer function in the hidden layer and

103

view_based_classifiers/figures/SOM_net.eps

5. VIEW BASED CLASSIFIERS

linear function in the output layer. The training algorithm we employed is called

Bayesian Regularization which statistically estimates the regularization parameters of

the network. A detailed discussion of such a training technique can be found here [92].

The choice of one training function over another generally depends on the data set.

The Bayesian Regularization turned out to be a good choice, in terms of accuracy, for

the environments and objects we considered in our work.

The entire data set for ANNs, composed of transformation matrices Mwvp (input)

and geometry and color vectors (output), was split into a training set (80 percent of the

data set) and a validation set (20 percent of the data set). The maximum number of

passes through the entire training set (epochs) was set to 1000, whereas the maximum

number of consecutive validation failures was set to 61. Maximum number of epochs

and validation failures were chosen in such a way as to ensure that the ANNs always

converged to a solution (the network underwent early stopping) before the maximum

number of epochs was reached. The performance on the validation set was computed

via Sum Squared Errors (SSE).

As far as concerns SOMs, we used a single layer of a variable number of output

units. As learning in SOMs is unsupervised, there was no need to divide the data

set into training and validation sets, thus, the whole data was used for training. As

stated earlier, the training vectors for SOMs result from the concatenation of vectorized

transformation matrices Mwvp and geometry or color descriptors.

In both SOMs and ANNs, weight and bias updates occurs at the end of an entire

pass through the input data (batch update). Table 5.1 shows the parameters that were

set to a fixed value throughout our tests.

Parameter ANN SOM

max epochs 1000 1000
steps to shrink to 1 N/A 100

initial neighborhood size N/A 3
error function SSE N/A

max validation failures 6 N/A
topology 2 layers 1 layer (hexagonal grid)

Table 5.1: Parameter set for ANNs and SOMs

1In ANN terminology, validation failures are increases on the validation error, compared to the
previous epochs. The maximum number of failures is used to control overfitting. When the validation
error increases for a specified number of iterations, the training should be stopped as that is an indicator
that the network is learning noise in the data [31].

104

5.4 Implementation and Results

5.4.2 Dimensionality Reduction for the Geometric Transformation

Matrix

The World-View-Projection matrix we use to feed our networks has full rank, that is, its

columns are linearly independent. However, the linear independence between columns

does not guarantee the non-redundancy of the related dimensions, taken singularly,

across the entire data set. As it turns out, not all elements of the matrix are equally

significant. To see this numerically, we performed a Principal Component Analysis

(PCA) on the entire data set of transformation matrices. We found that, insofar as the

collection of validated frames is concerned, as few as 6 out of 16 principal components

could explain almost the entire variation (more than 95%) of the data set and that

the first 12 principal components were enough to explain the entire variation (100%).

This can be observed from the Pareto chart depicted in Figure 5.9 (a), in which the

bars indicate the variance explained by each component and the line graph denotes

the cumulative sum over the principal components up to 95% of the entire variation.

This left us with the decision of using the first 12 values of the vectorized World-View-

Projection matrix for both training and test.

Figure 5.9: PCA of transformation matrices - World-View-Projection matrices, in
computer graphics, have full rank. However, the data emerging from a number of play
sessions, over different objects, shows that 6 out of 16 dimensions suffice to explain most of
the variance of the entire data set of geometric transformations (a). When such vectors are
transformed into the new coordinate system of principal components, it becomes visible
how dimensions 13 to 16 (the last column of the transformation matrices) do not contribute
much to the variance of the data set (b).

105

view_based_classifiers/figures/pareto.eps

5. VIEW BASED CLASSIFIERS

5.4.3 Accuracy Measurements

Recall from Section 5.2.2 that our virtual objects undergo a segmentation in order

to reduce the visual complexity of the entire entity. Thus, what we assess is not the

object as a whole, but its individual components, as both the geometry and color

consistency is, in effect, an independent property of the individual object parts. The

aim of this section is to show the difference, in performance, between ANNs and SOMs.

Furthermore, we shall show that our experiments support the hypothesis that splitting

the original object geometry in sub-parts does, in some cases, increase the overall

accuracy of the system.

For each component, we trained four networks: two (ANN and SOM) for learn-

ing the correct geometric appearance and two for capturing the correctness of color

distribution. The effectiveness of our classifiers is measured through ROC (Receiver

Operating Characteristic) curves, explained in the previous chapter. In particular, the

Area Under Curve (AUC) was used as a measure of accuracy. As for the model based

classifiers, to compute true positive rate (TPR) and false positive rate (FPR), true sets

and false sets were generated, containing bug-free and buggy visualizations respectively.

To facilitate the comparison between the model based and the view based approach,

training and testing for the view based classifiers was performed on the same dataset

used for the model based classifiers. Bugs in the false set were introduced as explained

in the previous chapter (see Figure 4.14). Figure 5.10 shows examples of ROC curves

used to measure the accuracy of the view based classifiers.

Tests have been carried out on three different geometries and levels of realism.

These are the ones used for validating the model based classifiers, shown here again for

convenience (Figure 4.13).

5.4.3.1 Geometry Tests

To validate the capability of our system to detect geometry bugs, we performed an

extensive analysis on a number of different network configurations, geometry descriptors

and cluster sizes. We effectively evaluated 300 different scenarios by combining:

• Five different ANN and SOM architectures

• Fifteen different geometry descriptors

• Four different cluster radii

The networks we analyzed were 8, 12, 16, 20 and 24 hidden unit ANNs and 6 × 6,

8 × 8, 10 × 10, 12 × 12 and 14 × 14 output grid SOMs. The shape of the objects on

106

5.4 Implementation and Results

Figure 5.10: ROC curves from the view based classifiers - The graphs show the
ROC curves obtained from geometry test performed on three different objects (Car, Wind-
mill and AlphaPalm). Column (a) relates to ANN tests, column (b) to SOM tests. Different
curves within the same graph represent different clusters (sub parts) in which the original
geometry was segmented. Because sub parts may have different geometrical complexity and
size, performance may vary amongst them. Curves lying along the diagonal straight line
indicate a poorly performing system. By contrast, curves closer to the upper-left corner of
the ROC plot indicate highly accurate systems. The graphs title contain information about
the radius, descriptor and network architecture used. For example, (r60 d9 u16) indicates
that the system has been trained and tested with radius 60, descriptor 9 and via using a
neural network of 16 hidden neurons (output neurons in case of SOMs). Note, from the
first row, how convex geometries (i.e. the car) are likely to be learned by the system and
be effectively differentiated from anomalies. Conversely, the appearance of more complex,
concave geometries (i.e. the palm tree) is less likely to be accurately learned by either
ANNs or SOMs.

107

view_based_classifiers/figures/VB_ROCs.eps

5. VIEW BASED CLASSIFIERS

screen was defined by the 15 descriptors depicted in Figure 5.11. Finally, in order to

test our hypothesis of reducing the clusters size for enhancing accuracy (Section 5.2.2),

we allowed for 5 different cluster radii (see Algorithm 4.3) of size 15, 30, 60 and 120.

Figure 5.11: Descriptor tables - In order to validate the our system we analyzed the
behaviour of various network architectures with several geometry and color descriptors.
In the geometry descriptor table, the values yes and no indicates whether the descriptor
includes the related component or not. The values within the color descriptor table denote
the number of bins used to build the histogram of the related component.

As with the model based classifier, results are displayed through box plots and decision

trees. Box plots and decision trees help to visualize and interpret our test data, as

explained in the previous chapter. Note from Figure 5.12 and 5.13 that both ANNs

and SOMs can achieve high accuracy, upon selecting the appropriate parameter set. In

particular, note that cluster radius and geometry descriptor play a role in the accuracy

of the system. As far as concerns ANNs, descriptors 3, 7, 8, 10, 11, 12, 14 and 15 seem

to perform better than the others (see top nodes of the decision trees). This indicates

that the area of the object is a good feature to include, but only if combined with object

centroid and depth (descriptor 3 and 7). Likewise, the eccentricity information results

being a good feature, either alone (descriptor 8) or combined with other features (as for

descriptors 11, 12 and 14). By contrast, SOMs are less sensitive to the descriptor used

and perform slightly worse only if descriptor 4 (the one containing depth information

only) is employed.

108

view_based_classifiers/figures/descriptors_tables.eps

5.4 Implementation and Results

Figure 5.12: ANN geometry tests - Box plots and decision trees were used to interpret
the results from the validation of our classifiers. From the box plots it is evident that
geometry descriptor (parameter descr) significantly influences the accuracy of the system.
In particular, descriptor 4 is likely to degrade the system accuracy. The cluster radius
(parameter rad) is also an important factor, as far as accuracy is concerned. Indeed, the
decision tree related to the object windmill (second row), uses the radius as a decision
node. Finally, the network architecture (parameter units) seems not to play a major role
in the system accuracy. Although the median of the box plots changes with respect to the
variable units, the difference between sample means is not statistically significant. See text
for more details.

109

view_based_classifiers/figures/geom_tests_ANN.eps

5. VIEW BASED CLASSIFIERS

Figure 5.13: SOM geometry tests - The box plots and decision trees for the SOM
geometry tests show that the geometry descriptor is an important factor, as far as accuracy
is concerned. This result is confirmed by the decision trees, which use the descriptor as
a major discriminative factor (root node). The cluster radius is also a discriminative
parameter, although this can only be observed from the box plots.

110

view_based_classifiers/figures/geom_tests_SOM.eps

5.4 Implementation and Results

Figure 5.14: Performance of ANNs in geometry classifiers - Trends of the Mean
Squared (geometry) Error for the best performing ANNs computed on the training set.
Different plots within the same graph represent the error functions for each cluster (and
therefore network) of the target object. The dots indicate the time (epoch) at which
training is stopped in order to avoid overfitting. Early stopping is achieved via monitoring
the network error on the validation set (not represented in the graphs). Accordingly, the
training is stopped when the validation error increases for a specified number of iterations
(6 in our experiments). The graphs refer to ANNs trained for the objects “AlphaPalm”
with radius 30, geometry descriptor 9 and 24 hidden neurons (a); “Windmill” with radius
15, descriptor 13 and 12 hidden neurons (b); and “Car” with radius 20 descriptor 13 and
12 hidden neurons (c).

111

view_based_classifiers/figures/ANNPerfs_geom.eps

5. VIEW BASED CLASSIFIERS

As for the previous chapter, in order to measure the statistical significance of box

plot and decision trees we performed an ANOVA test. Through the ANOVA, we

tested whether the mean accuracy produced by a factor (e.g. a specific cluster radius,

descriptor or network architecture) is significantly different from the mean accuracy

produced by any other factor. A small p value (e.g. 0.01) of the ANOVA test, indicates

that the influence of the related factor to the system accuracy is statistically significant.

The p values of the ANOVA test are reported in the gray columns.

From the second row of Table 5.4, we can observe that the influence of geometry

descriptors to the accuracy of ANNs is statistically significant 5.4. The cluster radius

is also discriminative (see first row of Table 5.4), but only for concave geometries

(i.e. the palm tree and the windmill). Finally, note that the system accuracy for

ANNs, except for the windmill (see forth row of Table 5.4), is not decided by either the

network architecture or related to multiple factors (grouping variables). In other words,

accuracy is not significantly influenced by the number of hidden units of the ANNs;

by the radius and descriptor, taken jointly; or by the radius and network architecture,

take jointly; or on the radius, the descriptor and the architecture; and so on and so

forth.

Similar results can be observed for SOMs. In particular, note how geometry de-

scriptors and cluster radii greatly affect the accuracy of the system (first and second

row of Table 5.5). The p values of the ANOVA test are zero to four decimal places.

A statistic as extreme as that observed would occur by chance only once in more than

10,000 times if different factors would produce equal means. As for ANNs, the SOM

network architecture (i.e. number of output units) seems not to play an important

role, over all (see third row of Table 5.5). Differently from ANNs, however, cluster

radius and geometry descriptor can together explain the variance of the accuracy, for

the windmill and the car (see forth row of the table).

From our geometry tests we cannot conclude which approach — either ANN or SOM

— performs better than the other. Upon selecting an appropriate parameter set, both

approaches give good results. The time trajectory of the Mean Squared Error (MSE)

for the best performing ANNs is shown by the graphs in Figure 5.14. The graphs also

indicate the time (epoch) at which training is stopped in order to prevent overfitting.

Table 5.2 reports the parameter sets of the best performing systems for both ANNs

and SOMs. The values reported in the table have been automatically determined by

considering the best performing branch of the ANN and SOM decision trees. The best

accuracy value for each object or rendering level is the one corresponding to the leaf of

the rightmost branch of the related non-pruned tree (see Figure 5.12 and 5.13 (b) for a

112

5.4 Implementation and Results

reference). For instance, the best ANN accuracy leaf for the object Alphapalm (87.37%)

is the one having the nodes {Radius ∈ {30, 60}}, {Descriptor = 9} and {Units = 24}

as ancestors. Multiple values for the same parameter (column) indicate that values

close to the related accuracy can be obtained through different parameter sets. For

example, if the object car is to be assessed, a highly accurate geometry inconsistency

detector can be built by using either clusters of size 30 or 60; and descriptor 2, 6, 9,

13 or 15; with any network architecture (see third row of table 5.3). As discussed in

the previous chapter, when muliple radius choices are available (see first and third row

of the table) the biggest values (i.e. 60) should always be selected for building the

classifier. Bigger cluster radii produce smaller number of clusters or sub-geometries. A

smaller number of clusters entails a smaller number of elements to process and store,

thus less computational and memory loads.

Table 5.2: Best performing View Based geometry classifiers

ANN SOM

Object Radius Descriptor Units Accuracy (AUC) Radius Descriptor Units Accuracy (AUC)

AlphaPalm 30,60 9 24 0.87375 30 8 144,196 0.90426
Windmill 15 13 12 0.86357 15 7 144 0.80928

Car 30,60 2,6,9,13,15 ANY 1 15 8 100 0.99169

5.4.3.2 Color Tests

The capability of our system to detect color related bugs was measured across 340

different architectures by combining:

• Five different ANN and SOM architectures

• Seventeen different geometry descriptors

• Four different cluster radii

The network architectures, as well as the cluster radii used were the same as the ones

used for the geometry tests. The 17 different color descriptors were obtained by com-

bining various Hue, Saturation and Value histograms as shown in Figure 5.11. As for

the model based classifier, the view based classifier was validated on one complex object

(a palm tree) across three different levels of realism (Figure 4.13). These were:

• Level of Realism 1 (LOR1): diffuse, ambient and specular light contributions

• Level of Realism 2 (LOR2): sharp threshold on diffuse, ambient and specular

light components

113

5. VIEW BASED CLASSIFIERS

• Level of Realism 3 (LOR3): diffuse, ambient, specular light contributions; motion

blur and bloom

Figure 5.15 and 5.16 show the results of the ANN and SOM classifiers respectively.

As it can be observed, there is a noticeable gap between the overall performance of

ANNs versus the performance of SOMs. ANNs seem to perform badly, regardless of

the parameter set used. The accuracy of the best performing ANNs ranges between

60% and 65%. The decision trees of Figure 5.15 (b) and the ANOVA tests of Table 5.6,

do not show any peculiar pattern. Rather, the best parameter set seems to be highly

dependent on the target object and type of rendering (level of realism) to test.

By contrast, results from figure 5.16 show that accurate color inconsistency detectors

can be built via using SOMs. The cluster radius, in such case, seems to play the most

important role. This can be observed by looking at both the decision trees and the

ANOVA test in Table 5.7. All SOM-related decision trees have the cluster radius as

principal discriminator in the root node. Also, the decision tree show that radii 30

and 60 usually perform worse than the others. The discriminative power of the cluster

radius for SOMs is confirmed by the ANOVA tests. The p value is very small (zero

to four decimal places) for all type of rendering considered, that is LOR1, LOR2 and

LOR3 (see first row of Table 5.7). The color descriptor for SOMs becomes important

only in one case, for the level of realism 2 (LOR2) (see second row of the table). In this

case, descriptors 1, 2, 3, 4, 5, 6 and 8 give better performances with respect to the other

descriptors (see the second row of Figure 5.16 (b)). LOR2 represents the environment

rendered through the cartoon-like technique (see Figure 4.13). The aforementioned

descriptors are the ones having the Hue component only (except for descriptor 8),

as can be observed from Figure 5.11. These results suggest that when non photo-

realistic environments are to be assessed, colors can be effectively represented through

SOMs and Hue histograms. As the environment becomes more photo-realistic, other

color components may need to be included in the descriptors in order to capture color

changes, for example, due to specular and reflection effects. The time trajectory of the

Mean Squared Error (MSE) for the best performing ANNs is shown by the graphs in

Figure 5.17. Table 5.3 reports the best performing ANN and SOM color inconsistency

detectors. Note how SOMs are more suitable to describe colors than ANNs. Indeed,

while the best performing ANNs can only reach 65% of accuracy, SOMs can be 95%

accurate. Also, note how more complex color descriptors are needed to model color in

realistic environments, such as LOR1 and LOR3 (see first and third row of the SOM

table).

114

5.4 Implementation and Results

Figure 5.15: ANN color tests - Box plots and decision trees show that ANNs perform
poorly in color inconsistency detection. The overall performance of the system is around
60%. Both cluster radius and geometry descriptor are descriminative parameters but there
seems not to be a generally good or bad descriptor or radius. The best parameter set
depends also on the target geometry.

115

view_based_classifiers/figures/colour_tests_ANN.eps

5. VIEW BASED CLASSIFIERS

Figure 5.16: SOM color tests - From the box plot and decision tree results of the SOM
classifier, it can be noticed that the overall system accuracy is high (about 90%). Both
cluster radius and color descriptor are important factors. However, only the cluster radius
makes a statistically significant difference overall. See text for more details. This result is
confirmed by the decision trees, which consider the cluster radius as the most important
predictor (root node).

116

view_based_classifiers/figures/colour_tests_SOM.eps

5.4 Implementation and Results

Figure 5.17: Performance of ANN in color classifiers - Trends of the Mean Squared
(color) Error for the best performing ANNs computed on the training set. The graphs
refer to ANNs trained for the environment “LOR1” with radius 30, color descriptor 5 and
12 hidden neurons (a); “LOR2” with radius 15, descriptor 11 and 8 hidden neurons (b);
and “LOR2” with radius 15 descriptor 8 and 8 hidden neurons (c).

117

view_based_classifiers/figures/ANNPerfs_color.eps

5. VIEW BASED CLASSIFIERS

Table 5.3: Best performing View Based color classifiers

ANN SOM

Environment Radius Descriptor Units Accuracy (AUC) Radius Descriptor Units Accuracy (AUC)

LOR 1 30,120 5 12 0.63602 15 14 100 0.88622
LOR 2 15 11 8 0.65736 15 1 144 0.91342
LOR 3 15 8 8 0.60556 120 8,11,16 196 0.95684

5.4.4 Model based vs. View Based

We began this chapter by asserting that a view based approach to consistency detection

was needed in order to allow for color changes due to the camera-object interactions.

Recall from the previous chapter, that the model based approach was postulated to be

unable to learn significant color changes over the object surface. The purpose of this

section is to put this hypothesis to test.

We performed tests on the environment LOR1 which featured high quality rendering

through reflection and specular effects (see Figure 4.13). Our aim was to determine

whether the specular contribution could be learned by our networks. To that end, we

selected the best performing model based and view based detectors to test on an object

composed of at least two different reflective and specular materials. In our environment,

this object was the Car.

For both detectors, a cluster radius of 120 and the color descriptor 16 were used.

A large radius enabled us to reduce the computational load and, thus, perform testing

quickly. In fact, descriptor 16 was one of the best descriptors for the model based

approach, but not for the view based approach (see Table 4.1 and 5.3), given the clus-

ter radius and level of realism analyzed. Descriptor 16 included Saturation and Hue

components (see Figure 5.11), which are known to be related to specularity [134]. For

colors, the best model based detector on LOR1 was the one using the Bhattacharyya

distance for histogram matching. Likewise, the best view based color detector turned

out to be a SOM with a 10× 10 neuron grid. Both detectors were trained on the same

training set, composed of 170 images similar to the ones shown in Figure 5.18, row

(c). The two detectors also shared the same test set, composed of 73 images similar to

the ones depicted in Figure 5.18, row (b). As it can be observed from Figure 5.18 row

(b), the target object (the Car) in the test set, lacks the specular component, while

still retaining reflections (this is particularly noticeable on the glass of the car). The

bar graph in the figure shows the difference of prediction error between the view based

and the model based classifier. The prediction error was a measure of dissimilarity be-

tween prediction and observation. For the model based classifier, this was the distance

118

5.4 Implementation and Results

Figure 5.18: Model based vs. view based detection - In order to test the perfor-
mance of the view based approach versus the model based approach, a context-dependent
anomaly was introduced, that is, specularity. The target object (the car) in test images
(row (b)) was rendered by suppressing the specular component of light. Both classifiers
were trained on a bug-free environment (row (c)). The graphs indicates the difference
between prediction errors over a test set of 73 frames. The prediction error was a measure
of the difference between system prediction and observation. Because all test images are
buggy, high prediction errors are indicators of high accuracy. The greater the error, the
more effective the system. This experiment therefore showed that the view based classifier
is more suitable for describing complex color dynamics, than the model based approach.
Frames 2, 28 and 43 were the ones where the inconsistency was more visible.

between the incoming color histogram and the closest histogram in the database. For

the SOM, it was the distance from the observation vector (obtained by combining the

transformation matrix color histogram) to the Best Matching Unit (BMU). To compare

these two errors, distances were normalized as follows. First, a set of bug-free images

similar to the ones from the training set was used to compute the maximum prediction

error, for both approaches. Because the images of this additional set were all valid,

such an error was treated as a normalization coefficient. Next, the prediction error from

the both model and view classifier was divided by the normalization coefficient. The

normalized prediction error so obtained was used to compare the effectiveness of the

two classifiers. Since the test set contained color errors, the prediction error was treated

119

view_based_classifiers/figures/VB_vs_MB.eps

5. VIEW BASED CLASSIFIERS

as a effectiveness score for the system; large prediction errors indicated predicted color

artifacts of large magnitude.

From the graph it can be noted that the error from the view based classifier is

almost always bigger than the one from the model based classifier (the height of the bars

indicate the difference between view based error and model based error). This shows

that the view based classifier, in this test, is better at detecting context-dependent color

artifacts1.

5.5 Summary

In this chapter we have introduced two connectionist approaches to geometry and color

anomaly detection. These are ANN and SOM based classifiers. From the analysis

we have performed, both SOM and ANN approaches can be very accurate at detect-

ing geometry issues, upon selecting the appropriate parameter set. As far as color is

concerned, however, SOMs are by far more accurate than ANNs, given the types of

environment considered and the color bugs reproduced. The color descriptors we used

were the ones we used for the model based classifiers, presented in the previous chapter.

The shape of the object was described through 2D shape descriptors. As for the model

based classifier, here we have assumed the matrix maps and matrix tables are available

for training and testing the neural networks.

As with the model based classifier, the target objects contained a considerable

amount of noise, that is, occlusion and cluttering. Having noisy training samples was

a choice motivated by practical issues. Indeed, in order to remove occlusions, the

rendering engine would need to be modified, for instance, by forcing it to render only

the objects of interest. Let us assume our estimators need an average of N samples to

generalize well and that our scene contained M objects. To learn the appearance of

the scene, we would then need NM (noiseless) images produced by a rendering system

that would need to be modified M times. Because both N and M may well be of the

order of hundreds, such a solution appears to be impractical; let alone that removing

environment clutter does not rule out self-occlusions. A way of reducing both time

and memory resources in collecting training samples is to render as many (possibly

noisy) training objects within a single frame. As it turns out, noisy frames cause no

major difficulties for the neural networks we used, for they yield accurate and consistent

1In our environment, the specularity came from the sun, which was animated. However, the speed
the sun was low enough to treat it as a still light source. Hence, the specularity dynamics only depend
on the camera-object interaction

120

5.5 Summary

results anyway.

In this chapter, we also performed a preliminary comparison of effectiveness between

the model based and the view based approach. We showed that, in at least one case,

the view based classifier performs better than the model based detector, insofar as

what color is concerned. In particular, the view based classifier was better at detecting

specularity issues, compared to the model based classifier. By contrast, Table 4.1 shows

that a model based approach may be more suitable for detecting geometry artifacts,

with respect to a view based approach (see Table 5.2). This seems to be the case given

the object analyzed and the geometry descriptors used.

Finally, it is worth noticing that our approach does not require the different light

contributions (i.e. ambient, diffuse and specular) to be decoupled and learned sepa-

rately; that is to say, the color distribution of the object surface is learned without

prior information about the optical properties of the object surfaces. Clearly, if the

status (e.g. position, color and intensity) of the light sources varies significantly across

training and test sets, such information can no longer be factored into the camera-

object interaction. In such cases, the light status becomes yet another important piece

of information to consider, for color assessment purposes. Neither the model based

nor the view based classifiers presented in this work are designed to deal with such

complex scenarios; thus, we have not measured the effectiveness of our detectors upon

dynamic light conditions. However, we believe that accounting for local illumination

effects under the dynamic conditions described above can still be achieved through a

view based approach. To this end, the input space of the neural networks could be

extended so as to include a description of the light status. With this extra information,

the neural networks may be able to learn the light-camera-object dependent color dis-

tribution over the object surfaces, much as our current networks effectively learn the

camera-object dependent color distribution for static light sources.

121

5. VIEW BASED CLASSIFIERS

T
a
b
le

5
.4

:
V

ie
w

B
a
se

d
c
la

ssifi
e
rs

-
A

N
O

V
A

-
A

N
N

g
e
o
m

e
try

te
sts

A
lp

h
aP

alm
(O

B
J

1)
W

in
d
m

ill
(O

B
J

2)
C

a
r

(O
B

J
3)

S
ou

rce
S
u
m

S
q
.

d
.f.

M
ean

S
q
.

F
P

rob
>

F
S
u
m

S
q
.

d
.f.

M
ean

S
q
.

F
P

rob
>

F
S
u
m

S
q
.

d
.f.

M
ean

S
q
.

F
P

rob
>

F

rad
0.2121

3
0.07069

8.06
0

0.1266
3

0.04220
4.30

0
.0

0
5
1

0
.0126

3
0.00419

1.31
0.2699

d
escr

3.4750
14

0.24821
28.30

0
2.1351

14
0.15251

15.56
0

2.73
32

1
4

0.19523
61.02

0
u
n
its

0.0089
4

0.00223
0.25

0.907
0.3055

4
0.07637

7.79
0

0.00
94

4
0.00

23
5

0.7
4

0.5679
rad

*d
escr

0.4780
42

0.01138
1.30

0.0997
1.0442

42
0.02486

2.54
0

0.11
03

4
2

0.00263
0.82

0.7873
rad

*u
n
its

0.0424
12

0.00353
0.40

0.9629
0.0020

12
0.00017

0.02
1

0.00
52

1
2

0.00043
0.14

0.9998
d
escr*u

n
its

0.2896
56

0.00517
0.59

0.993
0.0310

56
0.00055

0.06
1

0.14
54

5
6

0.00260
0.81

0.8403
rad

*d
escr*u

n
its

0.8196
168

0.00488
0.56

1
0.0253

168
0.00015

0.02
1

0.09
94

16
8

0
.00059

0.18
1

E
rror

8.5521
975

0.00877
6.6172

675
0.00980

9.3
57

9
2925

0.00
32

0
T
otal

14.3634
1274

10.7753
974

14
.5201

3224

T
a
b
le

5
.5

:
V

ie
w

B
a
se

d
c
la

ssifi
e
rs

-
A

N
O

V
A

-
S
O

M
g
e
o
m

e
try

te
sts

A
lp

h
aP

alm
(O

B
J

1)
W

in
d
m

ill
(O

B
J

2)
C

a
r

(O
B

J
3)

S
ou

rce
S
u
m

S
q
.

d
.f.

M
ean

S
q
.

F
P

rob
>

F
S
u
m

S
q
.

d
.f.

M
ean

S
q
.

F
P

rob
>

F
S
u
m

S
q
.

d
.f.

M
ean

S
q
.

F
P

rob
>

F

rad
1.4654

3
0.48847

20.40
0

0.9807
3

0.32691
25.22

0
2.07

4
3

0.69138
34.52

0
d
escr

4.3668
14

0.31191
13.02

0
4.4439

14
0.31742

24.49
0

27.0
34

1
4

1.93100
96.41

0
u
n
its

0.5078
4

1.12695
5.30

0
.0

0
0
3

0.0634
4

0.01586
1.22

0
.2995

0
.000

4
0.0

00
05

0.00
1

rad
*d

escr
0.6379

42
0.01519

0.63
0.967

1.5958
42

0.03800
2.93

0
3.46

5
42

0.0
82

51
4.12

0
rad

*u
n
its

0.0061
12

0.00051
0.02

1
0.0740

12
0.00617

0.48
0.92

91
0.00

5
12

0.0
00

45
0.02

1
d
escr*u

n
its

0.0733
56

0.00131
0.05

1
0.2590

56
0.00463

0.36
1

0.01
0

56
0.0

00
18

0.01
1

rad
*d

escr*u
n
its

0.0374
168

0.00022
0.01

1
0.9938

168
0.00592

0.46
1

0.05
0

168
0.00

03
0

0.0
1

1
E

rror
23.3508

975
0.02395

8.7502
675

0.01296
58.58

6
2925

0.02
00

3
T
otal

31.2121
1274

18.0880
974

10
1.705

3224

122

5.5 Summary

T
a
b
le

5
.6

:
V

ie
w

B
a
se

d
c
la

ss
ifi

e
rs

-
A

N
O

V
A

-
A

N
N

c
o
lo

r
te

st
s

L
ev

el
of

R
ea

li
sm

1
(L

O
R

1)
L
ev

el
of

R
ea

li
sm

2
(L

O
R

2)
L
ev

el
of

R
ea

li
sm

3
(L

O
R

3)

S
ou

rc
e

S
u
m

S
q
.

d
.f
.

M
ea

n
S
q
.

F
P

ro
b

>
F

S
u
m

S
q
.

d
.f
.

M
ea

n
S
q
.

F
P

ro
b

>
F

S
u
m

S
q
.

d
.f
.

M
ea

n
S
q
.

F
P

ro
b

>
F

ra
d

0.
02

60
8

3
0.

00
86

9
2.

9
6

0.
03

13
0.

04
22

6
3

0.
01

40
9

1.
90

0.
12

72
0.

13
36

3
0.

04
45

4
5.

91
0
.0

0
0
5

d
es

cr
0.

13
72

3
16

0.
00

85
8

2.
92

0
.0

0
0
1

0.
61

23
3

16
0.

03
82

7
5.

17
0

0.
06

91
16

0.
00

43
2

0.
57

0.
90

6
u
n
it

s
0
.0

11
45

4
0.

00
28

6
0.

97
0.

42
06

0.
01

82
8

4
0.

00
45

7
0.

62
0.

65
01

0.
01

59
4

0.
00

39
7

0.
53

0.
71

62
ra

d
*d

es
cr

0
.1

85
01

48
0.

00
38

5
1
.3

1
0.

07
69

0.
12

64
4

48
0.

00
26

3
0.

36
1

0.
14

16
48

0.
00

29
5

0.
39

0.
99

99
ra

d
*u

n
it

s
0.

02
87

8
12

0.
00

24
0

0.
8
2

0.
63

35
0.

02
64

9
12

0.
00

22
1

0.
30

0.
98

97
0.

03
16

12
0.

00
26

4
0.

35
0.

97
95

d
es

cr
*u

n
it

s
0.

19
80

9
64

0.
00

31
0

1.
05

0.
36

48
0.

19
86

4
64

0.
00

31
0

0.
42

1
0.

15
29

64
0.

00
23

9
0.

32
1

ra
d
*d

es
cr

*
u
n
it

s
0.

70
74

3
19

2
0.

00
36

8
1
.2

5
0.

01
56

0.
57

50
4

19
2

0.
00

29
9

0.
40

1
0.

53
67

19
2

0.
00

02
8

0.
37

1
E

rr
or

3.
74

49
9

12
75

0.
00

29
4

7.
54

63
5

10
20

0.
00

74
0

8.
97

39
11

90
0.

00
75

4
T
ot

al
5.

14
55

8
16

14
9.

28
04

8
13

59
10

.1
07

7
15

29

T
a
b
le

5
.7

:
V

ie
w

B
a
se

d
c
la

ss
ifi

e
rs

-
A

N
O

V
A

-
S
O

M
c
o
lo

r
te

st
s

L
ev

el
o
f
R

ea
li
sm

1
(L

O
R

1)
L
ev

el
of

R
ea

li
sm

2
(L

O
R

2)
L
ev

el
of

R
ea

li
sm

3
(L

O
R

3)

S
o
u
rc

e
S
u
m

S
q
.

d
.f
.

M
ea

n
S
q
.

F
P

ro
b

>
F

S
u
m

S
q
.

d
.f
.

M
ea

n
S
q
.

F
P

ro
b

>
F

S
u
m

S
q
.

d
.f
.

M
ea

n
S
q
.

F
P

ro
b

>
F

ra
d

3.
02

93
3

1.
00

97
8

3
8.

76
0

4.
46

91
3

1.
48

96
9

22
.3

3
0

0.
50

70
3

0.
16

89
9

19
.3

8
0

d
es

cr
0
.6

01
1

16
0.

03
75

7
1.

44
0
.1

13
9

4.
25

01
16

0.
26

56
3

3.
98

0
0.

12
06

16
0.

00
75

4
0.

86
0.

61
09

u
n
it

s
0.

0
15

0
4

0.
00

37
6

0.
14

0.
9
65

5
0.

12
31

4
0.

03
07

7
0.

46
0.

76
42

0.
03

88
4

0.
00

97
0

1.
11

0.
34

89
ra

d
*d

es
cr

0.
6
62

2
48

0.
0
13

80
0
.5

3
0
.9

96
7

1.
81

84
48

0.
03

78
8

0.
57

0.
99

24
0.

11
24

48
0.

00
23

4
0.

27
1

ra
d
*u

n
it

s
0.

04
50

12
0.

00
37

5
0.

14
0
.9

99
7

0.
06

09
12

0.
00

50
8

0.
08

1
0.

01
35

12
0.

00
11

3
0.

13
0.

99
98

d
es

cr
*u

n
it

s
0.

10
80

6
4

0.
00

16
9

0.
06

1
0.

39
79

64
0.

00
62

2
0.

09
1

0.
05

85
64

0.
00

09
1

0.
10

1
ra

d
*d

es
cr

*u
n
it

s
0.

33
02

19
2

0.
00

17
2

0.
0
7

1
0.

79
85

19
2

0.
00

41
6

0.
06

1
0.

15
29

19
2

0.
00

08
0

0.
09

1
E

rr
or

33
.2

13
7

12
75

0.
02

60
5

68
.0

45
8

10
20

0.
06

67
1

10
.3

75
0

11
90

0.
00

87
2

T
ot

al
3
8.

05
45

16
14

78
.6

37
4

13
59

11
.5

40
9

15
29

123

5. VIEW BASED CLASSIFIERS

124

6

Appearance Based Classifiers

The inconsistency detectors introduced in the previous two chapters aimed at modeling

consistent behaviour of the virtual environment rendering system, in order to detect vi-

sual inconsistencies. We accomplished this task by choosing appropriate feature spaces

for representing objects of interest, in order to detect anomalous instances. This ap-

proach was quite general, for it did not depend on either the environment or the object

to assess, but only on the type of anomaly to detect and the complexity of the virtual

environment. We showed how high accuracy can be achieved, even for close-to-realistic

environments, under the assumption that the anomaly to detect is directly related to

the appearance of the target object, and does not significantly depend on the context

in which the object is rendered. Examples of such anomalies are mesh corruption, tex-

ture replacement and local illumination artifacts (e.g. wrong or missing specular light

components), under static light conditions.

Although such an assumption holds true for a large number of visual defects, there

are visual artifacts that are context-dependent in nature. In such cases, consistency

becomes a property of the scene, and cannot be ascribed to the atomic objects or events

(e.g. the object shape or the camera-to-object interaction). Examples of context-

dependent anomalies are reflection, refraction and shadowing defects. In general, the

context relates to the status (e.g. position, velocity and material properties) of the

objects near the target entity. For instance, the silhouette and contour of shadows

depends on the shape and position of the objects interacting with the light, and on the

position and intensity of the light sources.

One way to establish context-dependent consistency is to predict what the accurate

appearance of the target entity would look like, through a reference version of the

software. The prediction from the reference software could then be compared with the

125

6. APPEARANCE BASED CLASSIFIERS

Figure 6.1: Appearance based detection scheme - In an appearance based detection
approach, the information about the target anomaly is not inferred from the normal be-
haviour of the rendering system. Rather, it is encoded in the classifier a priori. Because of
this, classification can be carried out in one step, by processing the information extracted
from the game and searching for the patterns peculiar to the anomaly.

actual output produced by the 3D application for bug detection purposes. This solution,

however, would be impractical. On the one hand, the reference software would need

to account for a number of visualizations of the same target effect that are plausible

given the context at hand1. On the other hand, in order for the reference software to

reproduce the effect, it would need to access the game context, that is to say, the set

of variables used by the game to render the scene. Given that virtual environments are

hardly ever designed in such a way as to disclose their internal graphics data, a great

effort would be needed from the developer in order to make the application compliant

to the autonomous testing device. In this chapter, we will show that when searching

for anomalous patterns, it may be easier to infer the inconsistency from the normal

rendering of the entire scene. We will show that this is true for at least one case: a

shadow aliasing artifact. As we will see, the only information required from the game

in order to establish correctness are images containing only shadows. Because the

detection is accomplished by analyzing the appearance of the target entity on screen,

we shall refer to this approach as appearance based detection. The appearance-detection

mechanism, depicted in Figure 6.1, has no learning components; the knowledge about

the anomalous pattern is encoded in the detector, rather than being inferred from the

learned behaviour of the rendering system.

1Visual effects are typically constrained to visual realism requirements of the scene. Accordingly,
shadows can present soft, realistic edges in photo-realistic environments, or they can be rendered as
sharp dark regions, in cartoon-like games.

126

appearance_based_classifiers/figures/ABDetector.eps

6.1 A Shadow Aliasing Detector

Figure 6.2: Common shadow anomalies - The realism of shadow techniques is often
determined by various parameters of the shadowing algorithm. If the parameters are not
properly configured, unintended artifacts may occur, such as projective aliasing (a), shadow
acne (b) and perspective aliasing (c).

6.1 A Shadow Aliasing Detector

Shadowing plays an important role in the realism of the scene, for it helps the viewer to

determine spatial relationships between the geometries of the environment. Shadows

are appealing visual effects that a virtual environment should possess, as shadowing

is likely to promote immersion [66]. Over the years, a number of fast approaches to

generating realistic shadows have been proposed. A good survey of them can be found

in [56] and [125]. However, each one of these techniques has known issues that, if

neglected by the designer, may lead to visually unappealing renderings (Figure 6.2).

As mentioned earlier, shadowing is a context-dependent visual effect. We wish to

show that, although the correct shadowing behaviour may be hard to formalize, simple

127

appearance_based_classifiers/figures/ab_shadow_errors.eps

6. APPEARANCE BASED CLASSIFIERS

and effective formalizations of shadow artifacts are possible. We will see this on a

specific case concerning one popular algorithm known as shadow mapping [124].

Figure 6.3: Illustration of the Shadow Mapping algorithm - For each pixel p seen
by the camera C, its distance d(p) from the light source L is computed. If d(p) is bigger
than the distance s(p) of the pixel p′ closest to the light along the line of sight from the
position of the spotlight to p, then p is considered in shadow. The position of the pixel
p in the shadow map is determined by transforming the coordinates of p to light-space
coordinates. This is achieved through the camera-to-light transformation matrix, derived
from the light and camera position, and direction.

6.1.1 Background: The Shadow Mapping Technique

Shadow Mapping is a commonly used technique for generating realistic shadows in

arbitrarily complex environments. Its efficiency and versatility makes this algorithm

the preferred shadowing mechanism in the film and computer games industry [146].

The approach consists of rendering the scene twice. One time from the viewpoint of

the light and a second time from the camera viewpoint. In the first rendering, the light-

pixel distance (depth) of each pixel visible from the light source is written into the so

called shadow map, a square matrix of predefined size or resolution. The generation of

shadows takes place at the second rendering stage. To that end, the distance light-pixel

of each pixel seen by the camera is compared with the distance written in the shadow

map. If the shadow map value of the pixel is smaller than the distance just measured,

then the pixel is considered in shadow. Indeed, a smaller pixel depth in the shadow

map indicates that the pixel currently observed by the camera is occluded by some

128

appearance_based_classifiers/figures/Shadow_Mapping.eps

6.2 Problem Formulation

surface closer to the light. Because the current pixel is occluded by some other object,

it will need to be darkened by the rendering system. Figure 6.3 illustrates this idea.

Using low resolution shadow maps is a choice motivated by computational con-

straints. Intuitively, the higher the shadow map resolution, the larger the amount of

pixels that will be processed by the shadow map algorithm, the lower the framerate of

the rendering system and the 3D application in general. Over the years, a number of

approaches have been presented in order to reduce shadow map aliasing, via eliminating

the cause of the issue; that is, the distortion of the shadow map texels (texture pix-

els) due to perspective transformations [79]. The approach presented in this chapter,

aims at determining whether and where the aliasing effect becomes visible on screen,

regardless of the strategy used for synthesizing the shadows itself.

This approach, being an image space technique1 has the advantage of efficiency, for

it will not process the geometric information of the environment but only the projec-

tion of the geometries on a 2D support — either the shadow map or the final image.

However, like most image space techniques, the shadow mapping algorithm is prone to

aliasing artifacts [146]. The visual anomaly we are to define and detect in this chapter is

referred to as perspective aliasing. Such an artifact, depicted in Figure 6.2 (c), consists

of blocky shapes that the shadow forms over the geometry to which it is projected. The

phenomenon occurs when a low resolution shadow map is used and it is particularly

visible in those regions where the distance from the camera is far less than the distance

from the light source.

6.2 Problem Formulation

We define a region of the screen to be affected by shadow aliasing if the region has all

of the following properties:

• it is a segment of an edge of a shadow silhouette;

• it forms at least p consecutive corners, displaced at a close distance from one

another;

• it does not contain excessively long straight segments, compared to the size of

the corners.

1Image space techniques refer to those Computer Graphics approaches that aim at processing the
2D information resulting from the projection of 3D objects to screen. By contrast, objects space
techniques base their functionality on the 3D object space information.

129

6. APPEARANCE BASED CLASSIFIERS

These properties should hold true, no matter the size, location or orientation of the

aliasing effect. In other words, we want this description to be independent of affine

transformations.

To build such a region detector, we first note that an aliased shadow silhouette

appears as a sequence of nearby corners of different size and shape (Figure 6.2 (c)).

Thus, one feature our detector should have is the capability of identify corner structures.

In image processing, robust corner detection techniques exists. Most of them are based

on a multi-scale descriptors of image structure, known as a second moment matrix [99].

We can define such a descriptor1 µ : R
2 → SPSD(2) by

µL(q, σI , σD) =

(
µ11 µ12

µ21 µ22

)
= Eq(σI)

(
L2

x(σD) LxLy(σD)

LxLy(σD) L2
y(σD)

)
(6.1)

where Eq(σI) denotes the spatial window (a Gaussian kernel) centered at q = (x, y)T ∈

R
2 and of size σI (the integration scale), used for accumulating statistics of the pointwise

descriptor. The term La is the derivative of the image computed in the a direction.

The matrix, in effect, describes the gradient distribution in a local neighbourhood of a

point. The local derivatives are computed with Gaussian kernels of size σD (the local

scale). The eigenvalues of such a matrix represent the two principal signal changes in

the neighbourhood of a point. Thus, if both curvatures are significant, that is, the

signal change is significant in both orthogonal directions, we have detected a corner.

Figure 6.5 (b) shows an example of regions (gray areas) where both curvatures are

significant.

Identifying corners in the image, however, is not sufficient to determine whether

the anomaly is actually present or not. On the one hand, nearby corners of shadow

silhouettes may belong to different objects. If we did not allow for this possibility,

many false alarms (false positives) could be raised. Moreover, real (or realistic) images

typically contain a large number of corner structures formed by texture gradients, object

contours or by the occlusion of the objects silhouette by other objects. Therefore, if

the region of interest (i.e. shadows) was not enhanced in some way, even a robust

corner detector will fail to find the corners of interest as it will likely be “confused” by

more prominent — though irrelevant — corner structures (Figure 6.4). Enhancing the

regions of interest in the image at hand has a very simple solution in our case. As will be

discussed in the next chapter, it is possible to extract images containing shadows only

from the graphics pipeline. If only shadow information is presented to the algorithm,

1The notation SPSD(2) stands for the cone of Symmetric Positive Semidefinite 2 × 2 matrix.

130

6.2 Problem Formulation

Figure 6.4: Example of corner detection in a synthetic image - The image shows
an example of a virtual environment affected by shadow perspective aliasing. Although
the jagged shape of shadow edges is quite evident to a human observer, the robust corner
detector algorithm (Harris-Laplace) determined that the most significant corner structures
(denoted by red circles) are elsewhere in the image.

then it is more likely that corner aggregates will form in relevant anomalous image

regions.

Another feature our algorithm should posses is the ability to determine whether

two corners belong to the same shadow edge or not. To achieve this, we first need to

determine where the shadow edges are in the image. In our solution, we used the Canny

edge detection algorithm [20] applied to shadow-only images (Figure 6.5 (c)). The term

shadow-only is used here to denote images containing only shadows. Combining the

corner detector with the edge detector, we can identify aliasing artifacts, as we will

explain in the next section.

6.2.1 Implementation

Our solution to shadow aliasing detection contains the following steps:

1. determine regions where corners are densely packed (corner regions), and identify

corner points;

131

appearance_based_classifiers/figures/Harris_Laplace.eps

6. APPEARANCE BASED CLASSIFIERS

Figure 6.5: Potentially anomalous shadow regions - The detection of potential
shadow defects concerns two processes. These are the identification of regions where corners
are most densely packed (b), and the extraction of shadow edges. The extraction of corner
regions and shadow edges helps in reducing the likelihood of missclassifying shadow aliasing
regions.

2. extract the set of shadow edges;

3. remove from the edge set those segments that do lie within the corner regions

(i.e. straight lines);

4. remove from the edge set those segments that do not present at least p corners

(where p is a parameter);

5. report the remaining segments (aliasing regions).

To determine corner regions and corner points we used the Harris response R [53]. This

is an image descriptor which combines the trace and the determinant of the second

moment matrix µ introduced earlier:

R = det(µ)− k trace2(µ) (6.2)

where k > 0 is a tunable sensitivity parameter. Equation 6.2 does not involve computing

the eigenvalues of µ but only its determinant and trace; this makes it computationally

attractive. This cornerness measure R presents hills in correspondence to corners and

valleys in correspondence to edges. Hence, by applying a threshold τ to R we can

generate a binary image of blob-like regions, which we call the corner region image

(Figure 6.6); such blobs originate from the (downwards) projection of R onto the z = τ

plane. Thus, corner regions denotes the neighborhood of a specific Harris corner point.

Since the diameter of the corner regions depends on the size σI of Eq, we can modify

σI so as to make nearby corners aggregate into a single region.

As stated earlier, shadow edges were extracted through the Canny edge detector

algorithm. All Canny segments passing through a corner region are retained as they

132

appearance_based_classifiers/figures/anomalous_regions.eps

6.2 Problem Formulation

Figure 6.6: Shadow map aliasing detection - The first stage of aliasing detection
consists in computing the Harris response from the shadow-only image extracted from the
game. The Harris response peaks in the neighbourhood of corner structures and presents
valleys (of negative value) along edges. Next, a threshold is applied to the Harris response
in order to identify potentially buggy regions (corner regions). Also, the corner points are
determined at this stage, by computing the position of the maxima of the Harris response.
Next, edges are extracted through the Canny edge detector algorithm. Finally, all corner
region are assessed against aliasing. An edge lying within within a region is considered
alias if it bends through at least p corner points (6 in this example).

represent corners. All other Canny segments are discarded, for they are straight lines.

To ensure that the selected segments belong to a line bending through at least p corners,

we simply count the nearby corners of a segment. The minimum size of consecutive

corners can be parameterized through σI : the bigger the filter, the bigger the size of

the minimum jagged pattern that will be recognized as anomalous. In fact, in order to

detect artifacts of different magnitudes and to make the algorithm scale-independent,

the second moment matrix was computed at different scales. Figure 6.6 shows the

process of extracting aliasing segments from an image containing shadows only. Our

shadow aliasing detection solution is listed in Algorithm 6.1.

After defining an appropriate array in integration scales, the RGB input image is con-

verted into a black and white image through the function Rgb2Bw, which performs an

RBG-to-gray scale conversion, followed by an adaptive thresholding. Next, the edges

are extracted from the black and white image through the function Canny, which

performs a Canny edge detection through a Gaussian filter of the same size as the

minimum of the integration scales. The process iterates through the array of integra-

133

appearance_based_classifiers/figures/AB_algorithm.eps

6. APPEARANCE BASED CLASSIFIERS

Algorithm 6.1: Shadow Aliasing Detector

function AliasingDetector(I,τ ,p) returns a binary matrix1

inputs:
matrix I denoting the frame to analyze, of size m× n
real τ denoting the threshold to apply to the Harris response
integer p denoting the min number of corners of a jagged edge

locals :
array iScales of integration scales σI , of size 1× s
binary matrix bwImg, of size m× n
binary matrix cannyImg of Canny edges, of size m× n
reals sigmaD and sigmaI denoting local and integration scales, respectively
real matrix harrisResp of Harris responses, of size m× n
binary matrix harrisCorn of Harris points, of size m× n
binary matrix blobImg of corners neighbourhood, of size m× n
binary matrix aliasImg of detected jagged edges, of size m× n, initially zero

iScales← array of s integration scales, e.g. [1, 2, ..., s]2

bwImg← Rgb2Bw(I)3

cannyImg← Canny(bwImg, Min(iScales))4

foreach i in iScales do5

sigmaD← 2i6

sigmaI← i7

harrisResp← Harris(bwImg,sigmaD,sigmaI)8

harrisCorn← Peaks(harrisResp)9

blobImg← Threshold(harrisResp,τ)10

aliasImg← OR(aliasImg,Filter(cannyImg,blobImg,harrisCorn,p))11

end12

return aliasImg13

tion scales, adding — via the boolean operator OR— the new jagged Canny segments

detected to the final matrix aliasImg. A jagged line is detected by first computing the

Harris response as per Equation 6.2, through the function Harris. As suggested by

Mikolajczyk [99], local and integration scales should be in the relation σD = sσI , where

s is a constant factor, set to 2 in our experiments. The corners are then extracted by

Peaks which returns a binary matrix of 1s at the location of the local maxima or the

Harris response, and 0 elsewhere. To compute the corner points neighbourhood, a pos-

itive threshold τ is applied to the Harris response, through the function Threshold.

After the thresholding operation, the (i, j) element of the matrix blobImg will be 1 if

harrisResp[i, j] > τ ; and 0 otherwise. The higher the threshold, the smaller the corner

regions, as the z = τ plane will intersect the Harris function at its peaks. On the other

hand, a too low threshold may intercept R at its plateau (where the function is equally

zero), in which case, almost the entire image will become a corner region. We found

that τ = 1 produces large enough corner regions, in most cases. Finally, the output

134

6.3 Results

matrix aliasImg is updated by adding, through an OR operator, the Canny segments

that exhibit both the following properties: lie within some corner region (the 1s of the

matrix blobImg) and bend through at least p corner points where p is a parameter, set

to 6 in our experiments. The matrix of such jagged Canny edges is produced by the

function Filter. The non-zero entry of such a matrix denotes the regions of the screen

where the aliasing anomaly is present.

6.3 Results

In order to test our solution, we used a simple environment which implemented the

shadow mapping algorithm. Such a test-bed was one of the samples available from

the Microsoft DirectXr 10 Software Development Toolkit1. In our experiments we

introduced shadow aliasing by decreasing the resolution of the shadow map to 112×112

pixels; this resolution was low enough to produce visible shadow aliasing artifacts. Our

algorithm was applied to the images containing only shadows, rather than the final

frames. These shadow-only images were manually extracted from the graphics pipeline

through the shader debugger2 Microsoft Pixr3. The automatic extraction of shadow-

only images, however, is a process that can be performed automatically, as will be

explained in the next chapter.

The results of our solution can be observed in Figure 6.7. The original output from

the game is shown in column (a); column (b) is the related shadow-only image; and

column (c) represents the output from our classifier. White lines in the output image

denote regions identified as anomalous by our algorithm. Note, that in the shadow-only

frames we included the text from the original frame. We did so, to show the robustness

of the algorithm to irrelevant data (i.e. noise). Row 1 and 3 in the figure, are two

renderings of the same environment from two different camera angles. Here, the scene

is affected by shadow perspective aliasing. Rows 2 and 4 are the bug-free visualizations

of scenarios 1 and 3 respectively. To correct the anomaly, a higher resolution shadow

map (512× 512 pixels) was used.

To test the robustness of the algorithm to affine transformations, we generated

staircase structures of different size, position and orientation. As can be observed from

1http://www.microsoft.com/
2Shader debuggers are tools that emulate the graphics pipeline in order to facilitate the debugging

of graphics applications. Through shader debuggers, the rendering process can be interrupted and the
graphics data extracted for assessment.

3http://msdn.microsoft.com/en-us/library/

135

6. APPEARANCE BASED CLASSIFIERS

Figure 6.7: Shadow Aliasing detection - Rows show a buggy and related bug free
version of the same scene. In particular, the shadow aliasing effect is present in rows 1 and
3, column (a). The shadow-only version of the scene is shown in column (b). Column (c)
shows how blocky shadows are detected (white lines) by the algorithm.

136

appearance_based_classifiers/figures/AB_results.eps

6.3 Results

Figure 6.8: Robustness to affine transformations - The appearance based detector
presented here proves to be robust to affine transformations. The minimum and maximum
aliasing magnitude can be controlled through minimum and maximum integration scales.
Row (a) shows the input to the aliasing detector algorithm. The outputs presented in
rows (b), (c) and (d) have been produced via (minimum, maximum) integration scales of
(3, 4), (1, 7) and (1, 20) respectively. Decreasing the integration scale enables the detection
of smaller magnitude aliasing. Similarly, increasing the maximum integration scale allows
the detection of bigger staircases up to a threshold. Increasing the maximum integration
scale over a value of 7 will not increase the maximum aliasing size that can be detected.
This can be observed by comparing the results of rows (c) and (d), column 1. In row (c)
a maximum integration scale of 7 was used; the output of row (d) was produced by using
a maximum integration scale of 20. Note how the solution (c) allows the detection of an
artifact that is not detected by solution (d). In fact, any maximum integration scale from
8 to 20 produces results (not shown in the picture) similar to the one of row (d). This
suggests that 7 is a good maximum integration scale value.

137

appearance_based_classifiers/figures/robust_results.eps

6. APPEARANCE BASED CLASSIFIERS

Figure 6.8, almost all jagged edges were correctly detected. Note also how straight seg-

ments belonging to the staircase silhouettes are correctly filtered out by the algorithm.

The figure also shows the flexibility offered by the algorithm regarding the minimum

and maximum aliasing magnitude that can be detected. In particular, it can be seen

that decreasing the minimum integration scale allows the detection of smaller aliasing

effects; similarly, a bigger maximum integration scale enables the detection of more

severe issues. We noticed a peculiar behaviour of the detector, however, that is worth

reporting here. There seems to be a threshold on the maximum integration scale, above

which the performance of the algorithm seems not to improve or even deteriorate. The

results (b), (c) and (d) in the first column of Figure 6.8, shows that an increase of the

maximum integration scale allows the detection of bigger aliasing effects (i.e. bigger

staircases), as expected. However, there is a limit on the maximum jag size that can be

detected and thus, on the maximum integration scale that is to be used. Increasing the

maximum integration scale above a threshold (7 in our experiments) will not translate

to detecting more prominent aliasing defects; in fact, it will prevent the algorithm from

detecting as many defects as the solution that sets the maximum integration scale to

the threshold value.

6.4 Summary

In this chapter we have presented an appearance based mechanism to be used for de-

tecting shadow aliasing issues. Shadow aliasing is an example of anomaly affecting a

context-dependent visual effect. Defining the normal behaviour of context-dependent

effects for debugging purposes can be a hard task; indeed, the description of the ex-

pected visualization would imply allowing for the context (i.e. game status) in which

the effect appears. The task would become even harder if we wished to allow for dif-

ferent plausible (i.e. visually appealing) renderings of the same effect within the same

context. We have shown that, if we look at this problem from a different perspective,

fairly simple and effective detectors can be designed. We have shown this in one spe-

cific case, that is, the detection of shadow aliasing artifacts produced by the shadow

mapping algorithm.

The solution we proposed is both simple and robust and is based on a priori knowl-

edge of the anomalous pattern to recognize. Insofar as the shadow mapping algorithm

is concerned, our system could potentially be used as a tool for determining when and

where to increase the resolution of the shadow map. The method is not general, how-

ever, as different context-dependent anomalies are likely to exhibit different patterns.

138

6.4 Summary

Nevertheless, given the simplicity and effectiveness of the algorithm, and given the very

limited amount of data required from the game, the appearance based mechanisms can

prove to be a valid approach. Indeed, it can represent a local alternative to the hard

task of generating a general model of the ideal, bug-free rendering system.

The algorithm presented in this chapter uses some internal information from the

game. This is the shadow-only image, that is, an image containing only shadows. As

we shall see in the next section, such data can be automatically extracted from the

graphics pipeline. Such a process is different from the model based and view based

schemes, as the appearance based approach does not process any geometry information

(i.e. transformation matrices and 3D geometries). Instead, inference is only based

on what appears on screen, versus what it is expected to appear. Hence the term,

appearance based detection.

139

6. APPEARANCE BASED CLASSIFIERS

140

7

Towards the Autonomous

Retrieval of Debugging Data

In the previous chapters we have presented various ways of assessing virtual environ-

ments against visual defects. In all cases, we have implicitly assumed that an interaction

between the testing machine and the environment to test needs to be established. The

testing machine will send stimuli to the environment to test; in return, the environment

will produce outputs that will be analyzed by the testing machine. Regardless of the

type of information transferred between the two mechanisms, it is important that the

system to test receives “reasonable” stimuli and that the data exchange process does

not compromise the functioning of the environment itself. Indeed, as we noted in early

chapters (Chapter 1 and 2), an ideal anomaly detector system is a device that explores

and tests virtual environments in a way that is indistinguishable — for all testing pur-

poses — from the way a human would do. Moreover, the behaviour of the environment

to test should not depend on the existence of a testing device (observer) and on what

the device is doing with the acquired data. If the testing device influences the output of

the system to test, the debugging process becomes a meaningless exercise; the inference

will be made on data that would not be observed under normal circumstances. This

latter observation motivates a key debugging system feature; the automatic testing of

any system should not require extensive modifications to the software and/or hardware

to test. If the testing context is significantly different from the normal scenario, then

one should expect the testing output to be different from the normal play.

This work focuses on visual consistency issues, hence the stream of testing data we

refer to is the graphics information used by the application to render the scene. Either

the model based, the view based or the appearance based detectors presented earlier

141

7. TOWARDS THE AUTONOMOUS RETRIEVAL OF DEBUGGING
DATA

Figure 7.1: Debugging System - Virtual Environment Interaction - Virtual En-
vironments can be assessed against visual inconsistencies using environment-independent
anomaly detectors. To that end, both virtual environment and detector should commu-
nicate through input and output test interfaces. In this way, human-like input can be
generated by the testing device and the output graphics data extracted. The graphics
data can be “hijacked” from the graphics drivers in order to retrieve and modify graphics
calls and data (e.g. meshes and shader code) directed to the GPU. Because inference will
eventually be made on the final images produced by the game, the anomaly detector will
also need to retrieve the output (frame) buffers from the GPU.

process data extracted through appropriate modification to the original source code of

the game engine. In this chapter, we discuss ways of extracting input and output infor-

mation from any virtual environment, without modifying the environment itself. The

general architecture we will refer to is depicted in Figure 7.1. The anomaly detector will

have test interfaces towards the input to, and output from, the 3D application. In par-

ticular, it will need to collect the input data stream from human play sessions in order

to replicate it later on for debugging. In order to limit the interfere to the application

to test, the graphics data will need to be intercepted at the driver level, before being

sent to the GPU. Querying the graphics drivers will enable the application-independent

retrieval of the graphics APIs (Application Programming Interface) currently used by

the application to render the scene, as well as the data that will be processed by the

graphics hardware (GPU); this includes textures, vertex and index buffers, and shader

code. In fact, in order to produce extra test data (such as the matrix maps introduced

142

graphics_data_extraction/figures/Data_Hijaking.eps

7.1 Human-Like Action Acquisition

in Chapter 4) the graphics stream could be “hijacked” to the anomaly detector, modi-

fied and eventually sent to the GPU for processing. Finally, the final output (images)

from the game will need to be extracted from the graphics hardware in such a way as

to make inference about the image that is perceived by the user.

7.1 Human-Like Action Acquisition

The strategy we adopted for traversing the environment is quite simple. In order to

make the game produce data that would be generated by a human play-session, we

recorded the play sessions from human players and store only the information related

to the avatar, that is, the character or object directly controlled by the user. In our

case, the avatar-related information was stored through an action table containing the

world matrices relative to the avatar (car) of the (racing) game we used, along with the

environment position (track number) at which such matrices were sampled. The action

table is a one-dimensional lookup table whose values encode the position-dependent

user actions. In order not to significantly slow down the 3D game, the sampling rate at

which the matrices were sampled was kept low (about one matrix every two seconds).

Both training and testing of the anomaly detectors was performed on data that were

generated via re-playing the user actions through the action table. Whenever the game

called the update function ftr (see Chapter 1), the current track position was computed

and the closest track numbers in the table used to determine the appropriate world

matrix to employ in order to move the avatar (Figure 7.2). This solution produced

consistent avatar dynamics, given the sample frequency we used.

In the vast majority of virtual environments, the path the camera follows is highly

influenced by where the avatar is and what it is doing. By stimulating the game with

the avatar’s actions collected from a human-play session, we ensured that the camera

always followed human-like paths.

In order to re-play the avatar action sequence, the experimental game engine was

modified and the avatar-related transformation matrices extracted. However, this type

of data can be automatically acquired via querying the graphics drivers. In modern

computer games, the geometry of virtual objects is transformed by vertex shaders (see

Chapter 4 for more details). To that end, vertices and related transformation matrices

are passed to the shader processors through graphics calls, as shown in Algorithm 7.1

(line 3 and 4). If the vertex structure (mesh) can be identified in the code, then the

related matrix can be read from the drivers, at the memory location indicated by the

argument of the related graphics call.

143

7. TOWARDS THE AUTONOMOUS RETRIEVAL OF DEBUGGING
DATA

Figure 7.2: Avatar Action Acquisition - In this work, the action sequence performed
by the human player is represented through the transformation matrices applied by the
game to the avatar (car). In our experiments, the world matrix (i.e. the matrix trans-
forming the avatar geometry and pose from local space to world space) was used. Since
the world matrix is generated by the game upon user commands (actions), such a matrix
encodes the activity of the human player. World matrices where recorded during a normal
play session and linked to track numbers via a lookup table. The track numbers identified
the position of the avatar in the world. Adjacent values in the table were linearly inter-
polated. In this diagram, only the first 12 values (M11,MM12

, . . . ,M33,M34) of the world
matrix are represented. This mechanism enables a mapping from environment position
to avatar pose. In particular, human-like action sequences can be reproduced by simply
querying the table at the appropriate environment position. In this work, the re-played
actions were used for training and testing the classifiers.

This mechanism of action re-play through a transformation matrix representation has

proven useful for the research work presented here. If, however, we wish to endow the

testing agent with autonomous navigation capabilities and introduce plausible variety in

the action sequences, more complex mechanisms are needed. An autonomous artificial

agent should be capable of acquiring navigation and interaction skills by observing the

human play1. Research in this direction has been carried out in recent years. As an

example, we cite the work conducted by Thurau [136], who showed how the human-

play related network traffic can be used to build artificial agents that learn how to

play (first person shooter) games by observing human-play sessions. This approach

assumed that the status of the virtual characters (e.g. position, direction, velocity and

action performed) is available at any time. Disclosing information of this kind is, in

fact, a design requirement for most computer games that feature multiplay experiences.

Clearly, the more data is available from the game about the environment, the easier

becomes the building of sophisticated models of human behaviour.

1Training is required if limited or no prior knowledge of the environment is available.

144

graphics_data_extraction/figures/action_replay.eps

7.2 Graphics Data Extraction and Modification

7.2 Graphics Data Extraction and Modification

Although, games do not typically produce the extra data we used for training and

testing the classifiers1, graphics data can still be automatically extracted from the ren-

dering system and modified in real-time. This can be achieved by intercepting the data

stream from the application at the drivers level, applying the intended modifications,

then sending the data back to the GPU for ordinary rendering (Figure 7.1). Access

to the graphic data mainly depends on the Application Programming Interface (API)

used by the virtual environment to control the graphic hardware. The most popu-

lar interfaces used by modern graphics applications (including computer games) are

OpenGLr2 and Microsoft DirectXr3.

In OpenGL based applications, the data can be re-directed by replacing the OpenGL

driver with one that can hook the 3D calls via a locally installed Dynamic Link Library

(DLL) [101]. Since the linking of the library happens dynamically, when a shared li-

brary is replaced, the next invocation of a program that uses the library will operate

with the updated version. This mechanism allows the modification of the rendering be-

haviour of the application without altering the application itself. The command stream

intercepted through low-level graphics APIs, represents a programmatic representation

of the geometries of the scene: it provides a sequence of commands that, when executed

in order, draw a picture of the geometry.

Extracting data for DirectX drivers is generally more complicated than in OpenGL.

DirectX is based on the Component Object Model (COM), which define classes inher-

iting from the DirectX interfaces. When a 3D application invokes the DirectX library

to create an instance of interface, the “hijacking” library should intercept the graph-

ics calls and invoke the related functions in the original DirectX library to create an

original instance of interface. Pan et al. [108] followed this approach for intercept-

ing DirectX calls. The authors designed the library in such a way as to define image

classes according to the DirectX interfaces. After intercepting the graphics commands,

the library could invoke the appropriate function of the DirectX library on behalf of

the game application in such a way as to control, modify and maintain the interface

instance. Mechanisms similar to the ones used for OpenGL, however, may also be used

for intercepting and modifying the DirectX data stream, through proxy DLLs [71]. To

1For the model based and view based approaches the extra graphics data used were the matrix
maps. By contrast, the appearance based classifier processed images containing only shadows.

2http://www.opengl.org/
3http://www.microsoft.com/games/en-au/aboutgfw/pages/directx.aspx (June 2011)

145

7. TOWARDS THE AUTONOMOUS RETRIEVAL OF DEBUGGING
DATA

that end, the proxy DLL should be loaded by the game on its start-up; such a library

would then pass the (modified) 3D commands to the original DirectX library.

Tools based on this data re-direction principles are available for both DirectX and

OpenGL. Such tools are known as shader debuggers, for they enable the developer to

debug the programmable part (shaders) of the graphics pipeline. DirectX data can

be intercepted through Microsoft PIXr, bundled with the Microsoft DirectX Software

Development Kit (SDK)1; and 3D Ripper DXr2. The OpenGL drivers can be hooked

through GLInterceptr3, an open source application. Since our test bench environments

used DirectX, we will focus on automatic graphics data interception through Microsoft

PIX.

7.2.1 Intercepting Training and Testing Data

As mentioned earlier, a shader debugger hooks the graphics data stream sent by the

application to the GPU to enable its analysis. To that end, the pipeline is emulated

(typically via software) and the data flow interrupted on a frame-by-frame basis. Ex-

amples of data that can be captured are sequences of draw calls and registers used

during the rendering process. These latter include frame buffers, depth buffers, tex-

ture buffers, vertex buffers and vertex and pixel shaders (Figure 7.3). These computer

graphics concepts are explained in Chapter 2 and 4.

The purpose of redirecting such data to our testing system is not to change the

final output of the game. Rather, we want to extend the original code of the virtual

environment with new testing code in order to force the GPU to render the testing

data needed for training and testing the detectors. In accordance with the previous

chapters, we seek to generate matrix maps, retrieve world-view-projection matrices and

synthesize images containing only shadows (see Chapters 4, 5 and 6).

A common sequence of DirectX rendering instructions that can be captured from the

3D API is shown in Algorithm 7.1. As can be observed, through the name of the calls

it is easy to retrieve the information we need. In particular, the shader code in use can

be identified through the function SetTechnique (line 2). The geometry to render

can be detected via the function SetVertexDeclaration, by using the pointer to

the vertices composing the object (line 3). The vertex structure (i.e. position, normal

and tangent vectors) can be used to identify the target object without requiring the

1http://msdn.microsoft.com/en-us/directx/aa937788 (June 2011)
2http://www.deep-shadows.com/hax/3DRipperDX.htm
3http://glintercept.nutty.org/

146

7.2 Graphics Data Extraction and Modification

Figure 7.3: Graphics data interception through Microsoft Pixr - Microsoft Pix
is a shader debugger used for inspecting 3D application performances. Through a shader
debugger, a large amount of data can be accessed in real-time. This include GPU instruc-
tion sequences, vertex and index buffers, shader codes, textures and pixel history (i.e. the
history of processes through which pixels reach their final colors).

147

graphics_data_extraction/figures/Microsoft_PIX.eps

7. TOWARDS THE AUTONOMOUS RETRIEVAL OF DEBUGGING
DATA

Algorithm 7.1: Common Rendering Instruction Sequence

SetRenderTarget(target index, ordinary render target pointer)1

SetTechnique(ordinary technique handle)2

SetVertexDeclaration(vertex structure pointer)3

SetMatrix(matrix name handle, matrix handle)4

Begin(passes pointer, flag)5

BeginPass(0)6

shader variables set up7

CommitChanges()8

DrawSubset(mesh index)9

...10

game to label it. Recall from Chapter 4 and 5 that object identification is needed

in order to generate the matrix list, which links world-view-projection matrices and

objects together. Finally, the world-view-projection matrix can be retrieved through

the function SetMatrix and the name of the variable that it uses (line 4).

Once the interesting section of the graphics code has been identified, we will need to

insert some additional instructions in order to generate the matrix maps. As explained

in Chapter 4, different colors in the map will identify different matrices. Therefore,

once a matrix has been extracted from the graphics code, it will need to be compared

with the matrices that have been so far observed. This can be achieved via building

hash tables of matrices and colors. If a matrix is novel, a new color will be generated

and both matrix and color will be inserted in the table. If the input matrix is already

in the table, then the related color will be read out and used to generate the matrix

map. Finally, if all objects have been analyzed, the GPU will be instructed to render

the map to a different target, rather than the ordinary frame buffer. This will prevent

the matrix maps being overwritten by the frame buffer data. Algorithm 7.2 shows how

this can be done.

Note that the entire set of calls used for rendering a single mesh is duplicated. The

first line of the new set of calls (lines 1 to 9) sets the testing technique (see Algorithm

4.1) as the current shader effect to use. This technique is the one we used for drawing

the matrix maps (Algorithm 4.1). Vertex structures and world-view-transformation

matrices remain the same as the ones used in original code. Before rendering the

matrix maps, a new variable needs to be set in the testing shader. This is the color

of the current matrix (line 7), which is retrieved from the matrix table, as explained

in Chapter 4. Finally, note how the matrix is rendered to a test render target (line 1)

rather than the ordinary frame buffer (line 11). Linking matrix maps to the related

148

7.2 Graphics Data Extraction and Modification

Algorithm 7.2: Adapted Rendering Instruction Sequence

SetRenderTarget(target index, test render target pointer)1

SetTechnique(testing technique handle)2

SetVertexDeclaration(vertex structure pointer)3

SetMatrix(matrix name handle, matrix handle)4

Begin(passes pointer, flag)5

BeginPass(0)6

matrix color set up7

CommitChanges()8

DrawSubset(mesh index)9

...10

SetRenderTarget(target index, ordinary render target pointer)11

SetTechnique(ordinary technique handle)12

SetVertexDeclaration(vertex structure pointer)13

SetMatrix(matrix name handle, matrix handle)14

Begin(passes pointer, flag)15

BeginPass(0)16

shader variables set up17

CommitChanges()18

DrawSubset(mesh index)19

...20

world-view-projection matrix is an operation that does not need to be carried out by

the graphics code. Rather, it will be performed by the detectors, as we explained in

early chapters.

To complete the picture we will now show how to automate the appearance based

mechanism for shadow aliasing detection. More precisely, we will elaborate on the

way shadow images can be automatically extracted or synthesized through appropriate

modifications to the graphics command stream. There are, principally, two ways in

which rendering engines can add shadows to the final image. One approach uses a two-

step process; first, a shadow gray-scale image in rendered in which the intensity of each

pixel is proportional to the darkness of the shadow at that position; next, the pixel of

the non-shadowed colored frame are darkened according to the shadow image. In the

second approach, shadowing and coloring are performed in one step, after determining

the amount of darkness the pixel is expected to exhibit. We will discuss both solutions

in the following.

If the shadow image is generated by the game directly, all we need to do is intercept

the data stream to retrieve that data. This is done by following the approach used for

generating the matrix maps. In this case, the challenge is to identify the shadow image

texture among the other textures used by the game. To that end, we note that the

149

7. TOWARDS THE AUTONOMOUS RETRIEVAL OF DEBUGGING
DATA

shadow image texture presents distinctive features. On the one hand, such an image

is typically rendered as a low resolution texture (typically 8 bits), of the same size as

the frame buffer and it is composed by only one mipmap level (Figure 7.4). Also, the

texture set up operation takes place in proximity of alpha blending and depth buffer

operations. In order to facilitate the identification of shadow maps in the graphics code,

the original shader code could as well be augmented with special tags or descriptors

that will inform the detector about the type of resource analyzed.

Once the shadow texture is identified, it can be analyzed with the technique intro-

duced in the previous chapter.

Figure 7.4: Example of Shadow Texture Extraction - Shadows in virtual environ-
ments are often cast through shadow textures (b). These are images produces during the
rendering process that will eventually be blended with the final frame (a). Like any other
graphics data, shadow textures can be extracted through graphics data interception, and
identified through distinctive graphics properties, such as resolution, number of mipmap
levels and usage (top image).

If the shadow image cannot be extracted from the pipeline, a slight modification to the

shader code needs to be introduced, as shown in Algorithm 7.3.

The highlighted code (line 13 to 21) shows the instructions that need to be added to

the original rendering code in order to generate an image with no shadows in it. As it

can be observed, the shadow map texture (addressed by shadow map name handle)

150

graphics_data_extraction/figures/Microsoft_PIX_XNA.eps

7.3 Summary

Algorithm 7.3: Adapted Shadow Mapping Instruction Sequence

SetRenderTarget(target index, ordinary render target pointer)1

SetTechnique(testing technique handle)2

SetVertexDeclaration(vertex structure pointer)3

SetMatrix(matrix name handle, matrix handle)4

Begin(passes pointer, flag)5

BeginPass(0)6

shader variables set up7

SetTexture(shadow map name handle, texture handle)8

CommitChanges()9

DrawSubset(mesh index)10

...11

SetRenderTarget(target index, test render target pointer)12

SetTechnique(testing technique handle)13

SetVertexDeclaration(vertex structure pointer)14

SetMatrix(matrix name handle, matrix handle)15

Begin(passes pointer, flag)16

BeginPass(0)17

shader variables set up18

SetTexture(shadow map name handle, texture handle)19

CommitChanges()20

DrawSubset(mesh index)21

...22

will need to be computed through a modified version of the shadow map algorithm

(line 13) and rendered to a texture (line 12), rather than to screen (line 1). The rest

of the testing code is a copy of the standard code. The “test version” of the shadow

map algorithm consists in generating a flat shadow map whose value is equal to the

maximum depth a pixel can have (i.e. 1). In this way, all pixels seen by the camera will

have a related equal or smaller distance from the light source, and hence they will not

be considered in shadow by the shadow map algorithm. Having the ordinary shaded

image, and a new image containing no shadows, enables the rendering of a frame with

shadows only. This is done by performing a pixel-wise XNOR operation between the

shaded image and the image with no shadows. The result of the XNOR operation is

depicted in Figure 7.5.

7.3 Summary

In this chapter we have shown how training and testing data can be automatically ex-

tracted from virtual environments. Human-like stimuli can be generated by monitoring

the dynamics of the avatar in the virtual world. The simplest way to achieve this is via

151

7. TOWARDS THE AUTONOMOUS RETRIEVAL OF DEBUGGING
DATA

Figure 7.5: Extraction of shadows from an image - A XNOR operation performed
between the original image (a) and a non-shadowed version of it (b) produces a B&W
image containing only shadows (c).

linking the world matrix of an avatar to reference points of the world, through a lookup

table. However, more sophisticated mechanisms can be devised as additional envi-

ronment information becomes available, perhaps through standard software interfaces.

The graphics data needed for training and testing the classifiers can be automatically

extracted from the rendering system. We have discussed how this can be done via

intercepting the data stream at the driver level. To that end, the target graphics in-

struction sequences need first to be identified. Then, additional testing code can be

inserted into the stream. Finally, the modified GPU code can be sent to the graphics

hardware, which will produce the ordinary output as well as the required testing data.

This chapter shows a theoretical analysis of the feasibility of such an approach, its

implementation is left to future work. In particular, further research can be oriented to

explore ways of identifying the sections of the graphics stream that need to be modified,

given the testing activity to perform. One way to achieve this, is to augment games

software with appropriate metadata. Similar research has been conducted for compiling

natural semantics into highly efficient code [111] and for semantic error classification

in large software systems [37].

152

graphics_data_extraction/figures/xnor-shadowMap.eps

8

Discussion and Conclusion

With this research work we set out to quantify and characterize unwanted visual arti-

facts that may emerge during player-virtual environment interaction. We commenced

by providing a formalization of our research problem and framed our research within

the context of detection of inconsistent outputs generated by the rendering function of

a 3D application. An investigation into the typology of visual artifacts that may ap-

pear during a play-session enabled us to classify all virtual environment bugs into three

major categories, viz., Entertainment Issues, Usability Issues and Environment Incon-

sistencies (Chapter 2). Entertainment Issues concern bugs in the game AI, mechanics,

play and balance. Game usability issues arise when the game becomes unplayable,

hard to play or prevents the game mechanics unfolding normally. Finally, environment

inconsistencies relate to the environment consistency, which is the ability of the envi-

ronment to maintain the level of realism meant to be offered. This study focused on the

detection of a sub-set of environment inconsistencies, these are: geometry corruption,

color and shadowing malfunctions. Although environment inconsistencies are issues

related to computer graphics technology, their formalization and automatic detection

required us to explore findings from disciplines such as machine learning and computer

vision. This is not surprising as the aim of building visual consistency detectors is, in

effect, seeking to imitate some human visual anomaly detection capabilities. In this

chapter, we summarize our findings through the research questions we posed in Chapter

1, that we are now ready to answer:

153

8. DISCUSSION AND CONCLUSION

Can visual anomalies in virtual environments be defined in an environment-

independent manner?

We have shown that some geometry and color issues can be effectively defined and

detected in an environment-independent manner (Chapters 4 and 5). Although both

anomalous and correct visualizations may vary a great deal throughout a play-session,

we have shown how the canonical object space representation can be used to model the

correct behaviour of the rendering system. We have also shown how good models of

rendering behaviour can effectively execute the anomaly detection task.

We noted that not all visual inconsistencies are environment-independent, however.

Global illumination malfunctions are examples of environment-dependent issues. In

such cases, the normal behaviour of the rendering system can only be defined in a

context-dependent fashion, that is to say, via accessing some contextual information,

internal to the game. Accessing large amounts of internal graphics data has two sig-

nificant disadvantages: it may interfere with the normal behaviour of the system to

test; and it may require the extraordinary effort of designing testing interfaces, from

the game designer. A way to overcome this difficulty is to endow the detectors with a

priori knowledge of the anomalous artifact. The detectors should be designed in such a

way as to look for physical properties peculiar to the anomaly, in the frame at hand. In

Chapter 6, we have shown how this can be achieved for one specific anomaly affecting a

shadowing algorithm, via an appearance based scheme. Performing appearance based

detection may provide simple, effective and robust alternatives to building reference

software for debugging purposes.

What mechanisms and descriptors are good to effectively discern be-

tween anomalous and valid visualizations?

Both model based and view based approaches turned out to be good approaches for

detecting context-independent bugs. From our experiments, the model based technique

proved to be more suitable for detecting geometry issues. By contrast, the view based

classifiers were able to learn complex color changes.

For the model based classifier (Chapter 4), the Hausdorff metric proved to be a

very good measure of geometric consistency. As far as colors are concerned, we have

observed that the Bhattacharyya distance performed best in almost all test cases. The

performance of the view based classifiers is largely decided by the descriptors (feature

vectors) used. In general, the goodness of a descriptor depends on the type of anomaly

to detect, the color and geometric complexity of the target object geometry and the

154

model used for capturing the target behaviour of the rendering mechanism. Good

geometry features are the area and eccentricity of the 2D object silhouette. The mean

distance between camera and object was found to be a sub-optimal feature choice, with

regards to mesh corruption bugs. The goodness of color features for the model based

approach is decided by the type of environment considered. Cartoon-like environments

seem to be best described by Hue histograms only. As the level of realism increases,

including Saturation and Value components into the color descriptors seems to improve

the performance of the detectors. Both ANN and SOM model based mechanisms proved

to be good at discriminating between correct and anomalous geometry issues. The ANN

detectors, however, seemed to be unsuitable for modelling color changes. Depending on

the type (ANN versus SOM) and complexity (number of neurons) of the network used,

we found that the accuracy may be further improved by selecting an appropriate cluster

radius1. We noticed that the size of the cluster radius may influence both geometry

and color detection.

We have not introduced general approaches to the detection of context-dependent

anomalies. However, we note that some global effect issues can be addressed through

the view based scheme. We have shown evidence of this for specular illumination

artifacts (Chapter 5, Section 5.4.4); we postulate that similar results can be obtained

for simple reflection effects (e.g. environment mapping). For more complex global

effects, we argued that the appearance based scheme should be considered instead.

Will such descriptors have an object space or an image space repre-

sentation?

If we follow the appearance based scheme, anomalies are inherently represented in image

space. If we consider the shadow aliasing example (Chapter 6), we find that the anomaly

(i.e. jagged shadow edges) is described through the second moment matrix, which

is defined in image space. By contrast, the view based schemes handles descriptors

lying on “hybrid” manifolds. For example, the ANN view based approach, accepts

the world-view-projection matrix (the object-to-screen space transformation matrix)

as an input and predicts geometry or colors on screen. The SOM detectors concatenate

the transformation matrices with 2D shape and color information. Finally, in the

model based scheme (Chapter 4) both geometries and colors are defined and measured

in object space. In general, the space in which events (consistent or otherwise) are

1We referred to the cluster radius as the size of the sub-parts into which the original geometry will
be segmented, prior to training and testing

155

8. DISCUSSION AND CONCLUSION

described depends on the type of anomaly to detect.

How much can we treat the engine as a black box in the process of

finding visual errors?

Under the black-box assumption, any anomaly detection mechanisms should make in-

ference upon only the input to, and output from, the virtual environment to test.

Building an ideal inference machine which works under the black-box assumption equals

imitating human bug-detection capabilities. In practice, robust solutions based on the

available technology will necessarily need to rely on some internal graphics data from

the game. In such cases, it is important that the exchange of extra information be-

tween virtual environment, and system to test, does not undermine the functioning of

the environment itself. In Chapter 7 we have suggested ways in which the testing data

can be extracted from the game in an application-independent manner, with minimal

interference to the virtual environment software.

8.1 Limitations

The approaches introduced in this work assess appearance on the basis of the informa-

tion concerning the target object only, while ignoring the rest of the scene. We have

shown that contextual information is not needed if context-independent anomalies are

to be detected. In fact, even some environment interference — such as occlusions, clut-

ter and simple global illumination effects — can be handled effectively through object

segmentation and a view based scheme, as we have shown in Chapter 4 and 5.

In this work we have not provided a general solution to the automatic detection of

context-dependent visual artifacts, such as collision detection issues, realistic reflection,

radiosity and refraction effects — amongst others. Also, the consistency we have defined

is assessed at the “local” scale, that is, at the level of individual objects or object

components rather than the visual relationship between them. It is important to point

out that even though, at a low level, the information from all parts of an object may

appear consistent with the user expectation, at a higher level, the parts may appear

in an odd mutual relationship. As an example, imagine a car whose wheels, glasses

and body are properly visualized but in the wrong position or size. Finally, note that

even if an object in its wholeness may appear consistent, its relation with the rest of

the scene may not be in such a state. Similar considerations apply to the consistent

appearance of an object, in its wholeness, with respect to the rest of the scene.

156

8.2 Computational Complexity of the Detectors

The assumption under which our geometry and color anomaly detectors operate is

that the target geometry is non-deformable. All vertices, and thus pixels, of the target

object are rendered through the same world-view-projection matrix, for a given frame.

8.2 Computational Complexity of the Detectors

An analysis of the asymptotic complexity of our algorithms was not performed. Training

and testing time of model based and view based approaches mostly depends on the size

(screen area in pixels) of the objects or events to analyze; and on the complexity of the

models used, that is, cluster radii for the colored point clouds and number of hidden or

output neurons for the ANNs and SOMs respectively. The efficiency of the appearance

based classifier depends on the array of integration scales used and the resolution (in

pixels) of the frames to test.

All algorithms presented in this work have been implemented in Matlabr and tested

on a Pentium 4, 3.00GHz, 3GB of RAM. Being an interpreted language, Matlab exhibits

execution times that are often smaller, compared to other compiled languages. On

an average, the best performing model based and view based classifiers performed

detection at the rate of 5 seconds per frame, for 640× 480 images. The data collection

and training time was of about 20 minutes per object, across a collection of about

200 training images. Data collection consisted of retrieving the data (pixels position

and color) of the objects of interest for each validated frame; training consisted of

building the colored point cloud or training the neural networks. As far as concerns

the appearance based detector, no training was required and a single 640× 480 image

was processed in about 30 seconds.

8.3 Future Research

The results of this study open up a number of avenues for future research. As far as

the view based detectors are concerned, it would be interesting to see how performance

varies when using other geometry descriptors that have not been considered in this

work. Such alternative descriptors could for example be the affine invariant Fourier

descriptor (AIFD), the CSS descriptor or the generalized Hough transform descriptor

(GHTD). In Chapter 5, we postulated that these descriptors were less suitable to serve

our purposes; mainly due to their boundary based nature (i.e. they only rely on the

information about the contour of the object). Such an hypothesis could be easily tested

by re-training and testing the view based classifiers with the aforementioned descriptors.

157

8. DISCUSSION AND CONCLUSION

Further research could be undertaken to explore mechanisms of automatic data extrac-

tion from the applications to test. Although the data used by our algorithms does not

require extensive software modifications, we did customize the original applications in

order to generate the training and testing data. In Chapter 7 we have discussed possible

solutions to the automatic extraction of testing data. Implementing those ideas will

help in reducing the influence from the testing device to the 3D application to test.

Fast implementations of our detectors could also be the subject of future research.

Our techniques, in their current implementation, do not allow real time debugging, as

the testing time is in the order of dozens of seconds, let alone the training time, which

is in the order of minutes. To significantly speed up both training and recognition,

all per-pixel-wise operations (e.g. the inverse-transformation of coordinates and colors

from screen to object space) and patch-wise filtering (e.g. convolution) could be run

by graphics software and hardware, exploiting the high parallelism of modern GPUs.

All geometry and color anomaly detectors, in their current state, require the target

meshes to be non-deformable. Deformable meshes are those whose final shape on screen

is decided by multiple transformation matrices, typically, one matrix per vertex, as

opposed to one matrix per mesh in the case of non-deformable meshes. Further research

can be conducted in order to relax this assumption. Recall from Chapters 4 and 5 that

the transformation matrices where stored through matrix maps and tables, in order

to determine where the objects where on screen and to learn the object appearance.

Because a deformable mesh undergoes vertex-wise geometric operations, allowing for

deformable meshes will probably require the matrix maps and tables to identify vertex

regions, rather than object parts. Object segmentation (i.e. labelling which pixel

belongs to which object) can therefore be accomplished by metric space decomposition

(e.g. Voronoi partitioning [10]) given the vertex position on screen.

Our algorithm can deal with a large family of context-independent anomalies. In

order to provide general solutions to the detection of context-dependent bugs, one could

explore ways in which the surrounding environment can be described. We believe that

useful descriptions of context-dependent appearances will need to rely on some a priori

information about the environment. Clearly, the less data required from the game, the

more feasible and appealing the solution. As for this research, the challenge will lie in

discovering one fits all feature spaces and models, that is, descriptors and detectors

that can be plugged into any virtual environment in order to uncover a comprehensive

enough family of bugs — context-dependent or otherwise.

From a psychophysics standpoint, it would be interesting to determine to which

extent the approaches proposed in this research perform better than human players.

158

8.4 Summary

In order to enable this comparison, the testing system would first need to be extended

so as to avoid reporting the same bug multiple times. As an example, consider the

case in which the geometry of the avatar controlled by the player, becomes corrupted

over a set of frames. A human player will have no difficulty determining that the

bug is the same, for the anomaly is consistent across different images and it concerns

the same object or object part. Thus, she will report the anomaly only once. By

contrast, our algorithms perform detection on a frame-to-frame basis, considering the

same object, over different frames, as different entities. By giving the anomalies an

object or context-dependent signature, the system can be enabled to produce human-

like reports, and thus, the performance human versus machine can be measured. Along

this line, computational models of the visual human system could also be explored in

order to model errors from a perceptual point of view. Perceptual error metrics have

been successfully applied in computer graphics to accelerate rendering [152]. Research

in this direction could allow determining what types of visual anomalies are likely to

be detected by a human observer.

Finally, the list of detectable bugs could be extended so as to include other en-

vironment malfunctions whereby the interaction between virtual objects is affected.

Examples are inconsistent or meaningless actions performed by non-playing characters

and unrealistic physics behaviours. These types of malfunctions are context-dependent,

for the meaning of the interaction depends on the context in which the interaction un-

folds. We suggest that this type of environment consistency can be assessed through

techniques similar to the ones proposed in this research. A likely solution may come by

using the same transformation matrices used by the anomaly detectors we have pro-

posed. Differently from our consistency detectors, however, we suggest that in order to

debug a virtual interaction, one should only look at the time trajectories of the internal

game data (i.e. the geometric transformation matrices), and neglect the way such data

is rendered to screen.

8.4 Summary

The results of this thesis provide supporting evidence for our hypothesis that visual

consistency can be quantitatively defined and automatically measured in virtual en-

vironments, for a large family of visual inconsistencies. We have provided general

measures of consistency based on different representations of the target object and/or

anomaly. Our major findings suggest that the object space information from the game

can be effectively combined with the screen space description of the virtual object. In

159

8. DISCUSSION AND CONCLUSION

particular, the 3D object space representation of objects can be reconstructed from the

frames produced by the game in order to effectively access geometry. Also, we found

that the transformation matrices can be used to learn the color changes that objects

undergo during a play session. Feature vectors combining transformation matrices and

color or geometry descriptors form hyperdimensional manifolds of consistent visualiza-

tions. Learning the topology of such manifolds (e.g. through Self Organizing Maps)

enables the effective detection of anomalous or inconsistent appearances.

Fast and accurate anomaly detectors will ease the burden of beta testers and devel-

opers of 3D applications. On the one hand, the testing system can be designed in such

a way as to report the anomalies to the designer, as a beta tester would normally do.

On the other hand, statistical analyses can be performed on the large amounts of data

produced by the detectors in order to assist the identification of the root cause of the

artifacts. Pattern recognition techniques applied to the test data may, for example, re-

veal that some geometries are affected by mesh corruption, with statistically significant

higher-than-average frequency. Other results may show that texture issues affect some

environment regions or geometries more frequently than others. As one can imagine,

the test results can be analyzed in a number of different ways. As is always the case,

the type of analysis performed depends on the phenomenon that one seeks to observe.

160

References

[1] Fuga - the fun of gaming: Measuring the human experience of media enjoyment.

http://project.hkkk.fi/fuga/, June 2011. 4

[2] E. Alhoniemi, J. Hollmn, O. Simula, and J. Vesanto. Process monitoring and

modeling using the self-organizing map. Integrated Computer Aided Engineering,

6:3–14, 1999. 101

[3] S. Ando. Clustering needles in a haystack: An information theoretic analysis

of minority and outlier detection. In IEEE International Conference on Data

Mining, pages 13–22, 2007. 43

[4] M.V. Aponte, G. Levieux, and S. Natkin. Scaling the level of difficulty in single

player video games. In Proceedings of the 8th International Conference on Enter-

tainment Computing, ICEC ’09, pages 24–35, Berlin, Heidelberg, 2009. Springer-

Verlag. 13

[5] ESA Entrtainment Software Association. Industry facts. World Wide Web elec-

tronic publication (http://www.theesa.com/), 2009. 1

[6] F. Bacao, O Bação, V. Lobo, and M. Painho. Self-organizing maps as substitutes

for k-means clustering. In International Conference on Computational Science,

pages 476–483. Springer-Verlag, 2005. 103

[7] B. Balamuralithara and P. C. Woods. Virtual laboratories in engineering educa-

tion: The simulation lab and remote lab. Computer Applications in Engineering

Education, 17(1):108–118, 2009. 2

[8] D. H. Ballard. Generalizing the hough transform to detect arbitrary shapes.

Pattern Recognition, 13(2):111–122, 1981. 92

[9] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust

features. In In ECCV, pages 404–417, 2006. 46

161

http://project.hkkk.fi/fuga/

REFERENCES

[10] M. Berg. Computational geometry: algorithms and applications. Springer, Berlin,

2nd edition, 2000. 158

[11] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,

USA, 1996. 37, 99

[12] J. F. Blinn. Simulation of wrinkled surfaces. SIGGRAPH Comput. Graph.,

12:286–292, August 1978. 16, 20

[13] R. Bogacz, M. W. Brown, and C. Giraud-Carrier. High capacity neural networks

for familiarity discrimination. In In Proceedings of ICANN99, pages 773–778,

1999. 37, 38

[14] M. Botsch and L. Kobbelt. High-quality point-based rendering on modern gpus.

In PG ’03: Proceedings of the 11th Pacific Conference on Computer Graphics and

Applications, page 335, Washington, DC, USA, 2003. IEEE Computer Society.

18

[15] H. A. Bourlard and N. Morgan. Connectionist Speech Recognition: A Hybrid

Approach. Kluwer Academic Publishers, Norwell, MA, USA, 1993. 98

[16] E. Boylan. Equiconvergence of martingales. Ann. Math. Statist., 42:552–559,

1971. 58

[17] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression

Trees. Wadsworth and Brooks, Monterey, CA, 1984. 76, 79

[18] C. Browne. Automatic generation and evaluation of recombination games.

eprints.qut.edu.au, 2010. 6

[19] C. Campbell and K. P. Bennett. A linear programming approach to novelty

detection. In NIPS, pages 395–401, 2000. 39

[20] J. F. Canny. A computational approach to edge detection, pages 184–203. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1987. 131

[21] E. E. Catmull. A Subdivision Algorithm for Computer Display of Curved Surfaces.

PhD thesis, Department of Compuer Science, University of Utah, 1974. 15

[22] F. Chaker, M. T. Bannour, and F. Ghorbel. Contour retrieval and matching by

affine invariant fourier descriptors. In MVA’07, pages 291–294, 2007. 92

162

REFERENCES

[23] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM

Computing Surveys, 41(3):1–58, 2009. 33, 34, 35, 41, 42, 43, 90

[24] Varum Chandola. Anomaly Detection for Symbolic Sequences and Time Series

Data. PhD thesis, University of Minnesota, 2009. 34

[25] C. Chen, Y. Hung, and J. Cheng. Ransac-based darces: A new approach to fast

automatic registration of partially overlapping range images. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 21:1229–1234, 1999. 44

[26] F. S. Cohen and J. Wang. Part ii: 3-d object recognition and shape estima-

tion from image contours using b-splines, shape invariant matching, and neu-

ral network. IEEE Transactions in Pattern Analysis and Machine Intelligence,

16(1):13–23, 1994. 44

[27] E. Corchado and Á. Herrero. Neural visualization of network traffic data for

intrusion detection. Appl. Soft Comput., 11:2042–2056, March 2011. 33

[28] B.C. Csaji. Approximation with Artifcial Neural Networks. PhD thesis, Eotvos

Lorand University, 2001. 99

[29] K. Das and J. G. Schneider. Detecting anomalous records in categorical datasets.

In Knowledge Discovery and Data Mining, pages 220–229. ACM Press, 2007. 36

[30] M. David and E. Touradj. Efficient rotation-discriminative template matching.

In Iberoamerican Congress on Pattern Recognition (CIARP), Lecture Notes in

Computer Science (LNCS), pages 221–230, Valparaiso, Chile, 2007. Springer-

Verlag. 62

[31] H. Demuth and M. Beale. Neural Network Toolbox: For use with MATLAB:

User’s Guide. The Mathworks, 1993. 99, 104

[32] J. Denzinger. Exploratory testing for unwanted behavior using evolutionary learn-

ing techniques. Tech. report, University of Calgary, Alberta, Canada, 2007. 6, 7,

13

[33] H. Desurvire, M. Caplan, and J. A. Toth. Using heuristics to evaluate the playa-

bility of games. In CHI ’04: CHI ’04 extended abstracts on Human factors in

computing systems, pages 1509–1512, New York, NY, USA, 2004. ACM. 12

[34] M. Dickheiser. Game Programming Gems 6 (Book & CD-ROM) (Game Devel-

opment Series). Charles River Media, Inc., Rockland, MA, USA, 2006. 2

163

REFERENCES

[35] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd Edition).

Wiley-Interscience, 2 edition, Nov 2001. 42

[36] V. Emamian, M. Kaveh, A. H. Tewfik, Z.i Sh, L. J. Jacobs, and J. Jarzynski.

Robust clustering of acoustic emission signals using neural networks and sig-

nal subspace projections. EURASIP Journal on Advances in Signal Processing,

2003(3):276–286, 2003. 38

[37] N. J. G. Falkner. Ontologically-based context checking in arbitrary programming

languages. In Proceedings of the 19th International Conference on Database and

Expert Systems Application, pages 220–224, Washington, DC, USA, 2008. IEEE

Computer Society. 152

[38] D. M. Farid, N. Harbi, S. Ahmmed, M. Z. Rahman, and C. M. Rahman. Min-

ing network data for intrusion detection through nave bayesian with clustering.

In International Conference on Computer, Electrical, System Science, and Engi-

neering (ICCESSE’10), Paris, France, June 2010. 36

[39] R. Fernando and M. J. Kilgard. The Cg Tutorial: The Definitive Guide to Pro-

grammable Real-Time Graphics. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2003. 47

[40] A. Fink, J. Denzinger, and J. Aycock. Extracting npc behavior from computer

games using computer vision and machine learning techniques. In IEEE Sym-

posium on Computational Intelligence and Games, pages 24–31, Hawaii, 2007.

IEEE Press. 6

[41] R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval on

composite keys. Acta Informatica, 4(1):1–9, March 1974. 69

[42] J. Fodor and Z. Pylyshyn. Connectionism and cognitive architecture: A critical

analysis. Cognition, (28):3–71, 1988. 98

[43] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graph-

ics: Principles and Practice in C. Addison-Wesley Professional, second edition,

August 1995. 17, 18

[44] S. Fredrickson, S. Roberts, N. Townsend, and L. Tarassenko. Speaker identi-

fication using networks of radial-basis functions. In Seventh European Signal

Processing Conference, EUSIPCO’94, Edinburgh, Scotland, 1994. 37

164

REFERENCES

[45] R. Fujimaki. An approach to spacecraft anomaly detection problem using kernel

feature space. In Ninth Pacific-Asia Conference on Knowledge Discovery and

Data Mining (PAKDD). ACM Press, 2005. 33

[46] A. B. Gardner, A. M. Krieger, G. Vachtsevanos, and B. Litt. One-class novelty

detection for seizure analysis from intracranial eeg. J. Mach. Learn. Res., 7:1025–

1044, December 2006. 33

[47] C. L. Giles, S. Lawrence, and A. C. Tsoi. Noisy time series prediction using a

recurrent neural network and grammatical inference. In Machine Learning, pages

161–183, 2001. 98

[48] A. Golovinskiy, V. G. Kim, and t. Funkhouser. Shape-based recognition of 3d

point clouds in urban environments. In International Conference on Computer

Vision (ICCV), September 2009. 44

[49] A.I. Gonzalez, M. Graña, A. D’Anjou, F.X. Albizuri, and M. Cottrell. A sensi-

tivity analysis of the self organizing maps as an adaptive one-pass non-stationary

clustering algorithm: the case of color quantization of image sequences. Neural

Processing Letters, 6(3):77–89, 1997. 103

[50] K. Graft. Stardock reveals impulse, steam market share estimates. World Wide

Web electronic publication, November 2009. 11

[51] M. Gross, R.W. Sumner, and N. Thürey. The design and development of computer

games. The Design of Material, Organism, and Minds, 2:39–51, 2010. 2

[52] S. Guttormsson, R. J. Marks II, M. A. El-Sharkawi, and I. Kerszenbaum. Ellip-

tical novelty grouping for on-line short-turn detection of excited running rotors.

IEEE Transaction on Energy Conversion, 14(1):16–22, 1999. 40

[53] C. Harris and M. Stephens. A combined corner and edge detector. In ALVEY

Vision Conference, pages 147–151, Cambridge, UK, 1988. 132

[54] M. Harris. Mapping computational concepts to gpus. In SIGGRAPH ’05: ACM

SIGGRAPH 2005 Courses, page 50, New York, NY, USA, 2005. ACM. 49

[55] T. Harris. Neural network in machine health monitoring. Professional Eng.,

July/August 1993. 38

[56] J.-M. Hasenfratz, M. Lapierre, N. Holzschuch, and F.X. Sillion. A survey of

real-time soft shadows algorithms, 2003. 16, 127

165

REFERENCES

[57] S. Hawkins, H. He, G. Williams, and R. Baxter. Outlier detection using replica-

tor neural networks. In Fifth Int. Conf. and Data Warehousing and Knowledge

Discovery (DaWaK02), pages 170–180, 2002. 37

[58] D. D. Hearn and M. P. Baker. Computer Graphics with OpenGL. Prentice Hall

Professional Technical Reference, 2003. 18

[59] D.O. Hebb. The organization of behavior: a neuropsychological theory. L. Erl-

baum Associates, 2002. 38

[60] K. Hempstalk and E. Frank. Discriminating against new classes: One-class versus

multi-class classification. In Australian Joint Conference on Artificial Intelligence,

2008. 36

[61] T. V. Ho and J. Rouat. Novelty detection based on relaxation time of a network

of integrate-and-fire neurons. In 2nd IEEE World Congress on Computational

Intelligence, 1998. 39

[62] R.V. Hogg and J. Ledolter. Engineering statistics. Mathematics & statistics.

Macmillan, 1987. 79, 80, 83

[63] A. Hyvärinen, J. Karhunen, and E.i Oja. Independent Component Analysis.

Wiley-Interscience, 1 edition, May 2001. 45

[64] Tarnanas I. and Adam D. Sonic intelligence as a virtual therapeutic environment.

CyberPsychology and Behavior, 6(3):309–314, Jun 2003. 2

[65] D. Irish. The Game Producer’s Handbook. Course Technology Press, Boston,

MA, United States, 2005. 3, 5

[66] C. Jacquemin, B. Planes, and R. Ajaj. Shadow casting for soft and engaging

immersion in augmented virtuality artworks. In ACM Multimedia, pages 477–

480, 2007. 127

[67] A. Jagota. Novelty detection on a very large number of memories stored in a

hopfield-style network. In Proceedings of the International Joint Conference on

Neural Networks, volume 2, page 905, Seattle, WA, 1991. 37

[68] M. Johnson, A. andl Hebert. Using spin images for efficient object recognition

in cluttered 3d scenes. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 21(1):433–449, May 1999. 44

166

REFERENCES

[69] I. T. Jolliffe. Principal Component Analysis. Springer, second edition, October

2002. 45

[70] T. Joshi, B. Vijayakumar, D.J. Kriegman, and J. Ponce. Hot curves for modeling

and recognition of smooth curved 3d objects. IVC, 15(7):479–498, July 1997. 44

[71] A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David, J. P. Laula-

jainen, R. Carmichael, V. Poulopoulos, A. Laikari, P. Perälä, A. De Gloria, and

C. Bouras. Platform for distributed 3d gaming. International Journal of Com-

puter Games Technology, 2009:1–15, January 2009. 145

[72] S. Kaski. Data exploration using self-organizing maps. Acta Polytechnica Scan-

dinavica, Mathematics, Computing and Management in Engineering, (82), 1997.

101

[73] Y. Ke and R. Sukthankar. Pca-sift: a more distinctive representation for local

image descriptors. In 2004 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, volume 2, pages 506–513, 2004. 46

[74] F. Keinosuke. Introduction to statistical pattern recognition (2nd ed.). Academic

Press Professional, Inc., San Diego, CA, USA, 1990. 62

[75] O. Khayat, H. R. Shahdoosti, and A. J. Motlagh. An overview on model-based

approaches in face recognition. In AIKED’08: Proceedings of the 7th WSEAS

International Conference on Artificial intelligence, knowledge engineering and

data bases, pages 109–115, Stevens Point, Wisconsin, USA, 2008. World Scientific

and Engineering Academy and Society (WSEAS). 44

[76] E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-based outliers: Algorithms

and applications. The Vldb Journal, 8:237–253, 2000. 40

[77] T. Kohonen. Self-organization and associative memory. Springer-Verlag New

York, Inc., New York, NY, USA, 1989. 38, 100

[78] L. Kotoulas and I. Andreadis. Colour histogram content-based image retrieval

and hardware implementation. Circuits, Devices and Systems, 150(5):387–393,

2003. 62

[79] S. Kozlov. GPU Gems - Perspective Shadow Maps: Care and Feeding, chapter 14,

pages 217–244. Pearson Higher Education, 2004. 129

167

REFERENCES

[80] S. Laine, H. Saransaari, J. Kontkanen, J. Lehtinen, and T. Aila. Incremental

instant radiosity for real-time indirect illumination. In Eurographics Symposium

on Rendering, pages 277–286. Citeseer, 2007. 20

[81] J. E. Laird. An exploration into computer games and computer generated forces.

In 9th Conference on Computer Generated Forces and Behavioural Representa-

tions, pages 241–250, Orlando, FL, May 2000. 2

[82] A. Lauritzen. GPU Gems 3 - Summed-Area Variance Shadow Map, chapter 8,

pages 157–182. Addison-Wesley Professional, 2005. 49

[83] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix

factorization. Nature, 401(6755):788–791, 1999. 45

[84] K. Leung and C. Leckie. Unsupervised anomaly detection in network intrusion

detection using clusters. In 28th Australasian Computer Society Conference, vol-

ume 38, pages 333–342, 2005. 35

[85] Y. Li, M. J. Pont, and N. B. Jones. Improving the performance of radial basis

function classifiers in condition monitoring and fault diagnosis applications where

‘unknown’ faults may occur. Pattern Recognition Letters, 23(5):569– 577, 2002.

37

[86] W. Liang and M. C. C. Tan. Vision and virtuality: The construction of narrative

space in film and computer games, chapter 5, pages 98–109. Wallflower Press,

London, 2002. 4

[87] G. Liktor and C. Dachsbacher. Real-time volumetric caustics with projected light

beams. In Proceedings of 5th Hungarian Conference on Computer Graphics and

Geometry, 2010. 20

[88] C. Lindley and L. Nacke. Boredom, immersion, flow - a pilot study investigating

player experience. In IADIS Gaming 2008: Design for Engaging Experience and

Social Interaction,. IADIS, 2008. 3

[89] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-

tional Journal of Computer Vision, 60(2):91–110, 2004. 44, 46

[90] F. Luna. Introduction to 3D Game Programming with Direct X 9.0c: A Shader

Approach (Wordware Game and Graphics Library). Wordware Publishing Inc.,

Plano, TX, USA, 2006. 20, 21, 49, 64, 65

168

REFERENCES

[91] J. Ma and S. Perkins. Time-series novelty detection using one-class support vector

machines. Proceedings of the International Joint Conference on Neural Networks

2003, 3:1741–1745, 2003. 39

[92] D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4:415–447, 1991.

104

[93] M. Markou and S. Singh. Novelty detection: A review - part 1: Statistical

approaches. Signal Processing, 83:2003, 2003. 41

[94] M. Markou and S. Singh. Novelty detection: A review - part 2: Neural network

based approaches. Signal Processing, 83, 2003. 26, 34, 39

[95] S. Marsland. Novelty detection in learning systems. Neural Computing Surveys,

3:157–195, 2003. 39

[96] D. Martinez. Neural tree density estimation for novelty detection. IEEE Trans-

actions on Neural Networks, 9(2):330–338, 1998. 39

[97] A. S. Mian, M. Bennamoun, and R. Owens. Three-dimensional model-based

object recognition and segmentation in cluttered scenes. IEEE Transactions in

Pattern Analysis and Machine Intelligence, 28(10):1584–1601, 2006. 44

[98] R. Miikkulainen and M. G. Dyer. Natural language processing with modular

neural networks and distributed lexicon. Cognitive Science, 15:343–399, 1991. 98

[99] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors.

International Journal of Computer Vision, 60(1):63–86, 2004. 63, 130, 134

[100] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors.

IEEE Transactions on Pattern Analysis & Machine Intelligence, 27(10):1615–

1630, 2005. 46

[101] A. Mohr and M. Gleicher. Non-invasive, interactive, stylized rendering. In Sym-

posium on Interactive 3D Graphics, pages 175–178, 2001. 145

[102] F. Mokhtarian and A. K. Mackworth. A theory of multiscale, curvature-based

shape representation for planar curves. IEEE Transcations on Pattern Analysis

and Machine Intelligence, 14(8):789–805, 1992. 92

169

REFERENCES

[103] D. S. Moore. Tests of chi-square type. In R. B. D’agostino and M. S. Stephen,

editors, Goodness-of-Fit Techniques. Marcel Dekker, New York and Basel, 1986.

62

[104] Choudhury R. K. Mulchrone, K.F. Fitting an ellipse to an arbitrary shape:

implications for strain analysis. Journal of Structural Geology, 26(1):143–153,

2004. 92

[105] R. Ohbuchi, K. Osada, T. Furuya, and T. Banno. Salient local visual features for

shape-based 3d model retrieval. In Shape Modeling International, pages 93–102,

2008. 44

[106] M. E. Otey, A. Ghoting, and S. Parthasarathy. Fast distributed outlier detection

in mixed-attribute data sets. Data Min. Knowl. Discov, 12:2–3, 2006. 40

[107] J. Owens and A. Hunter. Application of the self-organising map to trajectory

classification. In EE Visual Surveillance Workshop, Dublin, Ireland, 2000. 103

[108] Z. Pan, X. Wei, and J. Yang. Geometric model reconstruction from streams of

directx 3d game application. In 2005 ACM SIGCHI International Conference on

Advances in computer entertainment technology (ACE ’05), pages 242–245, New

York, NY, USA, 2005. ACM. 145

[109] K. Pearson. Notes on the history of correlation. Biometrika, 13(1):25–45, 1920.

100

[110] J. Petit and R. Brémond. A high dynamic range rendering pipeline forinterac-

tiveapplications. The Visual Computer, 26:533–542, 2010. 10.1007/s00371-010-

0430-5. 20

[111] M. Pettersson. A compiler for natural semantics. In 6th International Conference

in Compiler Construction, pages 177–191, 1996. 152

[112] Matt Pharr, editor. GPU Gems 2 - GPU Flow-Control Idioms, chapter 34, pages

547–555. Addison-Wesley Professional, 2005. 49

[113] D. Pinelle, N. Wong, and T Stach. Heuristic evaluation for games: usability

principles for video game design. In Twentysixth annual SIGCHI conference on

Human factors in computing systems, pages 1453–1462. ACM, 2008. 14

[114] A. R. Pope. Model-based object recognition a survey of recent research. In

USENIX Technical Conference, 1994. 43

170

REFERENCES

[115] G. Potamianos, C. Neti, and J. Luettin. Audio-visual automatic speech recogni-

tion : An overview. Robotics, pages 1–30, 2004. 32

[116] S. Rajesh, S. Prathima, and L. S. S. Reddy. Unusual pattern detection in dna

database using kmp algorithm. International Journal of Computer Applications,

1(22):1–5, February 2010. Published By Foundation of Computer Science. 32

[117] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers

from large data sets. SIGMOD Rec., 29:427–438, May 2000. 40

[118] S. Roberts and L. Tarassenko. A probabilistic resource allocating network for

novelty detection. Neural Comput., 6:270–284, March 1994. 41

[119] R. Rojas. Neural Networks: A Systematic Introduction. Springer, 1 edition, July

1996. 37

[120] G. Rosado. GPU Gems 3 - Motion Blur as a Post-Processing Effect, chapter 27,

pages 575–581. Addison-Wesley Professional, 2005. 49

[121] P. M. Roth and M. Winter. Survey of appearance-based methods for object

recognition. Technical report, Inst. for Computer Graphics and Vision, Graz

University of Technology, Austria, 2008. 45

[122] B. Ruppert. New directions in virtual environments and gaming to address obesity

and diabetes: Industry perspective. Journal of Diabetes Science and Technology,

5(2):277–282, March 2011. 2

[123] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson

Education, 2003. 36, 41, 98

[124] D. Scherzer, M. Wimmer, and W. Purgathofer. A survey of real-time hard shadow

mapping methods. Computer Graphics Forum, 30(1):169–186, Feb 2011. 16, 128

[125] D.l Scherzer, M. Wimmer, and W. Purgathofer. A survey of real-time hard

shadow mapping methods. In Helwig Hauser and Erik Reinhard, editors, EG 2010

- State of the Art Reports, pages 21–36, Norrköping, Sweden, 2010. Eurographics

Association. 21, 127

[126] Noor Shaker, Georgios Yannakakis, and Julian Togelius. Towards automatic

personalized content generation for platform games. Computer, (Hudlicka 2008),

2009. 6

171

REFERENCES

[127] C. E. Shannon. Programming a computer for playing chess. Philosophical Mag-

azine (Series 7), 41(314):256–275, 1950. 4

[128] L.G. Shapiro and G.C. Stockman. Computer Vision. Prentice Hall, Upper Saddle

River, New Jersey, 2001. 61

[129] W. A. Shewart. Economic control of Quality of Manufactured Product. Van

Nostrand Reinhold Co., New York, 1931. 41

[130] M. Stommel. Binarising sift-descriptors to reduce the curse of dimensionality in

histogram-based object recognition. International Journal of Signal Processing,

Image Processing and Pattern Recognition, 3(1):25–36, March 2010. 45, 91

[131] M. J. Swain and D. H. Ballard. Color indexing. International Journal of Computer

Vision, 7:11–32, 1991. 62

[132] László Szirmay-Kalos and Tamás Umenhoffer. Displacement mapping on the gpu

- state of the art. Comput. Graph. Forum, 27(6):1567–1592, 2008. 16, 20

[133] P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining, (First Edi-

tion). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

39

[134] R. T. Tan, K. Nishino, and K. Ikeuchi. Separating reflection components based

on chromaticity and noise analysis. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 26(10):1373–1379, October 2004. 118

[135] S. Theodoridis and K. Koutroumbas. Pattern Recognition, Fourth Edition. Aca-

demic Press, 4th edition, 2008. 31, 32

[136] C. Thurau, T. Paczian, G. Sagerer, and C. Bauckhage. Bayesian imitation learn-

ing in game characters. Int. J. Intelligent Systems Technologies and Applications.,

2:284–295, February 2007. 144

[137] J. Togelius, R. De Nardi, and S. M. Lucas. Towards automatic personalised con-

tent creation in racing games. In IEEE Symposium on Computational Intelligence

and Games, 2007. 6

[138] A. Toshev, A. Makadia, and K. Daniilidis. Shape-based object recognition in

videos using 3d synthetic object models. In CVPR, pages 288–295, 2009. 44

172

REFERENCES

[139] C. van der Walt and E. Barnard. Data characteristics that determine classifier

performance. pages 166–171, Nov 2006. 33

[140] V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, September 1998.

39

[141] J. H. Victoria and J. Austin. A survey of outlier detection methodologies. Arti-

ficial Intelligence Review, 22(2):85–126, October 2004. 41

[142] P. Vorderer, C. Klimmt, and U. Ritterfeld. Enjoyment: At the heart of media

entertainment. Communication Theory, 14(4):388–408, November 2004. 3

[143] K.Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric learning for large

margin nearest neighbor classification. In Neural Information Processing Systems.

MIT Press, 2006. 39

[144] L. Williams. Casting curved shadows on curved surfaces. SIGGRAPH Computer

Graphics, 12:270–274, August 1978. 21, 27

[145] L. Williams. Pyramidal parametrics. SIGGRAPH Computer Graphics, 17:1–11,

July 1983. 21

[146] E. Wolfgang. Shader X4: Advanced Rendering Techniques. Charles River Media,

Inc, Hingham, MA, 2006. 128, 129

[147] A. Woznica and A. Kalousis. A new framework for dissimilarity and similarity

learning. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,

pages 386–397, 2010. 40

[148] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan. Sparse repre-

sentation for computer vision and pattern recognition. Proceedings of The IEEE,

98:1031–1044, 2010. 32

[149] G. Xiao, F. Southey, R. C. Holte, and D. Wilkinson. Software testing by active

learning for commercial games. In Proceedings of the 20th national conference on

Artificial intelligence - Volume 2, pages 898–903. AAAI Press, 2005. 6, 13

[150] Y. Yang, J. Zhang, J. Carbonell, and C. Jin. Topic-conditioned novelty detection.

In Knowledge Discovery and Data Mining, pages 688–693, 2002. 40

[151] G. N. Yannakakis and J. Hallam. Towards optimizing entertainment in computer

games. Applied Artificial Intelligence, 21:933–971, November 2007. 7

173

REFERENCES

[152] Y. H. Yee, S. N. Pattanaik, and D. P. Greenberg. Spatiotemporal sensitivity and

visual attention for efficient rendering of dynamic environments. ACM Trans.

Graph., 20(1):39–65, 2001. 159

[153] A. Ypma, E. Ypma, and R. P.W. Duin. Novelty detection using self-organizing

maps. In ICONIP’97, pages 1322–1325. Springer, 1997. 101

[154] M. Yuan, F. Farbiz, C. M. Manders, and K. Y. Tang. Robust hand tracking using

a simple color classification technique. In VRCAI ’08: Proceedings of The 7th

ACM SIGGRAPH International Conference on Virtual-Reality Continuum and

Its Applications in Industry, pages 1–5, New York, NY, USA, 2008. ACM. 92

[155] B. D. Zarit, B. J. Super, and F. K. H. Quek. Comparison of five color models

in skin pixel classification. In RATFG-RTS ’99: Proceedings of the International

Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-

Time Systems, page 58, Washington, DC, USA, 1999. IEEE Computer Society.

93

[156] W. Zhang, L. He, Y. Deng, J. Liu, and M. T. Johnson. Time-frequency cepstral

features and heteroscedastic linear discriminant analysis for language recognition.

IEEE Transactions on Audio, Speech & Language Processing, 19:266–276, 2011.

32

————————————————————–

174

	Glossary
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Research Problem
	1.2.1 Towards Making the Game Testing Automatic
	1.2.2 Scope

	1.3 Research Questions
	1.4 Significance
	1.5 Main Contributions and Organization

	2 Measuring Virtual Environment Consistency
	2.1 Unintended Artifacts in Virtual Environments
	2.1.1 High Level Entertainment Issues
	2.1.2 Usability Issues
	2.1.3 Environment Inconsistencies

	2.2 Targeted Environment Inconsistencies
	2.2.1 Geometry Representation and Mesh Corruption
	2.2.2 Color Synthesis and Corruption
	2.2.3 Shadow Aliasing
	2.2.4 On Game States, Functions and Rendering Systems

	2.3 Appearance Based versus Behaviour Based Detection
	2.4 Experimental Environments and System Validation
	2.5 Summary

	3 Related Work on Pattern Recognition
	3.1 The Pattern Recognition Problem
	3.2 Novelty and Anomaly Detection
	3.3 Anomaly Detection Techniques
	3.3.1 Classification Based Approaches
	3.3.2 Nearest Neighbor Based Approaches
	3.3.3 Statistical Approaches
	3.3.4 Information Theoretic Anomaly Detection Techniques

	3.4 Object Recognition in Real and Synthetic Images
	3.4.1 Model Based Approaches
	3.4.2 Shape Based Approaches
	3.4.3 Appearance Based Approaches

	3.5 Summary

	4 Model Based Classifiers
	4.1 Stages of Image Synthesis
	4.2 Defining Visual Consistency
	4.2.1 Colored Point Clouds Synthesis
	4.2.2 Visual Consistency Definition
	4.2.3 Some Necessary Epistemological Considerations

	4.3 Building the Model through the Game Engine
	4.4 Visual Consistency Error in Object Space
	4.4.1 Geometry Errors
	4.4.2 Color Errors

	4.5 Visual Consistency Error in Screen Space
	4.5.1 Color Errors

	4.6 Results
	4.6.1 Geometry Tests
	4.6.2 Color Tests

	4.7 Summary

	5 View Based Classifiers
	5.1 General Approach
	5.2 Appearance Description
	5.2.1 Geometry and Color Descriptors
	5.2.2 Object Space Segmentation

	5.3 Consistent Appearance Acquisition
	5.3.1 Connectionist Models of Consistent Visualization
	5.3.2 Modelling Object Appearance through Feed-Forward ANN
	5.3.3 Appearance Modelling through Self Organizing Maps

	5.4 Implementation and Results
	5.4.1 Estimator Parameters
	5.4.2 Dimensionality Reduction for the Geometric Transformation Matrix
	5.4.3 Accuracy Measurements
	5.4.3.1 Geometry Tests
	5.4.3.2 Color Tests

	5.4.4 Model based vs. View Based

	5.5 Summary

	6 Appearance Based Classifiers
	6.1 A Shadow Aliasing Detector
	6.1.1 Background: The Shadow Mapping Technique

	6.2 Problem Formulation
	6.2.1 Implementation

	6.3 Results
	6.4 Summary

	7 Towards the Autonomous Retrieval of Debugging Data
	7.1 Human-Like Action Acquisition
	7.2 Graphics Data Extraction and Modification
	7.2.1 Intercepting Training and Testing Data

	7.3 Summary

	8 Discussion and Conclusion
	8.1 Limitations
	8.2 Computational Complexity of the Detectors
	8.3 Future Research
	8.4 Summary

	References

