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Abstract 

Open pit mine operations are complex businesses that demand a constant assessment 

of risk. This is because the value of a mine project is typically influenced by many 

underlying economic and physical uncertainties, such as metal prices, metal grades, 

costs, schedules, quantities, and environmental issues, among others, which are not 

known with much certainty at the beginning of the project. Hence, mining projects 

present a considerable challenge to those involved in associated investment decisions, 

such as the owners of the mine and other stakeholders. 

In general terms, when an option exists to acquire a new or operating mining project, , 

the owners and stock holders of the mine project need to know the value of the mining 

project, which is the fundamental criterion for making final decisions about going 

ahead with the venture capital. However, obtaining the mine project’s value is not an 

easy task. The reason for this is that sophisticated valuation and mine optimisation 

techniques, which combine advanced theories in geostatistics, statistics, engineering, 

economics and finance, among others, need to be used by the mine analyst or mine 

planner in order to assess and quantify the existing uncertainty and, consequently, the 

risk involved in the project investment.  

Furthermore, current valuation and mine optimisation techniques do not complement 

each other. That is valuation techniques based on real options (RO) analysis assume 

an expected (constant) metal grade and ore tonnage during a specified period, while 

mine optimisation (MO) techniques assume expected (constant) metal prices and 

mining costs. These assumptions are not totally correct since both sources of 

uncertainty—that of the orebody (metal grade and reserves of mineral), and that about 

the future behaviour of metal prices and mining costs—are the ones that have great 

impact on the value of any mining project.  

Consequently, the key objective of this thesis is twofold. The first objective consists 

of analysing and understanding the main sources of uncertainty in an open pit mining 

project, such as the orebody (in situ metal grade), mining costs and metal price 

uncertainties, and their effect on the final project value. The second objective consists 

of breaking down the wall of isolation between economic valuation and mine 

optimisation techniques in order to generate a novel open pit mine evaluation 

framework called the ―Integrated Valuation / Optimisation Framework (IVOF)‖. One 

important characteristic of this new framework is that it incorporates the RO and MO 

valuation techniques into a single integrated process that quantifies and describes 

uncertainty and risk in a mine project evaluation process, giving a more realistic 

estimate of the project’s value. To achieve this, novel and advanced engineering and 

econometric methods are used to integrate financial and geological uncertainty into 

dynamic risk forecasting measures. 

The proposed mine valuation/optimisation technique is then applied to a real gold 

disseminated open pit mine deposit to estimate its value in the face of orebody, 

mining costs and metal price uncertainties.  

Keywords: Decision making criteria, dynamic cash flow, flexibility value, metal price 

forecasting, multi-parametric orebody modelling, net present value, open pit mine 

design and planning, orebody modelling, project value, risk analysis, and  real 

options.  
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Chapter 1                                        

General Introduction 

1.1 Introduction 

When the possibility of acquiring either a new or operating mine exists–in the case of 

this thesis, an open pit mine operation–owners and stakeholders of the project need to 

know the value of the mining project and the cash flow that the mine will generate 

over its operating life. These are the fundamental bases for making final irreversible 

decisions about going ahead with the project investment. The choice over such a 

decision is formally referred to as an option. 

However, mine projects are complex businesses that demand a constant assessment of 

risk. This is because the value of a mine project is typically influenced by many 

underlying economic and physical uncertainties, such as metal prices, metal grades, 

costs, schedules, quantities, and environmental issues, among others, which are not 

known with absolute certainty. Hence, mining projects present a considerable 

challenge, especially in effective assessments of capital expenditure, to those involved 

in associated investment decisions. 

To estimate a mine project’s value, the analyst or mine planner needs to use 

sophisticated valuation techniques to assist them in assessing and quantifying the 

existing uncertainty and risk involved in the project investment. In fact, the results 

obtained from the evaluation process decisively guide owners and stakeholders in 

their decision as to whether to start or abandon the project, and assist mine planners 

and engineers to plan and design the entire mine operation.  

The estimation of the mine project’s value, however, is not an easy task. The reason 

for this is that, in general, an open pit mine project is based on two main 

considerations: the geological model of the mineralised deposit, and the economic 

model of future metal prices and costs that the mine will incur throughout its 

operating life.  
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Unfortunately, at the beginning of a project, the necessary information to build the 

geological and economic models is insufficient, since: i) the geological information of 

the mineralised deposit, which is obtained from a limited number of samples (drill-

holes), is not necessarily a good representative of the entire deposit; and ii) the only 

information available about future metal price behaviour and costs are based on 

historical data, which in most cases is not a good forecast of the future.   

This lack of information generates uncertainty about the value of the different 

underlying variables that take part in the evaluation process and, consequently, the 

value of the mine project.  

These main sources of uncertainty are explored in the following subsections.  

1.1.1 Uncertainty in orebody modelling  

As mentioned in the introduction to this chapter, one of the most critical sources of 

technical risk in an open pit mine project lies in the geology of the orebody 

(Dimitrakopoulos, 1998; Dimitrakopoulos, Farrelly and Godoy, 2002). The orebody, 

which is the material from which minerals and metals of economic value can be 

extracted, is directly related to the ore grade and tonnes. Hence, an ore reserve 

statement should not be merely an estimate of what is in the ground, but should be a 

prediction of what will be fed to the mill.  

In the pre-feasibility stage of a mining project, the geology and ore distribution in the 

mineral deposit are estimated from the information derived from the exploration 

drilling samples. Consequently, uncertainty arises due to the fact that the information 

obtained from the samples is not representative of the entire (3-dimensional) ore 

deposit. It is then correct to state that, if an ore deposit is yet to be mined, the 

knowledge of its geological characteristics, including tonnage and metal grade, is 

limited. One consequence of this lack of information is the misclassification of 

resources, where economic ore can be dispatched to the waste dump, and non-

economic ore can be sent to mill (Journel and Kyriakidis, 2004).  

To minimise the misclassification of resources, estimation techniques based on 

stochastic models are commonly used to estimate the geological information at non-
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sampled locations. This is done by interpolating the data from the few exploration 

samples.  

1.1.2 Uncertainty in metal prices and costs 

Another important source of uncertainty that has a critical impact on open pit mine 

project evaluation is that associated with the economic environment where the mine 

project is developed. Within this economic environment, future metal prices and costs 

are the chief sources uncertainty. 

Metal prices are one of the most significant sources of uncertainty in an open pit 

project (Brennan and Schwartz, 1985). In fact, any variation from the expected metal 

price may considerably modify the results of the entire project evaluation. For 

example, an overestimated metal price may result in a favourable rate of return to a 

project, which is otherwise doubtful and, conversely, an underestimated metal price 

may result in an unfavourable return for the project, which is otherwise profitable.  

The price of the metal is the real cash settlement that represents the equilibrium or 

disequilibrium of the metal market. Since this market is based on demand, supply and 

other factors, such as speculation, news events, and dividend payouts (Fanning and 

Parekh, 2004; Case and Fair, 1989; Taylor, Moosa and Cowling, 2000), uncertainty 

over future metal prices arises because of two main reasons. The first reason consists 

of the lack of exact knowledge of those factors leading to the increase/decrease in 

metal supply and demand, and the second reason is made up of the actions that 

producers or consumers perform in the face of powerful speculative and political 

motives (MacAvoy, 1988).  

In the mining industry, metal prices are normally modelled as the average price of the 

last three years (Rendu, 2006), especially for those commodities whose prices are 

listed on open markets, such as precious and base metals. Even though the use of 

single commodity prices makes comparison between companies easy, preventing the 

use of excessively optimistic prices, it is also recognised that this method could be 

misleading when evaluating mining projects. For example, if the mine project is 

evaluated in a period with high/low metal prices, then the estimated average 

commodity price will be set up to be high/low throughout the operating life of the 

mine project, which of course will over/under estimate the value of the mine project.  
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In traditional finance, commodity (metal) prices are modelled as random variables, 

which follow stochastic processes over time. This is done in order to capture the 

complexities of futures markets and metal production as well as other non-measurable 

factors such as speculation. The purpose of using stochastic processes for modelling 

future metal price behaviour is not the estimation of an exact future price path but a 

distribution of paths which are expected to capture the true future behaviour of the 

metal. This is done because the process of forecasting metal prices for long term 

periods, which is common for mine operations, is not accurate. 

Costs are other sources of uncertainty when evaluating an open pit mine project. The 

reason for this is that the economic evaluation component of the feasibility study is 

based on information which provides an answer to the question: ―what is it going to 

cost?‖ (Gentry and O’Neil, 1998).  

In a mining project, costs are normally categorised as capital costs, which refers to the 

investment required for the mine and mill plant; operating costs, which refers to the 

costs incurred in the operating activities such as drilling and blasting; and general and 

administrative costs, which refers to the costs incurred in administrative and other 

activities related to the mine (Camus, 2002). The costs that are independent of the 

production level are regarded as fixed costs, while the costs that depend directly on the 

production level are regarded as variable costs.  

Since estimation of capital and operating costs are an important requirement for open 

pit mine evaluation, uncertainty in costs arises due to the lack of the engineering or 

economic information at the beginning of the mine project. Simply put, mining firms 

do not know with absolute certainty today how much they will need to spend 

tomorrow, let alone next month or next year.  

1.1.3 Uncertainty and risk in open pit mine planning and design 

McCarter (1992) defines open pit mining as a surface method in which reclamation is 

deferred until all or nearly all of the deposit is removed within its economic limits. 

The objective of open pit design is to determine the projected final pit limits of an 

orebody and its associated projected grade and ore tonnage in oder to maximise the 
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economic value of the mine
1
 while satisfying operational constraints such as mill 

capacity and slope angles (Hustrulid and Kuchta, 1995; Kim, 1978; Dowd and Onur, 

1993; Wright and Mbirikira, 1993).  

The complete process of designing an open pit mine consists of two principal stages: 

mine design, where the ultimate pit limits are found and contoured, and production 

scheduling, where the sequence of extraction over time is planned. 

The ultimate pit limit is the widest possible boundaries within which all subsequent 

mine planning works are performed while maximising NPV
2
. Figure 1A shows an 

example of an orebody and the ultimate pit contour. 

Production scheduling is the development of a sequence of depletion schedules 

leading from the initial condition of the deposit to the ultimate pit limits. According to 

the duration of the scheduling periods, production scheduling can be classified as 

long-term or short-term scheduling. 

Long-term scheduling is the schedule determined by cash flow analysis, and it 

provides a guide to a more detailed mine design and development. Figure 1B shows 

the representation of the long-term scheduling composed of the ultimate pit and the 

cutbacks 1, 2 and 3. A cutback is a part of the ore-deposit mined on its own. In other 

words, a cutback is a small ―independent‖ mine within the mine, with its own working 

zone, which directly influences the ore production of the mine per period before its 

depletion.  

Short-term scheduling is the development of a sequence of depletion schedules on a 

daily, weekly or monthly basis within the layout of the mine (cutbacks and pit limit). 

It is important to note that, in short-term scheduling, the main constraints are the ore 

tonnage and the ore grade, as well as the requirements of the processing plant, that is, 

                                                 

1
 Normally, the economic value of the mine is expressed as the Net Present Value (NPV) of the project. 

The NPV will be formally defined in Section 2.2. 

2
 The Net Present Value (NPV) is an economic indicator widely used in open pit projects to make the 

decision of capital investment. Section 2.1 gives a detailed introduction to NPV.     
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the short term takes care of achieving ore/waste production targets established in the 

long-term plan. Figure 1C shows the cross-section where the short-term extraction 

sequence for cutback 1 is performed. Thus, in the figure, the zones denoted by a, b, c 

and d, represent the sequence of extraction, in that order, of the mineral in cutback 1. 

Figure 1D shows the plan view of the short-term plan for cutback 1. Since both the 

ultimate pit and the production scheduling depend directly on the orebody model and 

future metal price and costs, uncertainty and risk in open pit mine planning and design 

arise due to the uncertain nature of the underlying variables that take part in the 

designing and planning process. In this context, the allocation of the physical limits of 

both the ultimate pit and long-term production sequence (cutbacks) on the orebody 

turns into a complex and uncertain process since it depends on both the uncertainty of 

future metal prices and the orebody model uncertainty.  
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Figure 1. Schematic representation of: A) orebody and the ultimate pit; B) long-term 

scheduling  composed  of   the  ultimate  pit  and cutbacks  1,  2 and  3;  C) short-term 

scheduling  for  cutback 1, where a, b, c, and d represent the extraction sequence; and  

D) plan view of the short-term scheduling for cutback 1, where a, b, c and d represent 

the extraction sequence (adapted from Martinez, 2003). 
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1.2 Uncertainty and risk in open pit mine project evaluation: 

statement of the problem   

As discussed in Section 1.1, the evaluation of an open pit mine project is a complex 

process. The reason for this is that it involves not only the economic uncertainty of 

future metal prices and costs, but also the technical uncertainties in which both the 

orebody model and the designing and planning of the pit are considered. Furthermore, 

the evaluation of an open pit mine also involves the different operational strategies 

that are adopted throughout the operating life of the mine to maximise the present 

value of the project. This is achieved by capturing future potential for profit while 

minimising the risk of future loses. 

Traditional (current) open pit mine valuation techniques
3
, which combine quantitative 

(static) discounted cash flow (DCF) techniques with various sensitivity analyses, do 

not account for uncertainty and risk in key project indicators such as ore and waste 

tonnes and cash flows, and consequently, in project evaluation. As reported by many 

authors (Amram and Kulatilaka, 1999; Armstrong and Galli, 1997; Brennan and 

Schwartz, 1985; Burmeister, 1989; Carvalho, Remacre and Suslick, 2000; Cortazar, 

1999, 2001; Dixit and Pyndick, 1994; Frimpong, 1992; Frimpong and Whiting, 1997; 

McKnight, 1999; Moyen, Slade and Uppal, 1996; Paddock, Siegel and Smith, 1988; 

Samis, Laughton and Poulin, 2001; McCarthy and Monkhouse, 2003) the main 

consequence of not including uncertainty in open pit project evaluation is that it 

misleads mine project decision-makers and investors to a static description
4
 of the 

economic and technical risk of the open pit mine project.  

Even though alternative modelling techniques such as decision analysis (DA) have 

been developed, which attempt to mimic management decisions in the face of 

uncertainty, they still only evaluate expected projected cash flows in a static 

environment based on expected key project indicator values, similar to the DCF 

technique.  

                                                 

3
 A review of these techniques is given in Section 2.2. 

4
 In this case, the term ―static‖ refers to the lack of managerial/operational flexibility (see footnote 6). 
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One major criticism of DCF techniques is the implicit assumption that a mining 

project’s outcome will be unaffected by future decisions of the firm, thereby ignoring 

any value that comes from managerial flexibility (Smith and McCardle, 1999). 

Managerial flexibility is the ability to make decisions during the execution of a 

mining project so that the upside potential of the mine is maximised while the 

downside risk is minimised: in other words, expected returns are maximised and 

expected losses are minimised. Examples of project flexibility include expanding 

operations in response to positive market conditions, abandoning a project that is 

underperforming, deferring investment for a period of time, suspending operations 

temporarily, switching inputs and outputs, reducing the project scale, or resuming 

operations after a temporary shutdown . 

As an alternative to the traditional DCF model, modern project valuation techniques 

apply modern asset pricing (MAP) theory (Black and Scholes, 1973; Merton, 1973) to 

solve real problems such as mining ventures. This technique is called Real Options 

(RO) and refers to choices, and their costs, about whether and how to proceed with 

mining business investments (Samis, Laughton and Davis, 2005; Samis, Laughton 

and Poulin, 2003; Schwartz, 1997; Slade, 2001). 

In the RO context, a mine project is seen as a compound American option (Bermudan 

type
5
) in which, at each stage of the project, the holders of the mine have the right but 

not the obligation to make strategic decisions such as expanding, stopping, and 

closing the mine operation at a predetermined cost for a predetermined period of time. 

In particular, the opportunity to invest in an open pit mining project is seen as an 

American call option in which at any time during the option period the holders of the 

option have the right but not the obligation to exercise the investment capital. 

A typical representation of the RO value of a mine project can be observed in Figure 

2. In the figure, V  is the present value of the mine project and I  is the initial capital 

investment. The dashed curve represents the current market value of the project with 

flexibility, the thick line represents the current value of the project without flexibility, 

                                                 

5
 A Bermudan option is an option where the buyer has the right to exercise at a set (always discretely 

spaced) number of times. 
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defined as   max V - I ,0 , and the dot-dashed line represents the traditional NPV of 

the project.   
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Figure 2. The current market value of a mining project investment opportunity. V  is 

the present value of the mine project and I  is the initial capital investment. The 

straight line indicates the variation of the real option value of the mine when 

flexibility is not taken into account throughout the operating life of the project, while 

the curve indicates the variation of the real option mine’s value due to the 

introduction of flexibility throughout the operating life of the mine. The dot-dashed 

line indicates the traditional static NPV. As it will be shown in Chapter 2, real options 

theory has its foundations in the theory of financial options (see Appendix A for 

details of financial options). Consequently, the real option value is always greater 

than or equal to zero while the traditional NPV can have negative values.  

 

One important result that can be extracted from Figure 2 is that the RO value of a 

project with flexibility, commonly called the expanded value of the project or 
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Expanded NPV ( ENPV ) (Trigeorgis, 1996; Smith, 2005), can be defined in terms of 

the traditional NPV as (see Figure 2)  

 ENPV = NPV +FVal , (1.1) 

where FVal  is the value of (operational/managerial) flexibility. As observed in 

Equation 1.1, one important characteristic of the Expanded NPV is that it captures the 

incremental value of operational and managerial flexibility, giving the mine analyst a 

more realistic overview of the value of the mine project in the face of uncertainty. 

Another important result that can be extracted from Figure 2 is that the ENPV will 

always be greater than or equal to the static NPV, that is, flexibility does not have a 

negative value (Slade, 2001). This can be visualised by re-defining Equation 1.1 as 

 
; 0;

; 0.

NPV FVal FVal
ENPV

NPV FVal

 
 


 (1.2) 

Equation 1.2 indicates that if the information obtained from the option to implement a 

specific operational or economic strategy in the mine project plan is valuable, then the 

option value, FVal, must be added to the direct cost of investing, otherwise the project 

value remains the same. 

But how does flexibility add value to a project investment?  

Flexibility has several strategic forms, which, if implemented, generate an aggregate 

value to the project by either reacting to good news in the future or by minimising 

future risk (or both). For example, value can be generated if the evaluation process 

allows the mine analyst to have the flexibility to:  

 invest now and make follow-up investments later if the original project is a 

success (a growth option); 

 abandon the project if it is unsuccessful (an abandoning option); or 

 wait and learn, resolving uncertainty, before investing (a deferring option).  

Observe in Figure 2 that the value obtained from the traditional (static) NPV is 

represented by a straight line, while the value obtained from the RO technique is 

represented by a concave curve. The reason for this is that the NPV value is a linear 
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function of the expected cash flows generated over the operating life of the mine, 

while the RO is a non-linear function of these cash flows. In fact, as shown in Figure 

3, the term that makes the RO approach a non-linear function of cash flows is the 

flexibility value (see Equations 1.1 and 1.2), which interweaves the effects of time 

and uncertainty on valuation and decision making, and is a function of the volatility of 

the project’s value. Specifically, if two projects have the same payoff function but 

different risk in their values, the project with more risk will generate more outcomes 

with a positive payoff than the one with low risk in its value. 
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Figure 3. Total risk and RO project value. As observed in the diagram, an increase in 

total risk widens the distribution of outcomes (left diagram), creating more outcomes 

with a positive payoff and consequently an increase flexibility value (right diagram). 

Adapted from Amram and Kulatilaka (1999, p35).  

 

Something interesting to note is that both the RO and DCF valuation techniques have 

many similarities. Both techniques examine cash flows, focusing on the effects of 

cash flows’ timing and uncertainty on project value (Samis, Laughton and Davis, 

2005). However, the method of determining the effect of cash-flow uncertainty on 

project value is the principal difference between these two valuation techniques 

(Samis, Laughton and Poulin, 2003).  

One key element of RO techniques is that they incorporate the uncertainty of the 

underlying variables of the mine project into the valuation process. This procedure 
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allows the mine analyst to value operational flexibility and the mine planner to build 

robust mine designs in the face of uncertainty (Martinez, 2003).  

One characteristic of real options is that it works only when costs are sunk
6
 and 

returns uncertain. So, the option’s value is determined by the difference of cash flows 

(returns) to investment cost or exercise price (the less you pay the better). 

Another characteristic of RO is that its holder does not lose from increased 

uncertainty if things turn out wrong, but gains if they turn out right; that is more 

uncertainty increases the likelihood of larger positive payoffs, and therefore the value 

of an option, as larger down-sides can be avoided (see Figure 3). This trade-off 

between risk and profit is achieved by implementing flexible investment strategies 

such as ending the project if future conditions are unfavourable or expanding 

production capacity if future conditions are favourable, over the operating life of the 

project.   

However, despite the theoretical attractiveness of the RO techniques, its use by 

managers and corporate members of mining firms is still limited (Armstrong and 

Galli, 1997; Amram and Kulatilaka, 1999). One of the reasons for this limitation is 

that, contrary to the DCF technique, the RO technique is difficult to implement due to 

the advanced mathematical and statistical concepts that need to be used when dealing 

with uncertainty and risk (Blais, Poulin and Samis, 2004). For this reason, during the 

last twenty years, new methodologies based on numerical approaches such as the 

Binomial model (Cox, Ross and Rubinstein, 1979) and Monte Carlo simulation 

techniques (Tilley, 1993; Barraquand and Martineau, 1995; Gravet, 2003)  have been 

developed in order to facilitate the implementation of RO in project valuations.  

Perhaps the most significant reason that limits the application of the RO techniques in 

open pit mine project evaluation is that this method considers metal prices as the only 

source of uncertainty, assuming that technical aspects such as the geology of the 

                                                 

6
 Investment expenditures are sunk costs when they are firm or industry specific which, once incurred, 

cannot be recovered. A sunk cost cannot be altered and is therefore irrelevant for decision-making 

purposes (Dixit and Pindyck, 1994, p8; Bilodeau, 2000, p16). 
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orebody and the planning and design of the open pit mine are fixed, well defined and 

known ex-ante.  

In light of the above information, it is clear that there is an urgent need to develop a 

new practical framework for open pit project capital budgeting and decision making, 

which is able to account for technical and economic uncertainties, as well as 

operational strategies. Furthermore, in order to enable owners and stakeholders of 

mining firms to make rational strategic investment decisions in the face of 

uncertainty, this new open pit project evaluation framework needs to have the 

following characteristics: 

 It needs to be practical and relatively easy to implement, so it can be used as the 

standard tool for project evaluation;  

 It needs to be flexible and generic in its structure, so that the different sources of 

uncertainties that affect the value of an open pit mine project can be incorporated 

in the evaluation process;  

 It needs to be easy to update so new technologies for dealing with economic or 

geological uncertainties can be used when they supersede current ones; and 

 It needs to be auditable, reportable, and repeatable. That is it has to be a white box 

where the internal transfer function’s process is available for inspection.  

 

1.3 Thesis aim and objectives 

In Section 1.2, it was outlined that current approaches for valuing open pit mine 

projects are limited by the rigidity of their structure, which does not allow them to 

account for 1) the geological uncertainty of the orebody and its effect on open pit 

mine planning and design, and 2) the uncertainty in economic variability of metal 

prices and production costs at the same time. It was concluded that, in order to allow 

the owners and stakeholders of an open pit mine project to make rational strategic 

decisions, new practical evaluation frameworks with the characteristics mentioned at 

the end of Section 1.2 need to be developed.    
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Consequently, the main objective of this dissertation is to develop a novel open 

pit mine evaluation framework (formally introduced in Chapter 4), called the 

Integrated Valuation/Optimisation Framework (IVOF), in which operational 

and managerial strategies, the uncertainties of the orebody model, metal prices 

and costs, and their effect on open pit mine planning and design are integrated 

into the evaluation process. This will be a significant advance on current 

methods which are “static” in nature. This contrast will be argued throughout 

the thesis.  

As it will be shown, this new evaluation approach is founded on three key 

components. The first component includes the key project indicators to be considered 

in the evaluation process, such as ore tonnes, amount of metal, or cash flow generated 

at each production period. The second component includes the decision-making 

criteria, which are based on the performance of key project indicators, such as 

minimum acceptable risk in meeting given production targets, or minimum acceptable 

cash flow generated at each production period. The third component includes the 

operational and managerial strategies that can be adopted throughout the operating life 

of the open pit mine such as optimising cut-off grades and pit slope angles or 

deferring the initial capital investment, abandoning, expanding, or selling the project 

depending of the future technical and economic conditions, respectively.  

In addition, one important characteristic that the proposed IVOF has besides the 

characteristics mentioned at the end of Section 1.2 is that it deals with operating and 

managerial flexibility and alternative strategic decision-making criteria in the context 

of “optimal” project value, where:  

 The open pit mine design, the long-term production schedules, and the operational 

and managerial strategies are optimised in the face of uncertainty; and 

 The cash flow downside risk is minimised in the short-term, while maximising the 

upside potential for profits in the long-term.  

To achieve this objective, this research considers recent techniques developed for 

open pit mine project evaluation that are based on the optimisation of the open pit 

mine planning and design in the face of geological (metal grade) uncertainty. The 

purpose of doing this is to incorporate these techniques – that is, open pit mine 
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optimisation techniques – with RO techniques into a single integrated evaluation 

framework that allows the mine analyst to assess and manage risk throughout the 

project’s operating life.  

Another important characteristic of the proposed evaluation framework is that it is not 

a black box; that is it is a system which is not only characterised by its inputs and 

outputs, but by the procedures in which the inputs are assessed, analysed and 

transformed to render the outputs of the system. 

1.4  Relevance of the research to the mining industry  

Today’s open pit mine operations are characterised by having: i) low metal grade; ii) 

large capital requirement and reduced operating costs; and iii) large-scale production 

(Martinez, 2003; Ravenscroft, 1992). Consequently, when the option to invest in an 

open pit mine project exists, there is little room for inefficiency in mine planning and 

production scheduling and, consequently, in the estimation of the mine project’s 

value. In fact, a doubtful and badly implemented mine evaluation process could 

misclassify a non-profitable venture as being profitable with appreciable probability, 

and vice versa. In fact, the consequences of a badly implemented mine evaluation 

process can be translated into the loss of millions or even billions of dollars for both 

the owners and stakeholders of the mine project.  

The importance of developing a new evaluation approach, such as the one proposed in 

this research, resides in bringing to the mining industry a practical evaluation 

framework that allow the mine planner or analyst to obtain a more realistic estimate of 

an open pit project value in which technical and economic uncertainties are accounted 

for. Furthermore, this new approach will allow the owners and stakeholders of the 

mine to make rational investment decisions in the face of uncertainty by assessing and 

minimising the risk of the mine project while taking advantage of future potential for 

profit.  

1.5 Scope and limitations of the research 

As mentioned in Sections 1.2 and 1.3, one important characteristic of the proposed 

open pit mine evaluation framework, IVOF, is that it is a generic procedure, which is 
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flexible in working with any specific model adopted for the underlying variables that 

take part in the evaluation process. However, as it is intended that this research is the 

first in its field, it does not cover all the problems inherent with the evaluation of an 

open pit mine project, leaving the door open for more improvement, and limiting its 

scope to the following assumptions. 

 The uncertainty in the orebody model arises due to metal grade variation only. 

 The algorithm used for pit design is the Lerchs-Grossman algorithm (Lerchs and 

Grossmann, 1965), which is based on graph theory (see, for example, Martinez, 

2003, for a practical explanation of the algorithm). 

 The mine operation is seen as a discrete event in which the duration of the 

production periods given by the long-term extraction sequence are the periods to 

be used in the evaluation analysis.   

 Mill and mine capacity are estimated at the beginning and considered to remain 

constant over time.   

 Although open pit mine projects potentially embody many types of operational 

flexibility, this research deals mainly with the flexibility of closing or abandoning 

the mine project at any time if future technical and economic conditions are 

unfavourable.  

 Although mine, processing, refining and fixed costs are assumed to be known, the 

total production cost is seen as a random variable that changes over time
7
.   

 The mine cannot sell the final product at any time but at the specified contract 

period
8
, that is, at the end of the production period.  

                                                 

7
 In Section 3.4.1 it is explained how to determine the total production cost and why it is considered a 

random variable, with more detail.     

8
 These types of contracts are known as forward or future contracts (see Appendix A for more details). 

As it will be explained in Chapter 5, a direct consequence of this constraint is that metal price 

uncertainty is only considered at the end of each production period, that is, the metal extracted during 
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 Cut-off grade optimisation is considered only at the base-case mine design (see 

final comments in Chapter 6 for more details).  

 Stock piling is considered as an operational flexibility during the open pit mine 

evaluation process. 

Although our results work with the above assumptions, the relaxation of these 

assumptions to more general and complete cases is indicated as future directions for 

research in the last chapter of this thesis. 

Due to the complexity of the open pit evaluation problem, which involves advanced 

topics such as geostatistics, statistics, economics, finance, and mining engineering 

techniques, this research is also limited by the demands of time to develop appropriate 

computer programs for the different tasks involved in evaluating an open pit and in 

implementing the proposed technique appropriately. For this reason, a simplified 

example of the application of the IVOF is given in Chapter 7. Again, we discuss 

extensions at the conclusions of this thesis. Another reason for giving a simplified 

example was the lack of mining software tools which were (and still are) not available 

to us when developing this thesis.  

1.6 Structure of the thesis 

This thesis comprises eight chapters and an appendix section. 

Chapter 2 reviews the literature relevant to the IVOF model. To give a comprehensive 

presentation of this literature review, this chapter is divided into three main parts. The 

first part explains the paradigm shift from the traditional capital budgeting technique, 

based on the NPV model, to the real options approach with special emphasis of its 

application to mine project evaluation. The second part examines in detail open pit 

evaluation techniques based on the optimisation of the mine in the face of orebody 

uncertainty and cut-off grade selection. The final part of this chapter summarises the 

topics discussed in the literature review and concludes the chapter.  

                                                                                                                                            

the early stage of a production period will have the same selling price than the metal extracted at the 

end of the same production period. 
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Chapter 4 derives and explains the foundations of a novel open pit mine evaluation 

framework called the IVOF. As it will be shown in this chapter, this new framework 

is composed of the following stages: i) data analysis and base-case mine design; ii) 

effect of orebody uncertainties, including production cost uncertainty, on base-case 

mine design; iii) effect of future metal price uncertainty on base-case mine design; iv) 

practical optimal mine design based on uncertainty and risk; and v) decision-making 

based on final results.  

As it will be shown in Chapter 4, the key part in the IVOF process is the generation of 

the long term (strategic) plan and design of the open pit mine project, formally 

referred to as the base-case mine plan and design. This corresponds to Stage 1 of the 

IVOF. Although the base-case mine plan and design is based on traditional mine 

evaluation techniques, Chapter 3 gives a summary of this process highlighting 

common mistakes that are incurred throughout the process. 

Chapter 5 provides a comprehensive explanation of Stage 2 of the IVOF - the effect of 

orebody uncertainties, including production costs uncertainty, on base-case mine 

design. Furthermore, this section also shows how to assess the effect of orebody 

modelling uncertainty on the base-case mine planning and design. As it will be 

demonstrated in this chapter, both OK and SGCS use the initial drill-hole data set to 

infer the probability distribution of metal grade values at each specific location within 

an orebody model.  

Chapter 6 provides a comprehensive explanation of Stage 3 of the IVOF - the effect of 

future metal price uncertainty on base-case mine design. This chapter shows how to 

model metal price uncertainty in the mining industry. To achieve this, two parametric 

techniques widely used in the industry for forecasting metal prices are described: 

Geometric Brownian motion (GBM) and the mean reversion (MR) process. As it will 

be discussed in this section, these parametric techniques are very useful to model 

future metal prices when the values of their parameters are well known (the estimation 

of the parameters of each model is briefly discussed in the Chapter).  

Chapter 7 presents a case study where the profitability of a gold mine project is 

estimated under uncertainty and risk, to decide if it is worth investing or not in the 

mine venture. In this case, the drill-hole data of a disseminated gold deposit, called the 
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―Gold-Mine Project‖, is used as the case-study. As it will be shown in this chapter, the 

Gold-Mine Project will be evaluated considering the flexibility of abandoning the 

project at any time with and without a salvage value.  

Chapter 8 gives concluding remarks on the use of the proposed valuation framework 

and its importance in open pit mine project evaluation, and recommendations for 

future research directions.  

Appendix A explains the fundamentals of stochastic processes with emphasis on 

expectations calculated from conditional distributions.  

Appendix B explains the fundamentals of financial option pricing theory. 

Appendix C gives a summary of some selected mine valuation and optimisation 

procedures which are: C.1) the CA/BDH/Smith real options model; C.2) the 

Longstaff-Schwartz Least Square Monte Carlo; C.3) the Upside/Downside 

optimisation model; and C.4) Lane’s cut-off grade optimisation.  

Appendix D gives two unpublished manuscripts which are technically but not directly 

related to this thesis, and which were completed during the candidature.  

The following papers have arisen from this thesis.  

 Modelling the initial pit design: The first step for mine project valuation (2006). 

6
th

 International Mining geology Conference pp. 269-281.    Darwin-Australia 

 Understanding real options in mine project evaluation: A simple perspective 

(2010). Minin 2010 pp. 223-234. Santiago de Chile 

 Orebody Modelling-Estimation vs. Simulation – A practical viewpoint. 33 

Application of Computers and Operation Research in the Mineral Industry 

APCOM (2007). Pp.721-728 

 Designing, planning and evaluating and open pit gold mine under in situ metal 

grade and future gold price uncertainties. Orebody Modelling 2009 Conference 

pp. 225-234 (The Australasian Institute of Mining and Metallurgy, Melbourne). 

 Why Accounting for uncertainty and risk can improve final decision making in 

strategic open pit mine project evaluation. Project Evaluation 2009 conference pp. 

1-12, Melbourne- Victoria. 
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Chapter 2                                              

Literature Review   

2.1 Introduction to open pit orebody modelling 

As it was outlined in Section 1.1, the description and characterisation of a mine 

deposit represents one of the most critical sources of technical risk in an open pit mine 

project and in a mine project in general.  

Normally, the geological characterisation of a mineral deposit is represented in a 

model of the orebody. The orebody model and surrounding waste material is modelled 

by dividing it into blocks of a certain size, or Selective Mining Units (SMUs), so that 

the flow and form of material in the mining process can be representative of reality. In 

the orebody model, each block contains important information from limited drilling 

that will be used later in developing the future mine operation. A 3D multi-parametric 

orebody model (Bye, 2006) is populated with geotechnical, metallurgical, blast index 

data
9
 and metal grade information.    

To estimate an orebody model, in general it is required to have information of what 

the orebody characteristics (such as metal grade) may be at unsampled locations. 

However, as the information from the drill holes is limited, it is impossible to know 

with certainty the mineral content in each block. This is the reason why, in any mine 

operation, there will always exist a divergence between estimated and real values. 

One consequence of these divergences is that the mineral deposit will be represented 

with the uncertainty that a given block can be mined for a profit. This unavoidable 

discrepancy is what is meant by that the saying ―expectations sometimes may become 

a sad reality‖ (Sinclair and Blackwell, 2002; Krige, 1951).  

                                                 

9
 Current multi-parametric orebody models are constructed assuming independency between metal 

grade, geotechnical and metallurgy data.   
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To reduce the differences between estimated and real values, the geologist normally 

resorts to techniques based on spatial statistics (geostatistics) and computational 

methods, which model the spatial uncertainty of the orebody as a stochastic process. 

These techniques can be categorised into two groups. The first group corresponds to 

the estimation method based on deterministic linear techniques, such as Ordinary 

Kriging (OK) (David, 1973; David, Dowd and Korobov, 1974), which is a conditional 

expectation and accounts for local variability. The second group corresponds to the 

estimation method based on conditional simulation techniques, such as Sequential 

Gaussian Simulation (SGS), which is based on the Monte Carlo method and accounts 

for global variability. Some early investigations of this came from the French school, 

such as Deraisme and Dumay (1981) and Thwaites (1998), although these did not 

consider prices and costs to be uncertain. 

But, which technique is the best for orebody modelling? Is one technique better than 

the other? These are precisely the questions that the topic of this chapter analyses and 

discusses from a simple and practical view point. The chapter will also show that the 

use of conditional simulation not only assists the geologist to model the orebody, but 

it also assists the mine analyst or planner to both integrate the orebody model 

uncertainty in the mine evaluation process and to perform a risk analysis of the 

mining project, enabling strategic investment to be sheltered while exposing the 

potential of the mine project.  

2.2 Introduction to discounted cash flow, real options and 

mine optimisation techniques 

In Chapter 1, a new open pit mine project evaluation framework, called the integrated 

valuation/optimisation framework (IVOF), was foreshadowed as an alternative to 

current evaluation techniques, which are limited in giving realistic estimates of the 

value of an open pit mine project.  

The current approach to open pit mine project evaluation is as follows. In high level 

terms, it commences with an estimated block model. Typically, the blocks will have 

parameters for grade and tonnes, with very few other parameters, which are normally 

point estimates. These are then used together with estimated costs and metal prices, 

and other engineering factors such as slope angles and bench design – again usually 
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all point estimates – to plan and design the base case open pit mine. What we are 

emphasising is that variability modelled at each stage of the value chain is very often 

sacrificed, just leaving mean values; or at best over-simplified information about error 

is carried forward for use in limited sensitivity analyses. Hence, integration of 

information (including risk factors) is compromised by ―silo-like‖ operations 

especially when it comes to preserving and valuing decision options. 

The final stage is the long term production schedule where the project NPV is 

obtained. As a consequence of the above scenario, NPV is static in as far as it does not 

(and cannot) reflect risk and flexibility of decision making. This is the basis for 

reviewing antecedents of the IVOF in the present chapter. 

2.3 Organisation of the literature review 

The chapter is organised as follows. The first part of our review concerns 

geostatistical methods and their relationship with mine planning. Section 2.4 gives a 

basic definition of random variables and random functions. The objective of this 

section is to equip the reader with basic concepts that will be used later on when 

defining the concepts of Ordinary Kriging and Sequential Conditional Simulation, 

given in Section 2.5. Section 2.6 presents a simple example in which it is shown why 

conditional simulation techniques give a better characterisation of the variability of 

the orebody properties than the estimation technique. (We show in Chapter 5 how 

both estimation and simulations of an orebody can be used to mine plan and design 

the open pit mine and to assess the risk of the mine project, which will allow the mine 

analyst to make strategic decisions that maximise the potential of the mine while 

minimising the risk of future losses).  

We continue our review with the relevant background and literature for the IVOF, 

which will be defined and discussed formally in Chapter 4. We first explain in Section 

2.7 the paradigm shift from the traditional capital budgeting technique, based on the 

DCF model, to the RO approach, with special emphasis of its application to open pit 

mine project evaluation. Then Section 2.8 examines open pit evaluation techniques 

based on the optimisation of the mine in the face of orebody uncertainty and metal 

grade selection.  
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Section 2.9 summarises the topics discussed in the literature review, highlighting the 

advantages of using all these techniques as an integrated process, and concludes the 

chapter. 

2.4 Discrete representation of spatial random variables and 

random functions 

A random variable (RV) iZ  is a function that assigns a real number, iz , to each 

outcome i in the sample space of a random experiment. In other words, iZ  is a real 

valued function defined over the elements of a sample space based on some 

probability distribution. A random variable iZ  is discrete if it assumes only a finite or 

countable infinite number of values, and is fully characterised by its cumulative 

density function (cdf) ( ) { }iF z P Z z  , which gives the probability that the random 

variable iZ  at location i is not greater than any given limit z . 

A spatial random function (RF)  iZ x  is defined as the collection of random 

variables iZ  defined at each location k

ix   over some domain kA  of interest, 

that is,   
1
,

n

i ii
Z x x A


  . In simple words, a random function is a multivariate 

process composed of n  random variables iZ  ( 1,2,..,i n ). Random functions are 

totally characterised by their multivariate cumulative density function (cdf), given by 

       1 2 1 2 1 1, ,..., ; , ,..., Pr ,...,n n n nF z z z x x x Z x z Z x z    (1.1) 

The RF  iZ x  is said to be ―strictly stationary‖ if all the RV’s, , 1,2,...iZ i n  , in the 

space A, have the same distribution, { ; | ( )}ZF z x n . In earth science, a stationary RF 

normally refers to a second order stationary (weak stationary) RF, that is, the mean is 

constant and the covariance function only depends on the separation, h , between two 

points and not on the location ix .  

 iZ x  is an intrinsic, zero-drift, random function if   
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    

      

0

1
,

2

i i

i i

E Z x h Z x

Var Z x h Z x h

  

  
 (1.2) 

where the function  h  is called the ―variogram‖.  A spatial stationary RF  iZ x  is 

said to be ―ergodic‖ in the parameter m , usually taken as the stationary mean of the 

RF, if the average of its corresponding n  realisation statistics 
 

,
l

m l , converges to 

m  as the size of the domain space A increases. For more details about stationary and 

ergodic random functions, the reader is referred to general books on geostatistics, 

such as Goovaerts (Goovaerts, 1997), and Journel and Huijbregts (Journel and 

Huijbregts, 1978).   

For a RF  iZ x  with multivariate probability density function as in Equation 5.1 the 

following general expression is valid: 

1 2 1 2 1 1

2 2 1 1

3 3 1 1 2 2

1 1 2 2 1 1

( , ,.., ; , ,..., ) ( ; )

( ; | ( ) )

( ; | ( ) , ( ) )

..........

( ; | ( ) , ( ) ,....., ( ) ),

n n

n n n n

F z z z x x x F z x

F z x Z x z

F z x Z x z Z x z

F z x Z x z Z x z Z x z 



 

  



   

(1.3) 

where the conditional n-variate distribution function is the product of its univariate 

marginal conditional distribution functions. Then, the n-variate cdf of a RF  iZ x  

conditioned to a specific set of data N  is :  

 

1 2 1 2 1 1

2 2 1 1

3 3 1 1 2 2

1 1 1 1

( , ,.., ; , ,..., | ) ( ; | )

( ; | ( ) ; 1)

( ; | ( ) , ( ) ; 2)

..........

( ; | ( ) ,....., ( ) ; 1).

n n

n n n n

F z z z x x x N F z x N

F z x Z x z N

F z x Z x z Z x z N

F z x Z x z Z x z N n 



  

   



    

 (1.4) 

The first moment of a spatial stationary and ergodic RF is given by  

    ;iE Z x m x  , (1.5) 

and the second moment is  
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     2( ), ( ) ;C h E Z x Z x h m x    . (1.6) 

Normally, in earth sciences, the random variable, 
0xZ , expressing the value of an 

specific attribute at an unsampled location 
0x  is modelled as the sum of a smooth 

deterministic function, 
0

*

xZ , describing the systematic aspect of the phenomenon, and 

a zero-mean random function, called the error or residual,  0R x , that is:  

  
0 0

*

0x xZ Z R x  . (1.7) 

Then, from Equation 5.7, it is observed that to have information about the behaviour 

of the random variable 
0xZ  it is necessary first to generate a model for both 

0

*

xZ  and 

 0R x ; observe that the error  0R x  is a state-dependent error. This is the topic of the 

next section. 

 

2.5 Ordinary Kriging (OK) and Sequential Gaussian 

Simulation (SGS) 

2.5.1 Ordinary Kriging (OK) 

The OK is an unbiased linear estimation technique used in orebody modelling to 

estimate the value, 
0

*

xZ , of a specific geological attribute, such as metal grade, at an 

un-sampled location 0x  (see Equation 5.8). One important characteristic of this 

technique is that it is an exact interpolator which honours the data values at data 

locations, that is, if one of the known samples 
jxZ  is considered to be unknown, OK 

will successfully identify the true value of the observation with variance equal to zero 

(Journel, 1989; Wackernagel, 2003). Another characteristic of OK is that it accounts 

for localised variations in the mean by limiting the domain of stationarity to the mean 

of the local neighbourhood D . The local neighbourhood D  is the set of points, jx , 

where the samples, 
jxZ , of RF  iZ x  are used to estimate 

0

*

xZ , that is, 
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 : 1,.., n

jD x j N A    . OK is an estimator for which the mean is unknown but 

it is assumed to be constant within the local domain D . 

In this technique, the estimated value, 
0

*

xZ , is expressed as a weighted linear 

combination of the data, expressed as random variables 
jxZ  ( jx D  ) available at 

the sample locations jx , that is,  

 
0

*

1
j

n

x j x

j

Z Z


 . (1.8) 

In Equation 5.8, j  are the weight coefficients assigned to each of the 1,2,..,j n  

available observations inside the domain D . One characteristic of the coefficients j  

is that because   

       
0 0

*

0 0x xE R x E Z E Z   , (1.9) 

the sum j

j

  is equal to the unity and 0;j j    . This can be verified by taking 

expectation of both sides of Equation 4.8 and using Equation 4.9, that is,  
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 (1.10) 

As observed in Equation 5.8, to find the estimated grade, 
0

*

xZ , as well as the 

respective error variance, 
0

{ }xVar R , which characterise the distribution of the random 

variable 
0xZ , it is necessary to know the values of the ordinary kriging weight 

coefficients , 1,2,3,...,j j n   .  
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To estimate the weight coefficients, j , the OK technique minimises the error 

variance, 
0

{ }xVar R , constrained as in Equation 5.10. The variance of the error or 

residual  0R x , defined as (see Equation 5.7):  

  
0 0

*

0 x xR x Z Z  , (1.11) 

is expressed as: 
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 (1.12) 

where   0 0

2
_

xZ xVar Z
 

 
 

 . 

To minimise the error variance, OK uses the technique of Lagrange multipliers, which 

introduces a new variable,  , into the error variance equation and then minimises it. 

Note that the new expression of the error variance after introducing the Lagrange 

variable is expressed as  

   0
0

2
_

0

1 1 1 1

{ ( )} 2 2 1
j i j

n n n n

Z j i x x j x x j

j i j j

Var R x Cov Z Z Cov Z Z     
   

  
      
   

   . (1.13) 

The result of using kriging for orebody modelling is an estimated model in which 

each block has an estimated value of the pertinent attribute, such as metal grade, with 

a minimum variance. 

2.5.2 Sequential Gaussian Simulation (SGS) 

SGS simulation is a technique which is based on the decomposition of the 

multivariate conditional distribution function of the RF     
1

n

j j
j

Z x Z x


  

(Martinez, 2003), which is defined as :  

1 2 1 2 1 1( , ,.., ; , ,..., | ) ( ; | )N NF z z z x x x n F z x n   (1.14) 
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Observe that the process indicated in Equation 5.14 is a dynamic process in which the 

simulated value is aggregated to the original data set before performing the next 

simulation (see Algorithm 1). 

In this context, to generate N  simulations of the ore deposit, the technique samples 

the multivariate distribution given in Equation 5.14 in a sequential fashion. The 

practical difficulty is that, in general, we do not know how to calculate the conditional 

probabilities involved in Equation 5.14, except in the ideal case of a random Gaussian 

world. Then, for a Gaussian RF with known mean, the conditional distribution of 
ixZ  

is Gaussian and given by  

 *

i i i ix x x xZ Z    , (1.15) 

where *

ixZ  is the ordinary kriging estimator of 
ixZ  (see Equation 5.8), 2

ix  is the 

associated kriging variance (see Equation 5.12), and 
ix  are independent and identical 

standard normal distributed innovations, that is,   0
ixE    and   1

ixVar   .  

Then, if the domain 3A  is discretised in a fine grid of M  nodes, the general 

algorithm to simulate the M  nodes in the domain A  is as follows. 

Algorithm 1  

1) Define a random path, to be followed, visiting every location (node)  ix  being 

simulated. At this stage, there are M  grid nodes to be simulated and n  

observations available. 

2) At each location ix , build the conditional cumulative distribution function (ccdf) 

of 
ixZ  given the initial n  observations and all 1i   previously simulated values, 

and draw a simulated value, iz , from this distribution. This is done by randomly 

sampling the distribution of the innovation   in Equation 5.15.  
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3) Include this new value ( iz ) into the initial data set and loop through steps 2 and 3 

until the M nodes are visited and simulated. 

4) Repeat steps 1, 2, and 3, N  times to render N  simulations or images of the 

mineral deposit. 

The result of using simulation techniques for orebody modelling is a set of equally 

probable images of the deposit, which will contain more information about the 

characteristics of the orebody model, at each location ix , than the estimated model 

resulting from using linear estimators, such as kriging. That is now each block inside 

the block model will be characterised by a probability distribution function rather than 

a single estimated value. As it will be shown later in Sections 5.4 and 5.5, the 

additional information about the uncertainty of the geology of an orebody, generated 

by simulation techniques, will be of great assistance to the mine planner when 

assessing the risk on the economic and technical indicators of the resulting mine 

project. 

2.6 Estimation vs. Simulation 

As outlined in the previous section, kriging will always provide a single estimated 

model of an orebody. One characteristic of this estimated model is that each block 

will be characterised by an expected value of the pertinent geological attribute, such 

as metal grade and rock porosity, among others. Another characteristic of this 

estimated model is that it will not reproduce the model of spatial variability 

(covariance model) inferred from the data set. The reason for this is that kriging, or 

linear interpolator techniques in general, always estimate the conditional mean of the 

pertinent geological attribute by minimising the local error variance given in Equation 

1.13. That is these linear interpolator techniques try to give an exact value of the 

geological attribute at each location ix , which in reality has zero variance. This result, 

however, is at the expense of providing a measure of the spatial variability.  

On the contrary, simulation techniques always provide, at each location, a set of 

alternative equally probable realisations of the pertinent geological attribute spatial 

distribution. Similarly to OK, simulation techniques also reproduce the data values at 

their respective locations; however, contrary to OK, simulation techniques also 
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reproduce the data histogram and variogram models inferred from the drill-hole data 

set. This result, however, is at expense of providing a measure of the estimate or 

mean. In theory, the average of many simulations will converge to the result given by 

kriging. 

A diagram showing the typical differences between estimation and simulation is given 

in Figure 4. In the figure the dots represent the given data, such as metal grades 

throughout a mineral deposit; the continuous line represents the true metal grade; the 

dashed line represents the best estimation given by kriging; and the point-dashed lines 

represent two simulations based on the original data. As seen in the figure, the 

estimation curve is, on average, closer to the real curve (smoothed version of the 

curve), but it tends to underestimate high values and overestimate low values. This is 

because estimation is concerned with the minimisation of the error variance and since 

it is based on regressions it gives the best line that minimises the error variance.  

In the figure it is seen that the simulation curves give a better reproduction of the 

variability of the data than the estimation techniques. In fact, it is seen that 

simulations give a more realistic panorama about the dispersion variance of the real 

data, and consequently a better reproduction of the uncertainty of the metal grade 

throughout the mineral deposit. Observe, however, that since a simulated curve can 

still over-estimate or under-estimate the true value, it is very important to generate 

many simulations and analyse the results from a probabilistic viewpoint, that is based 

on probabilities of occurrence.  

Due to the fact that the estimation curve generated by linear interpolation techniques 

such as Kriging gives a model that is the closest, in terms of error variance, to the 

original (unknown) true geological attribute, it is normally preferable to locate and 

estimate mineral reserves; while the simulation curve is preferred for studying the 

dispersion of the characteristics of these reserves, remembering that, in practice, the 

real values are known only at the experimental data points ix . 
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Figure 4.  A comparison of idealised profiles of true grade (solid line), simulated 

grade (dot-dashed lines), and kriged estimated grade (dashed line) on a common 

profile. Note the similar variability of the true and simulated grades in contrast to the 

smoothed pattern of estimated grades. Also, note that all profiles pass through the 

known data points. (Reproduced from Journel, 1975). 

 

But, which one is the best for orebody modelling and mine planning and design? 

The answer to the previous question is not straightforward and normally depends on 

the attitude of both the mine planner and the owners of the mine in the face of 

uncertainty. If they prefer risk-neutral behaviour, then kriging is the best technique to 

model the mineral deposit. The reason for this is that, in a risk-neutral world, risk is 

not an issue; consequently the average model, given by kriging, is the best to 

characterise the deposit. Contrary to risk-neutral behaviour, if the attitudes of the mine 

planner and owners are risk-seeking or risk-averse, the simulation technique is the 

best for modelling the mineral deposit. The reason for this is that a risk-seeking or 

risk-averse attitude will use a specific model, selected from the simulations of the 

deposit, which is highly risky/safe in achieving specific targets such as ore tonnes, 

metal quantities and cash flows. Indeed, a highly risky/safe model also has large/small 

potential for future rewards, that is, there is a trade-off between rewards and risk. 

However, regardless of the attitude of the mine planner and owners of the mine, 

modern mine valuation techniques such as real options require the use of simulations 

of the orebody rather than a single estimate. The reason is that most of these 
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techniques are based on stochastic frameworks in which the value of a mine project is 

estimated under uncertainty, that is, the economic and technical project indicators, 

such as ore and waste tonnes, costs and cash flows, which are characterised by a 

distribution of probabilities rather than a single estimated value. It is important to 

mention that since both estimation and simulation are based on the same data (initial 

drill-hole data) both give the same information about the uncertainty of the deposit: 

the difference is that estimation techniques give information about the mean while 

simulations give information about variability.  

The proposed IVOF uses both estimation and simulation techniques when evaluating 

an open pit mine project. In this context an estimated orebody model is used to build 

the initial open pit mine project, named the base-case mine plan and design (see 

Chapter 3), while simulations are used to assess the risk in the base-case design and 

to, if necessary, re-design the initial base-case mine plan and design.  

To demonstrate the advantages and disadvantages of estimation by linear interpolation 

techniques, such as OK, and non-linear techniques, such as the SGS, a small example 

in which a 2D data set containing 78000 gold grades data points (see Figure 5), 

allocated to a 1m x 1m grid, is used as the true gold deposit (normally unknown at the 

beginning of the project) of a virtual mining project. This data set is called hereafter 

the exhaustive data set, is the classical Walker Lake standard data set: see, for 

example, Journel and Kyriakidis (2004), who have their own analysis of this data set 

as have other authors. From the exhaustive data set, 800 samples are collected, using a 

random sample grid of 20m x 20m (see Figure 6), and are assumed to represent the 

drill holes data, which are normally performed in a mine project to obtain information 

about the true value of the deposit (in this case the exhaustive data set). This drill hole 

data set is called hereafter the sample data set, normally known when starting a 

mining project.  

The idea is to use this sample data set to assess the resource/reserve variability of the 

entire unknown gold deposit (exhaustive data set) in terms of metal grade based on 

two conditional simulation runs (observe that in this case two simulations have been 

selected for the sake of simplicity), and to compare the results with the ordinary 

kriging resource estimates. Figure 5 shows the exhaustive data values with their 

respective histogram and variogram. Figure 6 shows the location map of the (drill-
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hole) data set as well as its histogram and variogram. From Figures 5 and 6, it can be 

seen that the experimental variograms, which are plotted in two directions (NE and 

NW), show a range of approximately 20m for both the exhaustive and sample data 

sets respectively. In this case, the spherical variogram (see the end of this Chapter) 

model is seen to give a good representation of the spatial variability. Table 1 presents 

summary statistics for both the exhaustive and sample data sets. These summary 

statistics indicate that, in general terms, the univariate statistics inferred from the 

sample data set provide a realistic approximation of the distribution of the exhaustive 

data set. 

Based on the sample data set, kriging is used to estimate the values at unsampled 

locations. The result is displayed in Figure 7. As shown in the figure, point ordinary 

kriging gives a smooth representation of the initial real deposit with well-delimited 

high-grade zones (in dark colour) and following a 45° North-East trend, which is also 

observed in the exhaustive data set (see Figure 5). These high-grades zones are due to 

the influence of high-grade samples located inside the range of the variogram (in this 

case around 20m).  

From Figure 7, it can also be seen that the mean of the estimated values is 0.85 and 

the standard deviation is 0.81, having a maximum value of grade metal of 13.69 gr/t. 

Doing a comparison with the sample data set, ordinary kriging estimated the values 

without varying the mean much, but reducing the variance between samples by almost 

54%. This smoothness, or reduction of variance, can be visualised better in Figure 8, 

where the variograms of both the data sample and ordinary kriging are plotted 

together.  

A comparison of the estimated model, generated by kriging, and the real deposit 

(exhaustive data set) shows that, in this case, kriging succeeded in generating high-

grade zones in places where high-grade samples were available at the sample data set. 

On the contrary, the previous comparison also shows that kriging was not able to 

reproduce high-grade zones at locations were no high-grade samples were available. 

This comparison can be visualised better in Figure 9, where the maps of the real 

(unknown) deposit, the sample data, and the OK estimated models are shown. In the 

figure, it can be seen that OK reproduced most of the values (high and low grade) 

surrounding the values obtained from the sample data set. For example, the zone 



               
55 

inside the square (shown in the three maps) is a high-grade zone that was successfully 

reproduced by kriging due to the presence of high grade samples; consequently, this 

ore block will be sent to the mill. On the contrary, the zone inside the circle, which is 

a medium-high grade zone, was not reproduced by kriging because of the lack of 

medium-high grade samples inside the circle area in the sample data set; this block 

will be sent to the dump even though it is high grade. Thus, it is seen that ordinary 

kriging is locally accurate but does not reproduce the variability of the metal grade in 

unsampled zones. 

 

 

Exhaustive 

data set 

Sample 

data set 

Number Samples 78,000 800 

Mean 0.84 0.86 

Quartile 25% 0.07 0.07 

Median 0.20 0.19 

Quartile 75% 0.81 0.79 

Std. Deviation 2.03 1.79 

Minimum 0.00 0.00 

Maximum 50.00 13.69 

CV 2.42 2.07 

Table 1. Univariate statistics associated with the exhaustive and sample data sets. 

Observe that, in general terms, the sample data set provides a realistic approximation 

of the distribution of the exhaustive data set. 

Conditional simulation is next used for generating the exhaustive data based on the 

sample data set. In this case, two simulations or images of the exhaustive data are 

generated using the sequential Gaussian simulation technique. Figure 10 shows the 

map, histograms and variograms of both simulations where the mean and the standard 

deviation of each simulation are seen to be 0.85, 0.87, and 1.78, 1.81, respectively. 
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From the figure it is clear that, unlike ordinary kriging, simulations reproduce the 

histograms and variograms of the data sample, giving more accurate values inside the 

study area.  

On the other hand, simulations keep both the spatial correlation and variance of the 

data sample, giving a better reproduction of the characteristics of the real deposit than 

kriging. Thus, it is illustrated that conditional simulation techniques represent a 

potential tool for quantifying and assessing the uncertainty of the orebody via 

alternative realisations or images of the deposit.  
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Figure 5. Diagram showing the exhaustive data set containing 78000 samples, and its histogram and respective experimental and fitted model 

variograms. In the figure, the bar next to the map of exhaustive data set indicates the variation in metal grade: dark colours indicate high grade. 
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Figure 6 Diagram showing the sample data set containing 800 samples, and its histogram and respective experimental and fitted model variograms. In 

the figure, the bar next to the map of sample data set indicates the variation in metal grade: dark colours indicate high grade. 
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Figure 7. Diagram showing the estimated model of the deposit with its respective histogram, experimental and fitted model variograms. In the figure, 

the bar next to the map of estimated values indicates the variation in metal grade: dark colours indicate high grade. 
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Figure 8. Diagram showing the reduction of variance that the estimation performs 

with respect to the sample data. 
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Exhaustive data se
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Figure 9. Diagram showing a sampled zone (in the square) where ordinary kriging 

gives a correct estimation and an unsampled zone (inside the circle) where ordinary 

kriging does not give an accurate estimation. Note that, in the middle diagram, the 

circles indicates drill sample sites, where the darker the circle the higher the grade.  

 

 



               
62 

  

 

Figure 10. Diagram showing two simulations of the deposit with their respective 

histograms and variograms. In the figure, the bars next to the map of simulated values 

indicate the variation in metal grade: dark colours indicate high grade. 
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2.6.1 How many simulations need to be generated to accurately 

characterise the uncertainty of the orebody model? 

When dealing with simulation techniques to assess the uncertainty of an orebody 

model, the following general question is frequently formulated: How many 

simulations should be generated to quantify accurately the orebody uncertainty?  

The answer to this question is not straightforward. Even though some books 

specialising in Monte Carlo and Bootstrap techniques (see for example Efron, 1979) 

recommend to generate at least 200 simulations, a more realistic answer is to generate 

enough simulations of the orebody model which can approximate the continuity of the 

cumulative distribution function (cdf) of the geological attribute under study, for 

example, ore tonnes and metal content above a given cut-off grade. Figure 11 displays 

a scheme of the differences in generating cdf curves using one, three and many (>100) 

simulations of a specified geological attribute. As seen in Figure 11-A, if one 

simulation of the orebody model is generated (as it is normally done when using a 

linear estimator), then all the information about the behaviour of the attribute under 

study throughout the orebody is just a single value, which needs to be accepted as 

representative of the orebody model. If three simulations are now generated (Figure 

11-B) then the cumulative density function will be characterised by a step function, 

which does not ensure the continuity of the resulting cdf, and consequently it will not 

give an accurate characterisation of the stochastic behaviour of the process under 

study. However, if many simulations of the deposit are generated (say >100), as 

shown in Figures 11-C and 11-D, then the resulting cdf will have better continuity 

than the cdf curves generated with few models, giving a more accurate 

characterisation of the stochastic behaviour of the process under study.  

In practice, the decision of how many simulations need to be generated will depend on 

the geologist’s or geostatistician’s attitude to uncertainty—that is they will decide if a 

certain number of simulations characterise the orebody well based on experience and 

visual analysis (core logging and in situ analysis). Other factors such as human and 

computer demand have also some influence on the decision of the number of 

simulations to be used in the analysis.    
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Figure 11. Diagram showing the differences in the continuity of the cdf curve of a 

specific geological attribute, e.g., ore tonnes and metal quantities above a given cut-

off grade, when using one, three,…, and several (>100) simulations of an orebody 

model. Note that there is not a specific rule that can be used to know the number of 

simulations necessary to achieve accuracy. In practice, it is common to generate 

100N   simulations since it gives a good representation of the continuity of the 

cumulative distribution function (cdf).  

2.7 Open pit capital investment project: from the traditional 

DCF to the RO techniques  

Traditionally, mine organisations use various types of quantitative methods to 

estimate costs and values associated with a proposed mine project. Among these 

measures of profitability, the NPV (Gentry and O'Neil, 1984) is the most used in the 

mining industry because it recognises the time value of money and accounts for risk 
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via an adjusted interest rate, R  (see Equation 2.1), giving the analyst a tool for 

making financial investment and dividend decisions.    

More formally, the NPV technique consists of subtracting the capital investment, 

CapInv , incurred at the beginning of the mining project (assumed to be period 0t ) 

from the sum of the present values of the expected net cash flows at time t (
tCF ) 

generated throughout the operating life ( 1,2,..,t T ) of the open pit mine, given by   

 
 

1 (1 )

T
t

t
t

E CF
NPV CapInv

R

 


 . (2.1) 

In practice, the expected cash flows generated at each production period, defined in 

general terms as  

        t t t tE CF E q E S E ProdCost   , (2.2) 

are estimated using expected values for the underlying variables such as the metal 

price, tS , total production cost, tProdCost , and metal quantity produced, tq , at each 

production period 1,2,..,t T . Throughout this thesis, we shall consider the 

calculation of the above expectations in detail. 

As mentioned at the beginning of this section, one important characteristic of the NPV 

technique is that a single adjusted interest rate, R , is usually applied to all future cash 

flows (see Equation 2.1) to account for both the risk generated by the uncertainty of 

the future values of the economic and technical underlying variables, such as metal 

prices, the shareholder’s expectation of returns, ore tonnes, and metal quantities, 

respectively. Normally, this adjusted interest rate, R , is estimated as the mining 

company’s Weighted Average Cost of Capital (WACC) (see Equation 2.3). In this 

way corporate management preferences for cash flows over time are also achieved. If 

it is considered that the mining company has equity and debt only, the WACC interest 

rate, R ,  is determined as the weighted average of the cost of debt and the cost of 

equity, that is, 

 ( / )(1 ) ( / )WACC c d eR D V T r M V r   , (2.3) 
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where the market value of the mining company, V D M  , is the sum of the firm’s 

interest-bearing debt, D , and the market value of the equity, M ; cT  is the corporate 

tax rate; dr  is the pre-tax yield on the company’s debt; and er  is the company’s 

expected return on equity as given by the capital asset pricing model (CAPM) 

(Sharpe, 1964; Lintner, 1965). In this case, er  is defined as  

 
( ) ,

e f premium

premium m f

r r r

r r r 

 

 
 (2.4) 

where fr  is the risk-free rate (usually given as the yield on government bonds), and 

premiumr  is the risk premium composed of the expected return on the market portfolio, 

mr , and the ―beta‖ of the company,  , which is a measure of the correlation between 

the return of the company’s stock and the return on the market portfolio (Peirson et 

al., 2001). Observe that if the company is composed of only equities, as it is normally 

assumed in mining project evaluations after Modigliani and Miller (Modigliani and 

Miller, 1958)
10

, then by replacing 0D   in Equation 2.3, it is observed that the risk 

adjusted interest rate, R , is equal to the company’s expected return on equity, that is,  

 f premiumR r r  . (2.5) 

One problem arising from using the WACC risk adjusted rate of return, R ,  for a 

mining company is that, because it is a global indicator of risk, that is, the mining 

company uses this WACC for all projects and for all scenarios, it could lead to an 

incorrect perception of risk when applied to projects that are significantly different 

from the firm as a whole. This is the case for different mining projects in which the 

uncertainty of the orebody is different, that is, metal grade distribution and other 

geological, geotechnical and geometallurgical properties throughout the orebody vary, 

among others. In fact, different risk-adjusted discount rates should be used for the 

                                                 

10
 Modigliani and Miller (1958) have shown that the value of a firm or project is unaffected by its 

financing decisions. That is, in frictionless markets, the risk-adjusted return, R , expected by both 

shareholders and lenders would gradually adjust upwards as the level of debt increases, and that, for 

this reason, in the final analysis the actual level of debt used to fund a project should not matter.    
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different mining projects of the company, rendering each their own cost of capital. To 

do this, it is necessary somehow to estimate the correlation between the specific 

project returns and the market as a whole, either by identifying betas from firms that 

are ―similar in risk‖ to the project or by making a difficult subjective estimate of the 

beta. In this way, a risk premium  m fr r  in Equation 2.4 could be estimated and 

used in the valuation process.  

The determination of a single risk premium, which is able to aggregate the risk of all 

variables input into the valuation process, is, however, a difficult task to achieve. The 

reason for this is that the estimation of the beta and risk premium only considers 

variables traded in the market, e.g., metal prices, but not the variables that depend 

only on the nature of the mining project, such as production costs and metal 

quantities, among others.   

Another problem arising from using the WACC risk adjusted rate of return of the 

mining company, R , is that given a flexible project in which decisions can be made 

throughout the operating life of the mining project, it might be necessary to use 

different discount rates for different production periods, that is, a dynamic discount 

rate. The risk of the project may change over time depending on how uncertainties 

unfold and management reacts (Smith and McCardle, 1999). However, the task of 

estimating an appropriate single dynamic WACC risk-adjusted rate of return is also 

very difficult to achieve.  

Nevertheless, due to its simplicity, the traditional NPV is still the widely accepted 

way of making practical investment decisions in the mining industry. Observe that the 

simplicity of the traditional NPV could be an inconvenience for new evaluation 

techniques to be accepted as standard open pit mine evaluation tools. However, since 

mine planners, mine managers, and investors have started to ask questions about the 

performance of their mine projects in the face of uncertainty, it is only a matter of 

time until a new evaluation technique that is able to answer these questions will 

emerge as the standard tool for evaluation of open pit mine projects. This is precisely 

the objective of this dissertation, that is, to give the mining industry an alternative 

technique for open pit mine project evaluation in which uncertainty, operational 

flexibility, and planning, design and optimisation procedures are considered. 
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2.7.1 Certainty equivalent, forward contracts and the real options 

analysis for open pit project evaluation 

One interesting result that can be observed from Equation 2.1 is that, due to the fact 

that each future cash flow, 
tCF , generated at each production period 1,2,..,t T  is 

uncertain, its present value is estimated by discounting at the adjusted discount rate, 

R  (see Equation 2.3). However, if each cash flow 
tCF  were certain then its present 

value could be estimated by discounting at the risk-free rate fr , which is only a time 

adjustment. It is logical, then, to think that there must be a certainty equivalent cash 

flow CE

tCF , for each generated expected cash flow,  tE CF , such that its present 

value can be expressed as  

 
 

   1 1

CE
t t

t t

f

E CF CF
PV

R r
 

 
, (2.6) 

where the present value is estimated using just the risk-free discount rate, which is 

constant over time. This, of course, means that because the same discount rate is used 

for every future cash flow, the certainty equivalent must decline steadily as a fraction 

of the expected cash flow, that is,  

  
 
 

   
1

, 1 1
1

t

fCE

t t f

r
CF E CF with R r

R

 
    

  

. (2.7) 

One problem with Equation 2.7 is that the estimation of certainty equivalent cash 

flows using traditional methods, such as the utility theory (see for example Guj, 2006, 

pp131-132), is not an easy task when risk fluctuates over the life of the project 

(Brennan and Trigeorgis, 2000). The reason for this is that it requires the estimation of 

a dynamic risk premium, which is also a difficult task (see, for example, Zhang, 

(2004)  and Berk et al. (1999) ). 

In the mining industry, however, mineral commodities’ forward sales are a form of 

certainty equivalent because of the binding nature of forward contracts (Guj, 2006; 

Cortazar and Schwartz, 1998). In this context, a forward contract is an agreement 

written at period 0t  to buy or sell an underlying asset, in this case the metal produced 
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by a mining project, at a predetermined price, that is, the forward metal price 
0

T

tF , at a 

specified future delivered period 0T t , where terms are initially set such that the 

contract is costless (Rubinstein, 1999); that is at period 
0t  (normally the beginning of 

a year) the mine company (the seller) agrees to deliver, at period 0T t  (normally the 

end of the year), a specific quantity, q , of the asset (the metal(s)) to the buyer, at the 

specific unit price, 
0

T

tF , which indicates that it is the unit price of the asset agreed at 

period 0t  to be paid at period 0T t . In other words, the seller will receive the total 

agreed price, 
0

T

tqF , in cash and with certainty at the time of delivery.  

The real options (RO) technique, which is based on modern asset pricing (MAP) 

theory, makes use of the concept of forward contracts to evaluate mining projects, as 

an alternative to the DCF, by understanding and controlling the effect of uncertainty 

and risk in the project. This is possible because of the major advances in asset pricing 

theory made in the last three decades. 

“The long history of the theory of option pricing began in 1900 when the French 

mathematician Louis Bachelier deduced an option pricing formula based on the 

assumption that the price of the underlying asset follows a continuous random walk. 

Sixty-five years later, Samuelson  replaced Bachelier’s assumption and stated that the 

price of the underlying asset follows a geometric continuous random walk” (extracted 

from Merton, R., 1973- Theory of rational option pricing) . 

The key propositions on which these techniques are based are as follows:  

1. The evaluation may be carried out, to a good approximation, in a perfect market 

(free of transaction barriers). In such a market, different assets which produce the 

same cash flow result have the same price. Additionally, in such a market, it is 

possible to replicate the cash flow results, and thus the value of a complex asset 

(in a mining venture), by executing a trading strategy in a portfolio of simple 

assets, such as riskless bonds and metal future contracts. 

2. All asset prices are determined by the investor’s risk preferences. Thus, those 

assets that have direct interaction with future macroeconomic variables are the 

ones that provide information about risk discounting. In the mining context, the 
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basic assets are the metal future contracts that are related to the corresponding 

future metal prices.  

Similar to financial option analysis (see Appendix B), real options analysis is a 

valuation and strategic decision paradigm that applies financial option theory to real 

assets (Rogers, 2002). So they differ from financial options in that they deal with 

tangibles rather than financial underlyings. But the concepts underlying their 

usefulness as a tool for dealing with uncertainty are the same. The similitude and 

differences between financial (American) options and real options are given in Table 

2, while in the mining context, the comparison between a real options on a mining 

project and a call option on a stock is given in Table 3. 

Financial Options 

 

Real Options 

Short maturity often quoted in months 

 

Longer maturity usually in years 

Underlying variable driving the value is the 

equity price or price of a financial product 

Underlying variables are cash flows, which in 

turn are driven by competition, demand, 

management, and other real (technical) 

constraints 

 

Because of legal restraints cannot control 

value of option except through the market 

place 

 

Can increase strategic option value by 

management decision and flexibility 

Values are usually small Values are very large, usually in the millions 

 Competition and market effects are irrelevant 

to its exercise price 

 

Competition and market drive the value of a 

strategic option 

Usually solved using closed form partial 

differential equations and binomial lattices 

with simulation of the underlying variables 

 

Usually solved using closed form partial 

differential equations and or binomial lattices 

with simulation of the underlying variables 

 Marketable with comparables and pricing 

information 

Not traded and proprietary in nature with no 

market comparables 

 Management assumptions and actions have 

no bearing on valuation 

Management actions drive the value of a real 

option 

 Table 2. General similarities and differences between financial and real options 

(adapted from Bradley, 2004).  
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American Call Option Real Option On Mining Project 

Current value of stock (Gross) PV of expected cash flows 

Exercise price Investment cost 

Time to expiration Time until opportunity disappears 

Stock value uncertainty Project value uncertainty 

Riskless interest rate Riskless interest rate 

Table 3. Comparison between a call option on a stock and a real option on the 

acquisition of a mining project . 

 

2.7.2 Partial differential equations 

Quantitative RO valuation originates from the seminal work of Black and Scholes 

(BS) (1973) and Merton (1973) in the pricing of financial options. Basically, the 

authors derived an equilibrium partial differential equation, given by  

 
2

2 2

2

1
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S r rC
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

  
   

  
, (2.8) 

which satisfies the price of the call option, C , as a function of the price, S , the 

volatility,  , of the underlying stock
11

, and the risk free rate of return, r . This was 

done using the Ito’s differential equation (Oksendal, 2003). 

The closed solution estimated by the authors is well known as the Black-Scholes 

option pricing formula (Walls and Eggert, 1996; Rubinstein, 1999; Hull, 1989).  

                                                 

11
 In this case the authors assumed that the underlying stock followed a stochastic Geometric Brownian 

Model (GBM) given by t t tdS S dt dZ   , with tdZ  being an increment of the standard Wiener 

process. 
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The idea of risk neutral valuation in which all assets should have an expected return 

equal to the risk-free rate of return was introduced by Cox and Ross (1976), which 

asserted that the BS formula (see Equation 2.8) could be used for pricing options 

regardless of the risk attitude of the investor after observing that the BS formula did 

not include the expected return of the stock.  

In essence, valuation of financial options is based on the construction of an equivalent 

portfolio that replicates the return of a financial option. This synthetic equivalent is 

constructed as a portfolio of the underlying asset and risk-free borrowing and lending. 

The option and the replicated portfolio must then have the same value at the 

expiration period to avoid arbitrage
12

 (Billingsley, 2006; Hull, 1989).  In this context, 

Harrison and Kreps (1979) demonstrated that the absence of arbitrage implies the 

existence of risk neutral probabilities associated with each possible payoff of the 

option at maturity. 

One of the first mine valuation models based on financial options was the one 

developed by Tourihno (1979). In his thesis, Tourihno demonstrated that it is never 

optimal to extract the reserve (in the ground) of a mining project if there is no time 

limit for extraction, calling this result the extraction paradox. Then, using option 

theory and assuming that there are costs associated with holding the reserves and 

storage of the extracted resource, he solves the extraction paradox using partial 

differential equations and the Ito’s lemma (Hull, 1989; Dixit and Pyndick, 1994; Chan 

and Wong, 2006).  

Although this model gave the fundamentals of the application of option theory in 

solving real problems, such as a natural resource problem, it was given in a general 

context in which technical aspects of the deposit, such as in situ reserves uncertainty 

and the design of the project, were not considered in the valuation problem. Further, 

Tourinho’s model did not recognise the value that could be added to the estimated 

project’s value by reacting to future good or bad news, that is, the flexibility value.   

                                                 

12
 Arbitrage is the process of buying assets in one market and selling them in another to profit from 

unjustifiable price difference, that is,, it is about identifying mispricing and developing strategies to 

profit from it free of risk.  
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Brennan and Schwartz (1985) were the first to show how to use the continuous time 

arbitrage and stochastic control theory to value mining and other natural projects. 

They established the companion investment rule where the project could be in one of 

three stages: open, temporarily shut (closed), or permanently abandoned.  

In this case, following the work done by Merton (1973) and Cox and Ross (1976), the 

authors derived an equilibrium partial differential equation for the value of a mine, 

H , based on future prices given by (after Ross (1978)) 

    
,

r
F S Se

 



 , (2.9) 

where   is the convenience yield that accrues to the holder of the physical asset and 

not to the holder of a contract for future delivery of the commodity. A detailed 

derivation of Equation 2.9 can be found in Hull (1989) p83. Then, the instantaneous 

change in future prices, tdF , is given by applying Ito’s lemma to Equation 2.9, that is,  

   ; .t t s s t t s

F
dF S F r dt F S dZ with F

S
  


    


 (2.10) 

Changes in the value of the mine,  , , , ,tH H S Q t j  , which depends on the metal 

price, tS , the physical inventory in the mine, tQ , both at period t, the condition of the 

mine, that is, 1j   if open or 0j   otherwise, and the operating policy of the mine 

 , can now be expressed (applying Ito’s lemma) as 

  
21

2
S Q t SSdH H dS H dQ H dt H dS    , (2.11) 

with  

 
2

0 2
, , , ,t s Q ss

H H H
dQ q dt H H H

S Q S

  
    

  
 (2.12) 

where 0q  is the production rate of the mine, assumed to be a costless variable between 

two fixed limits. The solution of Equation 2.11 is then estimated by using appropriate 

boundary conditions (see Brennan and Schwartz, 1985, for more details).  
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Other authors also used the PDE to apply real options to mining projects. For 

example, Palm, Pearson and Read (1986)  valued the option to shut down and reopen 

low-cost and high-cost copper mines. Cavender (1992) valued the option to shut down 

a small open pit gold mine. Mardones (1993) analysed flexibility to adjust cut-off 

grade, Frimpong and Whiting (1997) extended the Brennan and Schwartz (1985) 

mineral resource model to develop the derivative mineral valuation (DMV), which 

was based on the dynamic arbitrage theory. In another paper, Frimpong and Whiting 

(1998; 1997) developed the dynamic risk model (DRM) for valuing long term, multi-

phase mining ventures, which overcame the limitations of conventional methods. One 

important feature of this model was that it used the variance sensitivity ratio (VSR) in 

the capital market to derive the expected venture return and values from the venture 

and the market risk structures. 

Although the key insight of the Brennan and Schwartz model was to stress the 

functional equivalence between the mine project and a portfolio of traded claims that 

allow the mine analyst to replicate the untraded project with traded assets, their work 

was not complete since many assumptions were adopted. Armstrong and Galli (1997) 

analysed the approach developed by Brennan and Schwartz (1985), highlighting that 

the weaknesses of their approach (from a mining point of view) were the assumptions 

of known costs, perfect homogenous ore and known ore quantities, which are 

untenable since ore bodies are always heterogeneous. They highlighted the 

importance of reserve evaluation and cut-off grade in project evaluation, suggesting 

that more work was required to make this part of the model more realistic. Further, the 

authors also indicated that the assumption of stopping and re-starting a mine just 

because of unfavourable commodity prices is unrealistic, suggesting that care would 

be needed to work out the real costs of stopping a mine operation in order to 

incorporate it into the valuation model. The importance of the inclusion of the 

uncertainty of the geology of the orebody into the evaluation process was also 

recognised by Hurn and Wright (1994) after testing the main implications of models 

of irreversible investment using real data coming from oil operations in the North Sea.  

Up to this point it was clear that the assumption of heterogenous and known mineral 

reserves in the valuation of mining projects was not correct. For this reason, 

subsequent works done in mine project evaluation tried to account for orebody 

uncertainty in different ways.  
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For example, Samis (2000) proposed a model of project structure in which the mineral 

deposit is divided into multiple ore reserve zones, each of them indicated by an index 

zone. In this model, the mineral deposit is seen as a portfolio of real assets in which 

each zone constitutes a fraction of the entire portfolio. Each zone has its own technical 

characteristics, such as quantity of reserves, quality of mineral, exploitation plan and 

capacity for ore and waste, and its own grade uncertainty characteristics. Further, the 

grade uncertainty of each zone is assumed to be independent of the grade uncertainty 

of other zones. One interesting feature of this model is that it introduces the 

uncertainty of the mineral deposit into the valuation process by defining, ex-ante, a set 

of possible grade multiplier outcomes for each specified mineralised zone. Once the 

zones and their respective technical characteristics are established, management 

operates the project for discrete intervals of time by choosing, at the start of each 

interval of time, an operating mode from a set of competing operating modes. Each 

mode specifies the combination of zones that will be active and the amount of mineral 

processing capacity that is built, abandoned or temporarily closed during the next 

period.  

Although the model proposed by Samis tried to account for all the economic and 

operating possibilities that could occur in an open pit mine operation, using a 

combination of decision trees, dynamic programming and partial differential 

equations for making operational strategies, it also makes big assumptions. For 

example, it assumes a free mine design selection, that is, the model does not consider 

a specific mine design or scheduling constraint over time in which it is not always 

feasible to mine different zones of the pit. As a matter of fact, it assumes that a 

mineralised deposit can be mined completely, which is not true. In reality in an open 

pit mine operation the material to be mined is the one inside specific limits, that is, the 

ultimate pit and the production sequence limits. Consequently, the free selection 

assumption is not a realistic representation of a surface mine operation, where 

different zones cannot be exploited as free selection but follow a specific technical 

constraint, that is, the production schedule plan. 

Another assumption of Samis’s model is the independence of metal grade uncertainty 

between the specified mineralised zones, which is not correct since correlation exists 

throughout the ore deposit. It could happen that the metal grade uncertainty of two or 

more zones may behave as independent processes; however, the identification of these 
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zones based on the initial data (drill-hole data) is not an easy task without a further 

analysis (e.g., using geostatistics, as shown in Chapter 5).  

Even though an attempt for assessing risk in metal grades is done by incorporating 

grade multipliers in the model, the model proposed by Samis considers only expected 

metal grades values in the valuation process due to the fact that geological uncertainty 

is diversifiable, or unsystematic, risk since it is not correlated with the market 

uncertainty. Although Samis is correct in that geological uncertainty is an 

unsystematic risk, the geological-metal grade uncertainty should not be represented 

merely by a risk factor but a distribution of probability: in this case the practical (real) 

distribution of probability should be used instead of the adjusted one (in the sense of 

risk neutral measures). Furthermore, in his conclusions Samis states that geological 

uncertainty has small impact on development decisions, when these decisions are 

associated with large expenditures, but big effects when development expenditure is 

smaller. This conclusion is also not totally accurate since many authors such as Rossi 

and Van Brunt (1997), Farrelly (2002), Martinez (2003), and Godoy and 

Dimitrakopoulos (2001), among others, have shown that geological uncertainty plays 

an important role in mining project evaluation, especially in small projects in which it 

is important to have a good estimate of the mineral resources since it is recovered in a 

short period of time and the owners of the mine expect to recover their investment 

with a profit. 

Other authors such as Moel and Tufano (1998), Cortazar et al. (2001) and Gloria 

(2004) have included the uncertainty of the reserves in the valuation process by 

considering three discrete orebody models: a rich, an average and a poor model 

(apparently based on metal grade distribution). The objective of using this procedure 

was to characterise the effect of the orebody uncertainty on the open pit project mine 

project evaluation. In this case, each pit design has an associated probability of 

occurrence, which is the same as the probability of occurrence of their corresponding 

orebody model. The value of each pit design scenario is then estimated by applying 

the Brennan and Schwartz model (1985) to each of them. Finally, the expected value 

of the mine project is obtained by multiplying the estimated value of each pit mine 

scenario with its respective probability, and summing.  
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Although this approach for including ore reserve uncertainty in the valuation process, 

that is, selecting a rich, average or poor orebody model, is an improvement on 

previous techniques in which either a deterministic model was assumed for the 

depletion of the reserve or different zones of the deposit were characterised with a 

range of grade multipliers, its fundamentals are not correct. The reason for this is that 

this process makes the following assumptions: i) the grade distribution throughout an 

orebody is linear; ii) there is a direct relationship between the metal content of an 

orebody and the metal content inside the pit design; and iii) the value of an open pit 

mine project does not depend on the design of the mine. As it will be shown in 

Chapter 4, these assumptions are not totally correct and could lead to a wrong 

perception of the value of the mine. 

A more realistic treatment of the problem of including the uncertainty of the orebody 

in the evaluation process has been given first by Carvalho, Remacre and Suslick 

(2000) and later on by Henry, Marcotte, and Samis (2005). In their work, the authors 

explore the possibility of linking geostatistical simulation techniques and real options 

methods to obtain more reliable estimates of the value of the mineral reserve. To 

achieve this, the authors make use of simulated orebody models to quantify the 

uncertainty in metal grades throughout the orebody and to assess their effect on the 

mineral reserves’ value. In this context, the mining of a block with economic mineral, 

allocated inside an already defined working zone
13

, and to be extracted in a specific 

period T , is seen as a European option. In this case, the uncertainty of metal price is 

characterised by a Geometrical Brownian Motion (GBM) and the uncertainty in metal 

grade is characterised by the simulated models, while the cost of extracting the block 

becomes the strike price of the option. In their conclusions, the authors highlighted the 

importance of including the uncertainty of metal grades in the evaluation process 

since it has a great impact in the final reserve value. One drawback of this approach, 

however, is that it did not consider the effect of orebody uncertainty in open pit mine 

planning and design, considering that there was already a mine design, as is the case 

                                                 

13
 In this case a working zone can be represented by a production bench inside the limits of the open pit 

mine or a cutback. A production bench is composed of a set of blocks which are drilled, blasted and the 

material hauled either to the dump (if waste) or to the mill (if ore).  
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of Henry, Marcotte and Samis’ work, or a free selection mining process in which all 

the blocks inside the deposit are considered for the economic analysis, as is the case 

of Carvalho, Remacre and Suslick’s work. However, this technique sees the mine 

evaluation problem in a static fashion and can be used as part of a general evaluation 

framework, such as the proposed IVOF. That is, it could be used to optimise just a 

given cutback or long term scheduling of a mine project. In this case the cutback 

could be viewed as the block to be extracted.  Although not applicable in open pit 

project evaluation, the idea of using simulated models of the orebody for quantifying 

and assessing the effect of metal grade uncertainty on the reserves is certainly correct 

and more realistic than previous techniques.   

A recent approach that attempts to solve the mine project evaluation problem in the 

face of mineral reserves and metal prices uncertainties is that of Dogbe (2006). Dogbe 

improved the work done by Brennan and Schwartz (1985) by including the variation 

of mineral reserves into the valuation process as a stochastic process. One important 

characteristic of Dogbe’s work is that it is the first to recognise the different effects 

that metal grade and metal price variations have on the variation of mineral reserves. 

That is the variation in the mineral reserves of an open pit project is mainly due to two 

independent factors: i) the variation in metal prices, which is considered as an 

exogenous geometric Brownian process; and ii) the variation in metal grades, which is 

considered as an endogenous Wiener process. In this context, the value of the mine is 

formulated as a complex stochastic partial differential equation that depends upon the 

amount of reserves in the project, the metal price, and the current state of the mine, 

e.g., opened or closed.  

Even though this model is an improvement on previous works, in which it tries to 

account for the uncertainty of the risk factors—that is, metal price, reserves of mineral 

and metal grade—modelling them as stochastic processes embedded in the mine 

value, it also suffers from the same drawbacks as the previously reviewed models. 

When valuing an open pit mine project, this work does not account for the orebody 

uncertainty and its effect in open pit mine plan, design and production scheduling. 

Furthermore, this work assumes a parametric approach for characterising and 

quantifying over time both the mineral reserves and the metal grade distribution in the 

deposit. For example, in his work Dogbe characterised the variation of metal grades as 

a Wiener process by stating that there is no abnormal information revealed during the 
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mining phase to cause a sudden jump in reserves. He also suggested that as an 

alternative a combination of jump and diffusion processes could be used to 

characterise abrupt changes in ore reserves. These assumptions are not realistic since a 

mineral deposit is a complex three dimensional system that is characterised by several 

geological and geomorphologic features such as joints and faults, which in most cases 

control the distribution of mineralisation throughout the orebody. In other words, it is 

a non-linear spatial system in which the changes in trends and variance of the 

geological properties do not follow a specific time structure but a spatial non-linear 

structure, which cannot be characterised by a one-dimensional time diffusion model. 

An orebody depends on both space and time.  

Furthermore, normally, the information collected from drill-holes is not enough to 

estimate the correct values of the parameters of these assumed models. Consequently, 

the characterisation of these events via an ex-ante stochastic one-dimension Wiener or 

jump-Wiener model is not an accurate process to forecast changes in mineral reserves 

above a certain cut-off grade, and metal grades. As it was shown in Section 2.7, there 

are other techniques such as geostatistics that make use of the spatial properties of the 

orebody are used instead to characterise changes in reserves and metal grades 

throughout the mineralised orebody.  

Another drawback of the model proposed by Dogbe, which is also the main problem 

of using partial differential equations to solve real options problems, is that his model 

is not practical and turns the real option problem into a non-tractable complex partial 

differential equation process in which not only the stochastic process of each risky 

factor is accounted, but also the managerial flexibility that can be adopted at each 

production period. The main limitation of real options models based on partial 

differential equations is the estimation of realistic boundary conditions that allow the 

estimation of closed-form solutions. The author does recognise this issue
14

 and states 

that more research is needed.  

                                                 

14
 That is, the Wiener model and variations cannot characterise appropriately the geological properties 

of a mineral deposit without making strong assumptions, such as linearity, stationarity and elliptical 

processes, about the variability of metal grade throughout the mineral deposit. 
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The real options problem using partial differential equations also becomes more 

complicated if two or more metals are present in the mine project (as is common in 

reality). In this case the stochastic models assumed for all the risky factors, such as 

metal prices, reserves of mineral, and metal grade, have to be modelled as a multi-

variate process  turning the differential equation ruling the mine project’s value into a 

very complex high dimensional process.  

Seeing that partial differential equations were not tractable for dealing with complex 

real options problems, Cortazar (1999, 2001) suggested that other techniques based on 

the binomial lattice developed by Cox, Ross and Rubinstein (1979), and Monte Carlo 

simulations such as the Least-Squares Monte Carlo simulation (Longstaff and 

Schwartz, 2001), and the stratification method proposed by Barraquand and 

Martineau (1995), could be used instead of differential equations to solve complex 

real options  problems. The reason for this was that most real options problems do not 

have closed-form analytical solutions. 

2.7.3 The Binomial lattice  

Similar to the partial differential equation technique, the binomial lattice technique 

uses a replicating portfolio to solve real options problems such as the open pit mine 

project evaluation problem. In this context, as suggested by authors such as Copeland 

and Tufano (2004), Copeland and Antikarov  (2001), Brandao et al.  (2005), Smith 

and McCardle (1999), Smith and Nau (1995), McCarthy and Monkhouse (2003), and 

Guj (2006), among others, the estimated present value of the project itself, which is 

the NPV without flexibility, is used as a realistic and unbiased estimate of the market 

value of the project. This is known as the Marketed Asset Disclaimer (MAD) .      

In its simple form, the MAD model assumes that the value of the project will evolve 

over time following a GBM process. To show how this GBM assumption is utilised, 

let tV  be the value of an open pit project at time t  and 1t
t

t

V
R

V

  be its return
15

 over 

                                                 

15
  Observe that in this case  *1t tR r  , where 

* 1t t
t

t

V V
r

V

 
 . 
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the time period  [ 1 , ]t t . Under the GBM the logarithm of the returns,  lnt tz R , 

is normally distributed with mean z  and variance z , which implies that the 

distribution of the logarithm of the project’s return at any time is lognormally 

distributed. Therefore, tV  will be lognormally distributed and can be modelled as a 

GBM stochastic process in the form  

 t t t tdV V dt V dW   , (2.13) 

where 21

2
z      and t tdW dt  is a standard Wiener process where 

 0,1N . Then, based on this model, a Binomial lattice can be built in order to 

solve a real options problem as follows.      

Assume, for example, that  
0t

V  is the unknown present value (period 0t ) of the open 

pit mine project, without flexibility, which at period 0T t   increases to 
0

t

u tV V e   

with an objective probability q , or decreases to 
0

t

d tV V e    with probability  1 q  

(see Figure 12).  

The problem consists of estimating the value of the mine when the option to 

implement an operational strategy, such as closing or selling the mine, incurring a cost 

K  at period 0T t , exists. This new value is normally called the extended present 

value of the mine, 
0t

EV .  

To solve the problem, a replicating portfolio of an amount A  of a market traded 

stock, such as the metal that the mine produces, with current price 0S  and of B  

dollars invested in a risk-free bond that pays an interest rate r  (see Figure 13), is 

generated. Then, it can be shown that, similar to financial options (see Appendix A), 

the current extended value, 
0t

EV , of the project can be expressed as  

     
0

1rT

t u dEV e pEV p EV   , (2.14) 
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where p and  1 p  are the probabilities of an upward ( uEV ) and downward ( dEV ) 

movement in the expanded project’s value, respectively, at period 0T t , under the 

risk neutral valuation. 

Observe that in this case Equation 2.14 does not depend on the objective probability 

q  but on the risk neutral probability p . This is the result obtained by Cox and Ross 

(1976) in which they state that the pricing of financial options does not depend on the 

risk attitude of the investor and that the analysis could be performed in a risk neutral 

world in which a risk-free or risk neutral rate of return can be used. 

As a matter of fact, Equation 2.14 can be written as   

          
0

1 1rT RT

t u d u dEV e pEV p EV e qEV q EV       , (2.15) 

where the difference in using the adjusted rate of return, R , and the risk-free rate of 

return, r , resides in the use of the objective probability q  or the risk neutral 

probability p , respectively.  
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Figure 12.  The two-period open pit mine project evaluation problem. In the figure 

(left part) 0V  is the current value of the open pit project, uV  and dV  are an up or 

down movement of the open pit project’s value at period 0T t , occurring with the 

objective probabilities q  and  1 q , respectively. The problem consists of estimating 

the current extended value of the mine, 
0t

EV , that includes the option of implementing 

an operational strategy at period 0T t . In this case the current extended value of the 

mine, or payoff, at period 0T t  will depend on the extended future value of the mine 

project, that is, T

uEV , if it goes up, or T

dEV , if it goes down, and the cost, K , of 

implementing the operational strategy.   
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Figure 13. Generalised scheme of the two-date binomial call real option pricing 

problem stated in Figure 2. To estimate the extended value of the call option 
0t

EV , a 

replicating portfolio of the stock, e.g., metal produced by the mine, and bonds, is 

built. In this case, the portfolio is composed of A  quantity of the metal produced by 

the mine, whose current price is 0S , and B  bonds. In the figure, r  is the risk-free 

rate of return, p  is the risk neutral probability and m ,  1 m  are the objective 

probabilities of an up ( uS ) or down ( dS ) movement, respectively, on the metal price 

in one period ahead. Observe that the extended value of the mine does not depend on 

the objective probability, m , but the risk neutral probability p . Observe in the figure 

that for this example, 1T   period ahead, and both uEV  and dEV  are as in Figure 4. 
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Observe that the real options models based on the assumption of GBM requires the 

estimation of the volatility, V , as well as the dividend yield, V , of the project’s 

value, which, in most cases, are not observable via market data. Even though it is 

mathematically possible through complex stochastic calculus and partial differential 

equations to build specific project volatility and dividend yield models that take into 

account and combine the volatility of the various project inputs, as the number of 

inputs increases the construction of a realistic mathematical model becomes very hard 

to implement in practice.   

Copeland and Antikarov (2001), Brandao et al. (2005), and Guj (2006), have 

suggested, however, a more friendly way of constructing a real option model of a 

project by using the volatility of the after-tax cash flows, rather than the individual 

volatilities of various inputs. After all, the volatility of the project cash flows is a 

complex weighted function of the volatility of all the project inputs. This is done 

using Monte Carlo simulation (see, for example, Mun (2006) pp. 109-119). This is 

precisely the technique on which the MAD model is based. 

Smith (2005) suggested, however, being cautious when implementing the MAD 

model in real options problems. In his work, he suggested that the risk neutral 

approach given by CA and BDH, which uses a combination of DCF and the risk 

neutral valuation method
16

, could be replaced for a totally risk-neutral approach in 

which expected values of cash flows are calculated using risk-neutral values for 

variables that are market risks such as the metal price, and true probability values for 

variables that are not market risks (private risk) such as operating costs and metal 

quantity variation, all discounted at the risk-free rate of return. This technique is 

explained in more detail in Appendix C.1.  

Examples of the application of Binomial lattices to solve real options problems in the 

mining industry are given by McCarthy and Monkhouse (2003) and Pietro Guj (2006) 

(pp. 144-149), which give a comprehensive explanation of the application of real 

options in mineral economics. In their work, the authors stated that the Binomial 

                                                 

16
 The risk neutral approach suggested by CA and BDH consisted in using risk adjusted input variables 

into the DCF analysis, which uses an adjusted discount rate.  
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lattice technique and its variations are suitable for mine practices in which friendly 

tractable real options tools are required for mine project evaluation.  

2.7.4 Monte Carlo simulations  

Despite the beneficial properties that the Binomial lattice provides for solving real 

options, Smith (2005) stated that even though the MAD model has the advantage of 

reducing a potentially complex multidimensional problem to a univariate problem, it 

is apparently limited in solving some types of real options such as the option to wait 

and learn (deferral option). He suggested the use of Monte Carlo simulation 

techniques which have been developed for valuing high dimensional financial options 

as an alternative. 

Conversely with the MAD model, when valuing investment projects, Monte Carlo 

techniques consider the evolution of the underlying variables directly. In this context, 

a Monte Carlo simulation model is built that takes into account all the uncertainties in 

the problem. Based on this model, expected NPVs for any given exercise policy can 

be calculated. If it is desirable to use risk neutral valuation, then the risk neutral 

probabilities for the uncertainties are used discounted at the risk-free rate of return. 

The optimal policy is then approximated by using different methods, such as 

Longstaff and Schwartz’s (2001) least squares method (LSMC), which estimates the 

required continuation values using linear regression. Finally, given this near-optimal 

exercise policy, the expected NPV of the project using this exercise policy is 

calculated providing a lower bound on the project value that would be found using a 

truly optimal policy.      

Although Monte Carlo techniques are being recognised as flexible tools for dealing 

with many uncertainties when evaluating a mining project (see, for example, the work 

done by Gravet (2004), Blais, Poulin and Samis (2004), Smith (2005) and Laughton et 

al. (2000)), these techniques are still new in the mining industry and more research 

needs to be done to improve them in order to deal with all the uncertainties that affect 

the value of an open pit mine project. For the sake of completeness, the LSMC is 

described in Appendix C.2.  
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2.7.5 Managerial strategies 

As outlined throughout this section, RO provides a helpful tool for evaluating open pit 

mine projects. Firstly, it enhances NPV to capture the value of managerial decision 

flexibilities in implementing different strategies. Secondly, it enables taking a 

complex uncertain managerial situation and reducing it to a simpler analytical 

structure made up of basic types of real options .  

As mentioned in Section 1.5, this dissertation will deal mainly with two types of real 

options: the option to close the mine project at any time if future technical and 

economic conditions are unfavourable, and the option to defer the initial project 

investment in order to wait and learn from the arrival of new information. 

2.7.5.1 The option to close the mine at any time 

The abandonment option is one of the most common strategies considered in project 

evaluation (see for example pp. 174-175 of Mun, 2006). In mining, it consists of 

having the flexibility of closing and abandoning the open pit mining project 

permanently if market conditions or mineral resources decline severely. This strategy 

normally incurs costs for mine closure and land rehabilitation, while it also realises on 

secondary markets the resale value of capital equipment and other assets: this is 

known as the salvage value of the project.  

Something that has not been examined in the literature yet is the importance of this 

option to allocate the ultimate pit of a surface mining operation. In fact, as it will be 

explained in Chapter 6, the proposed open pit mine evaluation framework (IVOF) 

sees the allocation of the ultimate pit limits of an open pit mine project as an 

American abandonment put option in which the mine can be abandoned at any period 

for a price which will maximise the value of the project.  

2.7.5.2 The option to defer initial project investment  

The deferral option is a complex strategy which needs to be considered carefully 

when evaluating an open pit mine project. Normally, when the option to invest in a 

mining project exists, the holders of the option (the owners and stakeholders of a 
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mining firm) own the investment rights over the mineral deposit, which carries 

technical uncertainty on the tonnage and grade of the reserve
17

. In addition, the long 

run metal price follows a stochastic process. The deferral option is the flexibility of 

waiting and learning from the arrival of new information. Normally, there is a time to 

expiration of the rights for the option to develop, so the holders of the option need to 

make a decision during the option period ( Defer ). 

To make the investment decision, management needs to observe the new information 

arriving during the deferral period. The objective is to see if this new information 

about future parameter outcomes, such as metal prices and metal production, can 

reduce the uncertainty of the project value to levels that can justify the investment in 

the mining project
18

.  

To obtain new information about future metal prices, it suffices to wait and observe 

the behaviour of metal prices during the deferral option period Defer  (see, for 

example, McDonald and Siegel (1986), McCardle (1985), Guj (2006)  and Smith and 

Trigeorgis  (2004) pp.127-133, among others).  

Contrary to economic information, to obtain more information about the uncertainty 

of the orebody the mining firm needs to make further investment for allocating extra 

drill holes to the deposit. The problem arising from this action is to determine the 

optimal number of additional drill holes, and their respective locations, that maximise 

the NPV of the project. Logically, the cost of the additional data plus the cost of 

holding the lease on the project should be less than the expected increment in NPV 

that can be obtained with this new data, otherwise the mine analyst would construct a 

mine plan with the data already available. 

Different techniques have been used for solving this problem. For example, 

Guimaraes (2003), following the work done by Martzoukos and Trigeorgis (2001), 

                                                 

17
 As mentioned in Section 1.5, it is assumed that the mine firm has no competition and is the only 

bidder in the acquisition of the undeveloped mineral deposit. 

18
 This reduction of uncertainty can be conveniently expressed as the percentage of variance reduction 

in the project value. 
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uses a Bayesian approach for incorporating the new information into the RO valuation 

process. In this context, the conditional distribution of the value of the reserves, given 

the new information, is called the revelation distribution, and is used to evaluate the 

value of the project. One problem with this model is that it relies on the information 

given by a technical expert about the total uncertainty of the existing reserves, and the 

expected percentage of reduction of technical uncertainty due to the arrival of new 

information. In fact, in the mining or petroleum industries, the allocation of extra drill 

holes or wells, respectively, needs to be planned carefully since it is a very expensive 

activity. Further, due to the nature of the deposit, it is not an easy task to predict an 

expected percentage reduction in reserve uncertainty arising from the allocation of 

extra drill holes or wells, which is in itself a problem that is still a topic of research 

studies (see, for example, the work done by Froyland et al. (2004)  and Boucher et al. 

(2003)). Gloria (2004) improved the model of Guimaraes (2003) by using conditional 

simulation techniques to assess the effect of extra drill holes in the valuation project. 

In her work, extra drill holes were simulated and the mine plan was evaluated 

considering the orebody models generated using the new data set, which included the 

original drill-hole data set plus the simulated drill-hole data set. Even though the 

estimation of the mine based on the original and new data was not totally complete 

(see Section 2.2.2), the idea of simulating drill-holes in order to have more 

information about the uncertainty of the orebody is very good and more realistic than 

assuming expected values. Most importantly, Gloria’s work shows that, contrary to 

the belief of most people that the variability of orebody uncertainty will decrease as 

additional information becomes available, additional information increases the 

uncertainty even when the model is correctly specified
19

. This increment in 

uncertainty due to the arrival of new information was also demonstrated by Galli et al. 

(2001).  

Froyland et al. (2004) also used conditional simulation techniques to establish an 

upper bound for the NPV increment (not including drilling costs) achievable through 

additional drilling, called Value of Infill Drilling Information (VOIDI). Even though it 

                                                 

19
 It is believed that the only reason for which uncertainty can increase when new information is 

available is the misspecification of the initial model.   
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is an interesting model in terms of using stochastic linear programming for optimising 

production scheduling, it requires the assumptions of pre-established economic 

parameters, such as metal prices, production cost, as well as technical parameters such 

as free selection in which all blocks are included in the valuation analysis, which 

otherwise are not available at the beginning of the project.     

2.8 Open pit mine optimisation techniques based on orebody 

uncertainty  

Mine Optimisation (MO) procedures are a set of techniques that introduce analytical 

methods into mine planning and design to evaluate open pit mining projects. These 

techniques are used by engineers to optimise the value of an open pit mine operation 

by focusing on the effect of the orebody uncertainty, such as metal grade, on the 

planning and design, and on the open pit mine project.  

One important characteristic of these techniques is that they account for both the 

orebody uncertainty and the optimisation of the design and planning of the project. In 

its essence, mine optimisation techniques are based on: i) conditional simulation 

techniques (Chan and Wong, 2006; Halton, 1970) as methods able to provide a 

quantitative assessment of the uncertainty over the attributes of the orebody (e.g., 

grade, ore type, metallurgy recovery, etc.); and ii) Monte Carlo simulation techniques 

(Glasserman, 2004), which combined with conditional simulation assess the 

sensitivity of the overall pit economics, long-term mine planning and production 

scheduling to grade uncertainty. 

Mackenzie, Bilodeau and Mascall (1974) wrote one of the first works on mine 

valuation and optimisation. They described a simplified mine development decision 

model, using Monte Carlo simulation to optimise mine capacity and cut-off metal 

grade under conditions of uncertainty. The steps of their process are as follows. 

Firstly, the sources of uncertainty of the process were identified. In this case, total 

capital cost, annual operating cost, metal price, and average grade of the deposit, were 

identified as sources of uncertainty. Secondly, a specific model for each of the 

identified variables was assumed, and, finally, Monte Carlo simulation was used for 

sampling the distribution generated for each of the variables that are present in the 

optimisation process. 
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Although this model established the fundamentals of open pit mine optimisation in the 

face of uncertainty, this approach made several assumptions, such as the absent of the 

metal grade, ore reserves and metal price uncertainties. One of the reasons for these 

assumptions was the lack of technology necessary for describing or measuring the 

uncertainty of these variables, specifically the uncertainty of the orebody model and 

metal price. Furthermore, this model did not consider the design and plan of the mine 

in the optimisation process.  

David (1973) and David et al. (1974) introduced the idea of risk analysis using 

conditional simulation in mine planning and proposed this technique as a way of 

modelling possible real values rather than estimates. Key points discussed in their 

work were: i) the smoothness of estimates, while mining highly variable ore bodies; 

and ii) undervaluation of deposits because of smoothness of estimates. More 

specifically, the idea of using simulation in the analysis of open pit optimisation was 

established for the purpose of predicting the deviations from the forecasted results of a 

mine plan (obtained by using estimation techniques) and the real values.  

Years later, Dowd (1992), Ravenscroft (1992) and Dimitrakopoulos (1998) presented 

a general framework for dealing with geological uncertainty and risk in open pit mine 

design and production scheduling, which was based on the work done by David 

(1973, 1974). The parts of this framework were (see Figure 14):  

i) Stochastic conditional simulations, where equally probable orebody models 

are generated to represent the uncertainty in orebody modelling; 

ii) Transfer functions, defined as a 3D non-linear mining process or mining 

sequence; and  

iii) Uncertainty modelling and risk assessment. 
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Figure 14.  Schematic representation of the general Monte Carlo simulation and risk 

assessment framework. In this framework, each image of the orebody gives a realistic 

representation of the variability of metal grade throughout the deposit. Then, by 

inputting these images into the optimisation and mine design process (non-linear 

transfer function), the orebody uncertainty is transferred onto the response 

parameters (reproduced from Martinez (2003)). 

 

Rossi (1997), Van Brunt (1999), Godoy (2003), and Farrelly (2002), among others, 

used the general framework for dealing with geological uncertainty and risk in open 

pit mine design (see Figure 14) to model and integrate geological uncertainty in the 

planning process of a mine. The authors concluded that the inclusion of geological 

uncertainty into the planning and design of an open pit mine provides a more 

informed approach to designing and managing the project. Furthermore, these works 

showed that simulations can be used not only in assessing and quantifying the 

uncertainty of the orebody, but can also give the starting point for improvement of the 

initial mine design.  

Martinez (2003) extended the framework created by Ravenscroft (1992) and 

Dimitrakopoulos (1998) and the works done by Farrelly (2002) and Godoy (2002) to 

develop a new approach to mine design based on risk quantification and alternative 

strategic decision-making criteria. After revising the concepts of risk integration and 

quantification in decision-making for both new and operating surface mines, Martinez 

demonstrated that economic mine evaluation is a critical part of assessing the real 

value of mining assets, in this case of an open pit mine project. One important 

characteristic of this model was its ability to deal with quantified geological and grade 
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uncertainty in the context of optimal pit design, where the designs and long-term 

production schedules were optimised under orebody uncertainty.  

Another important characteristic of Martinez’s model was the use of both key 

economic and technical project indicators, as well as the mine planner’s decision-

making criteria, to optimise the value of an open pit mine project. In this context, the 

cash flow risk in the short-term was minimised while the potential for profits in the 

future was maximised. The economic and technical project indicators used in 

Martinez’s work were: the minimum annual ore production, the amount of metal 

produced in given mining periods, and the discounted cash flows over the life of the 

mine. Similarly, the mine planner’s decision-making criteria used in Martinez’s work 

were the minimum acceptable project DCF (normally given by the corporative group 

of the mining firm) and the minimum acceptable risk in meeting given production 

targets.  

One drawback of Martinez’s model, however, was the time required to perform the 

optimisation process. The reason for this was the iterative process in which the 

economic risk of an open pit mine design was assessed. Another drawback of this 

model was that it did optimise an open pit mine project in the face of orebody 

uncertainty, keeping costs and prices constant over time. 

One key factor in the work done by Martinez (2003) is the open pit design algorithm 

used to generate the Base Case Pit Design (BCPD), which is composed of a set of 

nested pit shells (see Section 2.4.3 for more details). The technique used for this 

purpose was the Nested Lerchs-Grossmann (NLG) algorithm implemented in the 

Whittle Four-X software (Whittle, 1998; Whittle and Rozman, 1991), which is based 

on the Lerchs-Grossman algorithm
20

  and the parameterisation model developed by 

Matheron (1975). In this context, the NLG algorithm considers a series of revenue 

                                                 

20
 The Lerchs-Grossmann algorithm is an optimisation process based on graph theory. In this context, 

the orebody model is seen as a graph that is a direct tree in which a block inside the deposit is defined 

as a node and the connection between nodes are arcs. Then, the pit design limits are found as the 

contour that maximises the economic value obtained from the extracted blocks (see Martinez 2003, 

Chapter 3 for more details about the Lerchs-Grossmann algorithm). 
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factors (RFs), normally ranging between 0.3 and 2, which multiply the actual metal 

price, generating a list of different metal prices. The result of this is the generation of 

optimum nested pit shell surfaces for each price. The approach starts by finding the 

largest pit using the highest metal price (highest revenue factor)
21

. Next, the pits for 

the remaining metal prices in the list are generated. This process is repeated until all 

prices have been dealt with. There is no specific rule for setting up the list of revenue 

factors. Rather, it depends on the precision of the analysis. An important characteristic 

is that, in each optimisation, Whittle’s approach only considers the blocks placed 

between the shells for the nearest prices above and below the input metal price. Thus, 

the program adjusts the values of these blocks to allow for the new price and then 

carries out a scan through the arcs (see foot note 21), which apply to these blocks until 

there is no further change. 

Another technique based on the parameterisation model, which even though 

developed almost twenty years ago has not yet received all the attention it deserves, is 

the Reserve Parameterisation Method (RPM) developed by Francois-Bongarcon 

(Francois-Bongarcon and Laille, 1984). One important characteristic of this model is 

that the only quantities that need to be input into the optimisation process are grades, 

tonnes and metal quantities. Profit formulae are purposely eliminated. As a 

consequence of this, the pit design process is a purely technical optimisation and the 

output of the process is not a single optimal pit outline, but rather a series of pit 

outlines representing the range of truly optimum projects for the full range of possible 

economic conditions and management policies. In this theory, any feasible project 

outline can be characterised by a triple  , ,Q V T , where T  is the tonnage of 

recoverable ore to be processed, Q  is the corresponding recoverable quantity of metal 

of the project, and V  is the total tonnage to be extracted
22

. For each possible pair 

 ,V T , a set of technically optimal projects  max , ', 'Q V T  are generated such that  

   '  and 'V V T T  . This is achieved by controlling the variations in V  and T . In 

                                                 

21
 By doing this, all blocks outside this pit are excluded and will not be considered any further, which 

translates into the saving of computing time.  

22
 Defined as the quantity of ore and waste to be removed from the ground. 
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the general theory, these variations are equivalently replaced by mathematically 

duality with the variations of two parameters   and  , which are the coefficients of 

the equation of a generic plane in the space  , ,Q V T . Then, the quantity to maximise 

is Q V T   . Optimal contours are obtained using classical algorithms of 

maximisation like the Lerchs-Grossmann algorithm in which a linear additive profit 

function like the cash flow CF aQ bT cV   , where a  (the price of the metal), b  

(the processing costs) and c  (the extraction costs) are fixed. Observe that the cash 

flow equation can be re-written as 
CF b c

Q T V
a a a

      which is equivalent to   

Q V T    with 
c

a
   and 

c

a
   (see, for example, Coléou (1989) and the 

references therein for more details).    

As a matter of fact, the NLG algorithm was initially based on the RPM model (in his 

initial version 4D) but was later on changed to introduce revenue factors as a strategy 

for dealing with ore deposit with the presence of two or more economic metals
23

.  

Many authors such as Ramazan and Dimitrakopoulos (2004), Menabde et al. (2004), 

and Stone et al. (2004), among others, have tried to improve the model developed by 

Martinez (2003) in the context of performing open pit mine optimisation under 

geological uncertainty in a reduced time and using many simulations instead of 

selected ones (as used in Martinez, 2003). In these cases, stochastic models based on 

linear programming were used as the pit optimisation technique. Despite the fact that 

time processing was improved, the results obtained about open pit mine design and 

optimisation in the face of orebody uncertainty were seen to be incomplete and not 

optimal, as is the case of the models developed by Ramazan and Dimitrakopoulos 

(2004a, b)
24

 Indeed, the final design obtained from their model is seen to be not 

                                                 

23
 In this case, Whittle took advantage of the methodology in which an orebody with the presence of 

two or more economic metals can be analysed using an equivalent metal grade based on equivalent 

metal prices. Then, by controlling revenues factors affecting metal prices, different pit shells are 

generated regardless of the number of economic metals in the deposit.  

24
 The information about the performance of the models developed by Menabde et al. (2004) and Stone 

et al. (2004) is not available since the software that implements the models is not in the public domain. 
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optimal, since in some cases pit slopes or mining working zones’ width were not 

achieved while, in other cases, mining constraints such as production scheduling were 

not respected, having the presence of a block that is supposed to be mined in the first 

year at the bottom of the pit. 

Even though stochastic programming is a strong tool that can help with the problem 

of optimising an open pit mine in the face of uncertainty, it is still in its early 

development and more research needs to be done in order to implement it 

appropriately.  

Another important technique used to optimise an open pit mine project is the selection 

of an optimum cut-off grade policy for the mine operation. Cut-off grade is any grade 

that, for any specific reason, is used to separate two courses of action, e.g., to mine or 

to leave, to mill or to dump (Taylor, 1985). The most used technique for this is the 

Lane’s theory of cut-off grade optimisation developed by Lane (Lane, 1988; Lane, 

1999) (see also King, 2000). This technique determines an optimal cut-off grade 

strategy which maximises the NPV of the mine as an iterative process based on the 

production capacities of the mining, milling, and refining stages.  

As it will be shown with more detail in Chapter 4, the model developed by Lane 

(given in more detail in Appendix C.4), has many similarities with the real options 

theory in which the mine project’s value is optimised based on an operational strategy 

over time which implies an opportunity cost, which is an unknown variable in the 

model, in this case the selection of the best cut off grade for each production period. 

Authors such as Mardones (1993) and Sagi (2004) have applied option pricing 

techniques to improve the selection of cut-off grade in a mine operation. On one hand, 

Mardones developed a valuation model where the cut-off grade is first calculated 

using Lane’s theory, that is based on the discounted cash flow approach, and the 

optimised mine is then evaluated using real options. Although cut-off grade is 

included in the real valuation model developed by Mardones, this model is not fully 

consistent with contingent claims since the cut-off grade is not optimised along the 

main objective function, that is, the value of the mine and operational and managerial 

flexibility. On the other hand, Sagi’s work illustrated the trade-off between extraction 

policy and quality control from a financial view point. The main contributions of 

Sagi’s work were the identification of the opportunity costs of extraction as the crucial 
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factor in determining an optimal cut off grade policy, and the association of the 

opportunity costs with a European call option (see Appendix B for details in European 

options) written on the marginal extracted unit of mineral. To our knowledge, the 

work done by Sagi (2004) is the first in introducing cut-off grade optimisation in a 

real options mine valuation context. Although its model does not consider the mine 

design and planning, the association of the opportunity cost of extracting a unit of 

mineral, with a given grade, with a European option is considered by the proposed 

IVOF (see Chapter 8) as a future extension.  

In other works, Baird and Satchwell (2001) and Osanloo and Ataei (2003), among 

others, extended Lane’s cut-off grade optimisation to deal with a deposit with multiple 

metals by using equivalent grade factors to optimise the cut-off grades. 

Looking for a practical way of implementing Lane’s theory in open pit project 

evaluation, Whittle and Wharton (1995) replaced the unknown opportunity cost 

variable in Lane’s model by two pseudo costs, the delay costs and the change costs, 

for which the NPV of the project is maximised by moving the milling of ore forward 

(or backwards) in time by changing the cut-off grade. Normally, these costs, that is, 

the delay and change costs, are large at the beginning of the project, reducing in 

amount as the resource is depleted and opportunities reduced. The objective of doing 

this is to feed the mill with high grade material at the beginning of the project which 

means greater profit at the start. Other works that look for a practical way of 

implementing Lane’s theory are the ones developed by King (King, 2000b; King, 

2000a) who analyses the theory in detail and gives alternatives for implementing it. 

One of these alternatives is an algorithm to solve the maximisation problem starting 

from the first production period instead of the last one.  

2.9 Summary and conclusions  

We have presented a synthesis of the literature concerning open pit mine evaluation 

procedures was given, having connected it with the geostatistical methods which 

underlie the planning process. This literature review for valuation focused on two 

main philosophies for valuing an open pit mining project. The first philosophy was 

based on the techniques that use economic and financial analysis to estimate the value 

of the mine. Examples of these techniques are both the DCF and RO techniques. One 
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interesting feature of these techniques is that they consider future metal prices as the 

main source of uncertainty in an open pit mine project, and assume that the mine plan 

and design of the project is known and well defined. 

The second philosophy was based on the techniques that use a set of procedures to 

optimise the plan and design of the mine. Examples of these techniques are the cut-off 

grade optimisation developed by Lane (1988) and the optimisation technique 

developed by Martínez (2003). Contrary to the first philosophy, these techniques 

consider the uncertainty of the orebody as the main source of uncertainty of an open 

pit project, and assume that the economic environment in which the project is 

developed, e.g., future metal prices, are known and well defined. 

In addition, the literature review also shows that the problem of determining more 

information about the orebody uncertainty and using it to make strategic decisions, 

such as deferring the project investment, has not been solved appropriately, mainly 

because of the lack of an appropriate evaluation framework in which the uncertainty 

of the orebody can be accounted for together with economic uncertainty. 

Clearly, the preceding literature review indicates that, in isolation, each of these 

philosophies, that is, financial and mine optimisation techniques, cannot solve the 

open pit mine project evaluation problem correctly. However, the literature review 

clearly exposes that both philosophies are capable of solving the open pit mine project 

evaluation in conjunction with each other. The reason for this is that both philosophies 

complement each other: MO techniques solve the problem that RO has, by including 

the orebody uncertainty as well as its effect on mine planning and design in the 

evaluation process, and vice versa. This is precisely the strategy used by the novel 

evaluation framework (IVOF) proposed in this dissertation; namely, to integrate both 

philosophies for evaluating an open pit mine project into an integrated evaluation 

process, ensuring a complete and more realistic estimate of the value of an open pit 

project in the face of both metal prices and orebody uncertainties, while considering 

an optimum open pit mine planning and design. That is the IVOF is a technology that 

applies real options ―on‖ the mine project evaluation rather than ―in‖ the mine project 

evaluation. Indeed, as defined by De-Neufville (2002) and Wang and De-Neufville 

(2006) real options ―in‖ projects are created by changing the actual design of the 
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technical system, while real options ―on‖ projects treat the technology behind the 

project system as a black box.  

In this context, the proposed mine (open pit) project evaluation framework, IVOF, 

does not “invent‖ a new mathematical evaluation technique, but uses and integrates 

existing valuation and mine optimisation methodologies to deal with the problem of 

open pit mine evaluation in the face of orebody and metal price uncertainties, and 

considering mine plan and design flexibility.  

In general, in view of the literature review presented in this chapter, the proposed 

IVOF is seen to offer a new approach to strategic open pit project evaluation. It is 

important to observe that the IVOF is not a substitute for any of the techniques 

discussed in this chapter. In fact, it uses the DCF and mine optimisation techniques as 

a building block and allows the mine analyst to integrate existing real options 

techniques into a sophisticated framework that provides more meaningful information 

about the value of an open pit mine project in the face of uncertainty.  

Furthermore, from the literature it can also be concluded that the main problem with 

current open pit evaluation techniques is the lack of knowledge about the different 

stages of an open pit mine project, as well as their respective theoretical backgrounds. 

For instance, the financial analyst performing real options and DCF analysis on an 

open pit mine project does not know about orebody modelling and mine design and 

planning, and vice versa. In fact, this is one of the reasons why real options is slowly 

being accepted in the mining industry as a valuation tool. Due to the theoretical 

complexity involved and the lack of suitable analysts that can appropriately apply this 

technique, most mining companies see the real options technique as a black-box and 

resist adopting it in their valuation procedures. Consequently, the objective of the 

IVOF is to break the wall that isolates financial analyst from mine analyst when 

evaluating an open pit mine project and integrates the best of both technologies to 

give a generalised framework for mine project evaluation. 
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Chapter 3                                           

Building the Base-case Open Pit Mine 

Plan and Design: Preliminaries for 

IVOF 

3.1 Introduction  

This chapter will give, in a general fashion, the steps for building the base-case mine 

plan and design. This will be explained using a simple example where a virtual two-

dimensional mine project is used to plan and design the respective base-case (more 

complete details of this process can be found in books of mine planning such as 

Hustralid and Kuchta (1995) or theses such as Martinez, 2003).  

The purpose of this illustrated explanation is to provide details of mine planning 

against which IVOF can be compared and contrasted. In itself this chapter does not 

contain new material but is essential to highlight the novelty of IVOF over the 

remaining chapters of the thesis. 

Before giving the general steps for building the base-case mine design, it is very 

important firstly to give the definition of some terms related to the open pit mine 

optimisation process that will be used throughout this chapter. Although some of these 

definitions were already given in Chapter 1, they are repeated in this section for the 

sake of completeness (refer to Figure 15). Also observe that for some definitions 

lower-case letters indicate deterministic values while capital letters indicate random 

variables. 

Mine definitions 

Cut-off grade, Ore and Waste:  Cut-off grade is the grade level to decide which 

material is sent from the mine to the treatment plant (defined as ore), and which 

material is dumped (defined as waste). 



               
101 

Break-even cut-off grade, (deterministic/random variable) ( /BE BEg G )-(units): defined 

as that grade for which the net value (profit-costs) of some material mined is zero. 

This is obtained by equating the value at the mill to the value at the dump. Normally 

this cut-off grade defines the economic material that is contained within the layout of 

the ultimate pit limits in an open pit mine operation. 

Optimum Cut-off grade, opg :  defined as the minimum grade level that decides which 

material is sent from the mine to the treatment plant (defined as ore), and which 

material is dumped (defined as waste), while maximising the expected cash flow. 

Average grade, (deterministic/random variable) ( /g G )-(units):  defined as the ratio 

of total metal quantity and the total ore tonnes. 

Production period, t  (year): the time length of a production period used for economic 

analysis (although here specified as years, it could also be other lengths such as 

halves, or quarters of a year).  

Mine operating life, T (years): the required time for depleting the ore in a mine 

project. 

Profit or cash flow, (deterministic/random variable) ( /cf CF ) ($/year): defined as the 

revenue generated from selling the final product minus the cost incurred in the 

process. 

Mining Capacity, ( min )-(tons/year): defined as the total material (ore + waste) 

removed in a production period. It mostly depends on the machinery available for this 

operation. 

Milling (concentration) capacity, ( mill ) (tons/year): defined as the total material sent 

to the mill in a production period. It mostly depends on mill concentrator facilities. 

Refining capacity, ref  (tons, or, oz, or, lb, or units of product/year): defined as the 

total units of mill product sent to the refining facilities. 

Selling (product) price, (deterministic/random variable) ( /s S ) ($/unit of product, 

e.g., $/tonne, or, $/gr, or, $/Oz): defined as the expected price of a unit of the final 

product, normally given by the international metal markets. 
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Refining cost, , refiningc , ($/unit of product, e.g., $/tonnes, or, $/gr, or, $/Oz): total cost 

incurred in refining activities. 

Mining cost, miningc , ($/tonnes of material mined): total cost incurred in the mining 

activity. 

Milling (concentrating) cost, millingc , ($/tonne of ore): total cost incurred in the 

concentrating- milling activities. 

Stockpile handling cost, sh  ($/tonne of material moved): total cost incurred in the 

movement of material from stock piles to the mill or concentrator facilities. 

Fixed costs, fixedc , ($/year): costs incurred in a production period that are not directly 

related to mining activities, e.g., general and administrative costs. 

Metallurgical recovery, y  (%): factor that affects the recovery of final product from 

the ore sent to the mill or concentrator. 

Yearly discount rate, R  (%): normally defined as the Weighted Average Cost of 

Capital (WACC) of the company owning the mine project.  

Risk-free discount rate, r  (%): normally defined as the discount rate given by 

government bonuses.  

Ore, q (tonnes/year): total ore processed in a production period. 

Waste, w  (tonnes/year): total material dumped in a production period. 

Material mined, u  (tonnes/year): total material (ore + waste) removed in a production 

period, that is,  

 u q w   

Stripping ratio, sr (no units): defined as the ratio between the quantity of waste and 

ore mined in a production period, that is, 

 /sr w q  
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Product refined, (deterministic/random variable)( /m M ) (tonnes, lb or Oz of 

product/year): total units of material sent to the refining facilities in a production 

period, where  

 tt tM q yG  

Salvage value, SVal  ($): the value obtained at the end of a mine operation resulting 

from selling all equipment and mining/processing/refining facilities. 

Mine closure costs, Clc  ($): the cost incurred when a mine operation is closed 

indefinitely, which includes mine rehabilitation.   
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Figure 15 Diagram showing the open pit mine operation process. 

 

3.2 Building the Base-case plan and design: The virtual 2D 

Gold Mine  

The 2D gold mine problem is a virtual gold project generated for the purpose of 

understanding the principles of building the base-case open pit mine plan, design and 

evaluation. The problem consists of planning, designing and estimating the value of a 
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2D orebody model containing gold metal. The data given for evaluating the 2D gold 

mine project is composed of two sets. Data Set 1 is related to technical/operational 

and economic data and is shown in Figure 16. Data Set 2 is the virtual 2-dimensional 

metal grade block model containing gold in ounces per tonne (see Figure 17). Observe 

that here it is assumed that the metal grade was estimated using a linear interpolator 

such as ordinary Kriging (see Chapter 2 for more details). 

GOLD DEPOSIT Au / Ag

unit Oz

Block Dimensions

X (metres) 20

Y (metres) 20

Z (metres) 10

Density (t/m^3) 2

Tonnes/Block (tonnes) 8000

Economics

Expected Metal Price ($/Oz) 900

Recovery (%) 97%

COSTS

Mine & Haulage ($/t) -0.8

Mine & Haulage Inc ($/bench) -0.1

Administrative ($/t) -1.2

Mill & Transport ($/t) -1.2

Refining ($/Oz) -0.1  

Figure 16. Table showing the 2D Gold Mine project-economic and technical 

parameters. Slope angle is assumed to be 45°. 

 

Figure 17. The 2D gold orebody model. Gold grades given in Oz/t. Grade relates to 

the “temperature” of the colours where hot colours indicate a high grade.  

 

3.3  Evaluating the 2D gold mine problem 

I. The first part in the evaluation process of the gold mine project is the generation of 

an economic block model. The steps are: 
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Estimating the mining cost model ($/block) as (see Figure 18):  

 (( 1) & & )
Tonnes

MiningCost Bench M HIncrement M HCost Admin
block

    , 

where Bench  refers to a mining bench or working zone where drilling and blasting 

operations are performed; M & HIncrement  refers to the increment in mining and 

hauling costs for lower benches; M & HCost  refers to the cost of mining and hauling 

material; Admin  refers to the administration cost incurred in the mine operation; and 

Tonnes

block
 refers to the tonnes of a production block.  

Observe that in this case the mining cost is increased with depth in a factor of ―M&H 

Increment‖ (see Figure 18). 

Estimating the metal recovered model (Oz/block) as (see Figure 19):  

 
Tonnes

MetalRecov Metalgrade Recovery
block

   . 

Estimating the block revenue model ($/block) as (see Figure 20):  

  BlockRevenue Price SellingCost MetalRecov  . 

Estimating the block value if milled ($/block) as (see Figure 21): 

&Milled

Tonnes
BlockVal BlockRevenue Mill TransCost MiningCost

block

 
    

 
, 

where &Mill TransCost  refers to the cost of milling and transporting final product. 

Generating the block economic model as (see Figure 22):  

  max ,MilledBlockEconomic BlockVal MiningCost . 
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Mining Costs ($/Block)

Bench

-16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 -16000 k = 1.00

-16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 -16800 k = 2.00

-17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 -17600 k = 3.00

-18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 -18400 k = 4.00

-19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 -19200 k = 5.00

-20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 -20000 k = 6.00

-20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 -20800 k = 7.00

-21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 -21600 k = 8.00

-22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 -22400 k = 9.00

-23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 -23200 k = 10.00

 

Figure 18. Mining cost model ($/block).Colours still relate to grade but now costs are 

shown, and they increase with depth. 

 

Metal recovered (Oz/Block)

Bench

0 0 49.8968 49.8968 544.72096 476.10704 338.88696 476.10704 24.9489762 37.42648 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 k = 1.00

0 0 24.9489762 24.9489762 37.42648 212.06528 338.88696 112.27168 338.88696 24.9489762 24.9489762 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 k = 2.00

0 0 0 37.42648 49.8968 49.8968 544.72096 466.2904 212.06528 544.72096 37.42648 24.9489762 0 0 0 0 0 0 0 0 0 0 0 0 0 0 k = 3.00

0 0 0 0 37.42648 37.42648 37.42648 466.2904 112.27168 212.06528 212.06528 49.8968 0 24.9489762 0 0 0 0 0 0 0 0 0 0 0 0 k = 4.00

0 0 0 0 0 49.8968 24.9489762 37.42648 544.72096 74.8452 544.72096 74.8452 37.42648 49.8968 24.9489762 0 0 0 0 0 0 0 0 0 0 0 k = 5.00

0 0 0 0 0 0 0 24.9489762 24.9489762 112.27168 338.88696 544.72096 476.10704 24.9489762 37.42648 49.8968 0 0 0 0 0 0 0 0 0 0 k = 6.00

0 0 0 0 0 0 0 0 49.8968 37.42648 112.27168 212.06528 544.72096 112.27168 49.8968 24.9489762 0 0 0 0 0 0 0 0 0 0 k = 7.00

0 0 0 0 0 0 0 0 0 0 24.9489762 112.27168 74.8452 476.10704 466.2904 37.42648 24.9489762 0 0 0 0 0 0 0 0 0 k = 8.00

0 0 0 0 0 0 0 0 0 0 0 24.9489762 476.10704 338.88696 74.8452 112.27168 24.9489762 49.8968 0 0 0 0 0 0 0 0 k = 9.00

0 0 0 0 0 0 0 0 0 0 0 0 24.9489762 74.8452 212.06528 212.06528 112.27168 37.42648 0 0 0 0 0 0 0 0 k = 10.00

 

Figure 19. Metal recovered model (Oz/block). Colours still relate to grade but now 

metal recovery is shown. 

Block Revenue ($/Block)

Bench

0 0 44902.1303 44902.1303 490194.392 428448.725 304964.375 428448.725 22451.5837 33680.0894 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 k = 1.00

0 0 22451.5837 22451.5837 33680.0894 190837.545 304964.375 101033.285 304964.375 22451.5837 22451.5837 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 k = 2.00

0 0 0 33680.0894 44902.1303 44902.1303 490194.392 419614.731 190837.545 490194.392 33680.0894 22451.5837 0 0 0 0 0 0 0 0 0 0 0 0 0 0 k = 3.00

0 0 0 0 33680.0894 33680.0894 33680.0894 419614.731 101033.285 190837.545 190837.545 44902.1303 0 22451.5837 0 0 0 0 0 0 0 0 0 0 0 0 k = 4.00

0 0 0 0 0 44902.1303 22451.5837 33680.0894 490194.392 67353.1955 490194.392 67353.1955 33680.0894 44902.1303 22451.5837 0 0 0 0 0 0 0 0 0 0 0 k = 5.00

0 0 0 0 0 0 0 22451.5837 22451.5837 101033.285 304964.375 490194.392 428448.725 22451.5837 33680.0894 44902.1303 0 0 0 0 0 0 0 0 0 0 k = 6.00

0 0 0 0 0 0 0 0 44902.1303 33680.0894 101033.285 190837.545 490194.392 101033.285 44902.1303 22451.5837 0 0 0 0 0 0 0 0 0 0 k = 7.00

0 0 0 0 0 0 0 0 0 0 22451.5837 101033.285 67353.1955 428448.725 419614.731 33680.0894 22451.5837 0 0 0 0 0 0 0 0 0 k = 8.00

0 0 0 0 0 0 0 0 0 0 0 22451.5837 428448.725 304964.375 67353.1955 101033.285 22451.5837 44902.1303 0 0 0 0 0 0 0 0 k = 9.00

0 0 0 0 0 0 0 0 0 0 0 0 22451.5837 67353.1955 190837.545 190837.545 101033.285 33680.0894 0 0 0 0 0 0 0 0 k = 10.00

 

Figure 20. Block revenue model ($/block). Colours still relate to grade but now block 

revenue are shown. 

Value of Block if Milled ($/Block)

Bench

-25600 -25600 19302.1303 19302.1303 464594.392 402848.725 279364.375 402848.725 -3148.41631 8080.08935 -25600 -25600 -25600 -25600 -25600 -25600 -25600 -25600 -25600 -25600 -25600 -25600 -25600 -25600 -25600 -25600 k = 1.00

-26400 -26400 -3948.41631 -3948.41631 7280.08935 164437.545 278564.375 74633.2848 278564.375 -3948.41631 -3948.41631 -26400 -26400 -26400 -26400 -26400 -26400 -26400 -26400 -26400 -26400 -26400 -26400 -26400 -26400 -26400 k = 2.00

-27200 -27200 -27200 6480.08935 17702.1303 17702.1303 462994.392 392414.731 163637.545 462994.392 6480.08935 -4748.41631 -27200 -27200 -27200 -27200 -27200 -27200 -27200 -27200 -27200 -27200 -27200 -27200 -27200 -27200 k = 3.00

-28000 -28000 -28000 -28000 5680.08935 5680.08935 5680.08935 391614.731 73033.2848 162837.545 162837.545 16902.1303 -28000 -5548.41631 -28000 -28000 -28000 -28000 -28000 -28000 -28000 -28000 -28000 -28000 -28000 -28000 k = 4.00

-28800 -28800 -28800 -28800 -28800 16102.1303 -6348.41631 4880.08935 461394.392 38553.1955 461394.392 38553.1955 4880.08935 16102.1303 -6348.41631 -28800 -28800 -28800 -28800 -28800 -28800 -28800 -28800 -28800 -28800 -28800 k = 5.00

-29600 -29600 -29600 -29600 -29600 -29600 -29600 -7148.41631 -7148.41631 71433.2848 275364.375 460594.392 398848.725 -7148.41631 4080.08935 15302.1303 -29600 -29600 -29600 -29600 -29600 -29600 -29600 -29600 -29600 -29600 k = 6.00

-30400 -30400 -30400 -30400 -30400 -30400 -30400 -30400 14502.1303 3280.08935 70633.2848 160437.545 459794.392 70633.2848 14502.1303 -7948.41631 -30400 -30400 -30400 -30400 -30400 -30400 -30400 -30400 -30400 -30400 k = 7.00

-31200 -31200 -31200 -31200 -31200 -31200 -31200 -31200 -31200 -31200 -8748.41631 69833.2848 36153.1955 397248.725 388414.731 2480.08935 -8748.41631 -31200 -31200 -31200 -31200 -31200 -31200 -31200 -31200 -31200 k = 8.00

-32000 -32000 -32000 -32000 -32000 -32000 -32000 -32000 -32000 -32000 -32000 -9548.41631 396448.725 272964.375 35353.1955 69033.2848 -9548.41631 12902.1303 -32000 -32000 -32000 -32000 -32000 -32000 -32000 -32000 k = 9.00

-32800 -32800 -32800 -32800 -32800 -32800 -32800 -32800 -32800 -32800 -32800 -32800 -10348.4163 34553.1955 158037.545 158037.545 68233.2848 880.089352 -32800 -32800 -32800 -32800 -32800 -32800 -32800 -32800 k = 10.00

 

Figure 21. Value of block if milled ($/block). Colours still relate to grade but now 

block value are shown. 
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Value of Block(1000 x $/Block)

K= Bench level

-16.0 -16.0 19.3 19.3 464.6 402.8 279.4 402.8 -3.1 8.1 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0 k = 1.00

-16.8 -16.8 -3.9 -3.9 7.3 164.4 278.6 74.6 278.6 -3.9 -3.9 -16.8 -16.8 -16.8 -16.8 -16.8 -16.8 -16.8 -16.8 -16.8 -16.8 -16.8 -16.8 -16.8 -16.8 -16.8 k = 2.00

-17.6 -17.6 -17.6 6.5 17.7 17.7 463.0 392.4 163.6 463.0 6.5 -4.7 -17.6 -17.6 -17.6 -17.6 -17.6 -17.6 -17.6 -17.6 -17.6 -17.6 -17.6 -17.6 -17.6 -17.6 k = 3.00

-18.4 -18.4 -18.4 -18.4 5.7 5.7 5.7 391.6 73.0 162.8 162.8 16.9 -18.4 -5.5 -18.4 -18.4 -18.4 -18.4 -18.4 -18.4 -18.4 -18.4 -18.4 -18.4 -18.4 -18.4 k = 4.00

-19.2 -19.2 -19.2 -19.2 -19.2 16.1 -6.3 4.9 461.4 38.6 461.4 38.6 4.9 16.1 -6.3 -19.2 -19.2 -19.2 -19.2 -19.2 -19.2 -19.2 -19.2 -19.2 -19.2 -19.2 k = 5.00

-20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -7.1 -7.1 71.4 275.4 460.6 398.8 -7.1 4.1 15.3 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 k = 6.00

-20.8 -20.8 -20.8 -20.8 -20.8 -20.8 -20.8 -20.8 14.5 3.3 70.6 160.4 459.8 70.6 14.5 -7.9 -20.8 -20.8 -20.8 -20.8 -20.8 -20.8 -20.8 -20.8 -20.8 -20.8 k = 7.00

-21.6 -21.6 -21.6 -21.6 -21.6 -21.6 -21.6 -21.6 -21.6 -21.6 -8.7 69.8 36.2 397.2 388.4 2.5 -8.7 -21.6 -21.6 -21.6 -21.6 -21.6 -21.6 -21.6 -21.6 -21.6 k = 8.00

-22.4 -22.4 -22.4 -22.4 -22.4 -22.4 -22.4 -22.4 -22.4 -22.4 -22.4 -9.5 396.4 273.0 35.4 69.0 -9.5 12.9 -22.4 -22.4 -22.4 -22.4 -22.4 -22.4 -22.4 -22.4 k = 9.00

-23.2 -23.2 -23.2 -23.2 -23.2 -23.2 -23.2 -23.2 -23.2 -23.2 -23.2 -23.2 -10.3 34.6 158.0 158.0 68.2 0.9 -23.2 -23.2 -23.2 -23.2 -23.2 -23.2 -23.2 -23.2 k = 10.00

 

Figure 22. Economic block model  max ,MilledBlockVal MiningCost . 

 

II. The second part in the evaluation process of the gold mine project is finding the 

ultimate pit limits for the given technical and economic parameters. The result is 

displayed in Figure 23. 
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Figure 23. The gold mine project ultimate pit limits (in red colour). This was obtained 

using the simple floating cone algorithm (see Martinez, 2003 for more details about 

the floating cone algorithm
25

). 

An analysis of the ultimate pit indicators suggests that there are 504k tonnes of ore 

and 328K tonnes of waste. The total undiscounted mine value is US$8.6M with a total 

production of 12.32k Ounces of gold with an average grade of 0.244Oz/t. 

                                                 

25
 In simple terms, the floating cone method entails approximating the reserve by an inverted cone. The 

height and radius of the cone are varied as parameters in the search algorithm, also using constraints, 

e.g., the angle of the side of the cone not exceeding maximum pit slope angles. For each choice of cone 

shape and location, the NPV for the chosen blocks is calculated, and the blocks are extracted if the 

NPV is positive. The algorithm continues until the ultimate pit has been explored and all economic 

blocks have been extracted. 



               
108 

III. The third part in the evaluation process of the gold mine project is to find the 

appropriate place for starting the mine operation, that is, the starting pit allocation, as 

well as more information about ore and waste tonnes, grades, and quantity of metal 

throughout the deposit. To achieve this target, a set of pit shells are generated by 

changing the gold price as follows: 1000, 950, 900, 700, 650, 500, 400, 300, 200, and 

100 dollars per ounce. The results are shown in Figures 24 and 25.  
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Figure 24. Nested pit shells generation due to different gold prices. Determined using 

the floating cone algorithm. 

Metal Prices ($/Oz) 1000 950 900 700 650 500 400 300 200 100

Mining Value (x1000$) 9915.23 9256.28 8603.55 6168.97 5569.90 3783.95 2604.53 1400.13 610.02 88.45

Mining Cost ($) -2542400.00 -2542400.00 -1876800.00 -1698400.00 -1698400.00 -1632000.00 -1632000.00 -1136000.00 -424000.00 -80800.00

Ore (Tn) 600000.00 600000.00 504000.00 432000.00 432000.00 400000.00 400000.00 264000.00 128000.00 40000.00

Waste (Tn) 504000.00 504000.00 328000.00 320000.00 320000.00 320000.00 320000.00 248000.00 72000.00 0.00

Metal Qty (Oz) 13178.95 13178.95 12318.21 11981.38 11981.38 11794.26 11794.26 9687.59 6090.78 2174.71

Avg. Grade (Oz/t) 0.02196 0.02196 0.02444 0.02773 0.02773 0.02949 0.02949 0.03670 0.04758 0.05437  

Figure 25. The gold mine project key indicators for each pit shell. 

 

Based on the results displayed in Figure 24, it is found that the 100$/Oz pit shell (grey 

colour) indicates the best zone to start the mine operation since it indicates the 

presence of high gold grade. It is important to remark that, as observed in Figures 24 

and 25, two or more metal prices can generate the same pit shell limits. For example, 

it is observed that the 1000$/Oz pit shell and the 950$/Oz pit shell have the same 

limits and consequently the same value for the indicators of the project, except the 

mine value. This is because the mine value is estimated using different gold prices. 

Since the given expected gold price was 900$/Oz, the ultimate pit limits of the 

900$/Oz pit shell are considered to be the ultimate pit limits of the Gold Mine project 

(see Figure 26). 
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Figure 26. The Gold Mine open pit mine project set up on the 900$/Oz pit shell limits.  

IV. The fourth part in the evaluation process of the gold mine project consists of 

establishing the long-term production scheduling of the gold project. To achieve this, 

the mill target of 80000 tonnes of ore (or equivalently 10 ore blocks) per production 

period is considered to be the main technical constraint (observe that in this specific 

case waste tonnes is not considered as a constraint), while the maximisation of cash 

flow is considered to be the main economic constraint. 

At this stage of the evaluation process two production schedules are generated: the 

bench-by-bench and the practical production schedules. The results are displayed in 

Figures 27 and 28 for the bench-by-bench schedule, and Figures 29 and 30 for the 

practical schedule.  

As observed in Figure 27, the bench-by-bench production schedule is the sequence 

where the mine is depleted by mining one bench at a time until meeting mill targets 

(in this case 10 blocks or 80000 tonnes of ore). Observe that this schedule does not 

consider the waste that needs to be removed in order to achieve mill targets. For 

example, as displayed in Figure 28, during the first production period the entire first 

bench was mined before mining the second bench in order to meet mill demand. 

Then, the expected stripping ratio of this first production period is 1.6 (16/10). A 

similar procedure was followed in the remaining production periods. The final results 

(shown in Figure 28) suggest that the gold mine project has an expected Life Of Mine 

(LOM) of 6 production periods (depending on the periods it could be months, years or 

any other period of time) and will generate on average a total revenue of $6.36 million 

(as observed today).  
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BENCH-BY-BENCH PRODUCTION SCHEDULING

 

Figure 27. The gold mine project: bench-by-bench production schedule. 

BENCH-BY-BENCH PRODUCTION SCHEDULING
Periodo1 Periodo2 Periodo3 Periodo4 Periodo5 Periodo6

ORE 10 10 10 10 10 3
WASTE 16 21 7 5 2 0
UCF 1827.6 1562.2 729.3 2156.0 1270.7 1057.8
WACC 0.909 0.827 0.752 0.684 0.622 0.565
DCF 1661.887 1291.744 548.382 1474.199 790.063 598.094  

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

 

Figure 28. The gold mine project - bench-by-bench production schedule, key project 

indicators (10% WACC). 

As opposed to the bench-bench production schedule, the practical production 

schedule is the sequence where the mine is depleted by mining cones of material 

where the mill demand is achieved and the waste removal minimised. For example, it 

is observed in Figures 29 and 30, that if the practical production schedule is used to 

deplete the Gold project, the first production period will have a zero stripping ratio, 

that is no waste is necessary to be removed in order to meet the mill target. This of 

course will have a significant effect in the cash flow generated during the first 

production period generating almost 13% more than the Bench-by-bench schedule. 

Observe that compared with the bench-by-bench schedule, the practical production 

schedule defers the waste removal to later periods generating high cash flows during 

early production periods. 

The final results of the implementing the practical production schedule in the gold 

mine project, as displayed in Figure 30, suggests that the project will generate $6.5 

million on average.  
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PRACTICAL PRODUCTION SCHEDULING

 

Figure 29. Gold mine project: practical production schedule. 

 

PRACTICAL PRODUCTION SCHEDULING

Periodo1 Periodo2 Periodo3 Periodo4 Periodo5 Periodo6

ORE 10 10 10 10 10 3

WASTE 0 10 6 12 16 7

UCF 2046.6 1783.9 757.3 2033.6 1040.3 941.9

WACC 0.9093 0.8269 0.7519 0.6838 0.6218 0.5654

DCF 1861.0735 1475.0698 569.43595 1390.471763 646.839207 532.53721  

Figure 30 The gold mine project- practical production schedule, key project 

indicators (@10% WACC). 

 

Figures 31 and 32 clearly indicate the variation in waste removal and cash flow 

generation for both the practical and bench-by-bench production schedules. As 

observed in the figures, the practical schedule generates higher non-cumulative cash 

flows during the first and second production periods due to the low stripping ratio, 

and lower ones during the last two periods, due to the high stripping activity.  

As the time value of money affects the cash flows generated throughout the LOM, it 

is observed in Figure 32 that even though the practical schedule generates lower cash 

flows than the bench-by-bench schedule during the final periods, it still gives the 

maximum value when discounted to the present time.   
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Figure 31 Ore vs. Waste curve for the practical and bench-by-bench production 

schedules. 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

p1 p2 p3 p4 p5 p6

M
in

e
 V

al
u

e
 ($

x1
0

0
0

)

Production  Periods

Non-Cumulative DCF Analysis

PRACTICAL

BENCH-BY-BENCH
0

1000

2000

3000

4000

5000

6000

7000

p1 p2 p3 p4 p5 p6

M
in

e
 V

al
u

e
 ($

x1
0

0
0

)

Production Periods

Cumulative DCF Analysis 

PRACTICAL

BENCH-BY-BENCH

 

Figure 32. Non-cumulative and cumulative Discounted Cash Flow (DCF) analyses 

for the gold mine project considering the practical and bench-by-bench production 

schedules. 

3.4 Conclusion 

As observed throughout this chapter, the building of the base-case open pit mine plan 

and design is not an easy process. It requires the implementation of different mining 

engineering and DCF analyses to render the expected final mine project value. 

Since the base-case mine design is the long-term plan of the mine project, it is very 

important to make sure that the base-case mine plan and design is built considering 

the best estimates of the technical and economic input variables as well as the best 

engineering procedures for open pit mine plan and design. The reason for this is that 

the base-case mine plan will serve as an initial platform for further analysis and also 
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for identifying cash flow drivers, which can be considered for further analysis when 

implementing a complete mine evaluation process using the IVOF.  
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Chapter 4                                               

The Integrated Valuation Optimisation 

Framework (IVOF) 

4.1 Introduction 

The objective of this chapter is to introduce a novel mine evaluation framework, 

named IVOF, as an alternative technology for mine project evaluation where 

uncertainty and risk are seen as allies of the mine analyst when evaluating an open pit 

mine project. To achieve this, Section 3.2 defines the concept of the ―flaw of averages 

in mine project evaluation‖, which shows what problems can arise when single 

estimated values are substituted for a distribution of values when evaluating an open 

pit mine project in the face of uncertainty. Section 3.3 introduces the IVOF process as 

an alternative technology for mine project evaluation. In this section, the foundations 

of the IVOF are given in a comprehensive fashion, while the model framework is 

formally defined in Section 3.4. Conclusions and comments are given in Section 3.5. 

4.2 The “flaw of averages” in mine project evaluation 

Traditionally, mine organisations use various types of quantitative methods to 

estimate profit and loss associated with a proposed mine project. Among all these 

measures of profitability, the Net Present Value (NPV), which is based on the 

Discounted Cash Flow (DCF) technique (see for example Benninga, 2000), is the 

most widely used in the mining industry. This is because it recognises the time value 

of money, and accounts for risk via a risk adjusted discount rate, R  (see Equation 

1.1), giving the mine analyst a tool for making financial investment and dividend 

decisions. More formally, the NPV technique consists of subtracting the capital 

investment, CapInv , incurred at the beginning of the mining project (assumed to be 

period 0t ), from the sum of the present value of the expected net cash flows (  tE CF ) 

generated throughout the operating life ( 1,2,..,t T ) of the open pit mine project: 
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 

1 (1 )

T
t

t
t

E CF
NPV CapInv

R

 


  (1.1) 

In practice, the expected cash flows generated at each production period, 1,2,..,t T  

are estimated using expected values for the underlying variables such as the metal 

price, tS , production costs, tCost , and metal quantity, tq , produced, that is,  

         t t t tE CF E q E S E Cost   . (1.2) 

One consequence of using expected values when estimating cash flows is that the 

resulting NPV value is also assumed to be an expected value, which, as it is shown 

later on, may not reflect the real project’s value, thereby leading to incorrect 

decisions.  

Although some variations of the Discounted Cash Flow (DCF) technique, such as 

scenario analysis, have been developed to give mine analysts the flexibility of 

including different scenarios in the mine evaluation process, they still suffer the same 

problem of the DCF, that is, instead of working with the uncertain variables, these 

techniques work with a single estimated value
26

 for each scenario, relying on the 

adjusted discount rate, R , to account for risk and uncertainty in the entire mine 

project.  

The problem with evaluation techniques based on the DCF is that in cases involving 

uncertainty and non-linear processes, in our case the mine optimisation/evaluation 

process, single estimate values are often of little use because of their lack of accuracy 

in describing an uncertain process. In other words, as it is shown in Figure 33, serious 

trouble can arise when a single number is substituted for a distribution of 

probabilities. That is if the expected value,  E X , of the uncertainty variable, X , is 

                                                 

26
 Observe that a single estimate in the context of a financial and engineering statement is a single 

number, often an average or expected value, used to represent the value of an uncertain quantity such 

as the average metal grade of the deposit, the price of the metal, and future mine revenues or expenses, 

among others. An uncertain quantity is normally represented by a probability distribution, or a bar 

graph, which represents the relative likelihood of various outcomes 
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input into the non-linear process  F  , the resulting output,   F E X , will not be 

the same as the expected value of the resulting outputs,   E F X ,  generated by 

inputting the entire distribution of values; that is,      F E X E F X .  

 

F(E{x}) ≠ E{F(x)} 

x1

x2

x3

xn

…

E{x} F() F(E{x})

x1

x2

x3

xn
…

E{F(x)}F()

F(x1)
F(x2)

F(x3)

F(xn)

…
Uncertain Input Variables

Non-linear Process
Final Results

  

Figure 33.  Scheme showing that “average inputs do not always yield average 

outputs” when dealing with uncertainty and non-linear processes.  

Professor Savage from Stanford University refers to this problem as ―the Flaw of 

Averages
27

 (Savage, 2002a; Savage, 2003; Savage, 2002b)‖, which states that 

plugging average values of uncertain inputs into a non-linear process does not result 

                                                 

27
 Also known in finance as Jensen’s inequality, which states that because the value of a project, x, is a 

random variable and the option value, OV, on the project is a convex function of the project value, 

then,      OV E X E OV X . 
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in the average value of the process; that is,      F E X E F X . He explains this 

concept with the following example (see Figure 34). 

―Consider the state of a drunk, wandering back and forth on a busy highway. His 

average position is the centreline of the highway. Therefore the state of the drunk at 

his average position is alive. However, it is clear that the average state of the drunk is 

dead‖. 

 

 

Figure 34.  A sobering example of the Flaw of Averages (from Savage, 2003). 

 

An analogous situation happens when evaluating a mine project using traditional mine 

evaluation techniques that are based on the DCF. That is when evaluating a mine 

project it is common to use expected single values for representing all the mine 

variables
28

 that are input into the non-linear mine optimisation process (Martinez, 

2003; Dimitrakopoulos, 1998). The final output of this practice is a single estimated 

value for each of the project indicators, such as projected revenues and expenses, 

grades, metal quantities, and mining and processing costs, among others, which are 

                                                 

28
 Examples of these input variables are: the orebody model, metal prices, costs, and recoveries. 
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assumed to be the average values to be obtained. Although it is common to perform a 

sensitivity analysis that uses spider and tornado diagrams to obtain a sort of interval of 

confidence for final mine revenues, traditional mine evaluation techniques ignore any 

possible realistic fluctuations in revenue or expense due to the existing uncertainty of 

the different input variables over time, and corresponds to the assumption that the 

drunk guy will always be walking on the centre line (see Figure 34).  

The problem is that even though sensitivity analysis is supposed to account for 

variations in the different input variables, it assumes that these changes will happen in 

a linear fashion, that is the same change will occur at each production period, which is 

not true. See for example Figure 34, where the yellow dashed lines represent the ± 

10% confidence interval that is supposed to account for the drunk’s trajectory 

deviation from the central line. As observed in the figure, this confidence interval 

does not give a realistic representation of the drunk’s trajectory. Another limitation of 

sensitivity analysis is that it ignores the dependence structure between the underlying 

variables that take part in a mine evaluation process, performing changes in an 

isolated fashion, that is changes to a specific variable are performed keeping the other 

ones constant.  

In the case of a mining project, metal grade variations will occur at different locations 

of the orebody model, but following a specific correlation structure, that is, changes at 

different locations will be generated following a specific correlation structure, which 

is a non-linear process. Similarly, metal prices will also vary at each production 

period but at different rates. Thus, it is important to be cautious when making 

decisions based on a sensitivity analysis, since it could lead to a spurious description 

of the current financial situation of the mining project.  

One of the techniques that has been widely accepted as a unified approach to dealing 

with uncertainty is the Monte Carlo Simulation technique (Glasserman, 2004; Chan 

and Wong, 2006). This is because instead of taking a single best "estimate" this 

technique quantifies uncertainty by sampling the probability distribution of the 

uncertain variable while tracking the resulting outputs.  

However, despite its benefits when dealing with uncertainty, the application of the 

Monte Carlo technique to the mine evaluation problem is not straightforward. The 

reason for this is that the mine optimisation process is a 3D complex, non-linear 
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procedure where the uncertainties of the input variables are of different natures. For 

example, the uncertainty of the orebody model could be classified as static (Martinez, 

2007) since it depends on the geology of the deposit that is uncertain; not because it 

changes over time, but because of the limited data (e.g., drill-hole data) obtained for 

its quantification
29

. On the other hand, the uncertainty of future metal prices can be 

classified as dynamic because it depends on the international metal market, which is 

affected by different mechanisms such as offer, demand and speculation, and varies 

over time.  

Furthermore, besides the nature of the sources of technical and economic 

uncertainties, the mine evaluation problem is not only concerned with the 

opportunities and risk that can occur throughout the operating life of the mine project, 

but also with the planning and designing of the actual mine operation, which often 

exhibits complex path-dependency/interdependency that standard options theory 

cannot deal with. 

4.3 A road to improve: Developing a novel integrated mine 

evaluation framework (IVOF) that accounts for 

uncertainty and risk 

As it was mentioned in Chapter 2, different techniques have been developed to 

overcome the complexity of the mine evaluation problem. Although some of them 

have been shown to be very efficient in dealing with a specific part of the problem, 

none of them has been able to solve the complete problem of considering all sources 

of uncertainty appropriately. The reason that current techniques cannot appropriately 

solve the mine problem is that these techniques have been developed in isolation. That 

is mine evaluation techniques, such as the Upside/Downside Potential (Martinez, 

2003; Dimitrakopoulos, Martinez and Ramazan, 2004), developed to deal with 

technical uncertainties such as the orebody model, do not account for the uncertainty 

                                                 

29
 It is possible to minimise the uncertainty of an orebody model by taking samples on a very small 

grid. However, this procedure will result in a non-profitable project because of the high cost incurred in 

the data collection. 
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of economic variables. Similarly, mine valuation techniques such as real options that 

deal with economic uncertainties such as metal prices do not appropriately account for 

technical uncertainty. So, it is logical to assume that if both technologies are 

combined, the final result will be a more accurate mine evaluation technique where 

both technical and managerial flexibility are integrated.  

The Integrated Valuation/Optimisation Framework (IVOF) is a novel mine evaluation 

framework, which is not only able to account for uncertainty and risk when evaluating 

a mine project, but also it is able to account for mine project design flexibility. That is 

the IVOF breaks down the wall that isolates mine optimisation from mine valuation 

techniques and integrates the best of both technologies in a generalised new 

framework. 

Derived from the financial options theory, the concept of the IVOF can be easily 

visualised with the following example (see Figure 35).  

Imagine that tomorrow you arrange a meeting with an important client to write 

a PROFITABLE CONTRACT. It happens that the client likes BBQs but hates rain. 

So you arrange the meeting in a BBQ area. When booking the BBQ area you realise 

that there are two areas, one with a roof that costs $200 and other one without a roof 

that costs $100. So you see yourself with the OPTION of either booking an expensive 

BBQ area with a roof or a cheap one without a roof.  Before booking, you check the 

weather forecast for the next day and you notice that the probabilities for raining and 

not raining are 30% and 70%, respectively, and the weather forecaster's expectation is 

a sunny day ideal for a BBQ outside. So, based on the weather forecaster's 

expectation, and the fact that the probability of not raining is high, you make the 

decision to book the cheap BBQ area without a roof for $100. Back at your house, 

you think about your decision and ask yourself the question "What if it rains?" The 

answer is that if it rains, you will lose the revenues that can be generated from the 

PROFITABLE CONTRACT, which you realise is a much higher cost to pay than 

the extra $100 needed to book the BBQ with a roof. Consequently, you realise that the 

best strategy to follow is to return and book the area with a roof for $200 because of 

the following possible outcomes: i) if it does not rain you will lose only $100, but get 

a PROFITABLE CONTRACT that will generate substantial revenues; and ii) if it 

does rain you still will get the PROFITABLE CONTRACT.  This is precisely the 
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basis of the RO technique, which is a contract that gives you the right but not the 

obligation of exercising it.  

 

 

The opportunity to write a profitable project Humm..The cheap or the expensive one ? The expected weather is a sunny day – the cheap one

But,..WHAT IF IT RAINS – You lose the project Better book the expensive BBQ are with a roof: If it is either a rainy or sunny day you 

still have your Profitable Project.  

Figure 35. A simple explanation of the real options concept: The profitable contract 

signed on a BBQ area. 

Analogous to the example shown in Figure 35, the IVOF sees the mine evaluation 

problem as a multi-stage solution, rather than a holistic process, where the problem is 

broken down into a set of simple building blocks: 

 Base case mine plan & design model. Here the main long-term operational and 

economic targets of the mine project are set up. It is at this stage where the main 

cash flow drivers and their respective uncertainties are identified. This is achieved 

by using static analysis such as sensitivity analysis that uses spider and tornado 

diagrams. (In Figure 35 this stage corresponds to the option to write a profitable 

contract and the cost of hiring a suitable BBQ area.) 

 Profit and Loss  &P L model- Upside/Downside potential. Risk analysis is a 

powerful tool that helps mine planners and mine managers to understand the 

following aspects of a mine project (see for example McNeil, Frey and Embrechts, 

2005): i): what the main sources of uncertainty are and, consequently, the causes 
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of risk and opportunity; ii) how the risk and opportunity should be measured; and 

iii) what the effects are of the existing risks and opportunities on the final project 

value. (In Figure 35 this stage corresponds to the analysis of the weather forecast 

and the What if..? question that arises due to the existing uncertainty about the 

weather forecast.) 

 Real options “in” mine projects model. Here the mine analyst identifies the 

different technical/managerial and mine plan and design flexibilities (strategies) 

that will maximise project value in the face of uncertainty; and 

 Decision-making model. Here the mine analyst makes rational final decisions 

based on the previous stages. (In Figure 35 this stage corresponds to the decision 

made about hiring the BBQ area with a roof.)  

Accordingly, the IVOF is seen as a new technology that not only extends current state 

of the art mine evaluation techniques to incorporate uncertainty and risk, but also as a 

technology where the planning, design and valuation of a mine project is performed 

using the existing uncertainty and risk. That is the IVOF technology sees uncertainty 

and risk as allies instead of enemies. 

But, in layman’s terms, what is the difference between traditional mine evaluation 

techniques and the proposed IVOF? 

The main difference between traditional techniques and the IVOF, which accounts for 

uncertainty and risk in the mine evaluation process, resides in that the latter gives a 

series of alternatives with their respective likelihood of where to look for final targets 

while the former gives a single value with a static interval of confidence.  

Imagine for example, as displayed in Figure 36, that a rich man tells us that he has 

hidden a pot of gold in one of the floors of a very high skyscraper. He also tells us that 

if we can find the gold in a specific time period we can take the gold with us. If we 

use traditional techniques that are based on expected values, such as the DCF and 

sensitivity analysis, we could conclude that the expected floor containing the gold is, 

let’s say, floor six with floor seven and five as interval of confidence. However, 

practical experience has shown that most of the time expectations are a sad reality and 

can mislead our final decisions and efforts.  
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Conversely, the proposed IVOF process creates a series of options, with their 

respective likelihoods and outcomes, from where we could start looking for the pot of 

gold. minimising in this case our effort and giving us a more accurate result than 

traditional techniques. This is because an IVOF process not only uses the available 

data also considers uncertainty and risk as well as operational and economic 

flexibility, which are based on many factors such as experience and knowledge of the 

problem at hand.  

Consequently, if accurate final decisions are to be made when evaluating a mine 

project using the IVOF structure, it is importantly firstly to quantify the main sources 

of existing uncertainty such as the orebody model, costs, and metal prices. Secondly, 

potential risks and opportunities that can arise due to uncertainty need to be identified; 

and thirdly the best strategies to implement in the face of a risky or opportunity event 

need to be identified. 

 

There is a pot of gold hidden  ..
Go and look for it..is yours

Traditional techniques-DCF-just output
Expected values..6th Floor ±1 floor ??

Most of the time Expectations are a sad reality...
Traditional techniques can mislead our decisions and effort 

The Integrated Valuation/Optimisation Framework (IVOF) uses Data,  
Risk management, Technical/Managerial Flexibility to...

The IVOF gives strategic options/Alternatives
To find the “best” solution to achieve specified targets

Option1 
low prob.

Option2 
Medium prob.

Option3 
high prob.

Expected
6th Floor 

 

Figure 36. Graph showing the main difference between traditional mine evaluation 

techniques and the IVOF process. 
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4.4 The Novel Integrated Valuation/Optimisation 

Framework  

In the IVOF context, a mine project, in this case an open pit mine project, is 

composed of two main components: the open pit mine project plan and design, j

t ; 

and the corresponding mine project’s value j

tV ; where 1,2,..,j J  indicates the mine 

design number. 

Then, the open pit mine project evaluation problem consists of finding the best open 

pit mine plan and design, * , that generates a maximum current value , 
0

*

tV , for the 

mine project, that is,  

         
0 0 0 0

0

* * 1 2

1 2, , , , .., ,
t

j

t t t j t
V

V max V V V    . (1.3) 

Equation 1.3 is, indeed, a very complex problem where the open pit mine engineering 

is integrated with mathematical, and economic and financial processes.  

For instance, the open pit mine project plan and design variable, j

t , can be defined 

as  

 
 1

i k

T
j j

t t
k i

 
 

 , (1.4) 

where  
1,2,..

|
i

j t

t x t
i W

  


  is the set of all blocks,  , ,
i

t

x BlkVal G ton , which in turn 

are functions of block value (BlkVal), grade (G) and tonnes (ton), extracted at 

production period  1 ,.., Tt t t t T t     , given an initial set of technical and 

operational constraints, t . Examples of these technical constraints are the open pit 

slope constraints and mining and processing capacities, among others.  

Similarly, the value, 
0

j

tV , of an open pit mine project, given a mine plan and design 

j , is defined as the total profit generated by the project cash flows, 
j

t

tCF


, generated 

throughout the operating life of the open pit mine, that is,  1 ,.., Tt t t t T t     .  
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In open pit mine operations parlance, the variables j  and j

t define the ultimate pit 

and the long-term production scheduling limits of the open pit mine project 

respectively (see Figure 37). As observed in Figure 37, each block, 

 , ,
i

t

x BlkVal G ton , inside volume j

t , which represents the mine production at 

period t ,  is characterised by its spatial 3-dimensional location,  1 2 3, ,i i i

ix x x x , the 

period t  where it is extracted, its block tonnage, ton
30

, the metal grade, 
ixG , and its 

economic value, t
xi

BlkVal


.  

The economic value of a block, t
xi

BlkVal


, is defined as the maximum between the 

value obtained if the block is sent to the mill, 
t
xi

milledBlkVal


 or the value of mining it and 

sending it to the waste dump, 
t
xi

dumpedBlkVal


, that is,  

  ,
t t
x xi i

t
xi

milled dumpedBlkVal max BlkVal BlkVal
 


 . (1.5) 

Then, if the block, 
i

t

x , is mined and sent to the mill, its value is 

    
t
xi

imilled x t refining mining millingBlkVal ton G y S c ton c c


        , (1.6) 

where, miningc , millingc , refiningc , are the mining, milling and refining unit costs ($/tonne) 

respectively; ton  is the tonnage of the material inside block 
i

t

x ; 
ixG  is the metal 

grade of the block (units/tonne); y  is the milling yield or milling recovery (%), and 

tS  is the metal price at period t .  

On the contrary, if the block 
i

t

x  is sent to the waste dump, then, its value is just the 

cost (negative value) of mining the block,  

                                                 

30
 Observe that, although; one characteristic of block models is that each block inside the model has the 

same dimensions, the density and consequently the tonnes of material may or may not be the same. The 

reason for this is the occurrence of different rock-type material with different densities in the mineral 

deposit. 
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t
xi

dumped miningBlkVal ton c


   . (1.7) 
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   
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Figure 37 Schematic showing the j  plan and design, j , of an open pit mine project. 

As observed, j  is composed of the union of the production scheduling plan and 

designs, j

t  (  0 10, ,..., Tt t t t t T t      . Also observe that the shape of the 

production scheduling plan and design is given by the blocks, 
i

t

x , to be extracted at 

each production period t and which obey technical constraints such as slope angle. 

The value of each block is given by Equations 3.4-3.6.  

Also observe in Figure 37 that each production period plan and design, j

t , will 

generate a cash flow, 
j

t

tCF


, defined as  

 
1

j
t

t
xi

N

t fixed

i

CF BlkVal c





  , (1.8) 
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where N  is the number of total blocks mined (that is, blocks milled + blocks 

dumped) at production period t , and fixedc  is the total fixed cost incurred in the 

mining process (to be assumed constant for each production period).  

Then, replacing Equations 1.4-1.7 in Equation 1.8 renders the following expression 

for the cash flow, given a mine plan and design j : 

 (1 )
j

t
t tt t t t refining t milling t mining fixedCF q y G S q y G c q c q sr c c


               , (1.9) 

where,  

miningc , millingc , y , and tS , are the same as defined in Equation 1.6;  

tq : is the total tonnes of the blocks mined and sent to the mill at production period t , 

formally defined as ore; 

sr : is the ratio between the tonnes of blocks sent to the dump (waste) and the ones 

sent to the mill (ore), formally defined as stripping ratio; 

tG : is the average metal grade of the ore material mined at period t ; and 

fixedc : is the fixed costs incurred at each production period t .  

Then, given that the average metal grade, 0tG  , follows a specific probability 

distribution (see Chapter 2 for more details),  
t

tG
F g , and using the fact that the 

metal grade of the orebody is independent from the metal price, the probability 

distribution of the expected cash flows, 
j

t

tCF


, generated at each production period, 

given mine design, j , and metal price tS s  can be estimated as follows: 
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Now, defining the metal quantity, tM , produced at each production period, t , as  

 tt tM q G y   , (1.10) 

and the total production costs, tTotCost , incurred in the metal production process at 

production period, t , as  

 (1 )tt t refining t milling t mining fixedTotCost q y G c q c q sr c c            (1.11) 

The cash flow, 
j

t

tCF


, defined in Equation 1.9, can be expressed as  

 
j

t

t t t tCF M S TotCost

   . (1.12) 

Observe in Equation 1.12 that because the mine project is evaluated in the face of in 

situ metal grade and metal price uncertainties, the cash flow, 
j

t

tCF


, generated at each 
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production period is seen as a random variable. The reason for this is that the average 

metal grade tG , the metal quantity tM , and the metal price tS , are random variables 

that follow a specific stochastic process. Furthermore, even though the production rate 

tq , mill recovery y , and mining, processing, refining and fixed costs, are seen as 

deterministic variables that can change over time, the total production cost, tTotCost , 

is also seen as a random variable. The reason for this is that, as observed in Equation 

1.11, tTotCost  is a function of the average metal grade, 
tG , and consequently a 

function of metal production, tM , which are random variables.  

In this context, at each production period  0 10, ,..., Tt t t t t T t      , the value of 

the open pit mine project j

tV , given mine plan and design j  ( 1,2,.., )j J , is 

defined as the sum of the maximum cash flow, 
j

t

tCF


, generated during the production 

period t , and the maximum between the continuation value, t t , and stopping 

value, t t , that is,  

 

      

 

*

*, ( : ) | , ;

:

f   0, ,  then   0;  and 0;

j
t

t

j
t

j

t t t t t t t t t
g

j

t t t t t

V Q S max E CF q g S max

where

i V Q S CF





        

   

 (1.13) 

where tQ  is the available ore reserves at the beginning of period t , and tq and tS   are 

the ore production rate and the metal price, respectively.  

Observe in Equation 1.13 that the maximisation of the cash flow, 
j

t

tCF


, is performed 

in respect to an optimum cut-off metal grade *

tg , defined as the minimum average 

metal grade, tG ,  that maximises expected cash flow 
j

t

tCF


. Also observe in Equation 

1.13 that if the available resources at period t  are zero, that is 0tQ  , then both the 

cash flow and continuation value are zero, that is, 0 and 0
j

t

t tCF

   , respectively. 

The reason for this is that at period t t   there is no production and consequently no 

cash flow generation. 
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One important feature of Equation 1.13 is that the cash flow generated at production 

period t  is the maximum expected cash flow value conditional to the given metal 

price tS s . This is precisely the main different between current evaluation 

techniques and the IVOF technology. In this case, Equation 1.13 uses the Jensen 

Inequality (see Figure 33 and footnote 27) to estimate the value of the open pit mine 

project at each production period, given metal price tS s .   

The continuation value, t t , is defined as the expected
31

 value of the mine 

operation if continuing (producing) operating throughout period  t t  , conditional 

on St: 

 
 

  *1
, |

1

j

t t t t t t t tt
E V Q S S

r
  

 


. (1.14) 

The stopping value, t t , is defined as the sum of the salvage value, SVal ,  of the 

mine operation obtained from selling all real assets, such as equipment and mine or 

processing facilities, and the closure costs, Clc , incurred during period  t t  , that 

is, 

 
 

  *1
|

1
t tt t t

E SVal Clc S
r

 
  


. (1.15) 

In this case, the decision rule for closing the mine project at any production period or 

continuing mining is given by the following expression  

  t t t t    . (1.16) 

Then, given Equations 1.13 – 1.16, the value of an open pit mine project can be 

defined as follows: 

                                                 

31
 In this paper, * .tE  is the conditional expectation with respect to the unique risk neutral probability, 

which can also be denoted by   * *. |t tE E I  , where tI is the available information at period t . 
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 At last production period T : At the last production period the value of the open 

pit mine project is defined as the sum of the maximum cash flow, 
j

t

tCF
 , and the 

salvage value, SVal , minus the cost for closing the mine, Clc , incurred for 

closing the mine. Then, the value of an open pit mine project at its last production 

period is defined as 

    *

*, ( : ) |
j

t

T

j

T T T T T T T T
g

V Q S max E CF q g S
      

. (1.17) 

 At production period 0t t T  : As defined previously, the value of an open pit 

mine project at production period 0t t T   is defined as the sum of the maximum 

cash flow and the maximum of the stopping or continuation values, that is,  

       
*

*, ( : ) | ,
j

t

t

j

t t t t t t t t t
g

V Q S max E CF q g S max
        

. (1.18) 

 At production period 0t : At production period 0t  the value of the open pit mine 

project is defined as the maximum of the continuation or stopping value incurred 

at period t t  . Then, the value of an open pit mine project at the beginning of 

the mine operation is defined as 

    
0 0 0 0 0

, ,j

t t t t tV Q S max      . (1.19) 

The final result obtained from the IVOF process is an adjusted or extended net present 

value, which is defined as the difference between the current mine project value, 
0

j

tV , 

and the initial capital investment, Investment . That is 

  
0 0 0 0

,j

t t t tENPV V Q S Investment  . (1.20) 

Since the current project value, 
0

j

tV , is a random variable, the extended net present 

value of the project, ENPV , is also a random variable.  

The extended net present value of the project, ENPV , can be seen as being composed 

of the simple net present value of the project, NPV , calculated with respect to the 

riskless rate of return, of certainty equivalent cash flows; and the added value, FVal , 
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resulting from all possible operational and managerial flexibility, such as optimising 

cut-off grades and closing the mine  in the face of future adverse conditions. That is  

 
; 0

; 0

NPV FVal FVal
ENPV

NPV FVal

  
  

 
. (1.21) 

Observe in Equation 1.21 that due to the value of flexibility being defined as the value 

of the option to implement a specific operational/managerial strategy, the flexibility 

value, FVal , is always greater or equal than zero – that is, by definition of option 

pricing, if the strategy to be implemented does not add value to the project it is better 

not to implement it.  

One important consequence of Equation 1.17 is that the minimum value that can be 

obtained from an IVOF process is the simple net present value of the project, that is,  

NPV , which is the value that owners and stakeholders of a mine project expect if the 

project is evaluated without flexibility. 

4.4.1 Algorithm for estimating the open pit project value using the 

IVOF technology 

As discussed in Chapter 2, the solution of Equation 1.13 is not an easy process. As 

shown in Equations 2.9-2.12 the solution of Equation 1.13 has to be solved by using 

advanced differential equations and many assumptions to relax boundaries.  

Conversely with current (e)valuation processes, the IVOF process uses a discrete 

approach to solve Equation 1.13. In this case the IVOF uses the fact that metal grades 

and metal prices are independent and that the open pit mine design and plan is 

selected by a series of iterations, where at each iteration a given mine plan and design 

is evaluated  and optimised under in situ metal grade and future metal price and total 

production cost uncertainties. 

In its essence, the IVOF is composed of five general stages (see Figure 41). Chapters 

5, and 6 give more details of each process. The IVOF stages are:  

i) Base-case mine design, which is built using current mine design techniques 

and used to identify main cash flow drivers. Here, an open pit design and plan, 
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j
 , is generated using traditional mine evaluation techniques and given initial 

expected parameters (see Chapter 3 for more details). 

Base-case open pit mine 

plan and desifgn
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P
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P
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P
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Economic and Technical 

Project Indicators

 

Figure 38. Diagram showing the base-case open pit mine plan and design, 
j

 , 

composed of an ultimate pit and a production scheduling (see Figure 1 for more 

details). Observe that the final project economic and technical indicators are single 

estimates. 

 

ii)  Incorporating the effect of geological uncertainty on given base-case mine 

design. This stage is performed using the Upside/downside potential technique 

(Martinez, 2003). At this stage, the base-case open pit mine plan and design, 

j
 , is assessed in the face of in situ metal grade uncertainty (see Chapter 5). 

The result of this stage is an open pit mine plan and design whose economic 

and technical indicators are characterised by a distribution of probabilities. 

Observe that up to this point, the in situ metal grade is the only uncertainty 

considered in the evaluation process. 
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Figure 39. Diagram showing IVOF stage 2 where the base-case open pit mine plan 

and design is assessed under in situ metal grade uncertainty. Observe that in this 

case, contrary to Stage 1, the final project indicators are characterised by a 

distribution of values. 

iii) Incorporating the effect of future metal prices in current mine plan and 

design and estimating the current market value of the open pit mine project 

using advanced financial techniques such as the Least-Squares Monte Carlo 

Simulation (Longstaff and Schwartz, 2001) and the Binomial lattice (Cox and 

Ross, 1976; Cox, Ross and Rubinstein, 1979). As observed in Figure 40, at 

this stage the base-case open pit mine plan and design obtained in the previous 

stage is assessed in the face of future metal price(s) uncertainty (see Chapter 5 

for more details). Then, based on the results, the current value of the open pit 

mine is estimated. This stage is composed of two sub-stages: metal price 

forecasting (Figure 40-above) and cash flow generation to render the current 

mine value (figure 40-below). Observe that the schematic representation of the 

IVOF’s stage 3 shown in Figure 40 uses the Binomial lattice to forecast metal 

price and to estimate the cash flows of the open pit mine project. Also observe 

that at each node of the binomial tree, the expected cash flows of the project 

are estimated as conditional to the given metal price, that is,  |t tE CF S . 

Furthermore, to estimate the open pit mine project value, different options are 
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considered at each production period, such as continuing production or closing 

the mine in adverse conditions. 

iv) Selecting the best (practical) mine plan and design based on uncertainty and 

risk (see Figure 41). At this stage, different open pit mine designs, 

 
1

, ,....
j j

 


 are built and passed throughout stages 1-3, which results in the 

estimation of the current open pit mine given a specific design,  
0 0

1, ,....j j

t tV V  ; 

and  

v) Making final decisions based on operational/managerial flexibility and risk 

analysis. At this stage, the best open pit mine design is selected based on its 

current value, that is, selected open pit mine design =  
0 0

1, ,....j j

t tmax V V  .  

As can be seen from the previous description, the difficulty of implementing the 

IVOF process when evaluating a mine project is that the mine planner must have an 

in-depth understanding of four domains: i) open pit mining and specially pit 

optimisation and production scheduling; ii) geostatistics and in particular conditional 

simulation; iii) stochastic processes for modelling commodity prices, and option 

pricing theory and the numerical methods for evaluating financial options; and iv)real 

options valuation which extend the methods for evaluating financial options to real-

world projects such as mines and oil fields.  
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Figure 40. Diagram showing IVOF Stage 3: Incorporating the effect of future metal prices (upper diagram) in the current mine plan and design and 

estimated current market value of the open pit mine project (lower diagram).
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Figure 41 Diagram summarising the Integrated Valuation/Optimisation Framework. 
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Observe that Equations 1.14 and 1.15 use the riskless discount rate, r , instead of the 

aggregated risk adjusted discount rate R r , which is normally used when using the 

DCF technique. This feature is indeed one important property of the IVOF 

technology, which consists of accounting for risk at the source of uncertainty rather 

than at the cash flow stage.  

This property can be better visualised in Figures 42-45. As observed in Figure 42, 

traditional techniques based on the DCF rely on an aggregated risk-adjusted discount 

rate, R , to account for the entire uncertainty and risk of a mine project. In other 

words, the aggregated discount rate is the ―Atlas‖ holding the entire mine project’s 

performance. Since the estimation of an aggregate discount rate that accounts for the 

entire uncertainty and risk of a mine project is not an easy task, its estimation could 

result either in an over-estimated discount rate that will reduce the project value (see 

Figure 43) or an under-estimated discount rate that will not be able to support the 

heavy load of the project risk, leading to its collapse (see Figure 44).  

Contrary to the DCF technique, as shown in Figure 45 the IVOF includes the 

technical and economic risk at the source of uncertainty—that is, at the project 

stage—allowing the mine analyst to avoid the difficult task of estimating an 

aggregated discount rate that accounts for these uncertainties. In this case a smaller 

discount rate, freer r R  , that accounts for time value of money, represented by the 

risk-free discount rate, freer , and other external uncertainties such as politic risk, is 

used instead. Observe that if the uncertainty of the project is resolved in its totality, 

then the discount rate, r , will equal the risk-free discount rate that only accounts for 

the value of money over time, that is, freer r . 
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Figure 42 Traditional mine evaluation process where the aggregate discount rate is 

considered as the Atlas holding the entire risk and uncertainty of a mine project. 

 

Figure 43 Traditional mine evaluation techniques can over-estimate the discount rate 

which will minimise the mine project’s value. 
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Figure 44 Traditional mine evaluation techniques can under-estimate the discount 

rate which will not be able to support the heavy load of risk of a mine project, leading 

to its collapse. 

 

Figure 45 IVOF perspective of mine project evaluation under uncertainty and risk. In 

this case the estimation of the discount rate, r , (represented here as the Atlas holding 

the entire mine project risk) is not a difficult task since it does not account for 

technical and economic risk, as they are accounted for at their source of uncertainty. 
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4.5 Conclusions and comments 

Throughout this chapter, it has been seen that the mine evaluation problem is not easy 

to solve, but certainly not impossible to achieve. Furthermore, this chapter has shown 

that when dealing with projects that carry uncertainty, the use of single estimates 

values could mislead final decision making, giving a favourable rate of return to a 

project that is otherwise doubtful or an unfavourable return to a project that is 

otherwise profitable. Quantified uncertainty and risk analysis and management were 

shown to be powerful tools for the mine planner or analyst when evaluating a mine 

project in the face of uncertainty. The reason for this is that quantified uncertainty and 

risk analysis give the mine planner or analyst a realistic range of the final outcomes, 

giving them the flexibility to react to either adverse or favourable conditions and to 

implement the best operational and managerial strategies that are able to take 

advantage of the opportunities while mitigating the risk for losses.   

In this context, the proposed Integrated Valuation/Optimisation Framework (IVOF) is 

seen as a technique suitable for mine project evaluation since it integrates uncertainty 

and risk in the mine evaluation process. One important characteristic of the IVOF is 

that it uses existing state of the art mine valuation/optimisation techniques to solve the 

mine evaluation problem in a tractable and practical fashion. One advantage of the 

IVOF is that it is a generic framework, that is it was not designed to be used for any 

specific software or open pit mine project. In fact, the IVOF can be applied to any 

mine project, and any software that has the relevant procedures that the IVOF needs 

can be used for its implementation. Another advantage of the IVOF is that because of 

its tractability it can allow any optimisation process to be included in the evaluation 

process.  

In summary, as observed in Figures 38-41, when applied correctly the IVOF is able to 

output the following. 

 An estimated value with its respective risk profile given by its probability 

distribution 

 A map of the technical and economic mine project indicator performance 

where data deficient and high risk areas will be identified (e.g., high grade 

variability, limited geotechnical design confidence, etc.). 
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 The ability to assess the risk and benefits of key project interventions such as 

different equipment fleet, different plan design and steeper slope angles.  

 The ability to identify and assess realistic and practical strategic operational 

and managerial decisions of mine closure, expansion or temporal stop, among 

others. 

 The benefits of the previous result are that mining corporations will be 

provided with realistic ranges (as seen in Figure 46) of final operational and 

economic outcomes, such as average metal quantities and grades, and mining 

and processing costs, instead of being forced into the quarterly charade of 

"earnings management" with all of its flawed estimates. Furthermore, the 

IVOF results will also benefit investors, who would at last be provided with a 

realistic view of the true uncertainties of their investments. 

Chapters 3, 5 and 6 will show how to build the base-case open pit mine design and 

plan, how to model both the orebody uncertainty, represented by the in situ metal 

grade variability, and future metal price modelling, respectively. 

 

 

Figure 46. When applied correctly, the IVOF is able to output a map of the technical 

and economic mine project indicator performance, in this case the cash flow 

distribution generated at each production period, where high risk areas can be 

identified via a risk analysis, such as Value@Risk (VaR) and the Upside/downside 

potential.  
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Chapter 5                                      

Simulation–Based Geological Risk 

Assessment: The Foundations of IVOF 

5.1 Assessing the risk in an open pit mine project under 

geological uncertainty 

We have previously seen that simulation techniques are of great help to the geologist 

when modelling an orebody. In this chapter it is shown how simulation techniques 

assist the mine planner in assessing the risk of a mine project and in making final 

strategic decisions in order to improve the potential of the project while minimising 

the risk of future losses. Understanding these techniques is essential for the 

development of IVOF. 

To achieve this, firstly the topic of orebody model selection for mine design and 

valuation is discussed from a practical viewpoint, and secondly a small, disseminated, 

low grade, epithermal gold deposit is used as a case study in which an open pit mine 

operation, named the base-case design, is built based on an (OK) estimated orebody 

model, and an assessment of the risk of achieving future production and economical 

targets is performed. This example is a recompilation from Martinez (2003).  

5.1.1 Selecting a suitable simulation orebody model(s) for mine 

design and valuation 

Similarly to orebody modelling, one common question that is normally formulated 

when designing and valuing a mine project under geological uncertainty is: which 

simulation model(s) is the best for mine design and valuation procedures?  

In practice, it is common to select one orebody model, usually estimated by linear 

techniques such as kriging, to design the entire mine operation. This practice results in 

one single value of the mine project that needs to be accepted as true when making 
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final decisions, such as to invest in the project if the value of the mine or Net Present 

Value (NPV) is positive and not to invest in the project if the NPV is negative. 

Sensitivity analysis, which is based on spider diagrams, is frequently used in these 

cases to assess the variability of the mine project due to the variation 

(normally 10% ) of the orebody characteristics (uncertainty of the orebody), such as 

ore tonnes, metal grade, and metal quantities, among others (see Figure 47).  

However, due to the fact that the initial source (the estimated orebody model) input in 

the mine optimisation process, seen here as a non-linear transfer function (see 

Appendix A for more details about transfer functions), is uncertain, many authors 

(e.g. Ravenscroft, 1992; Dimitrakopoulos et al, 2002; Rossi and Van Brunt, 1997; 

Farrely, 2002; Martinez, 2003) support the idea that sensitivity analyses, when applied 

to mine design and production scheduling, are fairly coarse and are of a potentially 

misleading nature. The reason for this is that sensitivity analysis considers, 

incorrectly, that the variability of the geological attributes such as metal grade 

throughout the orebody model is of a linear character. Consequently, a 10%  

variation in the value of one geological attribute, say metal grade, is not a realistic 

representation of the variability of this attribute across the orebody model.  

 

  

 

Figure 47.  Schematic representation of the traditional sensitivity analysis framework 

in which the value of a mine project is assessed against the variation ( 10% ) of a 

specific project indicator, such as the metal grade. (Reproduced from Martinez, 

2003.) 
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Another common practice in mining projects consists of selecting three orebody 

models from a set of simulated models instead of a single estimated one. In this case, 

the selected orebody models are those with the highest, average, and lowest ore tonnes 

content, which are normally extracted from the cumulative distribution function (cdf) 

of ore tonnes that is estimated for a specific cut-off metal grade. The reason for doing 

this is to generate three mine project scenarios—the average, maximum and minimum 

project scenarios—which can give the mine analyst a type of interval of confidence 

for the value of the mine project. In this case, the best mine design is the one built on 

the best orebody model and that is expected to generate the best NPV; the average 

mine design is the one built on the average orebody model and that is expected to 

generate an average NPV; and the worst mine design is the one built on the worst 

orebody model and that is expected to generate the worst NPV.  

Even though this makes some sense in terms of obtaining a type of interval of 

confidence for the NPV of the mine project, in practice it is seen that both the 

interpretation and implementation of this idea are not correctly executed because of 

the poor understanding of the following concepts: 

Concept 1. The distribution of the geological attributes, such as the ore tonnes above a 

given cut-off grade, throughout the orebody model is nonlinear. Consequently, if two 

different simulated models of an orebody, such as 1Sim  and 2Sim , with 1SimQ  and 

2SimQ  denoting their respective total ore tonnes, above a cut-off grade, cutoffg , and 

1 1Sim Simq Q , and 2 2Sim Simq Q , denoting the ore tonnes, above the same cut-off grade 

cutoffg , of the zone A inside the orebody (see Figure 48), then the following events 

may happen: 
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Figure 48. Diagram showing two simulations of an orebody with a common inner 

zone A. In the figure, 1SimQ  and 2SimQ  denote the total ore tonnes of each simulated 

model while 1Simq , and 2Simq  denote the ore tonnes inside the common zone A. 

Concept 2. If the differences in metal content and metal grades, among other 

geological characteristics, of two or more simulated models of an orebody are 

significant, then different (physical) mine design limits can be generated for each of 

them. Otherwise, one common mine design can occur for them all. Observe that for 

this concept to be true, the input of all other economic and technical variables in the 

mine design process, such as costs, metal prices, slopes, and mill capacities, need to 

remain constant for all simulated orebody models.  

Concept 3. A mine design is a 3D volume on the ground in which the material inside 

its limits is seen to be economical to extract while the material outside its limits is 

non-economical and is left in the ground. Consequently, if two or more physical mine 

designs are generated on two or more simulated orebody models, then each of them 

will carry the uncertainty of achieving estimated initial targets, such as ore and waste 

tonnes, metal quantities, inside its limits.    

Then, based on the previous concepts, it is clear that:  

i) The selection of the best, average, and worst orebody models extracted from the 

ore tonnes distribution curve, or other geological attribute, will not necessarily 

generate the best, average and worst mine project value (see Concept 1 above).   
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ii) The result of using three orebody models for mine design and valuation may result 

in the generation of one, two, or three pit designs which have different physical 

limits (see Concept 2 above). One consequence of this result is that the mine 

project values obtained from the best and worst pit design scenarios cannot be 

used as an upper or lower limit for the mine project value obtained from the 

average mine design scenario (see next result).  

iii) If two or more (physical) pit design scenarios are generated for a mine project, 

each of them is a candidate to be implemented in the project. However, each of 

them will be affected by the uncertainty of the orebody, that is, each of them will 

have the uncertainty in future productions of achieving the initial plan targets, 

such as ore and waste tonnes, metal quantities and metal grades.   

Consequently, if two or more pit design scenarios are generated, the pit design that 

has the minimum risk in achieving future economic and technical targets, such as mill 

capacity and minimum acceptable cash flow, among others, is the best for the project. 

But, how do we know which pit design is the one with the minimum risk of achieving 

future economic and technical targets? 

One solution to the previous question could be to apply sensitivity analysis to each of 

the generated pit design scenarios and select the design which is less sensitive to 

variations in the economic and technical parameters (see Figure 49). However, as 

mentioned previously, sensitivity analysis is not an accurate tool for assessing the risk 

of a mining project because it does not consider the uncertainty of the orebody model. 

Consequently, a decision made based on a sensitivity analysis may bring devastating 

consequences to the owners of the mine and its stockholders since it could mislead the 

real value of the mine project. 

An alternative process to quantify the mine value uncertainty, and consequently to 

select the best pit design based on a risk assessment of future profits and losses, is the 

Upside/Downside valuation framework (2002). This approach belongs to the general 

Monte Carlo simulation and risk assessment framework (Halton, 1970; Journel and 

Huijbregts, 1978; David, 1988; Dimitrakopoulos, 1998; Armstrong and Dowd, 1994; 

and others), and is founded on the definition of two components. The first component 
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includes the performance of the key project indicators and the second component 

includes the decision-making criteria.  

The Upside/Downside valuation framework uses conditional simulation techniques to 

provide multiple equally probable models of the orebody that reproduce the statistics 

and in situ variability of the deposit. By integrating these simulated models into a 

transfer function (in this case the mine design process), the orebody uncertainty is 

then transformed into a probability distribution of final outcomes or responses, such 

as the key project indicators (see Figure 50). The resulting probability distribution of 

the key project indictors is then used to assess the sensitivity of the overall mine 

economics, long-term mine planning and production scheduling to grade uncertainty. 

To achieve this, real decision-making criteria such as the minimum ore tonnes, the 

minimum amount of metal, and the minimum acceptable cash flow, produced in a 

specific production period, or the minimum acceptable NPV, are used as references 

from where the downside-risk/upside-potential of generating future values 

below/above these criteria are established. This process makes use of a minimum 

acceptable risk tolerance which is established by the analyst of the project. The final 

decision of selecting the best pit design for the project among two or more pit design 

scenarios is made by comparing their respective downside-risk and upside-potential 

indicators (see Figure 49).   

 

MAR MAR MAR

Risk Risk RiskPotential Potential Potential

NPV1 NPV2 NPV3

Pit Design 2Pit Design 1 Pit Design 3

 

Figure 49. Diagram showing the process of comparing the probability distribution of 

the resulting NPVs of three pit designs. Observe that this comparison is based on the 

downside-risk and upside-potential of obtaining values below or above a minimum 

amount return (MAR). 
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5.1.2 Risk assessment of a gold deposit using the uncertainty of the 

orebody  

This section demonstrates how simulation techniques help the mine analyst to assess 

the risk of a mine project and make final strategic decisions based on the risk 

assessment. To achieve this, the small disseminated gold deposit (see Figure 50) used 

in Martinez (2003) is used here as a case study. Table 4 displays all the pertinent 

economic and technical parameters to be used in the process. 

The first step consists of generating the base-case open pit mine of the project, which 

includes the ultimate pit and production periods (cutbacks) limits.  The steps for 

generating the base-case open pit design of the small gold deposit are as follows. 

1. Estimate an orebody model of the deposit using ordinary kriging. This is done 

based on the information from the drill holes. 

2. Pass the estimated orebody model through a pit optimisation process and find the 

ultimate pit limits based on a pit value analysis.  

3. Based on initial considerations such as mill demand and using a mine schedule 

process, design the cutbacks or sequence of extraction. Observe that if mill 

demand is already given it could that an existing mill facility already exists and no 

further expansion or modification is desirable.   

4. Interpret and summarise the values of the project indicators, such as DCF, ore and 

waste tonnage and metal (gold) quantity, in a table.  

Figures 50 and 51 display the results of the previous steps for generating the base-case 

open pit design for the small disseminated gold deposit used as a case study. Further, 

Figure 50 is a table with the single project indicator’s values for each cutback or 

production period.  

As observed in the figure, the mine project will have an operating production life of 

three years. At each year or cutback, the target of the mill demand (1M tonnage of 

ore) will be achieved. The total production of gold will be around four million grams, 

and the total estimated discounted cash flow (DCF) of the mine will be $22M.  
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Figure 50.  East-west cross-section of the gold deposit used to explain the process of 

risk analysis under orebody uncertainty. In the figure, the drill holes used to collect 

information about the deposit, with their respective 3m composites, are shown. Note 

that the deposit was previously mined and the objective of this study is to find out if it 

is possible to start a new profitable mine operation with the remaining reserves. 

 

Mine Parameters 
 

Pit slope 54° 

Mining cost $1.0 per ton 

Processing cost for oxide $8.195 per ton 

Processing cost for fresh $16.86 per ton 

Mill recovery for oxide 90% 

Mill recovery for fresh 84% 

Discounted rate 8% per year 

Gold Price Au$600/oz 

Table 4. Technical and economic parameters considered when performing the process 

of pit design on the small disseminated gold deposit. 
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Figure 51. Schematic diagram showing the traditional pit design process: estimation 

of an orebody model; pit optimisation process; DCF analysis by pit shell; finding the 

ultimate pit (pit shell 41). 
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Figure 52. Schematic diagram showing the traditional cutback design, and the single 

value for each of the project indicators considered in the analysis. 

 



               
152 

Once the base-case mine design of the project has been generated, the mandatory 

question to be formulated is: what is the risk of achieving the estimated project 

indicator values in the face of the orebody uncertainty? In other words, if the base-

case mine design, shown in Figure 52, is adopted for the project, there is interest in 

knowing the following: 

1. What is the probability that the mine will produce 1M tonnes of ore each year, for 

three years? 

2. What is the probability that the mine will generate a total NPV of $22M with 

$14M and $19M of cash flows during the first and second years, respectively? (In 

this case the investment capital is assumed to be zero). 

Observe that in this case we are not interested in changing the base-case mine design 

limits, but in assessing the effect that the uncertainty of the geological attributes, in 

this case metal grade of the blocks inside base-case mine limits, has on the final value 

of the project indicators. Remember that the base-case mine design was built 

considering just one estimated orebody model (see Figure 52) in which each block 

was characterised by a single value of the pertinent geological attribute, that is, the 

metal grade.  

To assess the risk of the base-case mine design under geological uncertainty the 

following steps are performed (after Martinez 2003).  

1. Generate N  simulations of the orebody of the deposit using Conditional 

Simulation and Monte Carlo techniques. In this case, 13N   simulations of the 

orebody model were generated and used to assess the risk on the base-case design. It 

is important to mention that the 13 simulations were extracted from the NPV 

cumulative density function (cdf) generated by Farrelly (2002) on the same ore 

deposit. In this case, 10 orebody models—those whose NPV corresponded to the 10% 

percentiles of the cdf—plus three models selected randomly, were selected for 

performing the risk analysis. The idea of selecting the 10% percentile orebody models 

was initially proposed by Ballin and Journel (1992) in their work on reservoir 

characterisation.   
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2. Overlay the physical base-case mine design (pit limits) on each simulated orebody 

model and take note of the value of the selected project indicators, such as metal 

quantity, ore tonnes, and cash flows, among others. Note that in this step the entire 

physical design of the base-case mine design, which is determined by the ultimate pit 

and production period limits, as well as all the initial mining parameters are kept fixed 

so that the only parameter to vary is the orebody model. In simple words, for each of 

the 13 simulated orebody models we take note of the values of ore tonnes, metal 

quantity, and cash flows, among other, inside the limits of the base-case mine design. 

3. Quantify and assess the risk for each selected key project indicator. 

4. Compare and analyse the results obtained in steps 2 and 3 with the ones estimated 

originally for the base-case design and make final conclusions. 

5. End the process. 

The results of the previous analysis are depicted in Figure 53-A, B, C, D in which the 

distribution of the non-cumulative ore tonnes, gold quantity, waste tonnes, and 

discounted cash flows of the base-case mine design are shown for each production 

period or cutback. In the figures, the values estimated for the base-case design without 

considering the uncertainty of the orebody models are displayed in a dark colour bar. 

As observed in the figure, the estimated project indicator values (dark colours) do not 

give enough information about their respective uncertainty. As a matter of fact, the 

figures clearly show that the base-case project indicators overestimate the quantity of 

ore tonnes, metal quantity and cash flow, and underestimate the generation of waste 

tonnes at each production period, respectively. For example, the value of the gold 

project, using the base-case design, was expected to generate a total DCF around 

$20M (see Figure 53).  

However, a simple risk analysis performed on the cumulative DCF distribution (see 

Figure 53) shows that on average the base-case design will generate around $16M; in 

fact, the likelihood that the base-case design will generate the estimated value of  

$20M is very low. This result is crucial when evaluating the mine project. The 

difference of estimating the cost of capital based on $16M or $20M for a small project 

like the case study (3 years), could be the key to the success or failure of the mining 
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project. The summary of the quantification of risk on the selected key project 

indicators are displayed in Table 5; for the sake of simplicity, the maximum, 

minimum, and median values of each project indicator are displayed. 

Because the result of the risk analysis performed on the base-case mine design gives a 

better view of the uncertainty in achieving planned targets throughout the operating 

life of the project, it is now possible to make strategic decisions to reduce or mitigate 

future risk and to add value to the project. 

For example, Figure 53-A shows that the second year of production will be 

characterised by a shortfall in ore tonnes (especially at the end of the year). To avoid 

having problems with ore supply in that year (if this happens to be true), it could be 

worthwhile to plan the implementation of alternative strategies during that year. One 

option (strategy) could be to start a stock-piling campaign at the beginning of the 

second year to overcome the lack of ore tonnes at the end of the year. Another 

strategy could consist of starting an exploration campaign looking for new 

mineralised zones during the beginning of the second year in order to supply enough 

ore material to the mill at the end of the year.  

Figure 53 also shows that the likelihood of achieving planned targets during the last 

production period is very low. In fact, a risk analysis indicates that this period will be 

characterised by low ore production and high waste removal, which will result in the 

generation of negative cash flow (see Figure 53-D). In this case, the strategies to 

follow could be: i) invest in an aggressive exploration campaign at the end of the 

second year to find new mineralised zones; ii) sell the property so the company that 

buys it is the one making the investment in exploration activities; or iii) close the mine 

during the last period, and recover the salvage value (the sale of mill and machinery 

among others).    

Something interesting that can be observed from Figure 53 is that, in this case, the 

results estimated for the base-case mine design, is that, when using the kriging 

orebody model, overestimated the values of ore tonnes and metal quantity, and 

underestimated the values of waste material, especially during the second and third 

year. The reason for this is that the cut-off grade established for designing the base-

case mine was larger than the overall mean of the unknown deposit. This effect can be 
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visualised in Figure 54 where two distribution curves of metal grade are shown. Here 

the smoothed curve represents the kriging-smoothed effect while the unsmoothed 

curve represents the true distribution of the deposit. From the figure, it is observed 

that if a cut-off, 0Z , greater than the overall mean is considered for mine planning and 

design, the smoothed curve generates less metal quantity and ore tonnes and more 

waste tonnes than the non-smoothed curve; conversely with this, if a cut-off, 1Z , 

smaller than the overall mean is considered, then the smoothed curve generates more 

metal quantity.  
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Figure 53. Base-case mine design dynamic distribution of ore tonnes, gold quantity, 

waste tonnes and discounted cash flows for each production period or cutback (after 

Martinez, 2003). Observe that the bars with different colours indicate the result 

obtained for the base-case mine design without considering the uncertainty of the 

orebody. 
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Figure 54. Scheme showing Kriging’s property of overestimated or underestimated 

ore tonnes (adapted from Journel and Huibregts, 1978). 

 

5.2 Comments and conclusions 

The study conducted in this chapter investigates the merit of using either linear 

techniques or techniques based on Monte Carlo simulation frameworks for both the 

modelling of an orebody and the assessment of risk in a mining project, which are not 

accounted for when using traditional evaluation techniques. It is shown that linear 

techniques, such as ordinary kriging, remain as popular benchmarks for both orebody 

modelling and mine planning and design. However, it is also shown that linear 

techniques do not allow the quantification and assessment of the uncertainty of key 

project indicators because of their restrictive property of minimising variance. That is 

they fail to give a realistic representation of the orebody and, consequently, the value 

of a mining project.  

Further, it is shown that estimation techniques based on the Monte Carlo simulation 

framework give a better representation of the variability of the orebody characteristic, 

giving mine planners more information about the uncertainty of the project value, and 

a tool for making final decisions. In fact, these techniques give a range or distribution 

of values where the true unknown value may be allocated. In this way, in the face of 

uncertainty the mine planner has more options from which to select an optimal design 

based on their experience and company policies. This is not the case when using just 

one estimated orebody model. 
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One important conclusion obtained from this study is that because the mining process 

can be modelled as a 3D non-linear transfer function, the use of an (OK) expected 

orebody model does not ensure expected values of final outcomes such as the key 

project indicators (see Figures 53). Take for instance the results obtained in Figure 53-

D, where the risk analysis of non-cumulative discounted cash flow is displayed. As 

observed in the figure, the expected values of the cash flows generated at each 

production period are not generated by the ordinary kriging orebody model, which is 

the expected orebody model, but by other models representing different percentiles. 

This is an important result since it corroborates and supports the use of simulation 

techniques together with estimation techniques for open pit mine planning and design 

even when a risk-neutral approach is assumed in the mine modelling, planning and 

designing process. In simple words, to select a project value based on an average DCF 

it is necessary to have the probability distribution of DCFs.  

This work can be expanded to approach other problems such as the selection of 

cutbacks in a given ultimate pit design, or the selection of the entire mine project 

design, which include the estimation of the optimum ultimate pit and cutback limits, 

based on the uncertainty of the orebody (see Martinez, 2003). However, care needs to 

be taken when modelling an orebody based on the traditional techniques discussed in 

this chapter. The reason for this is that the assumption of the properties of the random 

function  iZ x  as a stationary, ergodic RF, is not always true in real life, and the 

implementation of these assumptions in the modelling process could cause spurious 

results about the characteristics of the orebody and, consequently, the general 

performance of the mine project. 

There is currently no technology that is able to perform a complete mine project 

valuation/optimisation process in which the geological and other underlying variables’ 

uncertainties are included in the process.   
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Key project 

indicators 
Description CB-1 CB-2 CB-3 

DCF 

($ million) 

Estimated 14.2 18.0 19.2 

Maximum 16.0 19.7 20.2 

Median 13.8 16.9 17.1 

Minimum 11.3 14.0 13.5 

Ore 

(Mt) 

Estimated 1.0 2.0 3.0 

Maximum 1.0 1.8 2.5 

Median 1.0 1.7 2.3 

Minimum 0.9 1.6 2.2 

Waste 

(Mt) 

Estimated 0.36 1.4 2.6 

Maximum 0.5 1.8 3.5 

Median 0.46 1.7 3.4 

Minimum 0.4 1.6 3.2 

Gold quantity 

(Mgr) 

Estimated 1.78 2.9 4.1 

Maximum 1.8 2.9 3.7 

Median 1.76 2.68 3.4 

Minimum 1.6 2.4 3.2 

Table 5. Results of the risk analysis performed by cutback for key project indicators 

for the base-case design of the gold deposit under study (after Martinez, 2003). 
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Chapter 6                                               

Understanding and Modelling Future 

Metal Prices in Open Pit Mine Project 

Evaluation 

6.1 Introduction 

In this chapter we demonstrate how our novel IVOF method integrates with classical 

price forecasting. 

Metal prices are one of the most important sources of uncertainty in the evaluation 

process of a mining venture
33

 . In fact, any variation from the expected metal prices 

may considerably modify the results of the entire mine project evaluation. One reason 

for this is that past and present price movements shape expectations about future 

prices and consequently the profits obtained from the mine operation. For example an 

overestimated metal price may result in a favourable rate of return for a project which 

is otherwise doubtful and, conversely, an underestimated metal price may result in an 

unfavourable return for a project, which is otherwise profitable. Another reason is that 

metal prices have a significant influence on the cost of capital for mine project 

investments, because the option to defer project investment is based on the available 

information about future metal prices. Accordingly, making future forecasts of metal 

prices helps decision managers in both the reduction of the uncertainty of future 

events and in taking full advantage of the future opportunities available. In fact, no 

rational decisions can be made without at least implicitly taking some view of the 

future.  

                                                 

33
 The characteristics of the orebody model and costs, among others, are also important sources of 

uncertainty. 
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Formally defined, the price of metal is the real cash settlement that represents the 

equilibrium or disequilibrium of the metal market. This market is based on demand, 

supply, and other factors such as speculations, news events, and dividend payouts 

(Case and Fair, 1989; Taylor, Moosa and Cowling, 2000; Fanning and Parekh, 2004). 

As defined by MacAvoy (1988), uncertainty about future metal prices arises because 

of two reasons: the lack of exact knowledge of those factors leading to the increase or 

decrease in metal supply and demand; and the practices that producers or consumers 

perform in the face of powerful speculative and political motives. 

Even though the perception of future metal price fluctuations is well known by mine 

planners and mine analysts, one common practice in the mining industry is to ignore 

it, adopting a single estimated (expected) value to perform the evaluation of the mine 

project throughout its entire operating life. The argument commonly used to defend 

this assumption is that past and present prices cannot give information about future 

prices.  

However, as it is shown in this chapter, the assumption of a single estimated metal 

price value over time is not accurate in capturing changes in metal price trends and, 

consequently, it may over/underestimate the value of a mine project in times where 

low/high trends occur. Furthermore, it will be shown that the single price value 

forecast assumption is also based on past values, which uses a very simple forecasting 

rule that is based on the arithmetic average. 

In comparison to traditional techniques, modern project valuation procedures that are 

based on risk and uncertainty model future spot metal prices as stochastic (diffusion) 

processes that evolve over time. Then, Monte Carlo simulation is used to quantify the 

effect that the uncertainty of future spot metal prices have on the mine project value. 

But: 

What are risk-neutral metal prices; and when and why do we need to use them?  

This chapter explains the answers to these questions from a practical viewpoint. To 

achieve this, the chapter is organised as follows. Section 6.2 discusses the traditional 

way for modelling metal prices in mine project evaluation. Section 6.3 discusses the 

modern way of modelling future spot metal prices as stochastic (diffusion) processes. 

Section 6.4 introduces and discusses the concept of risk (neutral) adjusted metal prices 
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and explains its difference from spot prices in the context of mine project evaluation. 

Section 6.5 presents an illustrative example of the effect of metal prices on mine 

project evaluation where a small gold mine project is evaluated using traditional, 

modern and risk-neutral metal prices. Section 6.6 gives general comments and 

conclusions. 

6.2 Traditional ways of modelling metal prices in the mining 

industry 

When valuing a mining project it is common practice to use just one expected value 

for the price of the economic metal(s) present in the mineral deposit. This price is 

normally assumed to be either the current spot price given in the market, or the 

average spot price over the last three years (Rendu, 2006)
34

.  

One of the reasons for using just a single estimated value is the ease of comparison 

between mining companies, preventing the use of excessively optimistic prices. 

Another reason is its simplicity when estimating the mine project cash flows and, 

consequently, its final market value. The common statement used to defend the use of 

a single estimated metal price(s) in mine project evaluations, is that past and current 

prices do not give information about future prices.  

It is important to understand, however, that the use of a single metal price is also a 

very simple forecast of the future metal price behaviour, and it could be of a 

misleading nature when evaluating mining ventures. See for example Figure 55 where 

the starting point of a virtual copper mine project with a large operating life (say 

greater than 10 years), is plotted on different periods over the historical copper (spot) 

price for the periods April 1986 - April 2006. As observed in the figure, if the copper 

mine project is started in 1986 (in the figure indicated by point A) the assumption of a 

single metal price, given in this case by the April 1986 copper price, will 

underestimate the mine project’s  value throughout its operating life. The reason for 

                                                 

34
 See final comments and conclusions, in Section 6, for cases where the assumption of a single 

expected metal price could be corrected adopted when evaluating a mine project. 
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this is the low copper price assumed for evaluating the mine operation. Conversely, if 

the copper mine project is started in 1989 (in the figure indicated by point B), it is 

seen that the assumption of a single metal price, given by the current April 1989 

copper price, will overestimate the project’s value for years 1989-2004, where copper 

prices were lower than the assumed initial expected copper price (point B in the 

figure); and underestimate the project’s value for years 2005 and 2006, where copper 

prices presented an up-jump following an increasing trend. Observe in the previous 

example that the metal price is obtained as the average of the last three years (in the 

figure indicated by the grey dashed lines - Average 1) also fails to describe rises and 

falls in copper prices over time and, consequently, does not give a realistic 

representation of the mine project’s value.  

But, how do mining companies protect themselves against changes in future metal 

prices when using a single metal price value in the evaluation of their mine projects? 

When performing the economic evaluation of a mine project it is common practice to 

use the Discounted Cash Flow (DCF) technique (Mun, 2006; Kodukula and 

Papadescu, 2006), which uses a global risk-adjusted discount rate, WACCR , normally 

given by the company’s Weighted Average Cost of Capital (WACC)
35

  and using the 

Capital Asset Pricing Model (CAPM) (Benninga, 2000; Kodukula and Papadescu, 

2006; Mun, 2006).  

To deal with the uncertainty associated with the mine project payoff, the DCF 

discounts the cash flows at a specific rate, WACCR , that is composed of the risk-free 

rate, r , that accounts for the time value of money, and a risk premium, premiumr ;  that 

is,  

  WACC premiumR r r   (6.1) 

In this context, the risk premium, premiumr , is an aggregated risk factor that is supposed 

to account for the cash flow uncertainty that also includes the uncertainty of future 

                                                 

35
 The risk adjusted discount rate WACCR  is defined as the weighted average of the cost of debt and the 

cost of equity (assuming that the company has equities and debts only). 
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metal prices. Among others reasons (see for example pp84-85 of Mun, 2006), one of 

the main problems of using the WACC risk-adjusted rate is that the firm’s capital 

structure policy may have specific long-term targets and weights that do not agree 

with the current metal market structure. Another problem is that because it is a global, 

or aggregated, static indicator of risk it does not consider the dynamism of the 

economy that changes over time; in fact, the estimation of a dynamic risk-adjusted 

discount factor that agrees with a dynamic market is not an easy task to perform. Due 

to the fact that different businesses may involve different degrees of risk, the 

proponents of the ―DCF-value-based planning method (Kiechel, 1981)‖, typically 

recommend the use of risk-adjusted hurdle rates. However, many authors (see for 

example Reimann, 1990) argue that businesses would be better off not adjusting 

divisional or business unit hurdle rates for differences in risk are applied. Instead, it is 

suggested that the cash flows themselves should be adjusted for their relative 

uncertainty obtaining their certainty equivalent. Observe that the previous statement is 

basically the main principle of the real options valuation technique.  

In summary, the consequence of using a single constant metal price when evaluating a 

mine project is the lack of perception about:  

i) the risk and opportunities that can be generated if low/high prices occur in the 

future; and  

ii) the best technical strategies that can be implemented in the evaluation process 

to mitigate the risk for losses if low prices occur, while taking advantage 

of opportunities if high prices occur.  

This lack of perception about future project opportunities and risks due to changes in 

metal prices will lead the owners and stakeholders of the mine to make final 

decisions, such as investing or not investing in the project, based on a single estimated 

mine value, implying tacitly that the resulting value is the best estimate of 

performance. Clearly, these final decisions will be based on a variety of technical and 
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economic systematic errors because this estimate is obtained by ignoring the impact 

of metal price variations
36
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Figure 55 Chart showing the different copper price values that a copper mine will 

assume when evaluating the mine project using traditional metal price forecasting (in 

the figure, the historical copper spot price are for the period 1-04-1986 – 1-04-2006). 

As observed in the figure, mine projects started in1986 (point A) will underestimate 

its market value, while mine projects started in 1989 will overestimate its value for 

periods 1989-2004 and underestimate its value for periods 2004-2006. 

6.3 Modelling future metal prices as stochastic processes 

As opposed to the traditional way of modelling metal prices, current modern mine 

valuation procedures use advanced financial and economic techniques to model 

commodity metal prices as random variables that follow stochastic (diffusion) 

processes over time. This is done in order to capture the complexities of future 

marketing and metal production as well as other non-measurable factors such as 

speculation. It is important to observe that the aim of using stochastic processes for 

modelling future metal prices is to generate a series of possible price paths (this is 

                                                 

36
 In practice, mine managers prefer to work with a ―number‖ rather than a distribution of numbers 

Peirson, G., et al.,2001. Business Finance, p.556-560,The McGraw-Hill Companies, Inc. , Ross, et 

al.,2003. Fundamentals of corporate finance, p.354-355,Irwin / McGraw-Hill .    
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done using Monte Carlo simulations) instead of a single estimated value. The purpose 

of doing this is to capture the unknown future behaviour of the metal price rather than 

estimating its exact value. This is because the process of forecasting metal prices for 

long time periods, which is common for mine operations, is not accurate (Davis, 

1996). 

In the literature there are many techniques available for metal price forecasting: the 

range goes from simple trend analysis to complex time series and econometrics 

models. However, the selection of an appropriate forecasting model plays a critical 

part in a mine project valuation process (see for example Schwartz, 1997; Schwartz, 

1998). For example, classical microeconomic theory highlights that the price of 

investment-type assets, such as financial assets and gold, do not exhibit any kind of 

price reversion and, consequently, the most-used model to characterise the future 

behaviour of these types of assets is the Geometric Brownian Motion. Conversely, 

investment-type assets, and industrial-type commodities, such as copper and oil, are 

seen to be linked to their marginal production cost in the long term. In this way, 

expectations of future prices tend to fluctuate around or revert back to the marginal 

production costs and level of demand. Consequently, the common model used to 

model the future behaviour of industrial-type assets is the mean reverting model 

(MR).  

The Geometric Brownian Motion Model (Chan and Wong, 2006; Dixit and Pyndick, 

1994; Laughton and Jacoby, 1993; Brandimarte, 2006) is the most commonly used 

model to describe changes to commodity prices over time, tS , in terms of the 

expected rate of growth,  , and a random deviation from the expected rate written as 

the product of a volatility parameter,  , and the standard Brownian motion, 

t tdW dt ; where t  is a stochastic process following a standard normal 

distribution with mean equal zero and variance equal one. It is defined as follows
37

  

 t t t tdS S dt S dW   . (6.2) 

                                                 

37
 Observe that the model given in Equation 5.1 is simple in that the expected rate of growth,  , and 

the volatility parameter,  , are assumed to remain constant over time. A more complete model is that 

one in which both   and   varies over time. 
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Figure 56 shows 50 GBM paths generated by Monte Carlo simulation. The parameters 

for the GBM process are: 0 50S  , 10%  , and 30%  .  From the figure it is 

observed that the GBM process never generates negative values. This is because the 

GBM is a lognormal process, that is, the natural logarithm of the commodity price 

under study is normally distributed (see for example Brandimarte pp431-433). This  

consistent generation of positive values is one of the reasons for which the GBM is 

widely used to model commodity prices since they are never negative. Note, however, 

that care needs to be taken when using the GBM for modelling a project’s value over 

time. The reason for this is that the value of the project may become negative, which 

would not be considered if using the GBM. Another characteristic of the GBM is that 

the variance of the process increases proportionally with time. Consequently, projects 

with large production life spans following GBM behaviour will present greater 

uncertainty as time passes. 

 

 

Figure 56. Twenty sample paths generated by a Monte Carlo simulation of a 

geometric Brownian process. The parameters for the GBM process are: 0 50S  , 

10%  , and 30%  . 
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The Mean Reverting Model  (Dixit and Pyndick, 1994; Laughton and Jacoby, 1993; 

Brandimarte, 2006) is another common model used in financial applications to 

describe the behaviour of future commodity (metal) prices.   

To make it simple, the concept of mean reversion can be established from the theory 

of supply and demand: if the demand of a commodity is high/low and the supply is 

low/high, then the commodity price will go up/down until reaching a stable level 

where supply and demand are in equilibrium. In this case, the commodity price is said 

to follow a mean reverting process and the stable level price is the one at which 

supply and demand are in equilibrium. Other common definitions for mean reversion 

are (extracted from Exley, Mehta and Smith, 2004):  

i) An asset model is mean reverting if returns are negatively correlated; and 

ii) An asset model is mean reverting if interest rate (and volatilities) yields or 

growth rates are stationary. 

 Formally defined, the MR model can be expressed as   

  t t t tdS S M S dt dW    , (6.3) 

where   and t tdW dt  are the same as for the GBM,   is the speed of reversion, 

or mean-reversion rate, and M  is the long-run equilibrium level. As observed in 

Equations 6.2 and 6.3, the main difference between the GBM and the MR is the drift 

term. Indeed, as shown in Figures 56 and 57 (where the mean reverting process given 

in Equation 6.3 is displayed), the MR process is a stationary process around the 

equilibrium level M  while the GBM is a non-stationary process where the variance 

increases with time. In fact, the MR variance increases rapidly until reaching a stable 

level that remains constant over time. In this case, the MR drift is positive if the 

current price level tS  is lower than the equilibrium level M and negative if tS M . 

The speed of reversion,  , is related to the concept of half-life of the variable asset 

tS . More formally, the half-life, H , of a variable tS  is defined as the time for which 

its expected value,  tE S , reaches the intermediate (middle) value between the 

current value, tS , and the long run mean, M ; that is, it is a measure of persistence. 

The half-life, H , is defined as ln(2)H   (see http://www.puc-

http://www.puc-rio.br/marco.ind/half-life.html
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rio.br/marco.ind/half-life.html for a more detailed analysis of speed of reversion and 

half-life estimation). 

Figure 57 shows 100 paths generated by Monte Carlo simulation of the MR process 

formulated in Equation 6.2, with parameters 0 50S  , 30%  , 35M  , and 

0.8605  . 

 

 

Figure 57. Fifty sample paths generated by Monte Carlo simulation of a Mean 

Reverting process. The MR parameters are 0 50S  , 30%  , 35M  , and 

0.8605  . Observe that the Mean Reverting process tends to revert to the long-term 

value of 35M  . 

An extension of the previous MR model, given in Equation 6.3, is the adaptation to 

include stochastic jumps in its structure model (see for example Ch.10 of Shreve, 

2004), that is, 

    t
t t t

t

dS
M S dt dW kdt dZ

S
       . (6.4) 

In Equation 6.4, the new term on the right hand side,  tkdt dZ  , is the jump term:  

http://www.puc-rio.br/marco.ind/half-life.html
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  

  

 (6.5) 

where   is the Poisson arrival parameter, that is there is a probability dt  that a 

discrete jump will occur, and   is the size of the jump. Observe that the ―minus one‖ 

appears as a matter of convention since the probability density function of   is 

defined only over positive values and then translated to jump size.   

One clear example of these jumps is the recent behavior of copper spot prices shown 

in Figure 58. As observed in the figure, from 1986 to 2005 the copper price is seen to 

vary between $1000/t and $4000/t. However, in 2006 a jump in the price occurred, 

raising the copper price until it reached prices close to $8000/t for the first time. 

Figure 59 shows the 100 paths generated by Monte Carlo simulation of the MR 

process shown in Figure 57, with parameters 0 50S  , 30%  , 35M  , and 

0.8605  , and 10% jump rate with sizes equal to 1.5 (This is done following 

Equation 6.4). As observed in Figures 58 and 59, when the MR process presents 

stochastic jumps, the equilibrium price ( 35M  ) is reached at later stages; the reason 

for this is the presence of positive jumps (in this case there were more positive jumps 

than negative ones). 
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Figure 58 Chart indicating a jump in the spot price of copper in 2006.  
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Figure 59 Fifty sample paths generated by Monte Carlo simulation of a Mean 

Reverting with jump process. The MR with jumps model’s parameters are 0 50S  , 

30%  , 35M  , and 0.8605  , and 10% jump rate with sizes equal to 1.5. 

 

6.4   Modelling future metal prices as risk-neutral stochastic 

processes 

Hedging is a strategy that is commonly used by mining companies to reduce or 

mitigate their future risk and possible locks in profit (see pp. 3 of Billingsley, 2006). 

In this case, a mining company will write a forward contract to deliver a certain 

quantity of their final product(s), such as metal, at a specific future period and at a 

specified price.  

When dealing with the metal market, however, the prices used to write contracts are 

not the current spot prices but the forward/future prices
38

. The reason for this is that 

the market is fair for both the buyer and the seller of the forward-contract and uses 

forward or risk-neutral prices, 
0

T

tF . Formally defined, the risk-neutral forward price 

                                                 

38
 Observe that forward and future contracts can be considered the same if both have the same maturity 

time and the risk-free interest rate is constant (see for example Hull (2000) pp.60-61 for more details). 



               
171 

0

T

tF  is the expected value of the future spot price, 
0T tS  , observed at the current time

39
 

0t , that is,  
0 0

T

t t TF E S (Hull, 1989). In other words, future prices are modeled in a 

risk-neutral world. It is important to note that the definition of ―fair-market‖ is based 

on the concept of arbitrage. Arbitrage is the process of buying assets in one market 

and selling them in another to profit from unjustifiable price differences. In simple 

words, arbitrage is the action of taking advantage of current market conditions in 

order to generate a profit in the future, free of risk.  

In the metal market, if the commodity is an investment asset
40

 that has no storage cost 

and produces no income, such as gold and silver, then the relationship between 

forward and spot prices is:  

  
 0

0 0
1 ,

T tT

t tF S r


   (6.6) 

where r is the risk-free discount rate and 0T t . On the other hand, if storage costs 

are considered then the relationship between forward and spot prices is  

  
 0

0 0
1 ,

T tT

t tF S r u


    (6.7) 

where u  is the storage cost per annum as a proportion of the spot price.  

If the commodity is a consumption asset
41

, such as copper and oil, Equation 6.7 may 

not hold since arbitrage strategies could be adopted. For example, if it is foreseen that  

 
 0

0 0
1

T tT

t tF S r u


   , then an arbitrageur could borrow at the risk-free rate an 

amount equal to the spot value and the storage cost to buy one unit of the commodity 

and to pay the storage cost, and short (sell) a futures contract on one unit of the 

commodity (see Hull (1989) pp. 73 for other examples). Consequently, to avoid 

arbitrage opportunities when pricing consumption assets, the relationship between 

forwards and spot prices is:  

                                                 

39
 Note that if 0T t , then 

0 0

T

t tF S . 

40
 Investment assets are held primarily for investment purposes. 

41
 Consumption assets can be kept in inventory, incurring storage costs, waiting for better prices. 
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  
 0

0 0
1 ,

T tT

t tF S r u y


     (6.8) 

where the convenience yield y  provided by the asset simply measures the extent to 

which the left-hand side is less than the right-hand side in Equation 6.8. In fact, the 

convenience yield reflects the market’s expectations concerning the future availability 

of the commodity. 

Another way of interpreting the risk-adjusted, or risk-neutral, world when pricing 

options on financial and real assets, is as a world in which the market price of risk, 

S , of the underlying variable (in this case the asset) is zero. The market price of risk, 

S , associated with the price, S , is a variable that determines the growth rate of the 

asset. It shows that the excess return (premium) over the risk-free interest rate earned 

by any derivative that depends only on the asset and time is linearly related to the 

market price of risk of the stochastic variable underlying the derivative. The market 

price of risk, S , is defined as: 

 Sr   , (6.9) 

where   and   are the discount rate and the volatility of the derivative, respectively, 

and r  is the risk-free discount rate.   

A common misconception in the mining industry, when evaluating a mining project 

using advanced financial techniques such as real options, is that no adjustment for risk 

is necessary when generating future metal price paths using a Monte Carlo simulation 

process (see Section 6.3). Indeed, it could be argued that generating multiple price 

paths accounts for variations and therefore risk, which is true under certain 

conditions
42

. However, it is interesting to observe the similitude between Equations 

6.1 and 6.9 where the product  S  is a risk premium added to the risk-free rate, r , 

whose sum yields the risk-adjusted discount rate  . Consequently, from equations 

6.1 and 6.9 it is seen that if future metal prices are modelled as risk-neutral processes, 

                                                 

42
 This condition is related to the assumption that the adjusted-discount rate used in the cash flow 

analysis truly accounts for risk in future metal prices, which is not totally true (see general comments 

and conclusions for more details). 
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their risk is already included in the stochastic process and does not need to be added 

in the adjusted discount rate used for cash flow estimation (see Section 6.2).That is 

the risk-free rate can be used for cash flow analysis when using risk-neutral prices. 

The advantage of avoiding a risk premium for metal prices in cash flow generation by 

modelling future metal prices as risk-neutral processe, is one of the key elements that 

advanced valuation techniques based on the real options concept (Amram and 

Kulatilaka, 1999; Armstrong and Galli, 1997; Barraquand and Martineau, 1995; 

Brennan and Schwartz, 2001; Cortazar, Schwartz and Casassus, 2001; Gravet, 2003; 

Kodukula and Papadescu, 2006; Mun, 2006) use for evaluating mining projects. In 

this case, real options valuation techniques value a mining project using risk-neutral 

metal prices and use the risk-free, r , as the discount rate instead of an adjusted 

discount rate
43

, WACCR  (see Equation 6.1).      

The Girsanov theorem (or Cameron-Martin-Girsanov theorem) (Cherubini, Luciano 

and Vecchiato, 2004b; Glasserman, 2004) is of great assistance when modeling metal 

prices as risk-neutral processes. The main idea is that given a Wiener process  w t  

defined under the filtration  , , Pt  it is possible to construct another process  *w t  

which is a Wiener process under another probability space  , ,Qt . Of course, the 

latter will have a drift under the original measure P .  

Consequently, using both the concept of the market price of risk, S , and the 

Girsanov theorem, the risk-neutral, or risk-adjusted, GBM is defined as:  

 
 

 
*

,

,

,

.

t t t t

t S t t t

t t t S t

t t t t

dS S dt S dW

dS r S dt S dW

dS rS dt S dt dW

dS rS dt S dW

 

  

 



 

  

  

 

. (6.10) 

                                                 

43
 It is important to highlight that here we are assuming that future metal prices are the only source of 

uncertainty when evaluating a mining project. However, in practice there are other sources of 

uncertainty, such as geological and cost sources, that need to be considered and modelled before using 

the risk-free discount rate. But this is the topic of another paper. 
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Observe that the difference between Equation 6.2 and 6.10 is the drift and the random 

process. In the risk-neutral model the drift is replaced by the risk-free rate of return, 

r , and the random process is replaced by 
S tdt dW  . Also observe that when pricing 

financial assets, such as gold, because the market price of risk is zero, then 

*

t tdW dW ; and it means that the risk-neutral process of a financial asset following a 

GBM is the same as the real world model with a risk-free rate of return.   

In a similar fashion, the risk-neutral model of both the MR given in Equation 6.3 and 

the MR with jumps given in Equation 6.4 can be expressed as (see http://www.puc-

rio.br/marco.ind/half-life.html for a more detailed analysis): 

Mean reversion:  

   
 

  

  
 
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 (6.11) 

 

 

Mean reversion with jumps: 
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 (6.12) 

http://www.puc-rio.br/marco.ind/half-life.html
http://www.puc-rio.br/marco.ind/half-life.html
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6.5 A simple example: the gold mine project evaluation 

problem  

In this problem
44

, a mining company is evaluating a small underground gold mining 

project containing an estimated one million ounces of gold. Corporate management 

must decide whether to invest in the gold mine venture now or wait and see how gold 

prices will develop
45

. The property has already been explored, but there is still some 

uncertainty about the total tons of ore. This translates into an uncertain project life. 

Management also assume uncertain capital costs, mining costs, milling costs, working 

capital, production rates, gold prices, ore grades, and ore recoveries. Figure 60 shows 

all the relevant technical and financial parameters used to evaluate the gold project.  

PROPOSED GOLD MINE PROJECT

Technical and Financial Project Parameters

Technical Parameters Financial Parameters

Average Grade (g Au/ton) 4.05 Current Gold Price ($/g) 14.00

Cutoff Grade (g Au/ton) 0.65 Mine Operating Cost ($/t) 2.62

Reserve Level at Cutoff (million tons) 8.300 Mill Operating Cost ($/t) 6.88

Contained Value (kg Au) 33,615 Total Operating Cost ($/t) 9.50

Stripping Ratio 2.0 Mine Capital Cost ($ 000) 24,420

Ore Production Rate (t/d) 6,000 Mill Capital Cost ($ 000) 54,318

Mill Recovery 95% Total Capital Cost ($ 000) 78,738

Operating days/year 355 Working Capital ($ 000) 12,000

Mine Life (year) 6 Capitalized Exploration Cost ($ 000) 910

Depletion Allowance (%) 15%

Price Parametres-GBM Royalty (% Net Smelter Return) 5%

Mean 1.58% Income Tax Rate (%) 46%

Sigma 12.59% Salvage Value (% of Capital Costs) 10%

Delta_t 1.00 Real Risk-adjusted Discount Rate (%) 10%

Initial Stock Price ($/Oz) 436 =14 $/gr Inflation (%) 3%
Risk-Fee Rate of return 5.00%

1Oz of Gold to grams 31.10  

Figure 60. Technical and financial parameters used to evaluate the gold mine project 

(see Chapter 4 for definitions of the different mining parameters). 

As observed in the figure, the mine is expected to produce 6000t of ore per day with 

an estimated mill recovery of 95% yielding a life of mine of six years. The current 

(30-06-2005) gold price is at $435.50/Oz, but it is expected to change in the future. 

                                                 

44
 This model and exercise is an adaptation of the model created by Alpay Sergi, Visiting Scholar, and 

Graham A. Davis, Associate Professor, Division of Economics and Business, Colorado School of 

Mines, Golden, CO 80401, May 2002.  Email gdavis@mines.edu. 

45
 Observe that the decision to develop the mine is irreversible, in that after development management 

cannot disinvest and recover the expenditure. 
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Furthermore, the yearly risk-free discount rate is assumed to be 5%r   while the real 

annual risk-adjusted discount rate is 10.0%WACCR 
46

.   

To solve this problem, corporate management has decided to evaluate the mine using 

the following procedures: i) the DCF that uses an expected gold price; ii) the DCF that 

uses the GBM for modelling gold prices; and iii) the real option technique that uses 

risk-neutral GBM for modelling gold prices. The Binomial lattice technique 

(Kodukula and Papadescu, 2006; Mun, 2006) is used for solving the problem of 

investing now or one year later.  

It is important to mention that for the Monte Carlo evaluation (using both the GBM 

and the risk-neutral GBM) specific distributions are assumed for the variables that 

also present uncertainty. Some of the distributions used in the analysis are: i) the 

truncated-normally distribution that characterises the ore production uncertainty; ii) 

triangular distribution used to characterise the working capital uncertainty; iii) 

uniform distribution used to characterise the mill recovery uncertainty; and iv) the 

lognormal distribution to characterise mine operating costs (Crystal ball software was 

used for the process). The results of the evaluation process are shown in Figures 61, 

62, 63, 64 and 65 (observe that the results are obtained using the Crystal Ball 

software).  

As observed in Figure 61, the expected after-tax NPV based on a static analysis using 

expected values of the uncertain variables is $73.3 million, with a payback period of 

3.1 years and an IRR of 42%, which indicates that the project should proceed. The 

sensitivity analysis displayed in Figure 62 shows that if gold prices vary from 9$/gr to 

20$/gr, the value of the mine varies linearly from $12.3M to $173.5M.  

To evaluate the gold project using the GBM (see Equation 6.1) the historical gold 

prices and returns are first analysed. Figure 63 shows the historical monthly gold price 

(top) and return (bottom) between the periods 28-06-1985 to 30-06-2005. The result 

                                                 

46
 The annual risk-adjusted discount rate is estimated as the Weighted Average Cost of Capital 

(WACC) of the mining company. 
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of a (simple) analysis shows that the annual average and standard deviation of the 

gold price are 1.58%   and 12.59%  , respectively
47

. 

The expected NPV from the Monte Carlo analysis (showed in figure 64 - top), where 

metal prices are modelled as GBM (see Section 6.3), is $87.204 million, showing that 

the static analysis (see Figure 61) underestimates the mean NPV by $14 million; in 

fact, the likelihood of obtaining the expected static NPV of $73.3 millions is 0.59. 

Figure 64 (bottom) also shows that the project has a mean IRR of 46% with a 

minimum of 20%, which indicates to proceed with the project (because it is greater 

than the adjusted discount rate of 10%). Furthermore, the Monte Carlo analysis 

indicates that the payback period is around 3.0 years which is similar to that obtained 

from the static analysis. 

The expected NPV from the risk-neutral Monte Carlo analysis (showed in figure 65-

top) where metal prices are modelled as risk-neutral GBM (see Section 6.4) is 

$107.368 million, showing that both the static analysis (see Figure 61) and the simple 

MC analysis (see Figure 64) underestimate the expected NPV by around $20 million; 

Figure 65 indicates that the likelihood of obtaining the expected static NPV of $73.3 

millions is 0.74. Furthermore, Figure 65 (bottom) shows that the mine project has a 

mean IRR of 52% with a minimum of 20%, which indicates that the project should 

proceed (because it is greater than the adjusted discount rate of 10%).  

                                                 

47
 Observe that other advanced techniques based on parametric and non-parametric time series analysis 

can be used to estimate both the mean and variance of the metal price return. However, for the sake of 

simplicity and practicality, a simple analysis based on moving average is used in this paper.  
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PRODUCTION

Operating days/year 0 249 355 355 355 70 0 1,383

Waste (t/day) 0 12,000 12,000 12,000 12,000 12,000 12,000

Ore (t/day) 0 6,000 6,000 6,000 6,000 6,000 6,000

Waste Prestripping (000 t) 3,579 2,982 4,260 4,260 4,260 838 0 20,179

Ore milled (000 t) 0 1,491 2,130 2,130 2,130 419 0 8,300

Ore grade (g/t) 0 4.05 4.05 4.05 4.05 4.05 4.05

Mill recovery (%) 0 95% 95% 95% 95% 95% 95%

Gold recovered  (000 g) 0 5,737 8,195 8,195 8,195 1,612 0 31,934

Remaining recoverable gold (000 g) 31,934 26,198 18,002 9,807 1,612 0 0

REVENUE

Gold price ($/g) 14.00 14.00 14.00 14.00 14.00 14.00 14.00

Gross income ($ 000) 0 80,313 114,732 114,732 114,732 22,569 0 447,080

OPERATING COSTS

Mine Operating Cost ($/t) 2.62 2.62 2.62 2.62 2.62 2.62

Total Mining Cost ($ 000) 0 11,719 16,742 16,742 16,742 3,293 0 65,238

Mill Operating Cost ($/t) 6.88 6.88 6.88 6.88 6.88 6.88

Total Milling Cost ($ 000) 0 10,258 14,654 14,654 14,654 2,883 0 57,104

Total Operating Cost ($ 000) 0 21,977 31,396 31,396 31,396 6,176 0 122,342

DEPRECIATION

Var. Dep. Year 1 (DB-SL) ($ 000) 16,732 12,183 8,871 6,460 5,857 5,687 0 55,790

Var. Dep. Year 2 (DB-SL) ($ 000) 0 3,650 2,480 1,686 1,283 1,245 0 10,344

Var. Dep. Year 4 (DB-SL) ($ 000) 0 0 0 2,151 1,044 608 0 3,803

Cumulative Depreciation ($ 000) 16,732 15,833 11,352 10,296 8,184 7,540 0 69,937

DEPLETION

Adjusted Cost Basis ($ 000) 910 910 0 0 0 0 0 1,820

Cost Depletion Allow. ($ 000) 0 163 0 0 0 0 0 163

Percentage Depl. Allowance ($ 000) 0 10,643 15,205 15,205 15,205 2,991 0 59,249

50% Taxable Income Limit ($ 000) 0 16,573 29,309 29,837 30,893 3,112 0 109,724

Depletion Taken ($ 000) 0 10,643 15,205 15,205 15,205 2,991 0 59,249

Cumulative Depletion ($ 000) 0 10,643 25,848 41,053 56,258 59,249 0 193,052

TAX

Gross Revenue ($ 000) 0 80,313 114,732 114,732 114,732 22,569 0 447,080

Less: Refinery Charges ($ 000) 0 5,622 8,031 8,031 8,031 1,580 0 31,296

Net Smelter Return ($ 000) 0 74,691 106,701 106,701 106,701 20,990 0 415,784

Less: Royalty Payment ($ 000) 0 3,735 5,335 5,335 5,335 1,049 0 20,789

Net Revenue ($ 000) 0 70,956 101,366 101,366 101,366 19,940 0 394,995

Add: Salvage Value ($ 000) 0 0 0 0 0 8,268 0 8,268

Less: Operating Costs ($ 000) 0 21,977 31,396 31,396 31,396 6,176 0 122,342

Less: Development Expen. ($ 000) 6,564 0 0 0 0 0 0 6,564

Less: Depreciation ($ 000) 16,732 15,833 11,352 10,296 8,184 7,540 0 69,937

Less: Amortization ($ 000) 563 563 563 563 563 563 0 3,376

Less: Depletion ($ 000) 0 10,643 15,205 15,205 15,205 2,991 0 59,249

Taxable Income ($ 000) -23,858 21,940 42,851 43,906 46,018 10,938 0 141,794

Less: Tax ($ 000) -10,975 10,092 19,711 20,197 21,168 5,031 0 65,225

CAPITAL INVESTMENT

Mine/Mill Capital ($ 000) 66,927 11,811 0 3,937 0 0 0 82,675

Working Capital ($ 000) 12,000 0 0 0 0 -12,000 0 0

Total Capex Cash Flow ($ 000) 78,927 11,811 0 3,937 0 -12,000 0 82,675

CASH FLOW

Net Income After Tax ($ 000) -12,883 11,848 23,139 23,709 24,850 5,906 0 76,569

Add: Depreciation ($ 000) 16,732 15,833 11,352 10,296 8,184 7,540 0 69,937

Add: Depletion ($ 000) 0 10,643 15,205 15,205 15,205 2,991 0 59,249

Add: Amortization ($ 000) 563 563 563 563 563 563 0

Less: Capital Cost ($ 000) 68,896 11,811 0 3,937 0 0 0 84,644

Less: Working Capital ($ 000) 12,000 0 0 0 0 -12,000 0 0

Net Cash Flow ($ 000) -76,486 26,513 49,696 45,274 48,239 28,438 0 121,674

Cumulative Cash Flow ($ 000) -76,486 -49,972 -276 44,997 93,236 121,674 0

MCNPV @ 10% ($ 000) 73,308

MCIRR 42%

MCPayback Period CCF-Negative CCF-Negative CCF-Negative 3.01 CCF-Positive CCF-Positive CCF-Positive CCF-Positive  

Figure 61. Static discounted cash flow analysis of the underground gold mining 

project. This is shown as the traditional DCF spreadsheet analysis performed when 

evaluating a mine project.  
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Figure 62. Sensitivity analysis, with respect to gold price variation, of the 

underground gold mining project. 
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Figure 63. Historical gold price (top) and gold price return (bottom) for the period 

28-06-1985 to 30-06-2005. 
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Figure 64. Probability distribution of NPV (top) and IRR (bottom) of the underground 

gold mining project using the simple MC (GBM) analysis (after 5000 simulations). 

The results were obtained using the Crystall Ball software. 
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Figure 65. Probability distribution of NPV (top) and IRR (bottom) of the underground 

gold mining project using the risk-neutral MC (GBM) analysis (after 5000 

simulations). The results were obtained using the Crystall Ball software. 

 

6.6 General comments and conclusions 

From the previous analysis, at first sight it appears that the risk-neutral analysis 

overestimates the expected NPV of the mine project because it uses the risk-free 

discount rate, which is smaller than the risk-adjusted discount rate
48

. In fact, a 

common analysis of the results will suggest that the difference between expected 

NPVs generated by the static, simple Monte Carlo technique and risk-neutral 

                                                 

48
 In fact, this was the first answer I received from the engineers working at mine sites that were in 

charge of the project evaluation process.  
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processes comes from the reduction in the discount rate used in the cash flow 

analysis; that is, the risk-neutral analysis uses the risk-free discount rate of 5% instead 

of the adjusted discount rate of 10% used by both the static and simple Monte Carlo 

analyses. In other words, in the risk-neutral process the cash flow stream is discounted 

over time with a smaller factor than in the static or simple Monte Carlo analysis. 

A more detailed analysis, however, will reveal that the use of a small discount rate (as 

is the case when using the risk-free instead of the adjusted discount rate) does not only 

increase the metal price value over time
49

, but also costs. Indeed, since costs are now 

affected by a small discount rate their values over time are not as small as those 

obtained when using a high discount rate. Although it is not the case in this example, 

mine projects with high operating costs will realise that a risk-neutral cash flow 

analysis will suggest a smaller expected value than those obtained from a static or 

standard Monte Carlo analysis
50

. 

But, how can the mine project manager be sure that the result obtained from the risk-

neutral Monte Carlo analysis is a more accurate representation of the mine project’s 

value than the value obtained from the simple Monte Carlo analysis? 

There is no direct answer to the previous question. The reason for this is that the value 

of a mine project will never be revealed until it is depleted and finished, meaning that 

at the evaluation stage it is not possible to assess which result is more accurate 

because there is not a true mine value to compare it to. Another reason as to why the 

previous question is not easy to explain is that it depends on many factors and 

decisions made at different levels, such as the corporate and business levels.  

One important point that has to be highlighted is that the simple Monte Carlo analysis 

still uses a risk-adjusted discount rate for project evaluation while the risk-neutral 

Monte Carlo process uses a smaller discount rate equal to or bigger than the risk-free 

                                                 

49
 Observe that in this case the increment in price value is purely due to the effect of a small discount 

factor when discounting future cash flows. 

50
 In some cases the risk-neutral analysis will suggest that the project is unfeasible under current 

conditions. 
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discount rate. As shown in Section 6.4 - Equation 6.8, the future cash flows of a 

mining project can be adjusted directly for relative risk to produce their certainty 

equivalents, which need only be discounted at the risk-free rate to account for the time 

value of money. Since this chapter focuses only on the metal price uncertainty, risk-

neutral stochastic modelling is seen as an effective technique for modelling future 

metal prices and, consequently, accurate cash flow projections (that is, returns and 

growth), which in practice has been recognised by many experienced practitioners as 

having a higher priority for a mining project’s value than the discount rate. 

Also observe that when dealing with mine projects with two or more economic 

metals, the forecasting process has to be done considering the correlation between the 

metal prices, that is, as a multivariate process. Although in a multi-metal mine project 

the mine evaluation process is more complicated, the result of approaching the 

process as a multivariate one will give a better output than if it were considered as a 

mutually exclusive or independent one.  

In summary, this chapter has highlighted not only the difference between forecasting 

metal prices as either spot or forward (risk neutral), but also its importance when 

selecting the appropriated discount rate for cash flow analysis, which most of the 

times is confused in practice. That is, the real options method uses forward prices and 

consequently discounts cash flows at the risk-free discount rate while simple risk 

analysis uses forecasted spot prices and uses the risk-adjusted discount rate.  
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Chapter 7                                             

Case study: Valuing a Gold Mine 

Project Using the Proposed IVOF 

7.1 Introduction 

In this problem the corporate office of a mining company is evaluating one of their 

mining projects as part of their portfolio of mine projects’ optimisation policy in order 

to decide whether or not going ahead with the venture. The mine project consists of a 

small disseminated high-grade gold deposit which lies very close to the surface, (so 

the initial waste stripping is not a significant issue). Corporate management must 

decide whether to invest in the gold mine venture or abandon it and focus on other 

alternative projects. In this case, because the project is expected to have a life of mine 

no bigger than 6 years (the initial guess of the corporate office), the gold price and the 

orebody model (in situ metal grade uncertainty) are the only sources of uncertainty 

considered in the evaluation process
51

.  

The geological data available for this project consists only of drill-holes composite 

data (see Figure 66) that contains information about gold grades (in grams), rock 

types of oxide, mixed-transitional, primary and wall rock considered as sterile (see 

Figure 67), and geotechnical zones (composed of 8 zones) (see Figure 68). The 

relevant financial and technical parameters available for the evaluation process are 

shown in Table 6. As observed in the table, the production period is considered to be 

one year each, the mill capacity is 2Mt per year and mining capacity is 9Mt of rock 

per year. The expected gold price is 27.5Au$/gr. Slope angles are specified for each 

geotechnical zone and processing costs and recoveries are specified for each rock 

type. Furthermore, corporate uses a yearly risk-free discount rate of 5%r    while the 

                                                 

51
 Other variables such as capital costs, mining costs, milling costs, working capital, labour costs, and 

recoveries, among others, could also be considered in the evaluation analysis, but it would require a 

more detailed and complex analysis. 
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real annual (WACC) adjusted discount rate is 12%WACCR 
52

.  Mining costs and 

processing costs are included in the orebody model as varying for each production 

bench and rock type, respectively. Additional information indicated that no stock piles 

are considered in the analysis and that the required mining width for mining 

machinery is 40m. At the end of the mining operation, the corporate office has 

estimated a salvage value of Au$60M. 

To solve this problem, corporate management has decided to evaluate the mine using 

the IVOF technique with the assumption that the gold price follows a Geometric 

Brownian Model (GBM)
53

 (Armstrong and Dowd, 1994). The Binomial lattice 

technique is used for making the final mine evaluation decision and the GEMCOM 

suite of tools, including Surpac and Whittle
54

, are used for orebody modelling and 

mine production scheduling design and optimisation, respectively. 

 

                                                 

52
 The annual risk-adjusted discount rate is estimated as the Weighted Average Cost of Capital 

(WACC) of the mining company owner of the gold project. 

53
 This was done in the light of the fact that GBM is commonly used for forecasting gold prices.  

54
 These are standard analytical tools for orebody modeling and open pit production scheduling. See 

http://www.gemcomsoftware.com/ for details. 

http://www.gemcomsoftware.com/
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Figure 66. East view of the gold mine project drill hole composite data set showing 

the topography of the deposit (developed in SURPAC). 

 

 

Figure 67.  East view of the gold mine deposit showing the oxide, transitional and 

primary rock types (developed in SURPAC). 
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Figure 68. North-east view of the gold mine deposit showing the eight geotechnical 

zones (developed in SURPAC).  

 

Parameter Description Value

Assumed Production Period (years) 1

Expected Gold Price (Au$/gr) 27.5

Expected selling cost (Au$/gr) 0.6875

WACC discount rate 12%

Time cost / period (millions of Au$) 1.5

Mill capacity / period (Mt) 2

Maximum mine capacity / period (Mt) 9

Procesing cost Oxide rock (Au$/t) 15.39

Procesing cost Transitional rock (Au$/t) 16.66

Procesing cost Primary rock (Au$/t) 16.9

Recovery-Oxide rock 94%

Recovery-Transitional rock 94%

Recovery-primary rock 90%

Slope angle Zone 1 (degrees) 52

Slope angle Zone 2 (degrees) 57

Slope angle Zone 3 (degrees) 50

Slope angle Zone 4 (degrees) 48

Slope angle Zone 5 (degrees) 45

Slope angle Zone 6 (degrees) 50

Slope angle Zone 7 Degrees) 55

Slope angle Zone 8 (Degrees) 60  

Table 6. Table showing some of the financial and technical parameter values used to 

evaluate the gold mine project. 
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7.2 Stage 1: The base-case mine design 

The first stage in the IVOF process is to use current state-of the art mine evaluation 

techniques to build an initial open pit mine, named the base-case mine design. The 

objective of this stage is to use the base-case mine design as a benchmark to compare 

with the final results, and to identify important technical and economic cash flow 

drivers. Figure 69 shows the variogram map used to build an estimated orebody 

model using the ordinary kriging technique, see Figure 70. The Gemcom-Whittle 

software is then used for generating the base-case open pit mine design. As observed 

in figures 71 and 72, the base-case mine design of the gold mine project is composed 

of three cutbacks (see Figure 71) and the long-term production scheduling (see Figure 

72).  The values of the base-case mine project indicators are summarised in Figure 73. 

As observed in the Figure, the gold mine project is expected to have an operating life 

of around 3.5 years, where the mill target will be achieved during the first 3.5 years. 

The mine is expected to produce around 5.5M, 6M, 5M and 3.5M of grams of gold 

during the first, second, third and fourth year, with expected average grades of 2.9, 

3.2, 2.6 and 3.4 gr./t, respectively. Figure 73 also shows that mining costs and selling 

costs are expected to be high during the first three years (around Au$30M), with 

mining costs reaching a peak during the second year (Au$35M). Processing costs are 

seen to remain constant, around Au$30M, throughout the operating life of the mine. 

Furthermore, Figure 73 also suggests that the gold mine project will generate expected 

cash flows of around Au$75M, Au$65M, Au$50M, and Au$40M, for the first, 

second, third and fourth production periods respectively, giving a total (current) 

expected value of around Au$230M. A sensitivity analysis further indicates that a 

±10% variation in metal prices will generate variation in the mine value to Au$300M 

(+10%) and Au$200M (-10%).    

 



               
189 

 

Figure 69. Variogram analysis performed on the gold mine deposit (SURPAC-

geostatistical tools). 

 

 

 

Figure 70. South-east view of the estimated gold mine orebody model. In this case the 

ordinary Kriging technique (SURPAC-geostatistical tools) was used for generating 

this model.   
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Cutback-1

Cutback-2

Cutback-3

 

Figure 71. North view of the gold mine Project base-case open pit mine design 

showing the selected cutbacks. 

 

 

Production Period 1

Production Period 2

Production Period 3

Production Period 4

 

Figure 72. North view of the gold mine project base-case open pit mine design 

showing the long-term production scheduling. 
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Figure 73. Summary of the gold mine project indicators. 

7.3 Stage 2: What if metal grades vary? Assessing the risk of 

the base-case mine design indicators due to metal grade 

variation: An Upside/Downside-potential analysis 

At this stage, the IVOF performs a risk analysis of the resulting base-case mine 

project indicators in the face of in situ metal grade variation. As observed in Figure 

74, to find out what the effect is of metal grade uncertainty on key project indicators 

and mine value, the IVOF performs the following steps: i) quantify the metal grade 

uncertainty throughout the generation of several simulation models of the orebody. 

This is done using a suitable technique
55

, such as the Sequential Gaussian Simulation 

(SGS) (Armstrong and Dowd, 1994; Chilés and Delfiner, 1999; Journel and 

Kyriakidis, 2004). In this case, for the sake of simplicity, only 25 simulations of the 

                                                 

55
 Observe that other more sophisticated techniques could be used for the simulation process; however, 

in this case the SGCS was used because it is a well-understood technique for the sake of practicality. 
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gold mine project orebody model were generated
56

; ii) overlay the base-case 

(physical) mine design and production scheduling on each of the simulated orebody 

models and record the new project indicator values; and iii) perform an 

Upside/Downside risk analysis (Martinez, 2003). The results of this process are 

displayed in Figure 75. 

As observed in Figure 75, on one hand, the in situ metal grade uncertainty does not 

have a significant effect on ore and waste tonnes and, consequently, on the stripping 

ratio. The reason for this is that the production scheduling was already (physically) 

defined, that is, the ore and waste blocks were already defined when designing the 

base-case mine design (observe that the production scheduling is not being changed, 

rather the risk is being assessed of the existing one). One consequence of this is that, 

in this particular case, mining costs and processing costs do not have much variation 

due to the fact that no more or less ore and waste are mined or processed.  

On the other hand, the results displayed in Figure 75 indicate that (as expected) the in 

situ metal grade uncertainty has a significant effect on the average gold grade as well 

as the metal quantity produced at each production period. The high uncertainty in 

average gold grade and gold production is also reflected in both the selling costs and 

the final cash flows generated at each production period. Indeed, as observed in the 

figure (starting from left and top, second-last line for selling costs and third line for 

cash flows) although the potential for having higher selling costs than the expected 

during the first, second and third production periods is high, it did not affect the high 

potential for generating high cash flows during these periods. In fact, the risk of 

generating cash flows below the expected levels during the first, second and third 

production periods is not significant, while the last period is seen to have a high risk 

of generating a cash flow below the expected one.  

In summary, the risk analysis indicates that the gold mine project has high potential to 

generate values greater than the expected value (around Au$230M) with a maximum 

of Au$350M and a minimum of Au$ 200M. 

                                                 

56
 For a better explanation of the appropriate number of simulations to be used when evaluating a 

mining project see Section 5.4.1. 
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Base-Case Open Pit Design

Orebody Simulations

Project Indicators

Variations

Ore tonnes

Waste tonnes

Metal Production

Average Grade

Cash Flow

What If…The Resulting Metal
Grades are not the Expected ones?

 

Figure 74. Assessing the risk of the gold mine project base-case mine project 

indicators in the face of in situ metal grade uncertainty.  
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Figure 75. Chart showing the effect of metal grade uncertainty on the gold mine 

project key project indicators. 
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7.4 Stage 3: What if metal price varies? Assessing the risk of 

the base-case mine design indicators due to both metal 

grade and metal price variation 

At Stage 2 it was seen how the IVOF performs an Upside/Downside potential analysis 

on the base-case mine design indicators due to in situ metal grade variation. In this 

section the IVOF includes the uncertainty of future metal price into the evaluation 

process and assesses the risk and potential of the base-case design project indicators. 

To achieve this, the future metal price uncertainty is first quantified over time via a 

binomial lattice (see Figure 76). Observe that in this case the gold price is assumed to 

follow a Geometric Brownian Model (GBM) with an annual volatility of 30%, a 

discount rate of 5% and a risk-neutral probability of p=0.507. (This is based on a 

simple estimation of market conditions at the time of writing.) As observed in Figure 

76, the gold price is expected to go up to Au$91.30/gr. and down to Au$8.28/gr. 

during the last production period (4
th

 year).  

Once the future metal price uncertainty is quantified, a lattice of the cash flows 

generated at each production period is built considering both the ―Jensen’s Inequality‖ 

(see Figure 1 and footnote 3) and the existing quantified metal grade and metal price 

uncertainties. It is important to observe that at this stage the IVOF makes use of the 

fact that the metal grade and metal price uncertainties are independent and uses the 

metal price lattice (see Figure 76) as the base for the cash flow generation (see Figure 

77). Observe that each node of the cash flow lattice contains the expected cash flow 

resulting from considering the uncertainties of metal quantity, cost uncertainties and 

the corresponding metal price. Figure 77 indicates that the expected value of the base-

case mine design (in the face of metal grade and metal price uncertainty) is around 

Au$ 340.85M, which is significantly higher than the expected mine value obtained 

during Stages 1 and 2. The figure also suggests that the mine project could generate 

negative cash flows during productions periods 3 and 4 if gold prices fall to 

Au$11.8/gr. and Au$8.28/gr., respectively. Can we take advantage of this 

information?  
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Figure 76. Quantification of future gold prices via a binomial lattice. In this case the 

price model used to describe the price behaviour is the Geometric Brownian Model 

(GBM). 
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Figure 77. Estimation of the Gold Mine Project value in the face of metal grade and 

metal price uncertainties using the IVOF technique.   
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7.5 Stage 4: Considering managerial flexibility: closing the 

mine in the presence of adverse technical and economic 

conditions.  

At Stages 2 and 3 it was seen how the value of the base-case design was estimated in 

the face of in situ metal grade and metal price uncertainties (see Figures 69-77). It was 

also observed that the mine is likely to generate negative cash flows in periods three 

and four if gold prices fall to Au$11.8/gr. and Au$8.28/gr., respectively. At this stage, 

the IVOF improves the value of the existing mine project by integrating managerial 

flexibility in the evaluation process; in this case the flexibility of closing the mine 

operation if future economic and technical conditions are adverse. Figures 78 and 79 

show the final results of this process. As observed in the figures, the evaluation 

process considers two cases for closing the mine: i) the option to close the mine 

without a salvage value (Figure 78), and ii) the option to close the mine with a salvage 

value of Au$60M (Figure 79). Note that the analysis considers one year as the 

required time for closure and selling of mining assets. 

The expected mine values are seen to be Au$341.25M and Au$388.834M, 

respectively (see the caption of Figures 78 and 79 for a detailed description). A quick 

comparison between Figures 77 and Figures 78 and 79 show that the value of the 

flexibility of closing the mine, if future technical and economic conditions are 

adverse, is either around Au$0.4M if the salvage value is zero, or around Au$47M 

considering a salvage value of Au$60M. This is good news for the owners and 

stakeholders of the mine. Furthermore, and most importantly for the project’s mine 

design, is that the ultimate pit limits will vary if the mine is closed either in period 

three or four. For example, if the mine is closed in period three it means that the 

ultimate pit limits will be the limits of the third production period (see Figure 72).  
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Analysis With Flexibility of closing x 1000 Au$

0 1 2 3 4

341248.193 522222.5172 548327.81 452782.00 217963.36

189302.4691 228358.22 205959.71 106378.92

54556.08 70500.77 45140.08

0.00 11531.49

0.00

Closure Value 0 0 0 0 0  

Figure 78.  IVOF analysis of the Gold Mine Project base-case design with the option 

to close the mine - without salvage value. As observed in the figure, the (put) option to 

close the mine, with zero value, is exercised in periods 3 and 4, when gold prices fall 

to equal to or lower than Au$11.18/gr. and Au$8.28/gr., respectively. This is because 

the option value, zero, is greater than the negative cash flows that could be generated 

otherwise, that is, max (0, negative CF).  

Analysis With Flexibility of closing x 1000 Au$

0 1 2 3 4

388834.859 571584.6657 600158.06 507203.77 275106.21

239891.0936 280188.48 260381.48 163521.77

109001.98 124922.54 102282.93

60000.00 68674.35

60000.00

Closure Value 60000 60000 60000 60000 60000  

Figure 79.  IVOF analysis of the Gold Mine Project base-case design with the option 

to close the mine - with a salvage value of Au$60M. It is interesting to observe that in 

this case, the option to close the mine in the 4
th

 production period and receive the 

Au$60M salvage value is exercised for gold prices equal to or lower than 

Au$15.09/gr. The figure also suggests that the option to close the mine and receive 

the salvage value in year three is exercised for gold prices equal to or lower than 

Au$11.18/gr.  

7.6 Stage 5: Building a risk-robust open pit mine design 

based on uncertainty and risk analysis. 

Stages 1 to 4 gave the steps for optimising and maximising the value of the base-case 

mine design of the Gold Mine Project, which was based on an estimated orebody 

model (see Stage1). 
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However, when quantifying the in situ metal grade uncertainty (see Stage 2), 25 

simulations of the orebody were generated (see Figure 74). Then, it is logical to think 

that if each of these 25 orebody models are passed through Stages 1 to 4, there will be 

more than one mine design
57

.  Although there are some techniques that claim they can 

automate the process of finding an optimum mine plan and design using stochastic 

programming techniques, this is a long and slow process which is also a black box; 

this is because the pit design and optimisation process is not visually analysed, and 

does not ensure an optimum mine design (more research needs to be done). In fact, 

the mine optimisation process is a discrete event where the optimisation process is 

achieved using not only mathematical procedures but also engineering and financial 

procedures as well as the experience of the mine planner or analyst, which are able to 

incorporate technical and operational strategies.   

In this context, the IVOF uses a more practical approach where selected mine designs, 

such as the designs corresponding to the first ten percentiles of the mine value 

distribution are used for further analysis
58

. As observed in Figure 80, for the purposes 

of the Gold Mining Project and for the sake of practicality, the mine designs 

corresponding to the maximum, average, and minimum mine value selected from the 

mine value distribution obtained at Stage 2 are selected for further analysis, for 

passing them throughout Stages 1 to 4. The final results obtained from the analysis of 

each selected pit design are displayed for comparative purposes in Figure 81.  

Figure 81 also indicates that for this specific project, the difference between physical 

mine designs is around Au$1M, which although not a significant increment results in 

a higher mine value. Some of the reasons for not obtaining a significant difference 

between mine values could be attributed to: i) the layout of the cutbacks and 

production scheduling generated for each of the selected mine designs; ii) the size of 

                                                 

57
 Observe that the use of 25 orebody models does not necessarily mean the generation of 25 mine 

designs. The reason for this is that one pit design may be suitable for two or more orebody models; it 

will depend on the metal grade variation between them (see for example Martinez and Wolff, 2007 for 

a more detailed explanation). 

58
 Observe that because the IVOF is a generic framework it can also use advanced stochastic 

procedures for designing the best mine design, but this topic still needs more research. 
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the orebody, which is a small disseminated deposit, and its proximity to the surface; 

iii) the continuity in metal grade variation throughout the deposit. 

Furthermore, an analysis of the results displayed in Figure 81 indicates that for the 

gold mine project case the initial base-case mine design (designed on the kriging 

orebody model) is the mine design that is expected to generate the highest expected 

mine value, in the face of in situ metal grade variation, metal price uncertainty, and 

managerial flexibility. Consequently, it is selected as the mine design to be 

implemented in the Gold Mine project.  
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Figure 80. Chart summarising the IVOF’s Stage 5: Selecting open pit mine design 

candidates based on the in situ metal grade uncertainty. 
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Figure 81.  Chart summarising the IVOF’s Stage 5: Selecting the best open pit mine 

design based on in situ metal grade and metal price uncertainties. The results suggest 

that the initial base-case mine design generates the highest expected mine value in the 

face of uncertainty. 

7.7 General comments and conclusions 

Throughout this chapter we have discussed the importance of including uncertainty 

and flexibilities in a mine project evaluation. As seen in Figures 77-79, the value of a 

mining project can significantly increase due to managing uncertainty and risk. It was 

seen that the inclusion of both gold grade and gold price uncertainties increased the 

gold mine value (Figures 75-77) when compared with the base-case scenario using a 

traditional DCF approach (Figure 73). The reason for this is that traditional DCF just 

accounts for risk through the discount risk without considering the upside potential, 

which is accounted for by the IVOF process. Furthermore, it was also seen that the 

flexibility of closing the mine project in the face of future adverse conditions added 

additional value to the project (Figures 77-78), regardless of future economic 

conditions (i.e., under high/low gold prices). Normally the decision to close a mine 

project is considered to happen at the end of the production life of the mine which 

does not account for operational or economic conditions. However, the proposed 
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IVOF process considers the option to close the mine as a Bermudan put option which 

is exercised only if the value from closing the mine project is greater than producing 

and closing. Observe that an accurate real options analysis would include all mine 

project sources of uncertainty as well as other types of managerial flexibility such as 

delaying mine production, among others. However this will turn the evaluation 

process into a more complex analysis (multi-dimensional risk analysis). 
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Chapter 8                                  

Conclusions and future directions 

8.1 Introduction 

This thesis has given the fundamentals of a novel mine evaluation framework, IVOF, 

that incorporates uncertainty and risk in the evaluation process. It has shown that 

rather than being an enemy, uncertainty and risk are important tools for making final 

investment decisions.  

While many authors have considered techniques similar to those used in this thesis, 

the major contribution of this research is demonstrating the use of binomial lattices as 

complements of stochastic simulation to model price uncertainty. Our methodology is 

easy to implement, is easy to present decision-makers in the mining industry, and 

gives a measure of the upside potential and downside risk involved in a mining 

project. While our case study consider only one type of operational flexibility, our 

framework is nevertheless sufficiently general to admit other types. 

Some of the significant contributions of the IVOF technology are: 

 It integrates current cutting-edge mine valuation/optimisation technologies 

into the mine evaluation process. 

 It plans and designs under uncertainty. 

 It allows integration of the variability of the ultimate pit into the mine 

evaluation process. 

 Although the IVOF is based on advanced financial and technical theories, it is 

a practical tool that can be implemented with the collaboration of a project 

evaluation team. 

  It is a generic framework that can be adapted to any mine project, for 

example, metals, coal, and underground projects. 

Some of the benefits that the IVOF technology delivers when implemented are: 
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 The financial analysis will result in a more robust NPV with an associated 

measure of confidence. 

 The results will include technical and operational risks and opportunities. 

 It allows the identification of data deficiency and high risk areas for each 

production period. 

 The ability to assess the risk and financial benefits of key interventions such as 

a different equipment fleet, different plant design and steeper slope angles.  

 The ability to identify and assess realistic and practical strategic operational 

and managerial decisions of mine closure, expansion or temporary stopping.  

 It is a sophisticated tool that improves the capability for forecasting overall 

risk of Greenfield/Brownfield mine projects in which vast upfront irreversible 

investments are required.  

 

One important benefit that the IVOF technology brings to the mine evaluation process 

is that it allows the mine planner to see how the ultimate pit limits can vary over time, 

depending on favourable or adverse conditions. Indeed, as observed in Figure 81, 

depending on when the mine is closed, in the face of adverse technical and economic 

conditions, the limits of the ultimate pit will vary between the third or four cutbacks. 

Observe that the mine planner still does not know whether the third or four cutback 

will be the ultimate pit, but they know that it will depend on future conditions, and 

they will be able to include the uncertainty of allocating the ultimate pit within the 

mine evaluation process. Traditional evaluation techniques are not able to include the 

ultimate pit allocation uncertainty within the mine evaluation process. 

  

One of the main conclusions of this thesis is that final decision making based on a 

simple DCF analysis could be of a misleading nature. Consequently, it is 

recommended that a more detailed approach using the IVOF technology is necessary 

to make an accurate decision in the face of uncertainty. 

 

As a final comment, the IVOF is a structure that can be used as a platform for 

performing mine project evaluations integrating any type of uncertainty. More 

research needs to be done to ascertain what types of operational and financial 

uncertainties can be incorporated into the IVOF and to see how this affects the final 

mine value. In addition, the IVOF technology can serve as platform for more detailed 
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analysis of the production scheduling where the plan and design of the (tactical) short-

term production scheduling are subject to uncertainty. 

8.2 Future directions 

It is important to observe that, even though the proposed IVOF covers all different 

operational and managerial options, the case-study presented in Chapter 7 does not 

cover all different operational/managerial options, such as the deferral of the mine 

investment and others, due to the lack of data available and the availability of suitable 

mining software that can be used to perform a complete application of the IVOF 

technology. In fact, to date there is no specific software able to perform a complete 

IVOF process. The reason for this is that the IVOF requires multidisciplinary 

algorithms that have to be integrated to be able to deal with metal price forecasting, 

orebody modelling, open pit mine design, cut-off grade optimisation and decision-

making based on operational and managerial flexibility. Due to time constraints this 

thesis could not address it.  

Consequently, to show how the IVOF can assist the mine analyst in evaluating an 

open pit mine project, different softwares used in mining, geostatistics, economics and 

finance and mathematics, would be required. 

We acknowledge that our evaluation framework was not set against a theoretical 

model from economics, and not did we explicitly address classical economic 

assumptions. For instance, approaches to DCF and NPV are often in the context of 

complete markets and we tacitly assumed this for practical purposes. It would be of 

interest to test the robustness of our approach against departures of this assumption, 

such as the existence of arbitrage opportunities in metal markets. 

The objective of this thesis was not to investigate probability distributions which 

comprise the components of describing uncertainty in pit designs. As discussed we 

used standard probability distributions in our simulations and case study. A 

worthwhile future study would be to assess 1) efficient estimation techniques for such 

distributions; and 2) the robustness of the IVOF technique to choice of distributions. 

We have described uncertainty as it relates to ore grade and price, and subsequently 

brought this uncertainty into the IVOF model. In a classical financial portfolio value 
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is computed based on the financial attributes of the portfolio components, or risk 

factors. If it were possible to apply portfolio theory to evaluate a mine project then we 

would have to identify the risk factors within that project which comprise the 

portfolio. This study would require serious economic insight and the topic is beyond 

the scope of this thesis. 

We note that our simulations and case study produced point estimates of value. Since 

the IVOF technique provides a rational, objective method for capturing uncertainty it 

reduces to a (possibly very sophisticated) statistical exercise to produce posterior 

distributions of key project indicators. Further, we could retain distributional 

information at each of the nodes in the binomial lattice rather than taking the mean, as 

an example of such as statistical extension. 

The research in this thesis has raised a number of questions of related statistical and 

econometric methodology. Investigations of these carried out over the course of the 

thesis are included in the appendices, and contain further novel contributions. 

Finally, there could be an interesting connection with corporate finance. Financial 

institutions which bankroll mine projects must clearly have their own valuation and 

risk methodologies. Comparing them with our IVOF method could be a useful 

benchmarking exercise, in as far as determining what features of risk are captured and 

modelled appropriately by one or the other.      
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Appendix A                                                                

Independence and Conditional 

Expectation 

Two random variables X and Y are independent if the two events  X a  and 

 Y b  are independent, that is,  

            , , X YF a b P X a Y b P X a P Y b F a F b       . 

Then, it is shown that           E g X h Y E g X E h Y . 

If the random variables X and Y are not independent, then knowing something about 

the value taken by one of them can give us valuable information about the other one. 

This leads to the concept of conditional expectation. For discrete random variables we 

have:  

    
 
 

,
| |

i i ji
j i i j

i j

x P X x Y y
E X Y y x P X x Y y

P Y y

 
    




 . 

Similar for continuous random variables:  

  
 

 

,
|

,

xf x y dx
E X Y y

f x y dx
 




. 

One fundamental property is the following:  

    |E X E E X Y    . 
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Appendix B                                                                

Financial options analysis - the basics 

An option on a stock is a security or contract that gives the holder the right to buy or 

to sell one share of the stock on or before a particular date for a predetermined price. 

A call/put option gives the holder the right to buy/sell a share of stock. American 

financial (call/put) options are contracts that give its holder the right, but not the 

obligation, to (buy/sell) one unit of an underlying asset for a predetermined strike 

price K  at any time before the option’s expiration date T (Fouque, Papanicolaou and 

Sincar, 2000). If tS  is the price of the underlying asset at time t T , then the value of 

this contract at any time t T , that is its payoff (), is  

    max ,0 ; call optionA

call t tS S K   , 

    max ,0 ; put optionA

put t tS K S   . 

If the option is exercised at period t T   , then   is called the stopping time of the 

contract. Observe that at the expiration date T  a decision needs to be made about 

exercising the option or not. If the option is not exercised, the holder of the option 

contract loses the value of purchasing the American option, Af , paid at the beginning, 

that is, at time 0t   .  

In contrast with American options, European financial (call/put) options give its 

holder the right, but not the obligation, to (buy/sell) one unit of an underlying asset for 

a predetermined strike price K  at the option’s expiration date T . The payoff of an 

European option is:  

    max ,0 ; call optionE

call T TS S K   ,  

    max ,0 ; put optionE

put T TS K S   . 

Consequently, it can be observed that the difference between American options and 

European options is that the former is a dynamic process in which at any period, 
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before and including the expiration date, the holder of the option can make the 

decision of exercising or not exercising their option, while the latter is a static process 

in which the holder of a European option has the right of exercising only at the 

expiration date.  

To understand how an option contract can be used as a hedging strategy to minimise 

future risks, assume that we want to buy M  tonnes of copper for delivery in one 

year’s time (in this case the expiration date T  is one year), at a specific copper 

(strike) price of $ K /tonne. We have two ways of doing this transaction: 1) We could 

speculate about the future copper price (1 year in the future) and write a contract for 

the total value, that is, $MK , and see at the end of the year if we made a good 

purchase, that is, the copper price TS K  making the profit of  $ TM S K ; or a bad 

buy, that is, the copper price TS K  generating losses of  $ 0TM S K  ; and 2) 

We could purchase an American/European call option, paying $ Af /$ Ef , to have the 

right of exercising the contract at any time during the year (if an American option) or 

at the end of the year (if a European option), respectively, making profits equivalent 

to  $ t TM S K   (if an American option) or  $ TM S K  (if a European option), or 

not exercising the option and losing, in this case, just the value of the option, that is, 

either $ Af  or $ Ef .  

The problem consists in finding out the fair value, $ Af /$ Ef , of the option contract at 

the present time, that is, 0t  .  

Normally, the intuitive way of pricing an American option at time 0t   (today) is to 

maximise the expected value of its discounted payoff () over all the stopping times 

0 T  :  

        *0, sup 1A

t
T

f t S E S r


 







    , 

 

where r  is the risk-free interest rate, normally issued by government bonds, and 

 *E  is the expected value function under risk neutral behaviour. In the case of a 

European option its price is defined as:   
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      *0, 1
TE

t T Tf t S E S r


    . 

Observe in the previous equations that to ensure a fair market, that is, free of arbitrage 

opportunities, the option pricing process is performed under the risk neutral 

probability world. That is, the probability law governing the return of the underlying 

security, in our previous example the price of copper, 
tS , has an expected return equal 

to the risk-free rate (Duan, 2002). In this way, both the buyer and the seller dealing in 

the market are not able to take advantage of each other, such as the buyer purchasing 

at a low price and selling at a higher price than the purchased price thereby making 

future revenues free of risk, and vice versa.     

It is also clear that the option price depends mainly on the behaviour of the underlying 

security price, tS . Other parameters affecting the value of an option are the expiration 

time T and the exercise price K . One important characteristic of the option value is 

that it can never be negative, that is, an option is a limited liability. For more 

properties about the value of an option, the reader is directed to books related to 

option pricing theories such as the one written by Rubinstein (Rubinstein, 1999), Hull 

(Hull, 1989), and Bookstaber (Bookstaber, 1987). 

 

Appendix C                                                                

Selected open pit valuation techniques 

C.1 The CA/BDH/Smith real options model  

The CA/BDH/Smith RO model is a practical technique that uses Binomial lattices for 

solving the RO problem. One characteristic of this technique is that it views the 

mining project under evaluation as an American option that pays dividends at each 

production period. The steps of the project valuation process are as follows.   

Step 1. The expected present value of the project at time zero,  0E V , is calculated 

using the RO method without flexibility (risk-neutral model) in which the certainty 
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equivalent cash flows are generated using expected metal productions, forward-

looking metal prices, and expected costs, and without considering any managerial 

flexibility. This step requires the use of the risk-free rate of return. The cash flows are 

then discounted at this risk-free discount rate, r , to obtain the expected present value 

of the project,  tE V , at each period 0,1,..,t T  as:  

  
 1

CET
i

t i t

i t

CF
E V

r







 . 

In this case, the present value of the project without options is taken as its current 

market price, as if the project were a traded asset. Assuming that markets are efficient, 

purchasing the project at this price guarantees a zero NPV, and the expected return of 

the project will be exactly the same as its risk-adjusted discount rate. 

Step 2. The standard deviation of the returns, or volatility of the project, is estimated 

from a Monte Carlo simulation (2003) of the project’s return. In this context, if 1V  and 

0V  are the present value of the project at period one and zero, respectively, the project 

return, z , can be defined as:  

 
 

1

0

ln
V

z
E V

 
  

 
. 

To obtain the distribution of the project’s return, z , several simulations of the project 

value at the end of the first period, 1v , are obtained by providing a new set of future 

cash flows icf  ( 1,..,i n ) and:  

 
 

1 1

1 1

n
i

i

i

cf
v

r







 . 

Observe that the present value of the project at period zero does not change. Once the 

distribution of the project’s return, z , has been estimated, the standard deviation of 

this distribution, zs , is used to define the annualised project’s volatility, V , as 

V
V s

t
 


, where t  is the length of the period in years used in the cash flow 

generation. 
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Step 3. With the project volatility determined as previously indicated, and given the 

initial expected project value at time zero,  0E V , a binomial lattice can be 

constructed as follows. Define the cash flow payout rate, 
 

 
t

t
t

E CF

E V
  , to 

calculate the cash flows that are paid out at the end of each time period as a function 

of the project value. It is assumed here that the cash flows will vary over time, but that 

they will remain a constant fraction of the residual value of the project in each time 

period.  The advantage of the previous assumption, that is, that the cash flows over 

time remain a constant fraction of the residual project value, is that the resulting 

binomial lattice is recombining (see Appendix A). The result of the previous process 

is that the generated cash flows, at period t  and node (state) j
59

 will therefore be a 

function of the project value and the stochastic process that drives the binomial 

model. To obtain the cash flows, the binomial lattice of pre-cash flow payout values is 

built. These values are calculated according to the following equations, where 

V t
u e


  and 1d u  are the factors that generate an up or down movement of the 

project value:  

 
 

 

1 1

1 1

1

1 .

up

t t t

down

t t t

V V u

V V d





 

 

 

 
 

The logic of this relationship should be transparent. 1tV   is the value of the project in 

the previous state, and 1 1 1t t tCF V     is the cash flow paid out at the end of the 

period, which reduces the project value in the subsequent states. Since there is no cash 

flow in the initial period, that is, at 0t  , 0 0  , then for 1t  , 1 0V V u . For all 

subsequent periods, the cash flow payout rate is assumed to be constant across states 

in each period but variable in time, so the cash flows in each period are a fixed 

proportion of the value of the project in that period and state. That is:  

                                                 

59
 In this case j  represents the upper branch of the binomial lattice at period t , while 1j  , 2j  , 

and so on, represent the immediate lower branch in the lattice.  
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Step 4. Once the binomial lattice is built, the evaluation analysis follows a rollback 

analysis using dynamic programming to determine the optimal strategies at each 

production period. Since the binomial lattice that uses the risk neutral probabilities is 

used in this approach, the risk-free rate is used to arrive at the present value of the 

project. When there are no options, the value at each production period is given by:  

 
 

  11 1

1
1

1

j j j j

t t t tV CF pV p V
r



    


, 

so the present value of the project at period t  in state j  is the cash flow received in 

that period plus the discounted expected value in the next period. To incorporate 

options, we replace Equation 2.21 with an expanded version that reflects the options 

available in a given period as:  

 
 

  1

1 1

1
1 , 1, 2,..,0

1

j j j j

t t t tV max CF pV p V option option
r



 

  
        

. 

Although the CA/BDH/Smith technique is seen to be suitable for solving real options 

problems, it has the limitation of approximating the value of a mining project with a 

GBM process
60

, which may mislead the real stochastic process of the value of a mine 

project. One point that may support rejection of the assumption that the value of a 

mining project follows a GBM is that it implies that the mine’s value never becomes 

negative, which is not totally correct: the value of a mine can be negative if economic 

and technical conditions are unfavourable. For this reason many authors, such as 

Longstaff and Schwartz (2001), Smith (2005), Tsekrekos et al.  and Sabour and 

Poulin , among others, have suggested the use of Monte Carlo techniques for solving 

American-type options, such as the Least-Square Monte Carlo method (henceforth 

LSMC). For the sake of completeness, the LSMC technique is briefly described next. 

                                                 

60
 BDH also mentions the possibility of using, for example, arithmetic Brownian motion or mean-

reverting processes. 
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C.2 The Longstaff-Schwartz Least Square Monte Carlo  

Similar to the CA/BDH/Smith, the LSMC method consists of three basic steps.  

1. Simulate N  trajectories for all the relevant stochastic state variables that 

determine the price of the real option (Bermudan type) up to and including the 

option maturity
61

.  

2. Work backwards from the option maturity and generate the option payoff matrix. 

The option payoff matrix is a matrix detailing the time (if any) at which the option 

is optimally exercised along each path. To accomplish this task, that is, the 

estimation of the payoff matrix, least-squares regression techniques are applied to 

the cross-sectional data of in-the-money paths. This is done to approximate the 

early exercise boundary at each point in time. Thus, letting    |g x E y x  where 

y  is the payoff from continuation and x  represents the current state, an 

approximation of the conditional expectation of continuation can be used to 

determine the optimal exercise strategy (see for example Longstaff and Schwartz 

(2001) for more details). Note that the situation when the option’s strike price is 

below (call option) or above (put option) the current market price is called an in-

the-money state.  

3. Finally, the option price is determined by discounting and averaging the relevant 

option payoffs across all matrix entries. 

To illustrate how the LSMC model works, consider pricing an American put option as 

shown in Figure 7 (after Stentoft, 2004). In the figure, the price, P , of the American 

put option can be written as  

       0 , max , ,rt

T
P P S T E e G X S


 


   (6.13) 

                                                 

61
 Observe that if there are more than two variables, the simulation of the variables needs to be done in 

conjunction, that is,, as a bivariate process. 
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where  S t  is the stock price at time 1,2t  ,  0S  is the spot price , r  is the risk 

free rate of return, X  is the strike price (which in this example is the same as the 

initial spot price), T  is the expiration time (in this case it is equal to two periods), and 

G  is the payoff function, which is a function of the strike price, stock price and time.  

For demonstration purposes, in this example only six virtual potential simulated 

trajectories of the underlying asset (stock price) are generated, that is, 

         1 2 6
0,1,2

, ,..,i i i
i

S t S t S t


. Observe that in the figure the initial price is the 

same for all path price, that is,  0 0, 1,...,6jS t j  . 
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Figure 82. Diagram showing six potential simulated stock price paths. Note that at 

different stages or periods different prices are at the in-the-money region (for a put 

option). For example, at time t1, prices S6, S3, and S5 are at the in-the-money region. 

 

Based on the previous example, the payoff function, G , can be written as:  

       0 , , max ,0G X S S X S       , 
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where  0,T  . Observe in Equation 2.24 that the maximisation is over stopping 

times 0 T   adapted to the filtration generated by the relevant stock price  S t , 

that is, the stock price is used to estimate the value of the payoff function.  

The problem with the model given in Equation 2.24 is that, at any possible exercise 

time, the holder of the American option should compare the payoff from immediate 

exercise to the expected payoff from keeping the option alive. Then, the optimal 

decision is to exercise if the value of immediate exercise is positive and larger than 

the expected payoff from continuation.  

To select a suitable exercise time, the process begins the analysis from the last period 

2t T , where it is always optimal to exercise the option since it is worth nothing at 

any later time. Thus the optimal exercise strategy along each path, 1,2, ,6j  , is 

j T  , and the value from following this strategy is known since this is just 

  ,0 , 1,2, ,6jmax X S T j  . At this stage, that is, at time 2t T , the option 

price can be obtained using:   

   
1

1
max ,0 .

j
rT

LSMC i

i

P e X S T
j





   

Observe that the previous equation represents the value of the option as if it were a 

European option.  

To calculate the optimal early exercise at period 1t , it is necessary to approximate the 

conditional expectation of continuing to hold the option until 2t T . To achieve this, 

the regression   

 
 

      
0

2

0 0 1 1

1

min
K

k

j

i i K K i i
a i

a x a x a x y  


    , 

in which the explanatory variables  k ix  are known transformations of 

 1 , 1,2,..,6jS t j  , and the y s are the present value of holding the option, that is, 

    2 1 max ,0
r t t

i iy e X S T
 

  .   
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Once the estimated values of the parameters, 
0

K

ka
 

 
 

, are found, the values of the 

conditional expectation   

      
0

|
K

kj j j k j

k

g x E y x a x
 



  , 

are estimated for each path 1,2,..,6j  . If the value of exercising is higher than the 

conditional expectation, at each selected path, then 1m t   is set, otherwise m T  .  

If there is more than one exercise date prior to expiration this procedure is repeated 

recursively backwards through the simulation until time 0 0t  . Then, using the 

approximation of the optimal early exercise strategy determined along each path 

1,2,..,6j  , the estimate of the price of an American put option can be calculated as   

   
1

1
,0i

j
r

LSMC i i

i

P e max X S
j

 



    . 

In general terms, the LSMC framework can be adapted to deal with the problem of 

valuing an open pit mining project. 

C.3 The Upside/Downside potential mine optimisation  

The Upside/Downside potential technique developed by Martinez (2003) is an open 

pit evaluation framework that accounts for both the orebody uncertainty and the 

optimisation of the design and planning of a mining project. One key factor of this 

technique is that it evaluates an open pit mine project based on the assessment of the 

sensitivity of the overall pit economics, long-term mine planning and production 

scheduling to grade uncertainty. This is achieved by using conditional simulation and 

Monte Carlo simulation techniques. Another key factor of this technique is that it uses 

technical constraints, such as mill capacity and minimum cash flow generated at each 

production period, to assess the risk on key project indicators, and consequently to 

make strategic operational decisions such as the allocation of the cutbacks and 

ultimate pit of the mine. That is, this technique uses the uncertainty of the orebody not 

only to assess the risk of the project but to build an optimal open pit design that is 

robust to risk.   
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The process for performing open pit optimisation is as follows. 

Step 1. Using the drill-hole data set generate several conditional simulations of the 

orebody. Denote each simulated model as Sim i  ( 1,2,..., 50i N ). Observe that 

the simulated orebody models quantify the uncertainty of the orebody. 

Step 2. Perform an analysis of resources by generating the cumulative distribution of 

ore tonnes for different cut-off grades. 

Step 3. From the resource analysis, select m N  simulated models which can 

preserve all the properties of the orebody. Normally, the simulated models 

representing the 10
th

, 20
th

, …, and 90
th 

 percentiles of the cumulative distribution of 

ore tonnes
62

 are selected for further analysis (see, for example, Ballin for an 

explanation of these process).    

Step 4. For each of the m N  conditional simulated orebody models, generate a set 

of nested pit shells. Let NPShell i  ( 1,2,..,i m ) denote the nested pit shell physical 

frame generated on each of the m N conditional simulated models. Observe that 

each pit shell will have technical information about the quantity of ore and waste, 

metal grade and metal quantity inside its limits.   

Step 5. Overlay each of the NPShell i  frames on each of the  1N   remaining 

simulated models and tabulate the technical information about ore tonnes and waste 

tonnes, metal quantity and metal grade. Observe that, as a result of this process, the 

technical information of each pit shell, inside each NPShell i , will be characterised 

by a distribution of N  values rather than a single estimated one.  

                                                 

62
 In this case, the cut-off grade used for generating the cumulative distribution of ore tonnes is 

supposed to be known. 
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Step 6. Run a risk analysis on each NPShell i  considering the mill capacity 

constraint, and select the pit shells that are more likely to achieve the specified mill 

capacity target as the cutbacks of the mine project
63

. 

Step 7. Run a cumulative discounted cash flow (DCF) risk analysis on each 

NPShell i  and select the pit shell that is more likely to generate the highest 

cumulative DCF as the ultimate pit of the project. Observe that, as a result of this 

process, each NPShell i  will have a pit design that includes cutbacks and ultimate 

pit limits. Let PD i  denote the pit design generated on each NPShell i .  

Step 8. Run an upside/downside risk analysis on each PD i  and compare the results. 

Step 9. Select the pit design, PD i , that has higher upside potential and minimum 

downside risk as the pit design for the project. 

Step 10. Summarise results and end the process.  

As mentioned in Section 2.3, one drawback of this model is that it is a time-

consuming process. The reason for this is that a block model is normally constituted 

by thousands or millions of blocks (depending on the size of the deposit). Then, in 

order to estimate the pit limits, the pit design algorithm (in this case the Lerchs-

Grossmann algorithm) needs to visit each node to assess its value while obeying 

technical constraints. Now, if this process is repeated using a large number of orebody 

models and more than one pit design, the process becomes cumbersome. 

C.4 Lane’s cut-off grade optimisation 

Lane’s theory of cut-off grade optimisation (1988) is an iterative model that 

determines an optimal cut-off grade that maximises the NPV of the project based on 

the production capacities of the mining, milling, and refining stages. In this case, Lane 

defines three economic cut-off grades: mine economic cut-off grade ( mg ), treatment 

economic cut-off grade ( hg ) and the refining economic cut-off grade ( kg ), and three 

                                                 

63
 Observe that in this case the probability used to make final decisions is determined by the mine 

analyst.  
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balanced cut-off grades: mine/treatment (
mhg ) cut-off grade, treatment/refining ( hkg ) 

cut-off grade and the mine/refining ( mkg ) cut-off grade, from where to choose the 

optimal cut-off grade for the project.   

In this context, the present value, V , of a mining project at any specific period t  can 

be expressed as:  

  , ,V V t Q  , 

where Q  is the available resource at time t , and   is the whole strategy that defines 

the setting of the variables affecting V . There is an optimum strategy   for which 

V  is maximised. This maximum present value of the mine can be denoted as 

 * ,V t Q  and is no longer a function of the strategy  , that is,  

     *, , ,max V t Q V t Q


  , 

For a small decrement q  in Q , consider   as the strategy to extract that decrement, 

with t  being the required time to mine q  and c  the cash flow per unit of resource. 

Both time t  and cash flow c  are functions of the fraction, q , of resource Q  as well 

as of the adopted strategy   for that decrement. Observe that after extracting the 

fraction of resource q , the remaining resource will be Q q , the new time will be 

t t  , and the maximum value of the mine project will be  ', ,V V t t Q q     , 

where '  is the adopted strategy from that time onwards. The present value of the 

mine project at the beginning of period t  can be expressed as the cash flow generated 

during the period  t t t      plus the remaining present value, that is,   

  
 

 '
1

, , , ,
1

t t
WACC

V t Q qc V t t Q q
R

 

 
       
 
 

. 

If both sides of the previous equation are maximised with respect to the strategy  , 

then,   
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  
 

 * *1
, ,

1
t t
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V t Q max qc V t t Q q

R
 

  
       

    

. 

Observe that the strategy   is the set of all variables, such as metal prices and cut-off 

grade, that affect the generation of cash flow. In this context, the optimum strategy *  

is the one that maximises the generated cash flow. 

An optimal strategy can then be determined extremely efficiently by taking advantage 

of the sequential characteristic of Equation 6.38 which can be solved using dynamic 

programming as follows. 

Step 1. Determine the optimum way of mining the last resource increment, that is, at 

period T . Equation 2.32 is then reduced to maximising the cash flow and the terminal 

value at the same strategy. 

Step 2. Repeat Step 1 at each period T j  ( 1,2,..,j T ) in which the cash flow is 

maximised under an optimal strategy and the terminal project value is already known 

from the previous step. 

 

 

Appendix D                                                                

Papers published from this dissertation 

Besides the published paper listed above, two more unpublished papers were 

produced while developing this thesis. The papers are: 

 The Block-Fourier Bootstrap: a new time series re-sampling technique 

 The Bivariate Adaptive kernel-based nearest neighbor bootstrap  

 For the sake of completeness, the complete papers are given next. 
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The Block-Fourier Bootstrap: a new time series re-sampling 

technique 

Luis Martínez and Rodney Wolff 

Introduction 

Time series bootstrapping techniques are used for re-sampling time series in order to 

generate surrogate or simulated series which resemble some features of the original. 

This procedure is performed in order to conduct inferences on the behaviour of the 

random variable under analysis using the data available, that is, the given time series. 

Initially introduced by Efron (Efron, 1979), the bootstrap was developed for 

independent and identically distributed (IID) random variables, which, unfortunately, 

is not applicable to time series, since in most situations the assumption of IID is 

violated, that is, most of the models (and data) of current interest have complex forms 

of dependence.  

In order to overcome the problem of dependence in time series, many variations of the 

original bootstrap technique have been developed (Jeong and Maddala, 1993). 

However, in the literature, most of the current time series bootstrap techniques have 

been developed for second order stationary time series, that is, where the mean and 

variance are constant over time. Consequently, when these current bootstrap 

techniques are applied to non-stationary time series, they generate surrogate series 

which do not preserve the inherent properties of the original, such as the mean, 

variance and higher moments, resulting in spurious outcomes regarding the behaviour 

of the random variable under study.   

Since in real life it is common to deal with non-stationary time series, we propose a 

novel bootstrapping technique for time series. Basically, this technique deals with the 

problem of non-stationarity by means of adaptive analysis. That is the original non-

stationary time series is segmented into blocks where the resulting piecewise time 

series are seen to behave approximately as stationary in respect to both their means 

and variances. Further, this technique uses a novel heuristic segmentation algorithm 

which is a variation of the technique developed by Bernaola-Galvan, et al. (2001) and 

Fukuda, et al. (2004).    
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The paper is organised as follows. Section 1 reviews some theory about time series 

analysis in the frequency domain. Section 2 introduces the algorithm used for 

segmenting non-stationary time series. Section 3 introduces the Block-Fourier time 

series bootstrap technique in detail. Section 4 presents some numerical experiments in 

which the proposed technique is tested. Finally Section 5 discusses conclusions, 

limitations and some topics for further research. 

 

1. Discrete time series analysis: the frequency domain 

Economic variables, such as flows and prices, are generally represented as series of T  

observations in time as a discrete time series. A discrete time series consists of a set of 

observations, on a specific variable tY , normally taken at equally spaced intervals 

over time. Then, a series with T  observations, denoted by 1, Ty y , will contain 

information about the fluctuation or variation of the variable tY  over time. The aim of 

time series analysis is to understand the process that generates the series, and thus to 

make inferences about its future behaviour. In fact, one of the main reasons for 

modelling a time series is to enable the forecast of future values (Harvey, 1988; 

Barnett, 2002). A time series can be represented in two ways: i) as a linear function of 

its own past and current values, and the past and current values of some noise process, 

which can be interpreted as the innovations to the system; and ii) as a non-linear 

function of its own past and current values and the sequences of innovations. Even 

though non-linear time series have a more complex structure than a linear series, their 

study is important since there is evidence that this type of series occurs frequently in 

real life. Note that existing linear statistical methods can only approximate non-linear 

series, and even then not entirely adequately. 

A discrete time series 1, Ty y  is said to be weakly stationary of second order if it has 

a mean  tE Y  and a variance  tVar Y  independent of time. Conversely, a discrete 

time series is said to be non-stationary if its characteristics such as mean and variance 

change over time.  

One alternative way of representing a time series is the Fourier model (or harmonic 

process) where the random variable tY  is expressed as the sum of weighted cosine 
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functions plus some stochastic function 
t , where  t  are assumed to be a sequence 

of independent and identically distributed (i.i.d.) variables. This model is given by 

   

  
0

cos , 1,2t j j j t

j

Y R t t  




    , (1.1) 

where j  is the angular frequency, j  is the phase, and jR  is the amplitude at the 

jth  frequency. Note that if   0jE R   and   0j sE R R   for all j s  then the series 

 tY  follows a second-order stationary process, otherwise it may follow a non-

stationary process. The autocovariance function of the series is defined as:  

         cov( , )t t k t t t k t kk Y Y E Y E Y Y E Y       , (1.2) 

which can also be expressed as:  

     , ,1,0,1,ji k

j jk e f d k
 


  


  ., (1.3)  

where  jf   is the spectral representation (spectrum) of the process. The spectrum 

of a time series  tY  is then defined as the complex Fourier transform of its 

autocovariance function (see Equation 1.4 below). This function breaks up the 

observed series tY  into its component frequencies and their relative contribution to 

power in the series.  

For the case of a non-stationary process, this spectrum becomes an evolutionary 

process, that is a spectral function which is time-dependent and admits a physical 

interpretation as local energy distribution (Priestley, 1965; Priestley, 1988).  An 

evolutionary spectrum can be regarded, in practical terms, as being composed of N 

non-evolutionary spectra (Rao, 1970; Rao and Yu, 1986; Rao and Shapiro, 1970).  

For the case of a stationary time series  tY , the spectrum is defined as   

    
1

,
2

i k

j j

k

f k e     







    . (1.4) 
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As seen in Equation 1.4, the spectrum  jf   is mathematically equivalent to the 

autocovariance function  k . Consequently, the spectrum inherits symmetry from 

the autocovariance function so that    j jf f    and it is also a positive definite 

function. However, one advantage of the spectrum is that it is subject to a single 

restriction, namely that it is a non-negative valued function on  0, . The modified 

periodogram  , jI T  , which is an estimator of the spectrum  jf  , is defined as

  

    
 

 
1

( 1)

1
, cos

2

T

j j

k T

I T k k  


 

 

   (1.5) 

where the kth lag uncentred sample autocovariance  k


is defined as  

     
1

1
T k

t t k
t

k Y Y Y Y
T







    (1.6) 

where 
1

1 T

t

t

Y Y
T 

  . Basically, the periodogram  jI   indicates the contribution at  

j  to the total variance in the series, and, consequently, the total variance of the 

stationary series is the area under the periodogram curve. The periodogram can also 

be generated using: 

    
22

j jI
T

   , (1.7) 

where  j   is the discrete Fourier transform (DFT) of the data, which is defined by

  

    
1

1
,

2

T
i t

j t j

t

Y e
T
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





    . (1.8) 

Frequently, the discrete Fourier transform is computed at a set of equally distributed 

angular frequencies 2j j T  .  
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From the previous analysis (Equations 1.5, 1.7 and 1.8) it is observed that tY  can be 

recovered from the discrete Fourier transform as: 

 if T is odd   

      
 1 2

1

2
2 cos

T

t t j j j

j

Y E Y I t
T
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



   , (1.9) 

 if T is even   
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 

   
2 2

/ 2 / 2

1
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2 cos , cos

T
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j
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T T

 
     





     (1.10) 

where j  is the phase. 

  

 

 

2. Segmenting a non-stationary time series  

In the previous section it was established that the analysis of a time series in the 

frequency domain gives some insight about the process generator of the random 

variable over time. Further, it was also established that for the case of a non-stationary 

time series, the spectrum becomes an evolutionary process in which the frequency 

distribution changes in the long-term. However, it has been shown that in a short-term 

interval these changes are very small (Priestley, 1965). Hence,  the frequency 

distribution of a non-stationary time series can be seen, in practical terms, as being 

composed of M time segments in which the resulting piecewise time series is 

approximately stationary (Chen, Hardle and Jeong, 2005; Bernaola-Galvan et al., 

2001; Fukuda, Stanley and Amaral, 2004; Adak, 1998). 

In this section an innovative methodology for the segmentation of a non-stationary 

time series is presented and explained in detail.  Note that we determine non-

stationarity of a time series in forms of the variation of its variance over time 

assuming that its mean remains constant and equal to zero. One example of such type 
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of time series, which is used commonly in economics and finance, is the so-called 

return series  tR  defined as:  

 1

1

,t t
t

t

Y Y
R

Y






  

where  tY  is a given time series . Further,   0tE R , and its volatility t  varies 

over time. This type of time series is often modelled as: 

 t t tR   , (2.1) 

where t  are innovations that are assumed to IID but not necessarily normally 

distributed (Chen, Hardle and Jeong, 2005) with   0tE    and   1tVar   .  

In essence, this technique comprises two parts. The first part deals with the selection 

of the limits of the candidate segments or blocks, say iB  ( 1,2,..i  ), in which the 

variance of the piecewise time series, inside each block, is seen to be approximately 

constant and different from the variance of the piecewise series inside the contiguous 

blocks 1iB   and 1iB  . In this way it is ensured that no two contiguous blocks have the 

same mean and variance (see Section 2.1 for more details). The result of this process 

is the subdivision of the original series into P  piecewise series (blocks) which are 

approximately stationary.  

The second part is the verification that the piecewise series of two contiguous blocks, 

let’s say iB  and 1iB  , selected by the heuristic segmentation algorithm, have different 

properties, such as variance and higher order statistics. To achieve this, two non-

parametric tests, named the Kolmogorov-Smirnov (KS) and the Bartlett-Kolmogorov-

Smirnov (BSK) two-sample statistics tests, are used to verify if both piecewise series 

have the same statistical properties, such as mean, variance, or in general if both 

piecewise series have equal marginal distributions.   

Finding the candidate segments or blocks limits  

To find the limits of the candidate segments (blocks), in a given non-stationary time 

series  tR of length l , a sliding pointer moving from left to right along the squared 
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series    2

t tY R  is introduced. Note that here the squared series    2

t tZ R  is 

used instead of the series  tR . This is because, since the mean of  tR is 

approximately zero, the variation in the variance (in this case, the cause of the non-

stationary behaviour) can be better captured by the squared series  2

tR .  

Then, at each position of the pointer, both the mean of the subset of the time series to 

the left of the pointer lefhZ  and to the right rightZ  are computed and compared. 

Normally, when the mean of two independent Normal distributed populations need to 

be compared, the statistic d (see Equation 2.2) is used to test the difference of their 

means: 

 
left rightZ Z

d
SD


 . (2.2) 

As a matter of fact, the statistic d , given in Equation 2.2, is the Student’s t-test 

statistic (Mason, Lind and Marchal, 1999; Larsen and Marx, 2001) and SD is the 

pooled variance defined as 

 
   2 21 1 1 1

2

left left right right

left right left right

N s N s
SD

N N N N

     
    

      

, (2.3) 

where leftN , rightN ,
2

lefts , and 
2

rights  are the number of observations and the variances of 

the observations to the left and to the right of the pointer respectively. Observe that 

the number of observations leftN  and rightN  play an important role in determining the 

distribution of the statistic d ; that is, for large values of leftN  and rightN  the statistic 

d  is approximately normally distributed. If leftN  and rightN  are small, then d  is 

approximately distributed as Student’s t variable (Guttman and Wilks, 1965). 

However, since in this research the time series under study are not assumed to be 

normally distributed nor independent, the statistic d  might not be a good indicator for 

differentiating two adjacent means. Nevertheless, large values of d  mean that the 
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values of the means lefhZ  and rightZ  are likely to be significantly different, making the 

point 
maxd  a good candidate as a cut point.  

Then, by moving the pointer along the time series, from left to right, the statistic d  is 

calculated as a function of the position in the time series, and the point in time where 

the maximum value 
maxd  occurs is marked and used to divide the time series into two 

segments, such as leftl  and rightl . Next, repeat the previous process on the leftl  series 

until a minimum length 
1

min ol l  is reached; ol  is the minimum length required in a 

selected segment. Then, 
1

minl becomes the first segment candidate for segmenting the 

given non-stationary series and is marked and saved. Now, the entire process is 

repeated on the remaining 
1

minl l  series until another minimum segment 
2

minl  is found 

and so on. The result of this process is a vector 
1

min min,..., Pv l l     containing the 

superior limits of the candidate segments or blocks to be used for segmenting the 

given non-stationary time series. Normally, the selection of the minimum length, that 

is, ol , is based on the minimum number of observations required in a given segment 

(Politis, 2003), which will depend on the general behaviour of the non-stationary time 

series. Non-stationary time series with long intervals in which the variance is 

moderately constant will require a large ol , while non-stationary time series with 

short intervals in which the variance is moderately constant will require a small ol , so 

the variability in the variance can be captured appropriately. Note that there is not a 

specific technique to be used for selecting or choosing ol  automatically; in particular, 

Politis and Romano (Politis and White, 2004; Politis and Romano, 1995) and Politis 

and Romano (1995) suggest a rule of thumb in which ol  could be selected as twice the 

smallest integer, say m


, after which the correlogram appears not significantly 

different from zero. However, this rule of thumb cannot be generalised since this 

technique does not account for the memory of the series (either long or short memory) 

giving in some cases a large initial ol  when the series is seen to have a long memory, 

generating in this way false subdivisions of the original series. Consequently, one way 

of selecting ol  is based on a visual inspection of the original time series under study. 

In this research, it is assumed that the length of the original non-stationary time series 
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is long enough to be subdivided in blocks containing at least 50 observations, which is 

considered as the initial length ( ol ) for performing the split of the time series. The 

reason for considering the value ol =50 is that we want the segments to be long 

enough for the resulting periodograms to be sufficiently informative, while at the 

same keeping the segments sufficiently short to ensure that the local behaviour is 

appropriately captured (Rosen, Stoffer and Wood, 2002). Note, however, that values 

of 60, 70 and 100 were also considered for splitting the time series giving similar 

results; that is the reason why we use the value of 50 as initial length. Also, it is 

important to remark that the Kolmogorov-Smirnov two-sample test is more flexible 

with respect to the value of the minimum length ol ; it can accept values greater than 

or equal to 35 observations (Gibbons and Chakraborti, 1992), which are necessary to 

use the critical values of the test statistic (see Equation 2.4), tabulated by Smirnov 

(1948). 

Selecting blocks   

Once the limits of the candidate segments have been obtained, a process of selection 

is run in order to select the blocks in which the piecewise time series are second order 

stationary.       

The traditional test for measuring differences between means of two normal random 

samples is the so-called Student t-test; however, this test is not applicable to this case 

since the distributions of the values in the selected blocks are not necessarily normal. 

As mentioned previously, to overcome this problem, the proposed technique uses two 

non-parametric techniques to measure the significance of the difference between two 

contiguous blocks: i) the non-parametric Kolmogorov-Smirnov two-sample test 

statistic (SKS) (Gibbons and Chakraborti, 1992); and ii) a variation of the 

Kolmogorov-Smirnov test named the Bartlett Kolmogorov Smirnov (BKS) (Priestley, 

1981; Bartlett, 1966; Diggle and Fisher, 1991). The proposed splitting technique can 

use either test in order to select the blocks that divide the non-stationary time series 

into segments where it behaves as a stationary one.  

The Kolmogorov-Smirnov two sample test statistic (SKS)   

This technique is used here as a goodness of fit criterion between the empirical 

distribution of two contiguous piecewise time series, or blocks, to identify differences 
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in their means and variances. Note that the lengths of each piecewise series do not 

need to be the same. Then, if the empirical distributions of each piecewise time series 

are denoted as,  
left

mS x  and  
rigth

rS x  (of lengths equal to m  and r  respectively), 

they are assumed to be reasonable estimates of their respective population 

distributions  leftF x  and   rigthF x  respectively. If the null hypothesis 

   0 : left rightH F x F x  (for all x ) is true, then the populations are identical and  

 
left

mS x  and    
rigth

rS x  have equal distribution functions. Consequently, allowing for 

sampling variation, under 0H  there should be a reasonable agreement between the 

two-sample empirical distributions. Then, the two-sample test criterion, denoted by 

,m rD , is the maximum absolute difference between the  two empirical distributions 

    , max
left rigth

m r

m n
x

D S x S x  . (2.4) 

Note that in this test only the magnitudes, and not the directions, of the deviations are 

considered. For a more detailed analysis of this test, the reader is referred to Gibbons 

and Chakraborti (Gibbons and Chakraborti, 1992) for instance. 

 

 

The Bartlett-Kolmogorov-Smirnov (BKS)   

This technique is a variation of the simple Kolmogorov-Smirnov two-sample test 

statistic which estimates the distance 

    sup
p

p x p y pD U U


   , (2.5) 

between the normalised cumulative periodograms of two time series (in this case 

between two contiguous piecewise time series). The cumulative normalised 

periodogram of a time series is given by 
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
, (2.6) 

where / 2m l , if l is even, or  1 / 2m l   if  l is odd,  pI   is the periodogram 

at frequency 
p  ( 1,2,...,p m ). The null hypothesis 

0H  is that both periodograms 

 x pI   and  y pI   are the same, for 1,2,...,p m . In practice it is not feasible to 

calculate the distribution of pD , but it can be approximated very adequately by 

calculating 2 ,..., sD D  for some large number 1s   of frequencies s , and calculating 

the significance probability of the observed pD -value.  

This task is not an easy process since the available data are just two consecutive 

piecewise time series, which do not necessarily have the same length (making the 

process of comparing spectra difficult), and in some cases are as small as the 

minimum length 0l .  This is the reason why the minimum length needs to be selected 

carefully. There have been some attempts to calculate the distribution of pD  (Diggle 

and Fisher, 1991) for some specific time series models with specific lengths. 

However, it is not always true that these distributions will work when time series with 

different lengths and models to the ones specified in these attempts are analysed.  

In order to overcome the previous problem, that is, finding the distribution of pD , in 

this paper a bootstrap approach is used as follows.  

Given two consecutive piecewise stationary time series, let’s say  
t

leftY and  
t

rightY  

do: 1) split  
t

leftY  in two sub-series, let’s say  a  and  b ; 2) estimate the 

cumulative spectra (see Equation 2.6) of  a  and  b , that is,  a pU   and 

 b pU  , respectively. Because  a  and  b  come from the same stationary series, 

in this case  
t

leftY , they should be the same; 3) Calculate the distance maxd  between 

 a pU   and  b pU  , respectively. This is done for different frequencies p  (for 
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1,2,..,p k ). Note that for a large k , it is necessary to taper both sub-series ( a  

and  b ); 4) Once the distance 
maxd  has been obtained for different frequencies p  

(for 1,2,..,p k ),  use bootstrap techniques to find the distribution of 
maxd  and 

estimate critical values for different significance levels, e.g., 0.05, 0.01, and 0.1; 5) 

use the estimated critical values, generated in the previous step, to evaluate the 

significance of pD  between  
t

leftY and  
t

rightY ; that is with a certain level of 

significance, the probability that pD  will exceed maxd   (  max1 pP D d  ) is used 

for the test.  

Note that this process needs to be repeated at each point of comparison since the 

values of the distribution of  maxd  change for different lengths of the time series under 

analysis (multiple comparisons). Consequently, the process of estimating the 

distribution of pD  along the original time series is a dynamic process. 

3. The Block-Fourier Bootstrap 

The Block-Fourier bootstrap is a technique that re-samples a given non-stationary 

time series  tR  to generate surrogate series  *tR . If this operation is repeated N  

times, then N surrogate series       
1 2
, , ,t t t N

R R R  
, each of them keeping the first 

and second moment of the original non-stationary time series  tR  are generated. In 

essence, the Block-Fourier bootstrap uses the algorithm defined in the previous 

section to segment the non-stationary time series into M  blocks where the piecewise 

time series are approximately stationary. After that, it uses a bootstrap procedure 

called the Fourier bootstrap or phase scrambling bootstrap (Davison and Hinkley, 

1998) in each of the M  selected blocks in order to generate surrogate series of the 

piecewise time series inside the selected block.  In this way a surrogate series of the 

original series is generated by connecting the M  piecewise surrogate series. One 

limitation of this technique, however, is that the pseudo-data generated by 

concatenating re-sampled blocks of data will not preserve the dependence structure of 

the original data near block end-points (Kunsch and Carlstein, 1990). 
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The Fourier bootstrap or phase randomisation method is a technique that takes the 

discrete Fourier transform of a given time series  tX  (see equations 1.9 and 1.10) 

then randomising the phase j  at each frequency uniformly on  0,2  and back-

transforming (taking the inverse Fourier transform) renders a so-called surrogate 

series. In fact, this technique matches the periodogram of the series to a closer degree 

than any other technique (Barnett, 2002). 

Note that since this technique does not change either the amplitude of the Fourier 

transform nor the expected value of the random variable, both the power spectrum 

(second order structure) and the mean (first order structure) of the original series are 

preserved in the surrogated series *

tX  within blocks. Furthermore, it has been shown 

by Nur, Wolff and Mengersen (Nur, Wolff and Mengersen, 2001) that the Fourier 

bootstrap, under certain conditions, also keeps the third order structure or bispectrum 

of the time series. These conditions are related to the type of time series process under 

study. For example, the authors shown that when the Fourier method is applied to 

non-linear and non-stationary processes, the higher order moments are preserved.    

One important feature of the proposed technique is that it generates more information 

about the behaviour of the random variable at each point in time. In fact, the proposed 

technique allows us to recover the (empirical) distribution function 

   
t

t

R tF r P R r    of the random variable tR  over time. Since the distribution 

function of a random variable carries the whole information about the behaviour of it, 

then any statistic of the random variable can be estimated, such as the estimation of 

the volatility at each point in time among others. In particular, the estimation of the 

distribution is of great importance when performing risk evaluation, such as value at 

risk (VaR) models to quantify portfolio risk, where it is required to estimate or predict 

the entire distribution of probabilities of the economic indicator under study. In other 

words, by applying the Block-Fourier bootstrap to a given non-stationary series it is 

possible to recover the evolutionary probability distribution function of the process, 

which is not necessarily constant over time (see Figures 92, 93, and 94). 

More formally, the Block–Fourier bootstrap process consists of the following steps: 
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- Split the given non-stationary time series  tR  into small segments or blocks, 

let’s say M ,       
1 2
, , ,t t t M

B B B  where the piecewise time series  tB  are 

approximately stationary. This process is performed using the technique 

introduced in Section 2.  

- Apply the Fourier bootstrap to each block       
1 2
, , ,t t t M

B B B  and generate 

a surrogate series for each of them       * * *

1 2
, , ,t t t M

B B B . 

- Connect the generated surrogate series of each of the blocks 

      * * *

1 2
, , ,t t t M

B B B  and generate, in this way, a surrogate series   *
1tR  of 

the original series  tR . 

- Repeat the previous process N  times and generate N  surrogate series of the 

original time series, that is       
1 2
, , ,t t t N

R R R   . 

- End the process. 

4. Application of the Block-Fourier bootstrap to simulated data 

In this section, the Block-Fourier bootstrap performance is tested on three simulated 

non-stationary time series, that is  tX ,  tY , and  tZ . In this case, time series 

 tX and  tY  are simulated in such a way so that they present two jumps in their 

volatilities (see Equations 2.7 and 2.8 respectively), while time series  tZ  is 

generated in a way that presents a continuous change in its volatility (see Equation 

2.9). As a reference, the time series  tX  was extracted from Chen et al. (2005) 

pp.13.  tY  is just a variation of  tX , and  tZ  was extracted from Adak (1998). 

Simulation 1: time series   X

t t tX   , where  0,1t N  and  
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 Simulation 2: time series   Y

t t tY   , where  0,1t N  and  
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 (2.8) 

Simulation 3: modulated time series  tZ , where  20,100t N  with initial values 

for 
0 0

1 20, 0Z Z   , and  
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Note that the volatility of  tZ  is time dependent and is defined as  

    
2

2

025 1
exp

2 3
t t

t
Var Z Var Z

N

    
     

      

, (2.9) 

Note that 
0

tZ  follows an AR(2) process and its variance is given by 

  
 

 

0

2 2

1 0.4
17676.5

1 0.4 1 0.4 0.8

t

t

Var
Var Z

 
  

     
 

. (2.10) 

Note that 1000 points each were generated for the time series,  tX ,  tY , and  tZ . 

The time series plots for the simulated data, that is,  tX ,  tY , and  tZ , as well as 

their respective time-varying volatilities, that is,  X

t ,   Y

t , and  Z

t  ,are 

displayed in Figures 83, 84, and 85 respectively.  As observed from the figures,  tX  
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and  tY  have constant volatility between points 0-400, 400- 750, and 750-1000; 

while  tZ  has a continuously varying volatility which increases and then decreases 

over time. 

The objectives of this exercise are as follows. 

- Apply the Block-Fourier bootstrap to each simulated time series, that is,  tX , 

 tY , and  tZ , and generate 50 surrogate series of each of them. Note that there 

is not a specific reason for generating only 50 surrogate series. As a matter of fact, 

if more accuracy is required, then 200 surrogates will give good results (Efron and 

Tibshirani, 1993). In this paper, the value of 50 was adopted for the sake of 

simplicity. 

- In order to analyse the sensitivity of the surrogate series, the volatility series for 

each simulated time series is then estimated and compared with their respective 

theoretical models. Observe that this step is now possible since, as a result of the 

previous step, there are 51 values (the original plus 50 surrogates) of each random 

variable, at each point in time. The volatility at each point in time is estimated by 

the sample cross sectional volatility, e.g.,   

 

1
2

,

1

1

51

N

t t i

i

X




  . (2.11) 

- Compare the estimated time varying volatility obtained from the surrogate data 

and the theoretical models. 

Figures 86 and 87 show the results of applying the Block-Fourier bootstrap to the first 

time series  tX  using both the SKS and BKS techniques respectively. Figures 86-a 

(left) and Figure 87-a (left) show the original time series (in black) and 50 surrogate 

series (in light colour) while Figures 86-b (right) and 87-b (right) display the 

estimated adaptive volatility ,X t


 (in light colour) and the true volatility (in black). 

The minimum length when selecting the blocks was 50.  
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As observed in the figures, the surrogate series honour very well the changes in 

variance in the original time series, and consequently, changes in its volatility over 

time (this is shown in Figures 86-b and 87-b respectively). Note, however, that a 

comparison of Figures 86-b and 87-b suggest that the surrogate series generated by 

the SKS technique (Figure 86-a) performed better than those generated by the BKS 

technique (Figure 87-a) when estimating the true volatility of  tX . This is because, 

in this case, the BKS technique split the original time series with one extra block than 

the SKS technique, which means that the BKS is more sensitive to small changes in 

the spectrum, probably due to the noise rather than changes in the volatility, than the 

SKS technique. However, in general, terms both techniques performed well in 

capturing the variation of the variance and volatility of the original time series  tX . 

For this case, the SKS technique split the non-stationary time series  tX  at points 

348t   and 749 , which were very close to the true values, that is 400,750bt  ; on 

the other hand, the BKS technique split the series at points 398,749,827t   (one 

more than the SKS technique). The same results were obtained in several simulations 

where different minimum lengths, such as 60, 70 and 80, were used.  

Similar analyses were performed for the series  tY  and  tZ . Again both techniques, 

that is, SKS and BKS, were used to split the non-stationary time series and were 

compared. These results are shown in Figures 88, 89 (for  tY ), and 90 and 91 (for 

 tZ ) respectively. The results obtained from the analysis of time series  tY  were 

similar to those obtained for  tX , that is both techniques (SKS and BKS) performed 

well when splitting the non-stationary time series into blocks where the piecewise 

series behaves as though stationary. Also it is observed that the SKS technique 

performs better when the estimated adaptive volatility is compared with the true 

model. 

For the case of the modulated series  tZ , which has a continuous variation in its 

volatility, the results were different from the previous cases. In this case, as observed 

in Figures 90 and 91, both techniques, that is, the BKS and SKS, performed fairly 

well in detecting the continuous changes in volatility. Both techniques generated 

surrogate series which honour very well the changes in variance in the original time 
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series (this is shown in Figures 90-a and 91-a respectively). However, it is clear, as 

seen in Figures 90-b and 91-b respectively, that neither technique is able to detect 

continuous changes in the volatility. This is not a surprise since the segmenting 

technique used in this paper is highly discrete. Consequently, since in this case the 

changes in volatility occur continuously and very slowly, which is different from the 

previous cases where the changes occurs abruptly in specific points on time, the 

differences between the sample distributions and the spectrums of the two piecewise 

time series also occurs so slowly that both the SKS and BKS are not able to detect 

these changes. One solution might be to smooth the estimated volatility in order to 

have more continuity in the results. 

Further, it is observed in Figures 90-b and 91-b that the SKS technique performs 

better than the BKS when detecting changes in volatility. The reason for this is that 

the SKS technique detected more points in time where there were significant changes 

in the volatility than the BKS technique. Consequently, the BKS split the original 

time series with more blocks than the BKS technique. In actual fact, the SKS 

technique detected changes in volatility at epochs 

76,148,409,537,709,831,893t  , while the BKS technique detected changes in 

volatility at epochs 76,222,617,831,893t  . Also, note that the SKS technique did 

performed better in detecting changes in volatility throughout the original series than 

the BKS technique, which was not able to detect changes in volatility at early points 

(see Figure 91-b).  

From the previous result it is concluded that, in general, the SKS technique is more 

sensitive to changes in volatility than the BKS. It is not a surprise since the SKS 

technique compares distribution functions to see changes in volatility, while the BKS 

technique just compares spectrums. Then, the SKS technique is seen to be very useful 

when dealing with time series with both discrete and continuous changes in volatility, 

while the BKS technique performs well with series where the changes in the variance 

occur less frequently (discrete changes). 

Another important result obtained from the application of the block-Fourier bootstrap 

to the given series is that it allows the recovery of the adaptive empirical distribution 

function over time of the random variable under study. In our example these results 

are shown in Figures 92, 93, and 94 where the adaptive probability distribution 
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function of 
tX , 

tY  (obtained from the SKS technique surrogates) and 
tZ  (obtained 

using the BKS technique) for the points 1,100,250,600,800,1000t   (for the case 

of 
tZ , the last point was allocated at 950t  ) are shown. As observed in the figures, 

the distribution functions do not remain constant over time, but change, which means 

that the entire process is dynamic rather than static. 

 

 

Figure 83. Original time series  tX  and its respective time-dependent volatility. 
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Figure 84. Original time series  tY   and its respective time-dependent volatility. 

 

 

Figure 85. Original time series  tZ   and its respective time-dependent volatility. 
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Figure 86. Analysis of surrogate series and adaptive volatility of time series  tX  

using the SKS technique. Left figure: Original time series (black colour) and 50 

surrogate series (light colour). Right figure: Adaptive estimated volatility (light 

colour) and true adaptive volatility (dark line). 

 

 

 

Figure 87. Analysis of surrogate series and adaptive volatility of time series  tX  

using the BKS technique. Left figure: Original time series (black colour) and 50 

surrogate series (light colour). Right figure: Adaptive estimated volatility (light 

colour) and true adaptive volatility (dark line). 
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Figure 88. Analysis of surrogate series and adaptive volatility of time series  tY  

using the SKS technique. Left figure: Original time series (black colour) and 50 

surrogate series (light colour). Right figure: Adaptive estimated volatility (light 

colour) and true adaptive volatility (dark line). 

 

 

 

Figure 89. Analysis of surrogate series and adaptive volatility of time series  tY  

using the BKS technique. Left figure: Original time series (black colour) and 50 

surrogate series (light colour). Right figure: Adaptive estimated volatility (light 

colour) and true adaptive volatility (dark line). 
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Figure 90. Analysis of surrogate series and adaptive volatility of time series  tZ  

using the SKS technique. Left figure: Original time series (black colour) and 50 

surrogate series (light colour). Right  figure: Adaptive estimated volatility (light 

colour) and true adaptive volatility (dark line).  

 

 

 

Figure 91. Analysis of surrogate series and adaptive volatility of time series  tZ  

using the BKS technique. Left figure: Original time series (black colour) and 50 

surrogate series (light colour). Right figure: Adaptive estimated volatility (light 

colour) and true adaptive volatility (dark line). 
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Figure 92.  Adaptive distribution function of the time series  tX  for points 

1,100,250,600,800,1000t   (SKS technique). 

 

 

Figure 93. Adaptive distribution function of the time series  tY  for points 

1,100,250,600,800,1000t   (SKS technique).  
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Figure 94. Adaptive distribution function of the time series  tY  for points 

1,100,250,600,800,t   (BKS technique). 

 

5. Summary, conclusions and further considerations 

In this paper, we have proposed a novel time series re-sampling technique, the Block-

Fourier bootstrap, which deals with zero-mean non-stationary time series. As 

explained throughout the paper, this technique is based on the assumption that a non-

stationary time series can be seen as being composed of M blocks where each 

piecewise series is approximately stationary. Consequently, this technique has its 

fundamentals in both the adaptive volatility estimation (SKS), the adaptive spectrum 

estimation (BKS) and the scrambling or Fourier bootstrap. 

The principal conclusions of this study are as follows. 

 Techniques used for splitting a non-stationary time series based on adaptive 

spectrum and adaptive volatility can be used together with the phase scrambling 

technique (or other stationary time series bootstrap techniques) to resample a non-

stationary time series. 

 Techniques based on the change of volatility, such as the SKS, have been shown 

to perform very well in detecting changes in variance of a non-stationary time 
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series,  while techniques based on the adaptive spectrum, such as BKS, are more 

sensitive to abrupt changes and perform well with series where the changes in the 

variance occur in frequently. 

 The probability density function is not static over time but dynamic. This last 

result could be of little help if the process is analysed from a linear viewpoint,  

because the changes observed in the data-generating process do not follow a linear 

pattern but a non-linear one. Hence, if an analysis of pattern identification needs to 

be done, for example, toforecast future values, non-linear techniques need to be 

used, such as the nearest neighbour techniques (NN).  

 A novel non-parametric technique for res-ampling zero-mean non-stationary time 

series has been developed. 

As mentioned previously, one limitation of this technique is that since it re-samples 

the time series in a block by block fashion, information about the exiting correlation 

or dependence (if there is one) across the boundaries of the blocks are lost.  

Another limitation of this technique is that it deals just with zero-mean non-stationary 

time series. Consequently, an extension of this research is to generalise the Block-

Fourier bootstrap so it is capable of dealing with a time series which is non-stationary 

in respect of both its mean and variance. Further, it would be very interesting to 

include higher order moments in the frequency domain, such as the bispectrum in the 

process of resampling so the third order statistics or skewness can be preserved by the 

resulting surrogates.  

Even though throughout this research it has been seen that the block-Fourier bootstrap 

performs very well in generating surrogate series from an original, this is an initial 

idea which can be improved by, for example, using techniques based on wavelets for 

estimating the periodogram, and consequently have more precision when splitting the 

time series into blocks which are seen as stationary. Also, it would be logical to think 

about generating a hybrid technique which could be able to combine both the SKS 

and BKS techniques. Another improvement can be made in using another technique, 

such as the Cressie-Whitford (Reed III, 2005) techniques, which uses the skewness 

and kurtosis for detecting changes in volatility, when selecting candidates blocks. 

These limitations and improvements are undoubtedly the topics of future research.     
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The bivariate adaptive kernel-based nearest neighbour 

bootstrap technique: a new bivariate time series re-sampling 

technique 

Luis Martinez and Rodney Wolff 

Introduction 

In a previous unpublished paper (see the Block Fourier Bootstrap paper above), 

Martinez and Wolff (Martinez and Wolff, 2005a) developed a new technique, called 

the block-Fourier bootstrap, for re-sampling a zero-mean non-stationary time series. 

In their paper, the authors show how the block-Fourier bootstrap is able to generate 

surrogate series from a zero-mean non-stationary time series by means of adaptive 

analysis; that is the original non-stationary time series is segmented into blocks where 

the resulting piecewise series is seen to behave approximately as stationary, and using 

the Fourier bootstrap (Davison and Hinkley, 1998) on each block, a surrogate or 

simulation, of the original time series, is generated by concatenating the surrogates 

generated for each block. The previous technique, however, was limited just to 

univariate non-stationary time series.  

In this paper, a new technique for jointly resampling two non-stationary time series (a 

bivariate process), named the adaptive kernel-based nearest neighbour bootstrap 

(BAKNNB), is developed and explained as an extension of the block-Fourier 

bootstrap technique. Note that, similarly to the block-Fourier bootstrap, this technique 

deals with time series which are non-stationary due to the fluctuation in variance over 

time (heteroskedasticity) assuming that their means remain constant and equal to zero. 
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One example of such type of time series, which is a common transformation in 

economics and finance, is the so-called return series  tR  defined as  

 1

1

,t t
t

t

Y Y
R

Y






  

where  tY  is a given time series, such as flows and prices . Further,   0tE R  , and 

its volatility t  varies over time. This type of time series can be modelled as  

 t t tR   ,  

 where t  are innovations (residual series) that are assumed to be independent 

identically distributed (IID) but not necessarily normally distributed (Chen, Hardle 

and Jeong, 2005) with   0tE    and   1tVar   .  

Basically, as it will be explained with more detail later, the strategy of this technique 

is to estimate the dynamic dependence structure between two time series, estimate 

their respective dynamic joint distribution, and sample it in order to render a surrogate 

series for each of the given (original) time series. One important feature of this 

technique is that it generates bivariate surrogate series which honour both their 

marginal statistical properties, of each of the original time series, as well as their joint 

properties, such as their linear correlation (cross correlation) over time. To achieve 

this, the proposed bootstrap technique makes use of the following concepts. 

1 The k-nearest neighbour (k-NN) (Rajagopalan and Lall, 1999) and the local 

bootstrap (Paparoditis and Politis, 2002)  as tools for capturing the joint behaviour, 

over time, of the two risky assets or random variables under study; 

2  the non-parametric Kendall’s tau coefficient of correlation (Kendall and Ord, 1990; 

Nelsen et al., 2003) and copulas (Cherubini, Luciano and Vecchiato, 2004a; 

Caillault and Guegan, 2003; Patton, 2002; Sklar, 1959; Van den Goorbergh, Genest 

and Werker, 2003; Matteis, 2001; Genest and MacKay, 1986; Nelsen et al., 2003) 

as tools for both measuring dependence and for modelling the joint distribution of 

two random variables without assuming either elliptical processes, such as Gaussian 

or t-distribution processes, nor linear dependence over time. It is important to 
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mention that both the estimation of the correlation and the estimation of the joint 

distribution of the two risky assets are performed dynamically, or in other words, at 

each point over time, and only in a linear fashion. 

The paper is organised as follows. In Section 1, the concepts of Kendall’s tau 

correlation and bivariate copulas are reviewed as a means of measuring and modelling 

dependence and bivariate distributions, respectively. Section 2 introduces a new 

bivariate bootstrap concept called the bivariate adaptive kernel-based nearest 

neighbour bootstrap (BAKNNB). In Section 3 an example of the use of the new 

technique applied to two assets, daily log-returns of FFR/USD versus DEM/USD 

exchange rates, is presented with results and comments. Section 4 gives conclusions, 

limitations and some topics for further research. 

 

1. The Kendall’s tau coefficient of correlation and copulae functions 

The Kendall’s tau correlation is a non-parametric statistic that measures the 

dependence between two random variables based on their rank statistics. More 

formally, given the observation of two random variables X  and Y  

(       1 1 2 2, , , ,.., ,n nx y x y x y , the Kendall’s sample correlation is defined as  

   
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Further, as it will be shown in the next section, the Kendall’s tau coefficient for the 

random variables X  and Y  with copula C is defined as  

    
2

4 , , 1
I

C u v dC u v   , (1.2) 
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where, I  is the unit interval. Hence, there is a close relationship between the 

Kendall’s tau correlation coefficient and the bivariate copula (especially the 

Archimedean copula) of X  and Y . 

A two dimensional (bivariate) copula is nothing else but the cumulative bivariate 

distribution of two random variables, which depends on the marginal distributions of 

each random variable.  More formally, given two random variables X  and Y , with 

cumulative marginal distributions  xFX  and  yGY  respectively, the bivariate copula 

is defined as 

    , ,UV XYC u v H x y , (1.3) 

where  xFU X  and  yGV Y  are the cumulative marginal distributions of X  and 

Y  respectively. Note that the marginal distributions of X  and Y , that is,  xFX  and 

 yGY , and the copula  vuC ,  are standard uniform random variables. If   xFX  and 

 yGY  are continuous, then there exists a unique copula  vuC , ; however, if they are 

not continuous, then the copula is not unique. In fact, every copula that has the same 

range as    YX GRangeFRange   is a valid copula.  

One important property of the copula is that it allows the modelling of the bivariate 

distribution function to be performed in two steps: i) the estimation of the marginal 

distributions; and ii) the estimation of the dependence structure between the two 

random variables. Indeed, these properties can be visualised from the following 

analysis 

    , ,UV XYC u v H x y , (1.4) 

 
   2 2, ,UV XYC u v H x y

x y x y
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, (1.5) 

           , ,X Y XYf x g y c F x G y h x y , (1.6) 

where     
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yGxFC
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2

, is the coupling function of X  and Y , which 

expresses the dependence structure between these two random variables, and 
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both  xf X  and  ygY  are the density functions of X  and Y  respectively. Note that 

here we have made use of the following equivalences: 

  
 

 X X

F xU
U F x f x

x x


   

 
, (1.7) 

and  

  
 

 Y Y

G yV
V G y g y

y y


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 
. (1.8) 

Note that Equation 1.6 is very important when modelling bivariate distributions since 

it implies that the combination of any two marginal distribution functions, for X  and 

Y  respectively, with a given dependence structure  ,c U V  (expressed by the 

copula) results in a valid bivariate distribution function (Sklar, 1959).  

The class of one-parameter Archimedean copulae is a special family of parametric 

copulae which may be constructed using a function : I
 (the non-negative 

extended real line), continuous, decreasing, convex and such that  1 0  ; this 

function is called the generator function of the copula, and   is the parameter of the 

Archimedean copula.  

As mentioned in the previous section, one important characteristic of Archimedean 

copulas is their close relationship with measures of association, such as the Kendall’s 

tau. In fact, Genest and Mackay (1986) demonstrated that the Kendall’s tau 

correlation of two random variables X  and Y , is given by 

 
 
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4 1
I

d





 
 

 
  , (1.9) 

where the first derivative of the generator function (  '

  ) exists almost everywhere 

(other than in a set of Lebesgue measure zero).  
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Fitting an Archimedean copula to a bivariate process 

In this subsection, the Genest and Rivest non-parametric technique (Genest and 

Rivest, 1993; Matteis, 2001) is used to estimate and fit an Archimedean copula to a 

bivariate process  ,t tX Y  (for 1,2, ,t n ). The technique consists of the following 

steps.  

Given the observations of a bivariate process       1 1 2 2, , , , , ,n nx y x y x y , 

compute the following 

1. Determine the non-parametric distribution function CK


 for each pair  ,t tX Y . Let 

      1 1 2 2, , , , , ,n nx y x y x y  be observations of the bivariate distribution  ,H x y , 

with continuous marginal  F x and  G y , and Archimedean copula  

            1, ,C u v C F x G y u v       . 

An estimate of the univariate distribution function of  ,C U V  is defined, on the 

interval  0,1 , as:   

      , ,K w r C U V w r H X Y w            . (1.10) 

To find this, the random variable iW  is defined as: 

  
  

 

# , : ,
,

1

j j j i j i

i i i

X Y X X Y Y
W H X Y

n

  
 


. (1.11) 

Thus, H


 is an empirical estimate of the bivariate distribution function H . Then, a 

non-parametric estimator of  CK w  is given by: 

  
 # : 1 , i

C

i i n W w
K w

n

   
 . (1.12) 

For an examination of the properties and a better explanation of  CK w


, refer to 

Matteis (2001, p41) and Genest and Rivest (1993). 
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2. Determine the parametric distribution function of CK  for a set of selected 

Archimedean copulas (see appendix A). Once an estimate  CK w


 of the distribution 

 ,C U V  has been computed through Equation 1.12, it is used as a tool to help in 

identifying the parametric family of Archimedean copulas that provides the best 

possible fit to the data. Because the fact that every known Archimedean copula has its 

specific generator  , it is possible to determine through 


 (the estimated of the 

copula’s parameter) the parametric estimate of the distribution function  CK w


 

which takes the well known form given by: 

  
 

 'C

t
K t t

t




  , (1.13) 

where  CK t  is the distribution of  ,C U V  (for the proof refer to Nelsen, 1999, 

p130; or Matteis, 2001 p29). 

Note that the generator functions (  t ) of some important Archimedean copulas are 

already given in tables. See for example, Nelsen (1999) pp94-96; Joe (1997) pp138-

149; and Matteis (2001) pp. 72-74. One important characteristic that some of these 

tables display is the Kendall’s tau coefficient as a function of the parameter of the 

Archimedean copula   (see for example Matteis, 2001).  

Then considering the Kendall’s tau coefficients estimated previously, and the 

generator functions for the different Archimedean copulas, a set of candidate copulas 

can be selected. These selection are based on the domain (range of  ) of each 

generator function.  

As an example (taken from Matteis, 2001), consider the generator function of the 

Clayton family expressed as a function of   by    
1

1w w 




  , then by solving 

 

 

1

'

0

1 4
t

dt
t










   , the Kendall’s tau coefficient as a function of the parameter of the 

Archimedean copula is obtained as 
2













. Then if we have a pair of random 
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variables  ,X Y  with an estimated Kendall’s tau, say 0.4634316


 ,  the value of 

the estimated parameter of the copula is 1.7274


 . Note that since the Clayton 

copula’s parameter has the interval    1, \ 0    as domain (Appendix A), and 

1.7274


 , the Clayton copulas could be selected as a candidate to be the copula of 

 ,X Y .  

3. Compare the non-parametric distribution function  CK w


 with the selected 

parametric distribution functions  CK w .  The idea is that the estimator 


 is 

adequate if the parametric distribution function  CK w  is similar to the non-

parametric  CK w


. One way of comparison is through model fitting. In this research, 

the Kolmogorov-Smirnov test statistic (Hogg and Klugman, 1984) is used to perform 

the comparison between the two distribution functions. Then, the parametric model 

that obtains the lowest Kolmogorov-Smirnov value is selected as the ideal copula for 

the data under study. We put aside the issue of significance of the Kolmogorov-

Smirnov for the time being. 

2. The bivariate adaptive kernel-based nearest neighbour bootstrap  

The bivariate adaptive kernel-based nearest neighbour bootstrap technique 

(BAKNNB) is a new resampling technique for a bivariate zero-mean non-stationary 

time series. As mentioned in the introduction section, the strategy of this technique is 

to estimate the dynamic joint distribution function of the two random variables under 

study, and sample it in order to render a surrogate series for each of the given time 

series; each surrogate series must honour the statistical properties of each of the 

original time series, as well as their linear correlation (cross correlation) over time. 

One important feature of this technique is that it works with the stochastic processes 

t  and t  (see Equation 1.15), which are assumed to be strictly stationary and 

independent and identically distributed (i.i.d) (see for example Frank, Kreiss and 

Mammen (Franke, Kreiss and Mammen, 2002)). Consequently, given two zero-mean 

non-stationary time series, let’s say:  
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,

x x

t t t

y y

t t t

R

R

 

 




 (1.14) 

the estimated devolatised series t


 and t


 can be modelled as  

 

,

x

t
t x

t

y

t
yt

t

R

R





















 (1.15) 

where 

x

t


 and 

y

t


 are the values representing the estimated volatility of each process 

(which are estimated using the block-Fourier bootstrap). Note that 

x

t


 and 

y

t


 are not 

constant over time but dynamic (they change at each point in time). Then, i.i.d. 

bootstraps can be performed on the jointly stochastic process ,t t 
  

 
 

, using the 

proposed technique. Then, using the recursion (1.14) with 
x

t


 and 
y

t


 in place of 
x

t  

and 
y

t - a bivariate surrogate series  *x

tR  and  *y

tR  of the original series can be 

generated; from here, any target statistic, such as their cross correlation, can be 

computed. The block-Fourier bootstrap (Martinez and Wolff, 2005a) is used here to 

estimate the dynamic volatility 
x

t


 and 
y

t


  of  x

tR  and  y

tR respectively.  

To characterise the joint behaviour of the two random variables, that is, t  and t , 

the BAKNNB uses a variation of the k-nearest neighbour technique for finding 

suitable (joint) neighbours. It is important to observe that this procedure is performed 

in a dynamic fashion in order to capture the existing dependence structure (if there is 

one) between the two random variables t  and t  at each point in time. More 

formally, given two zero-mean non-stationary discrete time series, let’s say 

   1 2 1, , , ,X x x x x

t n nR r r r r , and    1 2 1, , , ,Y y y y y

t n nR r r r r , the steps to generate joint 

surrogate series using the BAKNNB are as follows. 
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Step1. Apply the block-Fourier bootstrap to each time series, and estimate their 

dynamic volatility, that is, 
x

t


 and 
y

t


, respectively. 

Step 2. Estimate the stochastic processes t


 and t


 using Equation 1.15. 

Step3. Estimate the joint neighbourhood region of the current values, that is ke  and ku  

(for 1,2, ,k n ) (see subsection 2.1 for more details about the joint 

neighbourhood).  

Step4. Find the nearest neighbours of ke  and ku  (for 1,2, ,k n )  given by the 

pairs that fall inside their joint neighbourhood. 

Step5. Estimate their joint distribution expressed by the (Archimedean) copula 

    ,
k k

C F e G u  , where  
k

F e  and  
k

G u  are the cumulative marginal 

distribution of k


 and k


  (for 1,2, ,k n ) (see subsection 1.1). 

Step 6. Sample the estimated copula (see appendix B) obtaining bootstrap values *

k
  

and *

k
  for k



 and k


 respectively (for 1,2, ,k n ). Note that because these two 

bootstrap values are sampled from their copula they are guaranteed to keep their 

respective dependence structure. 

Step 7. Use Equation (1.14) to generate surrogate values, that is, 
*x

kR and 
*y

kR  (for 

1,2, ,k n ), of   
x

kR  and 
y

kR  respectively; 

Step 8. Repeat steps 2 to 7 N  times in order to generate N  bivariate surrogates series 

of the original bivariate process. 

Step 9. End the process.  

Finding a suitable neighborhood for a bivariate process 

In this research, the kernel bandwidth estimator is the method used to determine the 

size of the neighborhoods, xh  and yh , for each current value, that is, kx  and ky  (for 
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1,2, ,k n ). In essence, this method uses a strip of constant width or bandwidth 

such that the points that fall inside are considered to be nearest neighbors of the 

current value (point in time under study), which is located at the centre of this strip by 

definition. More generally, one can think of a bandwidth, xh  and yh ,  as simply a 

parameter used to determine the size of the neighborhood around a specific point, in 

this case the current value of the time series (DiNardo and Tobias, 2001). In this paper 

we use the Silverman’s rule of thumb bandwidth generator  

   1/51.06 min , 1.34 ,h IQR n


    (1.16) 

where 


 is the estimated sample standard deviation of the data set, IQR  is the 

interquartile range, and n is the length of the time series. Further, since the rule of 

thumb (naïve bandwidth) assumes that the unknown data generator belongs to the 

normal family (which it is not the case in this research), the bandwidth h  is adjusted 

to  

 
 

 

1/5

1/5

2.6226 1.06 min , 1.34

2.78 min , 1.34

h IQR n

h IQR n





 


 


 
   

 

  

, (1.17) 

using the canonical bandwidth property. For details of the bandwidth selections, the 

reader is referred to (Silverman, 1986; Wand and Jones, 1995; Hardle, 1990; Härdle, 

1990; Härdle et al., 2004). This process can be better visualised in Figure 95 below 

where the current value kx  (black circle) of a time series, the strip (rectangle) 

indicating the size of its neighbourhood, as well as its respective set of nearest 

neighbours (hollow circles)  , , , ,j p l nx x x x  are shown.  
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jx
px lx

nx Time

h

kx

 

Figure 95. Diagram showing the current value kx (black circle), its neighbourhood h  

(rectangle), and its nearest neighbours  , , , ,j p l nx x x x  (hollow circles).   

Note, however, that since in this case because the process under study is bivariate, the 

neighbours of each random variable need to be selected jointly at the same time or 

period; so, in this way, the joint behaviour or dependence structure (if it exists) is 

captured. Basically, in this paper the joint neighbour of the current values tx  and ty , 

at a specific point in time t k , is the region inside the ellipsoid which has as main 

axis the bandwidths xh  and yh , estimated using equation 1.17 for each random 

variable, respectively. Then the joint neighbourhood of  tx  and ty  is defined as the 

ellipsoid  

 
 

 

 

 

2 2

2 2

2 2

1
x y

k k

h h

x x y y 
  . (1.18) 

Consequently, the nearest neighbours of tx  and ty  will be the pair of points  ,j jx y  

that falls inside the ellipsoid defined in (1.18). More formally, the nearest neighbours 

of tx  and ty  are the pair of points  ,j jx y  such as  

  
 

 

 

 

2 2

2 2

2 2

, ; 1 1,2,..,
x y

k j k j

j j
h h

x x y y
x y j n

   
   

 
 

. (1.19) 
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This procedure is better visualised in Figure 96 where the joint neighbourhood of 
tx  

and 
ty  is shown. In the figure, it is observed that the ellipsoid is centred at point 

 ,k kx y , and has as its main axis the bandwidths 
xh  and 

yh , of 
tx  and 

ty  

respectively, and a neighbour  ,j jx y  which falls inside its limits. Observe that this 

procedure, that is, selecting joint nearest neighbours, is performed at each point in 

time.  

 

nY

nX

 

 

 

 

2 2

2 2

2 2

1
x y

k j k j

h h

x x y y 
 

xh

yh

jx

jy

 ,k kx y

 

Figure 96. Figure showing the ellipse or joint neighbourhood of the current value kx  

and ky  of a bivariate process.  

 

3. Application of the proposed bootstrap technique 

In the previous section, a novel bivariate bootstrap technique which deals with 

bivariate zero mean non-stationary time series, named the bivariate adaptive kernel-

based nearest neighbour bootstrap technique (BAKNNB), was introduced and 

explained in detail. In this section, this technique is tested by meaning of generating 

jointly surrogate series of two log-return time series, that is, the daily log-returns of 

FFR/USD versus DEM/USD exchange rates. Note that the data sets contain just 
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weekday spot prices (weekends and holidays are not considered); furthermore, the 

database consists of 2.2 years of daily data (from 1
st
 May 1982 to 17

th
 August 1984) 

and is composed of 600 daily data points.  

A time series analysis indicated that both time series have expected values 

approximately equal to zero, and a standard deviation of 0.0069, for the FFR/USD, 

and 0.0058, for the DEM/USD, respectively. A cross analysis indicated that both time 

series have a linear correlation (Pearson’s correlation) equal to 0.83, which indicates 

that both return series are apparently highly linear correlated over time. Figure 97 

shows the time series for each of the exchange rates return time series, and Table 7 

indicates a summary statistics for both processes. 

The target of this application is to apply the BAKNNB to the two exchange rates time 

series, that is FFR/USD and DEM/USD, and generate 100N   surrogate series of 

each of them in order to have more information about their joint behaviour over time. 

For the sake of simplicity, this process will be explained in a step-by-step fashion. 

Let  x

tR  and  y

tR  represent the time series of FFR/USD and DEM/USD exchange 

rates respectively, then each of them can be modelled as (see Equation 1.14)  

,

x x

t t t

y y

t t t

R

R

 

 




 

where 
x

t  and 
y

t  are their respective volatilities, and, t  and t , are their respective 

stochastic processes which can be estimated as (see Equation 1.15)  

 

.

x

t
t x

t

y

t
yt

t

R

R















 

Steps 1 and 2. Apply the block-Fourier bootstrap to each exchange rate series and 

estimate both their respective dynamic volatility 
x

t


 and 
y

t


, at each point in time, 

and their respective processes  t


 and t


,   respectively. The results of these steps are 

shown in Figures 98 and 99 where both the dynamic volatility and the stochastic 
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process (de-volatised series) for the FFR/USD and DEM/USD exchange rates are 

shown, respectively. As shown in the Figure 98, the FFR/USD exchange rate is seen 

to have one marked change in its volatility, which occured at the 3
rd

 quarter of 1983, 

while, as shown in Figure 99, the DEM/USD is seen to have 4 changes in volatility 

occurring at the end of 1982, 1
st
 and 3

rd
 quarters of 1983, and at the beginning of 

1984.  

It is important to acknowledge that in this paper the processes t


 and t


 are assumed 

to be strictly stationary (see Section1). However, it could happen that they are not 

totally stationary; one example of the previous problem is visualised in Figure 98 

where the de-volatised series (bottom figure) of the FFR/USD exchange rates series is 

seen to be, apparently, non-stationary with respect to the variance; in fact, there are 

three spikes at the end of year 1982, beginning and middle of 1983, respectively, 

which make it difficult to accept the stationarity of the process. A visual comparison 

of the original and de-volatised FFR/USD exchange rates series (Figures 98-top and 

99-top) will indicate that the spikes founded in the de-volatised series are due to 

isolated extreme values in the original data series. Because the BFB (Martinez and 

Wolff, 2005b) technique is used in this step for estimating the adaptive volatility of 

the FFR/USD exchange rates series, it could happen that this technique (BFB) was not 

able to capture the change in volatility in these isolated extreme values, giving a 

smooth value, which results in extreme values in the de-volatised series. One solution 

could be to improve the BFB in a way that is able to capture volatility in isolated 

extreme values or normalise the original data avoiding these extreme cases.  

Despite the previous problem, it is important to mention that the proposed technique 

does not need to work with a strictly stationary process, since it uses, as stated in 

Steps 3 and 4, a nearest neighbour approach to capture the existing dependence 

between the two given time series which has no restrictions about the behaviour of the 

series (see the final results and comments in Section 4) ; of course, working with a 

strictly stationary process (i.i.d) will result in a more accurate analysis since the 

selection of neighbourhood (kernel bandwidth) would be based on a stationary 

distribution function. Consequently, in this paper, the normalisation of the de-

volatised series is not considered in detail.     
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Steps 3, 4  and 5. Estimate the joint neighbourhood region of the current values, that 

is kx  and ky  (for 1,2, ,k n ) under study, estimate their dynamic cross-correlation 

given by the Kendall’s tau coefficient, and their joint distribution or dynamic 

Archimedean copula function. The results of these steps are shown in Figures 100 and 

101 where the dynamic Kendall’s tau (k-tau) coefficient of correlation, the dynamic 

Archimedean copula function, and the dynamic Archimedean parameter (alpha), of 

both exchange rates series, are shown. As seen in Figure 100, both exchange rates 

have, most of the time, a positive rank correlation varying between 0 and 1, which 

indicates that these two exchange rates are positively correlated most of the time; 

however, it is also observed that there are some points where these two exchange rates 

have negative and zero correlation which indicates that in some periods these two FX 

rates are negative correlated or that they could be independent (not necessarily). The 

figure also shows that the joint distribution function of these two exchange rates, 

determined by their copula function (bottom of Figure 6), is not static over time but 

dynamic; it means that both the copula structure and its respective parameter,  , 

change over time (see Figure 101). In other words, at different points in time, different 

copula functions are seen to describe the joint behaviour of these two exchange rates. 

Further, it is observed in Figure 100 (bottom) that the joint distribution function 

(copula function) does not follow a linear pattern over time which is a more realistic 

result, indicating that the entire bivariate process is nonlinear.    

The previous analysis is in itself of great importance since it shows the evolution of 

the process over time, indicating that the entire process is not static but changes over 

time (which is more realistic in terms of real processes). Further, this last result 

indicates that traditional assumptions of assuming a constant Gaussian distribution 

function (with constant parameters) over time may not be correct, and could cause 

spurious results about the joint behaviour of these two random variables over time.     

Steps 6, 7 and 8. Sample the estimated copula obtaining bootstrap values 
*

t


 and
*

t


, 

for t


 and t


 (for 1,2, ,k n ), respectively, and use equation (1.14) to generate 

surrogates of  x

tR  and  y

tR . Note here that the volatilities of each log-return series 

were already estimated in Step 1 (see Figures 98 and 99 respectively).  
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The results of these steps are shown in Figures 102 and 103 respectively, where the 

original time series (top) and 100 surrogate series (bottom) of each exchange rate 

series are plotted. As seen from the figures, the proposed technique, that is, the 

BAKNNB, generates bivariate surrogate series which honour both the univariate 

(marginal) and bivariate (jointly) characteristics of the original time series. The 

previous results can be better visualised in Figures 104 and 105, where the empirical 

marginal distribution functions (S+ was used to generate these distributions) of the 

original and three surrogate series, of each exchange rates, are shown. As observed in 

the figures, the empirical marginal distribution of the three surrogate series (in this 

case surrogates 10, 50, and 90) honour very well the characteristics of the empirical 

distribution of the original series, such as mean, variance and skewness, and kurtosis. 

In fact it is difficult to differentiate the empirical distribution of the surrogate series 

from the empirical distribution of the original series, respectively. Also, observe in 

Figure 106 that the linear Pearson’s cross-correlation of the 100 surrogate bivariate 

series (points 1 to 100) honour very well the cross-correlation of the original bivariate 

series (point zero), which is equal to 0.083 (see Table 7). This last result is very 

important since it indicates that the proposed technique is able to generate bivariate 

surrogate series which also honours the existing linear correlation between the 

original exchange rate series. Note that the re-sampling method does not force this last 

result. Conversely, the proposed technique uses a data driven re-sampling 

methodology which is able to capture the whole information contained in the original 

data. In other words, no assumptions were done about both the marginal and joint 

distribution of the original data sets.  

    

4 Summary, conclusions and further recommendations 

In this paper, we have proposed a novel bivariate time series resampling technique, 

named the bivariate adaptive kernel-based nearest neighbour bootstrap technique 

(BAKNNB), which deals with non-stationary bivariate time series of the type given in 

Equation 1.14. As explained throughout the paper, this technique uses the Block-

Fourier bootstrap to estimate the dynamic (adaptive) volatility of each given time 

series, and works with the resulting stochastic time series (see Equation 1.15). Also, 

the proposed technique uses a variation of the k-nearest neighbour technique to 
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capture the existing dynamic dependence between the two given time series: this is 

done using the Kendall’s tau correlation and the (Archimedean) copula function.  In 

this way, the BAKNNB is able to generate bivariate surrogate series which honour 

both their marginal characteristics, such as mean and variance, and their joint 

characteristics, such as their cross correlation. 

The principal conclusions of this research are as follows. 

 The Pearson’s linear correlation and Gaussian distribution are not good indicators 

of dependence structure and data generator of a bivariate process. The reason for 

this is that, as shown throughout this paper, the bivariate data generator process 

(joint probability density function) is not static over time but dynamic. 

 Kendall’s tau correlation and copula functions are good alternatives to the 

traditional linear Pearson’s correlation and elliptical distributions for estimating 

dependence structure and estimating the joint distribution function of a bivariate 

process. 

 A novel non-parametric technique for re-sampling zero-mean bivariate non-

stationary time series has been developed. In this context, it is important to 

acknowledge that in this paper a zero-mean non-stationary time series implies a 

time series which has a variance that fluctuates over time assuming that orders 

higher than two remain stationary.  

One limitation of this technique, however, is that it depends on the size of the 

neighbourhood used to estimate the joint behaviour (over time) of the two random 

variables under study; consequently, the selection of this neighbourhood needs to be 

carefully selected. In this case the selection was based on the rule of thumb given by 

Silverman (1986) and Hardle et al. (2004).  

Another limitation of this technique is that it just deals with zero-mean bivariate non-

stationary time series; consequently, an extension of this research is to generalise this 

technique so it would be capable of dealing with a bivariate time series which is non-

stationary in respect of both its mean and variance. 

As further recommendations, it is important to observe that other non-parametric 

techniques based either on rank correlations, such as the Spearman’s correlation 
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(DiNardo and Tobias, 2001; Gibbons and Chakraborti, 1992; Nelsen, 1999), or based 

on the use of higher order moments and non-parametric characterisation of more 

general dependence structure (Wolff, 2005), could be used for capturing the 

dependence structure and the selecting of an appropriate copula.     

 

 

 

Figure 97. Time series of the daily log-returns of both FFR/USD and DEM/USD 

exchange rates, respectively, for the period 01/05/82 – 17/08/84. The data comprises 

600 daily values. 

Statistics FFR/USD DEM/FFR 

Mean 0.000 0.000 

Median 0.00045 0.00048 

Std dev 0.0068 0.0058 

Skewness 1.159 -0.19 

Kurtosis 0.136 0.602 

Table 7. Descriptive statistics for the FFR/USD and DEM/USD FX indexes.  
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Figure 98. Plot showing the dynamic volatility and de-volatised series of the 

FFR/USD exchange rates for period 01/05/82 – 17/08/84.  

 

 

Figure 99. Plot showing the dynamic volatility and de-volatised series of the 

DEM/USD exchange rates for period 01/05/82 – 17/08/84. 



               
300 

 

Figure 100. Dynamic Kendall’s tau coefficient of correlation (above) and dynamic 

Archimedean copula (below) between FFR/USD and DEM/USD exchange rates. 

 

Figure 101.  Dynamic Archimedean copula parameter. 
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Figure 102. Original time series (top) and 100 surrogate series (bottom) of the 

FFR/USD exchange rate.   

 

Figure 103. Original time series (top) and 100 surrogate series (bottom) of the 

DEM/USD exchange rate. 
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Figure 104. Empirical distribution function of original (black) and 4 surrogate series 

(red) of FFR/USD exchange rate. 

 

Figure 105. Empirical distribution function of original (black) and 4 surrogate series 

(red) of DEM/USD exchange rate. 
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Figure 106. Linear cross-correlation between original bivariate process and 100 

bivariate surrogate series of FFR/USD and DEM/USD exchange rates.  

 

References 

Adak, S.,1998. Time-dependent spectral analysis of nonstationary time series, Journal 

of the American Statistical Association, 93(444), 1488-1501. 

Amram, M. and Kulatilaka, N.,1999. Real Options: Managing strategic investment in 

an uncertain world, Harvard University Press (Boston M.A). 

Armstrong, M. and Dowd, P. A.,1994. Geostatistical simulations, p.255,Kluwer 

Academic (Dordrecht). 

Armstrong, M. and Galli, A.,1997. Option pricing: A new approach valuing mining 

projects, C.I.M. Bulletin, (April), 37-44. 

Baird, B. K. and Satchwell, P. C.,2001. Application of economic parameters and 

cutoffs during and after pit optimization, Mining Engineering, 53(February), 33-40. 

Ballin, P. R. and Journel, A. G.,1992. Prediction of uncertainty in reservoirs 

performance forecast, Journal Of Canadian Petroleum Technology, 31(4), 52-62. 

Barnett, A. G. 2002. On the use of bispectrum to detect and model non-linearity. PhD, 

In Academic. DepartmentThe University of Queensland, Brisbane, pp. 257. 



               
304 

Barraquand, J. and Martineau, D.,1995. Numerical valuation of high dimensional 

multivariate American securities, Journal of Financial  and Quantitative Analisys, 

(30), 383-405. 

Bartlett, M. S.,1966. An introduction to stochastic processes with special reference to 

methods and applications, Cambridge University Press (London). 

Benninga, S.,2000. Financial modeling, p.622,The MIT Press (London). 

Berk, J. B., Green, R. C. and Naik, V.,1999. Optimal investment, growth options, and 

security returns, Journal of Finance, (54), 1553-1608. 

Bernaola-Galvan, P., et al.,2001. Scale invarience in the nonstationarity of huma heart 

rate, Physical Review Letters, 87(16), 168105-1 - 168105-4. 

Billingsley, R. S.,2006. Understanding arbitrage-An intuitive approach to financial 

analysis, p.202,Wharton School Publishing  

Bilodeau, M.,2000. Mineral project evaluation techniques and applications, 

p.400,W.H. Bryan Mining Geology Research Centre (Brisbane). 

Black, F. and Scholes, M.,1973. The pricing of options and corporate liabilities, 

Journal of Political Economy, 8(May-Jun), 637-659. 

Blais, V., Poulin, R. and Samis, M. 2004. Using real options to incorporate price risk 

into the evaluation of a multimineral mine. In Orebody Modelling and Strategic Mine 

Planning Uncertainty and Risk Management(Eds, Dimitrakopoulos, R. and Ramazan, 

S.) The Australian Institute of Mining and Metallurgy, Perth-Australia, pp. 369-375. 

Bookstaber, R. M.,1987. Option pricing & investment strategies, p.233,Probus 

Publishing Company (Chocago). 

Boucher, A., Dimitrakopoulos, R. and Vargas-Guzman, J. A. 2003. Joint simulations, 

optimal drillhole spacing and the role of the stockpile. (Working Brisbane, pp. 243-

252 

Brandao, L. E., Dyer, J. S. and Hahn, W. J.,2005. Using binomial decision trees to 

solve real-option valuation problems, Decision Analysis, 2(2), 69-88. 



               
305 

Brandimarte,2006. Numerical methods in finance and economics: a Matlab-based 

introduction, p.696,Wiley - InterScience  

Brennan, M. and Trigeorgis, L.,2000. Project flexibility, agency, and competition: 

New developments in the theory and application of real options, p.359,Oxford 

University Press  

Brennan, M. J. and Schwartz, E. 2001. Evaluating natural resource investment (Eds, 

Schwartz, E. and Trigeorgis, L.) The MIT Press, London, pp. 335-358. 

Brennan, M. J. and Schwartz, E. S.,1985. Evaluating natural resource investments, 

Journal of Bussines, 58(2), 135-157. 

Burmeister, B. 1989. From resource to reality: A critical review of the achievement of 

new Australian gold mining projects during priods January 1983 to September 1987. 

Master, In Academic. DepartmentMacquarie University, Sydney, pp. 184. 

Bye, A. 2006. The application of multi-parametric block models to the mining 

process. In International Platinum conferenc: 'Platinum surges ahead', Vol. 107 The 

Southern African Institute of Mining and Metallurgy, Sun City, pp. 51-58. 

Caillault, C. and Guegan, D. (2003). Empirical estimation of tail dependence using 

copulas. Aplication to Asian markets. (Acces2003).www.ecogest.ens-

cachan.fr/Members/Guegan/preprint.html 

Camus, J. P.,2002. Management of mineral resources - Creating value in the mining 

business, p.107,Society for Mining, Metallurgy,and Exploration Inc  

Carvalho, R. M., Remacre, A. Z. and Suslick, S. B. 2000. Geostatistical simulation 

and option pricing techniques: A methodology to integrate geological models in the 

mining evaluation projects. In Geostat 2000(Ed, Krige, W. J. K. a. D. G.) Cape Town. 

Case, K. E. and Fair, R. C.,1989. Principles of microeconomics, p.610,Prentice-Hall 

(Englewood Cliffs). 

Cavender, B.,1992. Determination of the optimum lifetime of a mining project using 

discounted csh flow and option pricing techniques, Mining Engineering, (44), 1262-

1268. 

http://www.ecogest.ens-cachan.fr/Members/Guegan/preprint.html
http://www.ecogest.ens-cachan.fr/Members/Guegan/preprint.html


               
306 

Chan, N. H. and Wong, H. Y.,2006. Simulation techniques in financial risk 

management, p.220,Wiley- Interscience  

Chen, Y., Hardle, W. and Jeong, J. 2005. Nonparametric risk management with 

generalised hyperbolic distributions. (Working paper.), pp. 30 

Cherubini, U., Luciano, E. and Vecchiato, W.,2004a. Copula methods in finance, 

p.293,John Wiley & Sons, Ltd  

Cherubini, U., Luciano, E. and Vecchiato, W.,2004b. Copula methods in finance, 

p.310,John Wiley & Sons, Ltd.  

Coléou, T. 1989. Technical parameterization of reserves for open pit design and mine 

planning. In 21st APCOM Proceedings(Ed, Weiss, A.) Society of Mining Engineers 

of AIME, Colorado, pp. 485-494. 

Copeland, T. and Antikarov, V.,2001. Real options-A practitioner's guide, 

p.372,Texere (New York). 

Copeland, T. and Tufano, P.,2004. A real-world way to manage real options, Harvard 

Business Review, (march), 90-99. 

Cortazar, G. 1999, 2001. Simulation and numerical methods in real options valuation 

(Eds, Schwartz, E. and Trigeorgis, L.) The MIT Press, Cambridge, London, pp. 601-

620. 

Cortazar, G. and Schwartz, E.,1998. Monte Carlo evaluation model of an undeveloped 

oil field, Journal of Energy Finance & Development, 3(1), 73-84. 

Cortazar, G., Schwartz, E. and Casassus, J.,2001. Optimal exploration investments 

under price and geological-technical       uncertainty: a real options model, R&D 

Management, 31(2), 181-189. 

Cox, J. and Ross, S.,1976. The valuation of options with options for alternative 

stochastic processes, Journal of Financial Economics, 3, 145-166. 

Cox, J., Ross, S. and Rubinstein, M.,1979. Option pricing: A simplified approach, 

Journal of Financial Economics, (7), 229-264. 



               
307 

Dagbert, M. and Dimitrakopoulos, R., 1998. In Methods, Models and reality in Ore 

Reserves and Grade  ControlW.H.Bryan Mining Geology Research Centre, University 

of Queensland, Brisbane. 

David, M. 1973. Tools for planning: Variances and conditional simulation. In 11th 

APCOM(Ed, Sturgal, J. R.) University of Arizona, pp. D10-D23. 

David, M., Dowd, P. A. and Korobov, S. 1974. Forecasting departure from planning 

in open pit design and grade control. In 12th APCOM SymposiumColorado School of 

Mines, pp. F131-F153. 

Davis, G.,1996. Using commodity price projections in mineral project valuation, 

Mining Engineering, (April), 67-70. 

Davis, G.,1998. Estimating volatility and dividend yield when valuing real options to 

invest or abandon, Quarterly Review of Economics and Finance, 38(Special Issue), 

715-754. 

Davison, A. C. and Hinkley, D. V.,1998. Bootstrap methods and their applications, 

p.581,Cambridge University Press  

De Neufville, R. 2002. Notes for engineering systems analysis for design. MIT 

Engineering School, Cambridge, MA (Working pp.  

Diggle, P. J. and Fisher, N. I.,1991. Nonparametric  comparison of cumulative 

periodograms, Applied Statistics, 40(3), 423-434. 

Dimitrakopoulos, R.,1998. Conditional simulation algorithms for modelling orebody 

uncertainty in open pit optimisation, International Journal of Surface Mining, 

Reclamation and Environment, (12), 173-179. 

Dimitrakopoulos, R., Farrelly, C. T. and Godoy, M.,2002. Moving forward from 

traditional optimisation: Grade uncertainty and risk effects in open pit mine design, 

Transcript of the Institute of Mining and Metallurgy, Section A: Minerals 

Industry(111), A82-A89. 

Dimitrakopoulos, R., Martinez, L. A. and Ramazan, S. 2004. Optimising open pit 

design with simulated orebodies and Whittle Four-X: A maximum upside/minimum 



               
308 

downside approach. In Orebody Modelling and Strategic mine Planning: Uncertanity 

and risk management(Eds, Dimitrakopoulos, R. and Ramazan, S.) The Australasian 

Institute of Mining & Metallurgy, Perth-Australia, pp. 243-248. 

DiNardo, J. and Tobias, J. L.,2001. Nonparametric density and regression estimation, 

Journal of Economic Perspectives, 15(4), 11-28. 

Dixit, A. K. and Pyndick, R. S.,1994. Investment under uncertainty, p.468,Princenton 

University Press (Princenton New Jersey). 

Dogbe, G. K. 2006. Continuous-time stochastic process characterization and valuation 

of mineral investments and software interface. PhD, In Academic. 

DepartmentUniversity of Alberta, pp. 162. 

Dowd, P. A. and Onur, A. H.,1993. Open-pit optimization -part 1: Optimal open pit 

design, Transactions of Institute of Mining and Metallurgy, 102(May-August), A95-

A104. 

Duan, J. 2002. Nonparametric option pricing by transformation. Rotman School of 

Management-University of Toronto (Working pp. 32 

Efron, B.,1979. Bootstrap methods: another look at the jacknife, The Annals of 

Statistics, (7), 1-26. 

Efron, B. and Tibshirani, R.,1993. An introduction to the bootstrap, Chapman & 

Hall/CRC (New York). 

Exley, J., Mehta, S. and Smith, A. 2004. Mean reversion. In Faculty & Institute of 

Actuaries Finance and Investment ConferenceFaculty & Institute of Actuaries, 

Brussels, pp. Plenary Session F. 

Fanning, S. and Parekh, J. 2004. Stochastic processes and their applications to 

mathematical finance. The Maryland Mathematics Department (Working pp. 31 

Farrelly, C. T. 2002. Risk quantification in ore reserve estimation and open pit mine 

planning. Master Thesis, In Academic. DepartmentThe University of Queensland, 

Brisbane, pp. 150. 



               
309 

Fouque, J., Papanicolaou, G. and Sincar, K. R.,2000. Derivatives in financial markets 

with stochastic volatility, p.201,Cambridge University Press (United Kingdom). 

Francois-Bongarcon, D. and Laille, J.-P. 1984. Parameterization of the reserves of an 

open pit: A complete case study In Book, Vol. 2 (Eds, verly, G., David, M., Jounel, A. 

and Marechal, A.) Reidel Publishing Company, Dordrecht. 

Franke, J., Kreiss, J. P. and Mammen, E.,2002. Bootstrap of kernel smoothing in 

nonlinear time series, Bernoulli, 8, 1-37. 

Frimpong, S. 1992. Evaluation of mineral ventures using modern financial methods. 

PhD, In Academic. DepartmentUniversity of Alberta, Edmonton - Alberta, pp. 211. 

Frimpong, S. and Whiting, J. M.,1997. derivative mine valuation: Strategic 

investment decisions in competitive markets, Resources Policy, 23(4), 163-171. 

Frimpong, S. and Whiting, J. M.,1998. Simulation of mining venture risks resolution 

in Canadian markets, C.I.M. Bulletin, 91(1019), 63-68. 

Froyland, G., et al. 2004. The value of aditional drilling to open pit mining projects. In 

Orebody Modelling and Strategic Mine Planning - Uncertainty and Risk 

Management(Eds, Dimitrakopoulos, R. and Ramazan, S.) The Australasian Institute 

of Mining and Metallurgy, Perth - Australia, pp. 169-176. 

Fukuda, K., Stanley, E. and Amaral, L. A.,2004. Heuristic segmentation of a 

nonstationary time series, Physical Review E, 69, 021108-1 - 021108-12. 

Galli, A., et al. 2001. Real option evaluation of a satellite field in the North sea. 

CERNA (Working paper.SPE 71410), pp. 15 

Genest, C. and MacKay, J.,1986. The joy of copulas: bivariate distributions with 

uniform marginals, Journal of the American Statistical Association, 88, 1034-1043. 

Genest, C. and Rivest, L. P.,1993. Statistical inference procedures for bivariate 

Archimedean copulas, Journal of the American Statistical Association, 88(423), 1034-

1043. 

Gentry, D. W. and O'Neil, T. J.,1984. Mine investment analysis, p.510,Society for 

Mining, Metallurgy, and Exploration  



               
310 

Gibbons, J. D. and Chakraborti, S.,1992. Nonparametric statistical inference, 

p.544,Marcel Dekker, Inc (New York). 

Glasserman, P.,2004. Monte Carlo methods in financial engineering, p.596,Springer  

Gloria, S. 2004. Evaluation d' un projet minier: approche bayésienne et options 

réelles. PhD, In Academic. DepartmentEcole des Mines de Paris, pp. 218. 

Goovaerts, P.,1997. Geostatistics for Natural Resources Evaluation, p.483,Oxford 

University Press (New York). 

Gravet, M. A. 2003. Evaluacion de opciones reales mediante simulacion: El método 

de los mínimos cuadrados. Master Thesis, In Academic. DepartmentPontificia 

Universidad Católica de Chile, Santiago de Chile. 

Guimaraes, M. A. (2003). Investment in information in petroleum, real options and 

revelation. (Acces2003).www.puc-rio.br/marco.ind/ 

Guj, P. 2006. Mineral project evaluation-dealing with uncertainty and risk In Book, 

Vol. 24 (Eds, Maxwell, P. and Guj, P.) The Australasian Institute of Mining and 

Metallurgy, pp. 129-149. 

Guttman, I. and Wilks, S.,1965. Introductory Engineering Statistics, p.168-169,John 

Wiley & Sons  

Halton, J. H. 1970. A retrospective and prospective survey of the Monte Carlo method 

(Ed, Zemanian, A. H.) Society for Industrial and Applied Mathematics, pp. 1-63. 

Hardle, W.,1990. Applied nonparametric regresion, p.333,Cambridge University 

Press  

Härdle, W.,1990. Applied nonparametric regresion, p.333,Cambridge University 

Press  

Härdle, W., et al.,2004. Nonparametric and semiparametric models, Springer-Verlag  

Harrison, J. M. and Kreps, D. M.,1979. Martingales and arbitrage in multi-period 

securities markets, Journal of Economic Theory, 2, 381-408. 

http://www.puc-rio.br/marco.ind/


               
311 

Harvey, A. C.,1988. Time series models, p.229,Phillip Allan Publisher Limited 

(Southmpton). 

Henry, E., Marcotte, D. and Samis, M. 2005. Valuing a mine as a portfolio of 

european call options: The effect of geological uncertainty and implications for 

strategic planning. In Geostatistics Banff 2004(Eds, Leuangthong, O. and Deutsch, C. 

V.) Springer, pp. 501-510. 

Hogg, R. V. and Klugman, S. A.,1984. Loss distributions, John Wiley & Sons (New 

York). 

Hull, J.,1989. Options, futures and other derivative securities, Prentice Hall 

(Englewood Cliffs. New Jersey). 

Hurn, A. S. and Wright, E. R.,1994. Geology or economics? Testing models of 

irreversible investment using north sea oil data, The Economic Journal, 104, 363-371. 

Hustrulid, W. and Kuchta, M.,1995. Open pit mine planing and design, p.636,A.A. 

BAlkema (Rotterdam). 

Jeong, J. and Maddala, G. S.,1993. A perspective on applicatio of bootstrap methods 

in econometrics., p.573-610,North Holland Publishing Co.  

Joe, H.,1997. Multivariate models and dependence concepts, Chapman & Hall/CRC 

(London). 

Journel, A. and Kyriakidis, P. C.,2004. Evaluation of mineral reserves: A simulation 

approach, p.215,Oxford University Press  

Journel, A. G.,1989. Fundamentals of Geostatistics  in Five Lessons, p.40,American 

Geophysical Union Press (Washington DC). 

Journel, A. G. and Huijbregts, C. J.,1978. Mining Geostatistics, p.600,Academic Press 

(London). 

Kendall, M. and Ord, K.,1990. Time series, p.296,Oxford University Press (New 

York). 



               
312 

Kiechel, W.,1981. Oh where, oh where has my little dog gone? Or my cash cow? Or 

my star?, Fortune, (November) 

Kim, Y. C.,1978. Ultimate pit limit design methodologies using computer models - 

the state of art, Mining Engineering, 1454-1459. 

King, B. 2000a. Optimal mine scheduling policies. PhD, In Academic. 

DepartmentImperial College, London University. 

King, B. 2000b. Schedule optimisation of large complex mining operations. In 

APCOMDenver, pp. 1-13. 

Kodukula, P. and Papadescu, C.,2006. Project evaluation using real options-A 

practitioner guide, p.256,J. Ross Publishing  

Krige, D. 1951. A statistical approach to some mine valuation and allied problems on 

the Witwatersrand. MSc, In Academic. DepartmentUniversity of South Africa, 

Witwatersrand. 

Kunsch, H. R. and Carlstein, E. 1990. The linked blockwise bootstrap for serially 

dependent observations. Department of Statistics, University of North Carolina 

(Working Chapel Hill, pp.  

Lane, K. 1999. Optimisation : Is it the best? In Third Biennial Conference : Strategic 

Mine PlanningWhittle Programming Pty Ltd, Perth, pp. 1-7. 

Lane, K. F.,1988. The economic definition of ore, p.149,Mining Journal Books Ltd 

(London). 

Larsen, R. J. and Marx, M. L.,2001. An introduction to mathematical statistics and its 

applications, p.790,Prentice Hall International, INC  

Laughton, D. and Jacoby, H.,1993. Reversion, timing options, and long-term decision 

making, Financial Management, 22(3), 225-240. 

Laughton, D., Sagi, J. S. and Samis, M.,2000. Modern asset pricing and project 

evaluation in the energy industry, Western Centre for Economic Research, 

56(September), 76. 



               
313 

Lerchs, H. and Grossmann, L.,1965. Optimum design of open-pit mines, CIM 

Transactions, LXVIII, 17-24. 

Lintner, J.,1965. The valuation of risk assets and the selection of risky investments in 

stock portfolio and capital budgets, Review of Economics and Statistics, 47(1), 13-37. 

Longstaff, F. A. and Schwartz, E.,2001. Valuing American options by simulation: A 

simple Least-Squares approach, Review of Financial Studies, (14), 113-147. 

MacAvoy, P. W.,1988. Explaining metal prices: economic analysis of markets in the 

1980s and 1990s, p.132,Kluwer Academic (Boston). 

Mackenzie, M., Bilodeu, M. and Mascall, G. E. 1974. The effect of uncertainty on the 

optimisation of mine development. In 12th International Symposium on Applications 

of Computers in the Mineral Industrycolorado School of Mines. 

Mardones, J. L.,1993. Option valuation of real assets: Application to a copper mine 

with operating flexibility, Resources Policy, (March), 51-65. 

Martinez, L. and Wolff, R. 2005a. The Block-Fourier bootstrap: A new time series 

resampling technique. (Working paper.), Brisbane, pp. 21 

Martinez, L. and Wolff, R. 2005b. The Block-Fourier bootstrap: A new time series 

resampling technique. School of Economics and Finance (Working paper.1), 

Brisbane, pp. 21 

Martinez, L. A. 2003. Can quantification of geological risk improve open pit mine 

design? MPhil, In Academic. DepartmentThe University of Queensland, Brisbane, pp. 

168. 

Martinez, L. A. 2007. Orebody modelling and mine project evaluation: Estimation vs. 

simulation-a practical viewpoint. In 33rd International Simposium on Applications of 

Computers and Operation Research in Mineral Industry (APCOM), Vol. 1 Santiago 

de Chile, pp. 721-728. 

Martzoukos, S. H. and Trigeorgis, L. 2001. Resolving a real options paradox with 

incomplete information: After all, why learn? Hermes Center of Excellence on 



               
314 

Computational Finance & Economics - University of Cyprus (Working paper.01-14), 

Cyprus, pp.  

Mason, R. D., Lind, D. A. and Marchal, W. G.,1999. Statistical techniques in business 

and economics, p.788,McGraw-Hill International Edition  

Matheron, G. 1975. Le paramétrage des contours optimaux. (Working paper.), 

Fontainebleau, France, pp.  

Matteis, R. 2001. Fitting copulas to data. Diploma Thesis, In Academic. 

DepartmentUniversity of Zurich, pp. 95. 

McCardle, K. F.,1985. Information acquisition and the adoption of new technology, 

Management Science, 31(11), 1372-1389. 

McCarter, M. K. 1992. Surface mining: Mechanical extraction (Ed, Hartman, H. L.) 

Society for Mining, Metallurgy, and Exploration, Inc., Littleton, pp. 1365-1452. 

McCarthy, J. and Monkhouse, P.,2003. To open or not to open-or wht to do with a 

closed copper mine, Journal of Applied Corporate Finance, 15(2), 63-73. 

McDonald, R. and Siegel, D.,1986. The value of waiting to invest, Quarterly Journal 

of Economics, (November), 707-727. 

McKnight, R.,1999. Valuing mineral opportunities as option, Web resource: 

www.cim.org/mes/pdf/VALDAYBobMcKnight.pdf,  

McNeil, A., Frey, R. and Embrechts, P.,2005. Quantitative risk management: 

Concepts, techniques and tools, p.538,Princenton University Press  

Menabde, M., et al. 2004. Mining schedule optimisation for conditionally simulated 

orebodies. In Orebody Modelling Strategic Mine Planning: Uncertainty and Risk 

Management(Eds, Dimitrakopoulos, R. and Ramazan, S.) The Australasian Institute 

of Mining & Metallurgy, Perth-Australia, pp. 347-351. 

Merton, R. C.,1973. Theory of rational option pricing, The Bell Journal of Economics 

and Management Science, 4(1), 141-183. 

http://www.cim.org/mes/pdf/VALDAYBobMcKnight.pdf


               
315 

Modigliani, F. and Miller, M.,1958. The cost of capital, corporation finance, and the 

theory of investment, American Economic Review, 261. 

Moel, A. and Tufano, P. 1998. Bidding for Antamina mine: Valuation and incentives 

in a real option context. Harvard Business School (Working paper.Note 297-054/297-

055), pp.  

Moyen, N., Slade, M. and Uppal, R.,1996. Valuing risk and flexibility: A comparison 

of methods, Resources Policy, (22), 63-74. 

Mun, J.,2006. Real options analysis: Tools and techniques for valuing strategic 

investments and decisions, p.667,John Wiley & Sons, Inc  

Nelsen, R. B.,1999. An introduction to copulas, p.216,Springer Verlag  

Nelsen, R. B., et al.,2003. Kendall distribution functions, Statistics and Probability 

Letters, 65, 263-268. 

Nur, D., Wolff, R. and Mengersen, K.,2001. Phase randomisation: numerical studies 

of higher cumulants behaviour, Computational Statistics and Data Analyis, 37, 487-

513. 

Oksendal, B.,2003. Stochastic differential equations, p.370,Springer Verlag (Berlin). 

Osanloo, M. and Ataei, M.,2003. Using equivalent grade factors to find the optimum 

cut-off grades of multiple metals, Minerals Engineering, 16, 771-776. 

Paddock, J., Siegel, D. and Smith, J. L.,1988. Option valuation of claims on real 

assets: The case of Offshore petroleum leases, Quarterly Journal of Economics, 

103(3), 479-508. 

Palm, S. K., Pearson, N. D. and Read, J.,1986. Option pricing: A new approach to 

mine valuation, Econometrica, 63(1), 1-28. 

Paparoditis, E. and Politis, D. N.,2002. Local block bootstrap, C. R. Acad. Sci. Paris, 

Ser. I, (335), 959-962. 

Patton, A. J. 2002. Application of copula theory in financial econometrics. PhD, In 

Academic. DepartmentUniversity of California, San Diego, pp. 217. 



               
316 

Peirson, G., et al.,2001. Business Finance, p.556-560,The McGraw-Hill Companies, 

Inc.  

Politis, D. N.,2003. The impact of bootstrap methods on time series analysis, 

Statistical Science, 18(2), 219-230. 

Politis, D. N. and Romano, J. P.,1995. Bias-corrected nonparametric spectral 

estimation, Journal of Time Series Analysis, 16, 67-113. 

Politis, D. N. and White, H.,2004. Automatic block-length selection for the dependent 

bootstrap, Econometric Reviews, 23(1), 53-70. 

Priestley, M. B.,1965. Evolutionary spectra and non-stationary processes, Journal of 

the Royal Statistical Society. Series B (Methodological), (27), 204-237. 

Priestley, M. B.,1981. Spectral analysis and time series, Academy Press (London). 

Priestley, M. B.,1988. Non-linear and non-stationary time series analysis, 

p.237,Academic Press (London). 

Rajagopalan, B. and Lall, U.,1999. A k-nearest-neighbor simulator for daily 

precipitation and other weather variables, Water Resources Research, 35(10), 3089-

3101. 

Ramazan, S. and Dimitrakopoulos, R. 2004. Stochastic optimisation of long-term 

production scheduling for open pit mines with a new integer programming 

formulation. In Orebody Modelling and Strategic Mine Planning: Uncertainty abd 

Risk Management(Eds, Dimitrakopoulos, R. and Ramazan, S.) The Australasian 

Institute of Mining & Metallurgy, Perth - Australia, pp. 353-359. 

Rank, J. 2000. Copulas in financial risk management. Diploma in Mathematical 

Finance, In Academic. DepartmentUniversity of Oxford, pp. 33. 

Rao, A. G. and Shapiro, A.,1970. Adaptive smoothing using evolutionary spectra, 

Management Science, 17(3), 208-218. 

Rao, A. R. and Yu, G. H.,1986. detection of nonstationarity in hidrologic time series, 

Management Science, 32(9), 1206-1217. 



               
317 

Rao, T. S.,1970. The fitting of non-stationary time series models with time-dependent 

parameters, Journal of the Royal Statistical Society. Series B (Methodological), 32(2), 

312-322. 

Ravenscroft, P. J.,1992. Risk analysis for mine scheduling by conditional simulation, 

Transcript of the Institution of Mining and Metallurgy, (101), A104-A108. 

Reed III, J. F.,2005. Contributions to two-sample statistics, Journal of Applied 

Statistics, 32(1), 37-44. 

Reimann, B. C.,1990. Why botter with risk adjusted hurdle rates?, Long Range 

Planning, 23(3), 57-65. 

Rendu, J. M. 2006. Reporting mineral resources and mineral reserves in the United 

States of America. In 6th International Mining Geology Conference, Vol. 1 (Ed, 

Dominy, S.) The Australasian Institute of Mining Metallurgy, Darwin - Northern 

Territory - Australia, pp. 11-19. 

Rogers, J.,2002. Strategy, value and risk: the real options approach: reconcilling 

innovation, strategy and value management, p.141,Palgrave (New York). 

Rosen, O., Stoffer, D. and Wood, S. (2002). Local spectral analysis via a Bayesian 

mixtures of smoothing splines. June-9-2005. 

(Acces2002).http://www.stat.pitt.edu/stoffer/dss.html#B 

Ross, et al.,2003. Fundamentals of corporate finance, p.354-355,Irwin / McGraw-Hill  

Ross, S. A.,1978. A simple approach to the valuation of risky streams, Journal of 

Bussines, 51(July), 453-475. 

Rossi, M. E. and Van Brunt, B. H. 1997. optimising conditionally simulated orebodies 

with Whittle 4D. In Optimising with Whittle 97Whittle programming Pty Ltd, Perth, 

pp. 119-128. 

Rubinstein, M.,1999. Futures, options and dynamic strategies, Risk Books (471). 

Rudawsky, O.,1986. Mineral economics:development and management of natural 

resources, p.192,Elsevier (Amsterdam). 

http://www.stat.pitt.edu/stoffer/dss.html#B


               
318 

Sagi, J. S. 2004. The iteraction between quality control and production. (Working 

paper.), Haas School of Business - University of California, pp. 37 

Samis, M. 2000. Multi-zone mine valuation using modern asset pricing (real options) 

techniques. PhD, In Academic. DepartmentThe University of British Columbia, pp. 

176. 

Samis, M., Laughton, D. and Davis, G.,2005. Valuing resource extraction projects 

using real options, Mining Engineering, 98(1087), 82. 

Samis, M., Laughton, D. and Poulin, R. 2001. Valuing a multi-zone mine as asset 

portfolio: A modern asset pricing (Real options) approach. In Real Option(Ed, UCLA) 

Los Angeles, pp. 38. 

Samis, M., Laughton, D. and Poulin, R. 2003. Risk discounting: The fundametal 

difference between the real option and discounted cash flow project valuation 

methods. (Working paper.), pp. 22 

Savage, S.,2002a. The flaw of averages, Harvard Business Review, 80, 20-22. 

Savage, S. (2002b). Letter to the US Securities and Exchange Commision. 27-12-

2008. (Acces2002b).http://www.sec.gov/rules/proposed/s71602/savage1.htm 

Savage, S.,2003. Decision making with insight, p.368,Duxbury  

Schwartz, E.,1997. The stochastic behaviour of commodity prices: implications for 

valuation and hedging, the Journal of Finance, 52(3), 923-973. 

Schwartz, E.,1998. Valuing long-term commodity assets, Financial Management, 

27(1), 57-56. 

Sharpe, W.,1964. Capital asset prices: A theory of market equilibrium under 

conditions of risk, Journal of Finance, 19(3), 425-442. 

Shreve, S. E.,2004. Stochastic calculus for finance 1: The Binomial asset pricing 

model, p.250,Springer  

Silverman, B. W.,1986. Density estimation for statistics and data analysis, 

p.175,Chapman & Hall (London). 

http://www.sec.gov/rules/proposed/s71602/savage1.htm


               
319 

Sinclair, A. J. and Blackwell, G. H.,2002. Applied mineral inventory estimation, 

p.400,Cambridge University Press (Cambridge). 

Sklar, A.,1959. Fonctions de repartition a n dimensions et leurs marges, Pubications 

de l'Institut de Statique de L'University de Paris, 51, 1384-1399. 

Slade, E. M.,2001. Valuing managerial flexibility: An application of real-option 

theory to mining investments, Journal of Environmental Economics and Management, 

(41), 193-233. 

Smith, H. T. J. and Trigeorgis, L.,2004. Strategic investment-Real options and games, 

p.471,Princenton University Press (United Kingdom). 

Smith, J. E.,2005. Alternative approaches for solving real-options problems, Decision 

Analysis, 2(2), 89-102. 

Smith, J. E. and McCardle, K. F.,1999. Options in the real world: Lessons learned in 

evaluating oil and gas investments, Operations Research, 47(1), 1-15. 

Smith, J. E. and Nau, R. F.,1995. Valuing risky projects: Option pricing theory and 

decision analysis, Management Science, 41(5), 795-816. 

Stone, P., et al. 2004. Blasor- blended iron ore mine planning optimisation at Yandi. 

In Orebody Modelling and Strategic Mine Planning-Uncertainty and Risk 

Management(Eds, Dimitrakopoulos, R. and Ramazan, S.) The Australasian Institute 

of Mining and Metallurgy, Perth - Australia, pp. 285-289. 

Taylor, H. K.,1985. Cut-off grades-some further reflections, Transactions of the 

Institution of Mining and Metallurgy, A160-216. 

Taylor, J., Moosa, I. and Cowling, B.,2000. Micro Economics, p.508,John Wiley & 

Sons  

Tilley, J. A.,1993. valuing American options in a path simulation model, 

Transactions, Society of Actuaries, Schaumburg, (45), 499-520. 

Torries, T. F.,1998. Evaluating mineral projects: applications and misconceptions, 

p.153,Littleton, CO: Society for Mining, Metallurgy, and Exploration  



               
320 

Tourinho, O. A. 1979. The valuation of reserves of natural resources: An option 

pricing approach. Unpublished PhD dissertation, In Academic. DepartmentUniversity 

of California. 

Trigeorgis, L.,1996. Real options: Managerial flexibility and strategy in resource 

allocation, p.427,MIT Press  

Trigeorgis, L. 2001. A real options application in natural resource investments (Eds, 

Schwartz, E. and Trigeorgis, L.) The MIT Press, London, pp. 679-688. 

Tsekrekos, A. E., Shackleton, M. B. and Wojakowski, R. 2003. Evaluating natural 

resource investments using the Least-Squares Monte Carlo simulation approach. In 

7th Annual Real Option Conference.Web resource: www.realoptions.org. 

Van Brunt, B. H. and Rossi, M. E. 1999. Mine Planning under uncertainty constraints. 

In Strategic Mine PlanningWhittle Programming Pty Ltd, Perth, pp. 181-196. 

Van den Goorbergh, R. J., Genest, C. and Werker, B. J. (2003). Multivariate option 

pricing using dynamic copula models. 

(Acces2003).www.business.city.ac.uk/ferc/eric/index.html 

Wackernagel, H.,2003. Multivariate geostatistics - An introduction with applications, 

p.387,Springer (Berlin). 

Walls, M. R. and Eggert, R. G.,1996. Managerial risk takers: A study of mining 

CEO's, Mining Engineering, 48(3), 61-66. 

Wand, M. P. and Jones, M. C.,1995. Kernel smoothing, p.212,Chapman & Hall 

(London). 

Wang, T. and De Neufville, R. 2006. Identification of real options "in" projects. In 

16th. Annual International Symposium of the International Council on Systems 

Engineering (INCOSE)INCOSE, Orlando. 

Whittle, J., 1998. WH Bryan Mining Geology Research Centre, Brisbane. 

Whittle, J. and Rozman, L. 1991. Open pit design in 90's. In Proceedings Mining 

Industry Optimisation ConferenceSydney. 

http://www.realoptions.org/
http://www.business.city.ac.uk/ferc/eric/index.html


               
321 

Whittle, J. and Wharton, C. L. 1995. Optimising cut-offs over time. In 25th APCOM 

SymposiumBrisbane, pp. 261-265. 

Wolff, R. 2005. Copula selection for modelling multivariate financial risk: a Non-

parametric approach to capturing dependence. In Fourth International Symposium on 

Business and Industrial Statistics ISBIS4Tropical North Queensland - Australia. 

Wright, E. A. and Mbirikira, D. S. B.,1993. Recent findings in open pit optimisation, 

Journal of Surface Mining and Reclamation, 7, 155-159. 

Zhang, H. 2004. Dynamic beta, time-varying risk premium, and momentum. The 

International Center for Finance at the Yale School of Management (Working 

paper.04-26), pp. 63 

 

Appendix A: List of Archimedean copula functions 

In this research, 20 Archimedean copulas were used to select an appropriate one when 

performing dynamic analysis. The table indicating the structure of these 20 family of 

copulas are similar to the ones shown in Nelsen (Nelsen, 1999) and Matteis (Matteis, 

2001), so the reader is directed to these two authors for a more detailed analysis.  

Appendix B: Sampling a bivariate copula function - Conditional 

copula 

The task of this section is that one of the generating pairs  ,u v  of observations of 

uniformly distributed, in  
2

0,1 , random variables U  and V  whose joint distribution 

function is the Archimedean copula  ,C u v  (see Appendix A). In this case, the 

method of conditional copula (Rank, 2000; Nelsen, 1999; Matteis, 2001; Joe, 1997; 

DiNardo and Tobias, 2001) will be used.  

Let UC
 be the parametric conditional Archimedean copula, with parameter  , for the 

random variable V  at a given value U u  defined as 

    
 ,

|U

C u v
C v P V v U u

u

 
   


, 
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where  ,C u v  is a given parametric Archimedean copula. Observe also that because 

the properties of the copula (see Nelsen for a more detailed analysis) the following 

theorem is true. 

Theorem 1 Let   ,C u v  be a copula function. For every  0,1v , the partial 

derivative 
 ,C u v

u



 exist for almost all (in the sense of Lebesgue measure) 

 0,1u . For such u  and v  one has 

 
 ,

0 1
C u v

u


 


. 

To generate a pair  ,u v  from the given copula  ,C u v  the following steps need to 

be performed. 

 Generate two independent uniform pseudo random numbers  , 0,1u w ; u  is 

already the first number we are looking for. 

 Compute the inverse function of UC
. In general, it will depend on the 

parameters of the copula, in this case  , and on the value u , which can be 

seen, in this context, as an additional parameter of UC
. Set 

  Uv Inverse C w  to obtain the second value v . 

Note, however, it may happen that the inverse function of the copula, that is,  

  UInverse C w
, cannot be calculated analytically. In this case, numerical 

algorithms need to be used to determine the value of v . 

 

 

 

 


