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A nonlinear PI and backstepping based controller for tractor-steerable
trailers influenced by slip

Van T. Huynh, Ryan N. Smith, Ngai Ming Kwok and Jayantha Katupitiya

Abstract— Autonomous guidance of agricultural vehicles is
vital as mechanized farming production becomes more preva-
lent. It is crucial that tractor-trailers are guided with accuracy
in both lateral and longitudinal directions, whilst being affected
by large disturbance forces, or slips, owing to uncertain and
undulating terrain. Previous research has been concentrated
on trajectory control that provides longitudinal and lateral
accuracy if the vehicle moves without sliding and/or the trailer
is passive. In this paper, we extend current results by addressing
the problem of robust trajectory tracking along straight and
circular paths of a tractors with steerable trailers. We develop
a controller that is a robust combination of a backstepping and
nonlinear PI control. For vehicles subjected to slip, the proposed
controller makes the lateral deviations and the orientation
errors of the tractor and trailer converge to a neighborhood
near the origin. Simulation results are presented to illustrate
that the suggested controller ensures precise trajectory tracking
in the presence of slip.

I. INTRODUCTION

The agriculture industry is rapidly increasing in mech-
anization and autonomy. This trend is stimulated by the
necessity to effectively and productively retain vast expanses
of cultivated fields, with a decline in skilled workforce. Ad-
ditionally, with the escalating labor cost, there is a gradually
increasing difficulty in maintaining competitiveness of the
farming industry. Hence, it has lead to the emergence of ”cor-
porate” style farming, where large firms tend to monopolize
the whole industry [1]. As a result, the agricultural industry
has turned to innovation via automation.

One of the impacts of a decreased workforce and ”cor-
poratized” farming is the demand to develop autonomous
agricultural tractor-trailers, which will in the coming decades
play an important role in almost all systems for greenhouses
and outdoor applications. Furthermore, one of the biggest
difficulties in stepping towards the autonomous farming
era is integrating robotic technology into farming fields. If
the working environment is highly undulating and uncer-
tain, more machine intelligence is required to obtain the
desired precision of operations. Autonomous tractors with
such intelligence are currently under development [2]–[4],
and some tractors are available commercially with ”auto-
steer” systems. While the precision of an agricultural task is
crucially depended on how the towed implement is guided,
most of those works together with studies on experimentally
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controlling towing vehicles [5], [6] concentrate on tractor
guidance. However, the modeling and control of tractors with
steerable trailers has received little attention.

Due to the unstructured property of the ground at the farm,
inevitable slip1 exerted on the agricultural vehicles must be
considered when controlling the tractor-trailer. To account
for slippery effects, Pota, et al. [7] proposed a dynamic
model for the tractor-trailer which contained both longitu-
dinal and side slips. Moreover, some kinematic models for
the tractor alone are also depicted in Fang’s work [8]–[10].
Likewise, guidance of a two-wheeled mobile robot subject
to slip is considered in [11]. However, few studies inspect
the complete tractor and trailer kinematic model under the
influence of slip. A representation of the tractor-trailer system
considered in this paper is presented in Fig. 1.

Fig. 1. A typical farm tractor with a trailer that is similar to the system
assumed in this paper. This image is c© Richard Croft and licensed for reuse
here under the Creative Commons Licence.

Once the kinematic model containing perturbations and
uncertainties are completely derived, controlling the tractor-
trailer to precisely follow a prescribed trajectory presents fur-
ther challenges. Aside from the slip disturbances occurring
at the tractor, the trailer being towed undergoes large ground
contact forces. Hence, trajectory planning and advanced
control techniques developed to accurately guide the tractor-
implement are non-trivial and still remain as a central part
of the wider issue of building precision farming machinery.
Nevertheless, recent results are restricted to a tractor-semi
trailer system, which is not steerable at the rear axle of the
towed implement [12]–[14].

References [12] and [13] motivate design of the controller
for both the tractor and the trailer in the presence of slip.

1In the remainder of this paper, terms of slip, sliding, sliding parameters,
and slippery effects will be used interchangeably.



For the tractor, besides two typical controllers for the tractor
under the influence of slips have been presented in [8],
[9], a completely new controller will be presented based
on the error dynamics recently derived in [15]. The robust
backstepping technique will be utilized to synthesize a con-
trol law for the tractor. Furthermore, a Lyapunov redesign
method, which was depicted by Khalil [16], will be applied
in combination with the recursive tool. The usefulness of this
combination is that, while the Lyapunov redesign method
as well as nonlinear damping can tackle nonlinear systems
with matched perturbations containing both states and inputs,
the robust backstepping scheme can counteract mismatched
uncertainties. For the trailer, because its dynamics contains
both system uncertainties and exogenous input disturbances,
there are few results that can be applied to guide it. Among
the literature, methods developed in [17]–[20] are applicable
to solving the problem of trailer path tracking. However, to
choose a control Lyapunov function (CLF) with its derivative
satisfying inequalities in Haddad’s study is non-trivial work.
Likewise, there are difficulties in using Isidori’s result [18],
due to the solvabilty of partial differential equations and
forming the interconnected system before designing a con-
troller. Furthermore, the integral-type sliding mode control
proposed in Cao [19] and Castanos [20] shows potential for
being applicable to the control of the trailer. Unfortunately,
in these studies, the assumption that the Euclidean norm of
the nonlinear coefficient matrix associated with the input is
less than unity cannot be satisfied when we considered the
trailer’s dynamics. During the period of searching for a suit-
able control design procedure for the implement, a nonlinear
PI control design method has been found to be applicable.
The nonlinear PI control introduced in [21] is a powerful
technique to tackle nonlinear systems in the presence of
perturbations and exogenous input disturbances. With the
condition of bounded uncertainties and small unmeasured ex-
ogenous disturbances, the nonlinear PI controller guarantees
globally uniformly boundedness of not only system states
but also the unpredictable input disturbances from ambient
environment.

II. KINEMATIC MODEL WITH SLIPS

A schematic diagram of the tractor-trailer system to be
controlled is depicted in Fig. 2. Steering wheels of the
tractor-trailer are represented by single wheels along longitu-
dinal axes of the tractor and trailer. The drive of the vehicle
is via the rear wheels of the tractor. The following model
description is based on that of [15]. The tractor’s off-axle
length is a, and l1 is the distance from tractor’s rear axle to
tractor’s front axle. For the trailer, l2 is the distance from
trailer’s axle to the hitch point.

The tractor’s state is given by qt = [xt yt θt δ]
T , where

(xt, yt) is the position of the middle point of the tractor’s
rear axle in the xOy global coordinate. Similarly, the trailer
state is given by qi = [xi yi θi δi]

T , where (xi, yi) is the
position of the middle point of the trailer’s axle. Moreover,
θt and, Ωt = θ̇t, are the orientation and angular velocity
of the tractor’s longitudinal axis. Likewise, θi and, Ωi =

Fig. 2. The offset model for tractor with steerable trailer

θ̇i, are the orientation and angular velocity of the trailer’s
longitudinal axis. Steering for the tractor is effected via the
front wheel, with steering angle δ, while the active trailer is
directed by the trailer’s steered wheel, with a steering angle
δi. In addition, the drive speed produced by the tractor is
V . Velocity V will then cause a velocity Vf at the steering
wheel and a velocity Vi at the trailer’s steering wheel.

Slip is modeled by the inclusion of slip velocities in the
lateral and longitudinal velocities. We use Vlr to represent
a longitudinal slip velocity at the tractor’s rear wheels, and
(Vlr > 0) if vector Vlr is opposite to vector V. Vsr is a side
slip velocity at the tractor’s rear wheels, and (Vsr > 0) when
Vsr direction relatively points towards the left of the vehicle
as described in the current figure. Also, there is a side slip
Vsf at the front wheel of the tractor. Note that disturbance at
the tractor’s steered wheel can be represented either by the
slip velocity Vsf or by a slip angle βf . For the disturbance
acting on the towed implement, we have Vsi or a slip angle
βi represent the side slip at the trailer’s rear axle.

Under the influence of slip, the model of the combined
tractor-trailer system is given by H(t,q)q̇ = F(t,q,w)
where H ∈ R6×6; F,q ∈ R6×1; the disturbances
are given by w = [βf Vlr Vsr Vsi 0 0]T ; F =[
f1 f2 f3 f4 0 0

]T
;

H =


1 0 0 0 0 0
h21 h22 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
h51 h52 −1 0 1 0
h61 h62 0 −1 0 1

 ; q̇ =


θ̇t
θ̇i
ẋt
ẏt
ẋi
ẏi





and

h21 = −a cos (δi + φ) sinφ;h22 = l2 sinφ cos δi;

h51 = −a sin θt, h52 = −l2 sin θi;

h61 = a cos θt, h62 = l2 cos θi;

f1 = Ωt =
V − Vlr
l1

tan (δ + βf ) +
Vsr
l1

;

f2 = M1 +M2 +M4;

f3 = (V − Vlr) cos θt − Vsr sin θt;

f4 = (V − Vlr) sin θt + Vsr cos θt;

M1 = −(V − Vlr) sin (δi + φ) sinφ

M2 = Vsr sin(φ) cos (δi + φ);M4 = −Vsi sinφ.

For trajectory tracking, a reference path is introduced.
In practice, executed paths are reasonably approximated by
a sequence of straight lines and arcs, as a lawnmower or
radiator pattern are typically prescribed. Thus, we consider
a rectilinear path and a circular path of radius R1. As can
be seen in Fig. 2, the circle centered at Od with radius R1 is
the reference trajectory. R1 →∞ if the predetermined path
is a straight line.

To control the tractor-trailer, error dynamics of the vehicle
are used. The proposed error dynamics have three offset
variables. The first offset variable is φos, which is equal
to the current angle φ (between the tractor and trailer) less
its steady state value φd (along the prescribed path). The
other two offset variables are los and θos, which denote the
tractor lateral offset and its orientation offset, respectively.
The variables los, θos are measured with reference to the
projection of point D, the middle of tractor’s rear axle, onto
the desired path. Particularly, |los| = |DP|, where point P
is the intersection between OdD and the prescribed path.
Furthermore, we have θos = θt − θd, with θd is the desired
steady state value of θt.

According to [15], we have the offset model as follows:

l̇os = −σ|V − Vlr| sin θos − σVsr cos θos, (1a)

θ̇os =
V − Vlr
l1

tan (δ + βf ) +
Vsr
l1

− σ|V − Vlr|
cos θos
R1 + los

+ σVsr
sin θos
R1 + los

, (1b)

φ̇os =
1

l2 cos δi

{
− (V − Vlr) sin (δi + φos + φd)

+ Vsr cos (δi + φos + φd)

−
(
V − Vlr
l1

tan (δ + βf ) +
Vsr
l1

)
×(

a cos (δi + φos + φd) + l2 cos δi

)
− Vsi

}
, (1c)

where σ is a direction coefficient. Being referenced from the
center of the prescribed circle, σ = 1 if the vehicle follows
the desired path in counterclockwise direction, and σ = −1
if the vehicle follows the desired path in clockwise direction.

III. CONTROLLER DESIGN
In this section, synthesis of the nonlinear controller for the

tractor-trailer will be presented. A control law for the tractor

is constructed first. After that, construction of a control law
for the trailer will be shown.

A. Controller Design for the Tractor

We present step-by-step establishment of a control in-
put for the car-like mobile robot. Because there are two
equations Eqs. (1a-1b), concerning (los, θos) offset variables,
affecting control of the tractor in the model Eq. (1), the
backstepping design procedure has two steps. The first step
deals with Eq. (1a) to formulate a virtual control. The
second step tackles Eq. (1b) and the whole tractor’s model
to construct a controller for the towing vehicle. However,
equation (1), with lateral, orientation and hitch angle offset
variables (los, θos, φos), is still primitive and cannot be
directly incorporated in the design procedure. We first need
to linearize the function tan (δ + βf ) and change los, θos
into a new coordinate. Then, the original model becomes a
nominal model, augmented with additive disturbances. It is
the mathematical model with additive perturbations that is
directly used in the backstepping design scheme.

According to [8], there are two typical observations in ac-
tual agricultural applications. Firstly, the ground conditions,
such as, gradient, friction, curvature, do not vary abruptly.
Secondly, most trajectories to be followed are straight lines
or circles. Hence, if the agricultural vehicles move smoothly
without excessive acceleration, one may assume that the
sliding parameters do not vary tremendously with time. The
slip parameters are then given by:

βf = β̄f + ε1, (2)

where β̄f is time-invariant, ε1 is a time-varying variable with
zero mean, and obeys a normal distribution.

Also according to [8], the steering bias βf is normally
within the range [0, 5] degrees. Due to quite small values of
βf , tan (δ + βf ) can be linearized as follows:

tan (δ + βf ) = tan δ + tan β̄f + ε1, (3)

where ε1 = tan ε1 + ε, ε is the error due to linearization
approximation. From now on, for simplicity, we just write
tanβf instead of tan β̄f .

Let us denote los, sin θos and tan δ as x1, x2 and u1.
By linearizing the tan (δ + βf ), and transforming (1a-1b)
in (los, θos)-coordinate to (x1, x2)-coordinate, we obtain
a mathematical model with additive perturbations that is
suitable for the recursive backstepping design scheme. Such
a mathematical model is represented by the following equa-
tions:

ẋ1 = f1(x) + g1(x)x2 + F1(x)∆1(x,w), (4)
ẋ2 = f2(x) + g2(x)u1 + F2(x)∆2(x, u, w), (5)



where,

f1(x) = 0; g1(x) = −σV ;

F1(x) = 1;

f2(x) = −σV (1− x2
2)

R1 + x1
; g2(x) =

V

l1

√
1− x2

2 ;

F2(x) =
√

1− x2
2;

∆1(x,w) = σ

(
Vlrx2 − Vsr

√
1− x2

2

)
; (6)

∆2(x, u, w) =
V

l1
(tanβf + ε1) +

Vsr
l1

− Vlr
l1

(u1 + tanβf + ε1)

+ σVlr

√
1− x2

2

R1 + x1
+ σVsr

x2

R1 + x1
. (7)

Choose a Control Lyapunov Function (CLF) as:

V1 =
1

2
x2

1 , (8)

which upon differentiating gives,

V̇1 = −σV x1x2 + x1∆1(x,w) . (9)

Select the virtual input as,

x2 = Φ(x1) =
c1
σV

x1 +
k1

σV
x1

=
c̄1
σV

x1 = (
c1 + k1

σV
)x1 = µx1 , (10)

where c1, k1 and µ are design parameters for the controller.
Thus,

V̇1 = −σV x1(
c1
σV

x1 +
k1

σV
x1) + x1∆1(x,w)

≤ −c1x2
1 +

∆2
1(x,w)

4k1
(11)

≤ −W (x) + b . (12)

The error state variable is:

z = x2 − Φ(x1) = x2 −
c̄1
σV

x1 = x2 − µx1 . (13)

So, the system can then be written as:

ẋ1 = f1(x) + g1(x)(z + Φ(x1)) + F1(x)∆1(x,w), (14)
ż = f2(x) + g2(x)u1 + F2(x)∆2(x, u, w)

− ∂Φ

∂x1
(f1(x) + g1(x)x2 + F1(x)∆1(x,w)) . (15)

Thus, we choose the CLF for the whole system to be,

V2(x1, x2) = V1(x) +
1

2
z2 . (16)

Thus, its derivative is,

V̇2 =
∂V1

∂x1
(f1 + g1Φ + F1∆1) + z

(
F2∆2 −

∂Φ

∂x1
F1∆1

)
+ z

(
f2 + g2u1 +

∂V1

∂x1
g1 −

∂Φ

∂x1
(f1 + g1x2)

)
≤ −W (x) + b+ z

(
f2 + g2u1 +

∂V1

∂x1
g1 (17)

− ∂Φ

∂x1
(f1 + g1x2)

)
+ z

(
F2∆2 −

∂Φ

∂x1
F1∆1

)
.

Because g2(x) 6= 0, here we take,

u1 =
Ψ1(x1, x2) + v

g2
, (18)

where v is a supplementary control, and Ψ1 = −a1z− f2−
∂V1

∂x1
g1 + ∂Φ

∂x1
(f1 + g1x2). Hence,

V̇2 ≤ −W (x) + b− a1z
2 + z

(
F2∆2 −

∂Φ

∂x1
F1∆1 + v

)
.

With the designed controller u1 as expressed in Eq. (18),
the bound of the uncertainty ∆2(x, u, w) is also affected.
The remaining discussion of this subsection will be about
constructing the supplementary control v based on bounds of
the uncertainties ∆1 and ∆2. Readers may refer to Appendix
I on finding bounds of such uncertainties functions.

Let us introduce a new control parameter η, which can be
selected as,

η(t, x) = η0 +
ρ(|x1|) + ρ3

1− κv
. (19)

With the function η in hand, we now have enough informa-
tion to apply the Lyapunov redesign technique to construct
the supplementary control v. For ε ∈ R+, two cases of
η(t, x)|z| ≥ ε and η(t, x)|z| ≤ ε will be considered to
synthesize control laws for v.

Particularly, when η(t, x)|z| ≥ ε, then choose,

v = −η(t, x)sgn(z). (20)

Thus,

z

(
F2∆2 −

∂Φ

∂x1
F1∆1 + v

)
≤ −η0(1− κv)|z|. (21)

Therefore,

V̇2 ≤ −W (x) + b− a1z
2 − η0(1− κv)|z|. (22)

When η(t, x)|z| ≤ ε, then choose,

v = −η2(t, x)
z

ε
, (23)

Hence,

V̇2 ≤ −W (x) + b− a1z
2 + z(−η2 z

ε
+ ∆′2 −∆′1). (24)



However, due to ρ + ρ3 ≤ η(1 − κv), it can be easily seen
that,

z(−η2 z

ε
+ ∆′2 −∆′1) ≤ −(1− κv)

z2η2

ε
+ |z|(ρ+ ρ3)

≤ (1− κv)(−
z2η2

ε
+ |η||z|). (25)

As a result,

V̇2 ≤ −W (x)− a1z
2 +

(1− κv)ε
4

+ b. (26)

From Eqs. (22) and (26), we see that the inequality Eq. (26)
is satisfied irrespective of the value of η(t, x)|z|. By choosing
a1 large and ε small enough, the state variables of x1 and x2

will be uniformly asymptotically bounded. Since x1 = los
and x2 = θos, all the offset variables will converge to a ball
Br with radius r, which depends on the design parameters in
Eqs. (18), (20) and (23). In general, the controller for tractor
path-following is presented in Eqs. (18), (20) and (23).

B. Controller Design for the Trailer

Notice that, once the tractor has been guided to follow a
trajectory by the control law Eq. (18), the tractor’s angular
velocity will be equal to its desired velocity plus an error
value, which is called ε′Ω. By applying interval analysis [22]
and the inclusion function of [ε′Ω], we have,

Ωt =
V − Vlr
R1

+ ε′Ω =
V

R1
− Vlr
R1

+ ε′Ω =
V

R1
+ [εΩ].

(27)

Substituting Eq. (27) into Eq. (1c), we obtain the following
ODE for the hitch angle offset,

ξ̇ = F (ξ) +G(ξ)ui + P(ξ)ϕ(ξ) + Q(ξ) w, (28)

where ξ = φos is the hitch angle offset variable, ui = tan δi
is trailer’s control input and,

F (ξ) =

[
−V
l2
qs −

V

R1

a

l2
qc −

V

R1

]
,

G(ξ) =

[
−V
l2
qc +

V

R1

a

l2
qs

]
,

P(ξ) =
[
−aqc −1 qs qc

]
,

ϕT (ξ) =
[

[εΩ]
l2

[εΩ] Vlr

l2
Vsr

l2

]T
,

Q(ξ) =
[
aqs −1 qc −qs

]
,

wT =
[

[εΩ]
l2
ui

1
l2

Vsi

cos δi
Vlr

l2
ui

Vsr

l2
ui

]T
,

qs = sin (φos + φd), qc = cos (φos + φd).

Whenever the tractor successfully tracks the desired trajec-
tory, we can proceed to provide a control for the trailer. The
trailer’s controller directly adjusts the hitch angle to make the
hitch angle offset remain at zero. By using such approach,
not only the tractor but also the trailer need to follow desired
trajectories. For example, if the tractor is required to track
a circular path CC1, and if the hitch angle are maintained
at a prescribed value φd, then the trailer will also follow a
circular path which is offset from the CC1 by a distance

depending on φd. Based on the derived ODE Eq. (28), we
continue to design a nonlinear PI controller for the towed
implement.

First of all, if φ = (φos + φd) 6= tan−1 R1

a such that
G(ξ) 6= 0, a supplementary control υ can be introduced as
follows,

ui =
υ − F (ξ)

G(ξ)
. (29)

Therefore, Eq. (28) turns to

ξ̇ = υ + P(ξ)ϕ(ξ) + Q(ξ) w, (30a)
y = ξ. (30b)

As to synthesize a nonlinear PI control law, the supple-
mentary control adjusting the trailer should be in the form,

υ = µ1(ξ, ω, ys), (31a)
ω̇ = Ω1 + d, (31b)

where µ1 ∈ R and Ω1 ∈ Rp are smooth functions, ω ∈ Rp
is the internal state of the controller, and ys ∈ R is the
desired output. Furthermore, d ∈ Rp is an additional un-
measured disturbance input so as to guarantee the robustness
of the controller provided that there are small errors in the
measurement of the state ξ. The dimension p of the internal
state ω will be found below once a Lyapunov function for
the trailer system is established.

At the first step of our design procedure, we introduce a
tracking error variable z1 ∈ R, where z1 = y−ys and ys = 0
is the desired output. Consider the Lyapunov function:

V1 = C1z
2
1 + [ϕ(ys)− ω]T E[ϕ(ys)− ω], (32)

with,

C1 ∈ R+, E > 0, E ⊂ R4×4, ω ⊂ R4×1.

Taking derivative of V1 along the solution of Eqs. (30), (31)
gives,

V̇1 = 2z1C1

[
µ1 + Pω + P[ϕ(y)− ϕ(ys)] + Q w

]
+ 2[ϕ(ys)− ω]T E[ PTC1z1 − E Ω1 − E d], (33)

with,

µ1 ∈ R, ΩT
1 =

[
ω1 ω2 ω3 ω4

]
⊂ R1×4, d ⊂ R4×1.

It is worth mentioning that ϕ in Eq. (30) contains only
sliding parameters. Hence, it results in ϕ(y) − ϕ(ys) =
0. By applying Young’s inequality [21] and introducing a
positive design parameter ε, we have bounds for the uncertain
terms in Eq. (33), as follows,

2zT1 C1 Q w ≤ 1

ε
zT1 C1 Q QTC1z1 + ε‖w‖2,

(34)

−2[ϕ(ys)− ω]T E d ≤ 1

ε
[ϕ(ys)− ω]T E2[ϕ(ys)− ω]

+ ε‖d‖2. (35)



Based on the bounds of uncertain terms, we can now
construct

υ = µ1 = −
(
D1

C1
+

1

2ε
Q QTC1

)
z1 − Pω, (36a)

Ω1 = E−1 L(ω, ys) + E−1 PTC1z1, (36b)

with D1 ∈ R and L(ω, ys) ∈ R4×1 are two design param-
eters. Substituting Eqs. (34-35) and (36) into the derivative
V̇1 of the Lyapunov function, we obtain

V̇1 ≤ −2D1z
2
1 − 2[ϕ(ys)− ω]T L(ω, ys)

+
1

ε
[ϕ( ys)− ω]T E2[ϕ( ys)− ω] + ε‖w‖2, (37)

where w = [ wT dT ]T stand for the combined exogenous
disturbance input. Due to the tube shape of the set-valued
map Φ, we can establish L(ω, ys) as follows,

LT (ω, ys) =
[
L1 L2 L3 L4

]
, (38)

Li(ω, ys) = −αi
(
ωi − sgn(ωi)|Ψi|

)
, (39)

with i = 1, 2, 3, 4 and αi > 0 are design parameters. The
establishment of L satisfying Eqs. (38-39) makes the term
ωT L(ω, ys) in Eq. (37) negative. As a result, by choosing
suitable ε, E and L, the tracking error would converge to
a ball B(0, rt), which is centered at 0 and has radius rt
depending on (ε, E, L, w).

IV. RESULTS

Simulation results from applying the controllers con-
structed in previous sections to the tractor-trailer are pre-
sented in this section. For tractor-trailer path-following, ef-
fectiveness of the tractor’s controller (represented by Eqs.
(18), (20) and (23)) and the steerable trailer’s controller
(represented by Eqs. (29), (36), (38) and (39)) is simulated.

The reference propulsion is equal to V = 3 m/s= 10.8
km/h. Since the implement carrying out the agricultural task
is subjected to ground contact forces, the sliding occurring at
the trailer’s rear axle is larger than slip at the tractor’s rear
axle and elsewhere. Hence, the sliding parameters used in
the simulation are selected as Vsf = 0.04 m/s, Vsr = 0.04
m/s, Vlr = 0.02 m/s, Vsi = 0.08 m/s. Design parameters
for the tractor’s controller are chosen as c1 = 0.6, k1 =
0.6, a1 = 0.01, a2 = 1.05, η0 = 1. The parameter ε deciding
when to switch on the control law Eq. (23) is equal to 0.1.
Furthermore, design parameters for the trailer’s controller
are selected as C1 = 10, E = 0.001 I, N1 = 0, D1 = 10 and
αi = 20 for all i = 1, 2, 3, 4.

We will consider prescribing the vehicle to track a circular
path, a straight line trajectory and their concatenation in
the following subsections. For all of the cases, the tractor’s
controller is effective in regulating the towing vehicle ini-
tially. After approximately two seconds, the trailer’s con-
troller is activated to steer the towed implement. The tractor-
trailer is originally positioned at

[
xt yt xi yi

]T
=[

0 3 0 0
]T

.

A. Circular Path

The first prescribed path is a circle of radius R1 = 5 m.
The desired hitch angle is φd = 14.40 ≈ 0.251 rad. In Fig. 3,
the prescribed circle is in red, the tractor trajectory is in blue,
and the trailer trajectory is in green. Figure 3 shows that
both the tractor and the trailer follow the circular paths after
five seconds. We can see a change in the trajectory of the
trailer near (2.1, 5.5) of the (x, y)-coordinate. This sudden
change happens when the trailer’s controller is switched on
at 2 s, and is a result of the time delay between the tractor
starting the circular trajectory and the trailer still following
the straight line trajectory. After 2 s, the trailer follows the
circular path that is offset slightly from the 5 m prescribed
circle. This is due to the fact that the hitch angle of the
tractor-trailer is kept at φd while the tractor has been guided
to follow the 5 m circle. The offset variables after 5 s are

Fig. 3. The tractor-trailer system tracking a circular trajectory of radius
R1 = 5 m. The prescribed circle is in red, the tractor trajectory is in blue,
and the trailer trajectory is in green.

plotted in Fig. 4. All of the lateral, orientation and hitch
angle offsets converge to zero. Also, the system variables are
confined to a ball Br at its steady state as what we confirmed
in Section III. Particularly, the lateral offset, as t → ∞,
is less than 0.07 m. This offset is acceptably small when
considering the large scale of the application considered.

Fig. 4. Offset variables for the 5-second simulation. The lateral offset los
is given by the blue line, and the angular offsets θos and φos are given by
the green and red lines, respectively.



B. Straight Line Path
As R1 → ∞, the reference path converges to a straight

line. Thus, to prescribe the tractor-trailer to track a straight
line path, we choose the radius of the reference curve to a
large value, e.g., R1 ≈ ∞. If we select R1 = 100, 000 m,

Fig. 5. The tractor-trailer system tracking a straight line path. The
prescribed path is in red, the tractor trajectory is in blue, and the trailer
trajectory is in green.

the reference path is approximately a straight line, which is
represented by the red curve in Fig. 5. The tractor trajectory
is in blue and the trailer trajectory is in green. All of the
design parameters are identical to those used to make the
agricultural vehicle track a circular path in Section IV-A.
In the event that the desired hitch angle is zero, then the
trajectories of the tractor and trailer are nearly matched.
Otherwise, if we choose φd = 0.251 rad, the trajectory of
the trailer is a straight line which is parallel to the trajectory
of the tractor. These trajectories are plotted in Fig. 5.

C. Concatenated Path
In practice, it is common for a tractor to plow a field by

traversing a lawnmower-type path. This path is essentially
a concatenation of a straight line and semi-circular arc.
Figure 6 illustrates how the tractor-trailer follows such a
concatenation of paths. The vehicle is prescribed to go follow
a straight line, a circular arc, and then a straight line, as
it would plow the field in practice. We denote the tractor
trajectory in blue, the trailer trajectory in green, and the
reference path in red. For observation purposes, we maintain
an offset distance between the trajectories of the tractor and
trailer of 0.45 m.

Both the tractor and trailer successfully follow the con-
catenated paths. Near the connection points, there is slight
variation in the trailer path. This artefact occurs because the
desired hitch angle φd changes when the vehicle makes a
turn, and there is a time delay between when the tractor
starts the circular arc and when the trailer begins the circular
arc. Specifically, the set-point φd when the vehicle following
a straight line is different than when the vehicle follows a
circular arc. Thus, such slight variation in the trailer path
shows that the desired hitch angle in gradually changing
from one value to another value. In practice, this artefact
could be removed a priori, as it occurs in known locations,
specifically where the tractor and trailer are following two
separate segments of the path.

Fig. 6. The tractor-trailer system tracking the concatenated path. The
prescribed path is in red, the tractor trajectory is in blue, and the trailer
trajectory is in green.

V. CONCLUSIONS

We have proposed a solution for the trailer path-tracking
issue as a result of applying nonlinear PI control technique.
The nonlinear PI controller dynamics consisting of integral
actions have assured the asymptotic tracking of constant
set-points. One of the consequences of such a controller
is that the closed-loop system is robust against uncertain
parameters, as well as exogenous disturbance inputs. Another
consequence is that the implement is shown to successfully
track either a circular path or a straight line. To date, not
enough attention has been paid to steerable implements
influenced by slip. Moreover, current research has focused
on tractor-semi trailer rather than tractor-steerable trailer.
Several studies have produced resolutions to the tractor-
active trailer path-tracking issue, but there is still insufficient
work for such a problem in the presence of slip. The material
presented here provides a more general solution to the
current issue of the guidance of towed implements, regardless
whether the trailer is active or passive.
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APPENDIX I

The relevant function bounds utilized in Subsection III-
A is now listed. We proceed to find the bounds for the
complicated function ∆2 and, then, the simpler one ∆1. First,
we have,

Ψ1(x1, x2) ≤ |a1µ+ σV ||x1|+ |a1 + σµV ||x2|

+ |σV | |1− x
2
2|

|R1 + x1|
. (40)

Since R2
1 > l22−a2, we can assume that whenever the tractor

is inside the prescribed circle, x1 < 0, then x1 also satisfies
|x1| = |los| ≤ R1

a2
with (a2 > 1). Hence,

Ψ1(x1, x2) ≤ k2|x1|+ k3, (41)



where,

k2 = |a1µ+ σV |; k3 = |a1 + σµV |+ |σV |a2

(a2 − 1)R1
. (42)

Thus, it can be inferred that,

∆′2(x, u, w) = F2(x)∆2(x, u, w)

≤ |V − Vlr|
l1

(| tanβf |+ |ε1|) +
|Vsr|
l1

+
|σ|a2

(a2 − 1)R1
(|Vlr|+ |Vsr|)

+
|Vlr|
|V |

(k2|x1|+ k3 + v)

≤ ρ(|x1|) + κv|v|, (43)

where,

ρ(|x1|) = ρ1(|x1|) + ρ2, (44)

ρ1(|x1|) =

(
k2
|Vlr|
|V |

)
|x1|, (45)

ρ2 =
|V − Vlr|(| tanβf |+ |ε1|) + |Vsr|

l1
,

+
|σ|a2(|Vlr|+ |Vsr|)

(a2 − 1)R1
+ k3

|Vlr|
|V |

, (46)

κv =
|Vlr|
|V |

. (47)

The bound of the uncertainty ∆1 would be

− ∂Φ

∂x1
F1∆1 ≤ |

∂Φ

∂x1
||F1||∆1|

≤ c̄1
|V |

(|Vlr|+ |Vsr|) = ρ3. (48)

APPENDIX II
According to [15], we will have, in the sense of 3σ of

normal distribution parameters, Vlr ∈ [V lr, V lr], Vsr ∈
[V sr, V sr], where • and • represents the upper bound and
lower bound of a parameter respectively. Along with bounded
[εΩ], it can be easily seen that ϕ in Eq. (30) belongs to Φ(y),
which then has the shape of a tube. The lower bound and
upper bound of Φ(y) are,

ΦT (y) =
[
εΩ
l2

εΩ
V lr

l2

V sr

l2

]T
, (49a)

Φ
T

(y) =
[
εΩ
l2

εΩ
V lr

l2
V sr

l2

]T
. (49b)

For easier design of the controller in the remaining discussion
of this part, we can construct Φ which has the lower and
upper bounds symmetric with respect to zero, i.e.

ΦT (y) =
[
−Ψ1 −Ψ2 −Ψ3 −Ψ4

]T
, (50a)

Φ
T

(y) =
[
Ψ1 Ψ2 Ψ3 Ψ4

]T
, (50b)

where elements Ψi are positive, and,

Ψ1 = max {|εΩ

l2
|, |εΩ

l2
|}; Ψ2 = max {|εΩ|, |εΩ|} ,

Ψ3 = max {|V lr
l2
|, |V lr

l2
|}; Ψ4 = max {|V sr

l2
|, |V sr

l2
|} .
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