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Abstract

Bioinformatics involves analyses of biological dasach as DNA sequences,
microarrays and protein-protein interaction (PRworks. Its two main objectives
are the identification of genes or proteins and pinediction of their functions.
Biological data often contain uncertain and impsecinformation. Fuzzy theory
provides useful tools to deal with this type ofairhation, hence has played an
important role in analyses of biological data. hirstthesis, we aim to develop some
new fuzzy techniques and apply them on DNA micigsrand PPl networks. We
will focus on three problems: (1) clustering of no@rrays; (2) identification of
disease-associated genes in microarrays; and €Bjifidation of protein complexes

in PPI networks.

The first part of the thesis aims to detect, by finezy C-means (FCM) method,

clustering structures in DNA microarrays corrupteyg noise. Because of the

presence of noise, some clustering structures fourahdom data may not have any
biological significance. In this part, we propose dombine the FCM with the

empirical mode decomposition (EMD) for clusteringcroarray data. The purpose of
EMD is to reduce, preferably to remove, the effettioise, resulting in what is

known as denoised data. We call this method theyfuz-means method with

empirical mode decomposition (FCM-EMD). We applteés method on yeast and

serum microarrays, and the silhouette values aé fg assessment of the quality of
clustering. The results indicate that the clusterstructures of denoised data are
more reasonable, implying that genes have tighdsp@ation with their clusters.

Furthermore we found that the estimation of thezyuparametem, which is a

difficult step, can be avoided to some extent bglysing denoised microarray data.

The second part aims to identify disease-assocgdrds from DNA microarray data
which are generated under different conditions,, @atients and normal people. We
developed a type-2 fuzzy membership (FM) function iflentification of disease-
associated genes. This approach is applied to tésl@d lung cancer data, and a
comparison with the original FM test was carried. &dmong the ten best-ranked
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genes of diabetes identified by the type-2 FM testen genes have been confirmed
as diabetes-associated genes according to gengptiescinformation in Gene Bank
and the published literature. An additional gen&urgher identified. Among the ten
best-ranked genes identified in lung cancer dateers are confirmed that they are
associated with lung cancer or its treatment. Ype-2 FM4d values are significantly

different, which makes the identifications more woging than the original FM test.

The third part of the thesis aims to identify pmteomplexes in large interaction
networks. ldentification of protein complexes isi@al to understand the principles
of cellular organisation and to predict proteindtions. In this part, we proposed a
novel method which combines the fuzzy clusteringthoé and interaction
probability to identify the overlapping and non-depping community structures in
PPI networks, then to detect protein complexebésé sub-networks. Our method is
based on both the fuzzy relation model and thelgrapdel. We applied the method
on several PPI networks and compared with a poputaein complex identification
method, the clique percolation method. For the sdata, we detected more protein
complexes. We also applied our method on two sa&blorks. The results showed
our method works well for detecting sub-networksd agive a reasonable

understanding of these communities.
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Chapter 1

| ntroduction

1.1 Theresearch problems

Bioinformatics is defined as the application of @uters, databases and
mathematical methods to analyses of biological ,degpecially genetic sequences,
microarrays and protein structures. The two maseaech fields in bioinformatics
are genomic analysis and proteomic analysis (Heraed Flores 2008). Genomic
analysis aims to extract information from large amts of gene data, while
proteomic analysis has an objective to determirsepr functions from protein
databases (Lee and Lee 2000, Mann and Jensen 2003).

Abundant positive results suggest analysis of DNéroarray is a significant way to
discovering meaningful information about DNA sturets and their functions.
Protein complex (or multi-protein complex) is a gpoof two or more proteins in
protein- protein interaction (PPI) networks. Mosbtpins seem to function with
complicated cellular pathways, interacting with estlproteins either in pairs or as
components of large complexes. So identificatioprotein complexes is crucial for
understanding the principles of cellular organ@matnd functions.

Although biological experiments can provide a wealf information on genes and
proteins, these experiments are expensive and donsdming (Sokal and Rohlf
1995). Hence computational prediction methods aeded to provide valuable
information for large DNA microarray and proteint@aavhose structures or functions
cannot be determined from biological experimentar(Z999). As new biological
technologies advance, the growth in DNA data alglato researchers is
unparalleled. For example, Gene Bank, a major putatabase where DNA data are
stored, doubles in size approximately every yddra$ become important to improve

new theoretical methods to make analysis of thatz more efficient and precise.

13
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The data for DNA and protein biological analysestam plenty of uncertain and
imprecise information. Fuzzy set theory has manyaathges in dealing with this
type of data; therefore, approaches based on fsezyheory have been taken into
consideration to analyse DNA microarrays and PRWwokks. There are several
applications of fuzzy set theory in bioinformaticBhe results show that fuzzy

method is a way to render precise what is imprdoisiee world of bioinformatics.

This thesis aims to study fuzzy methods on the analysis of DNA microarrays
and PPl networks in three related aspects. (i) clustering analysis on DNA
microarrays,; (ii) identification of disease-related genes on microarrays, (iii)
identification of protein complexes in PPl networks. The fuzzy c-means
clustering method, type-2 fuzzy method, and fuzzy relation clustering method
will be used to investigate these three problems.

() Microarray techniques have revolutionized gemmesearch by making it
possible to monitor the expression of thousandgeoies in parallel. The enormous
quantities of information data generated have ted tgreat demand for efficient
analysis methods. Data clustering analysis is &ubsmol and has been extensively
applied to extract information from gene expresswafiles obtained with DNA
microarrays. Existing clustering approaches, madidyeloped in computer science,
have been adapted to microarray data. Among thppeoaches, fuzzy c-means
(FCM) method is an efficient one. However, a mgjmblem in applying the FCM
method for clustering microarray data is the chate¢he fuzziness parameter.
Commonly,m = 2 is used as an empirical value but it is knowrt tha= 2 is not
appropriate for some data sets and that optimalegaform vary widely from one
data set to another. On the other hand, microateagy contain noise and the noise
would affect clustering results. Some clusteringatre can be found from random
data without any biological significance. In thiarpof the thesis, we propose to
combine the FCM method with the empirical mode dgoaosition (EMD) for
clustering microarray data in order to reduce tfiece of the noise. We call this

method fuzzy c-means method with empirical modedgwosition (FCM-EMD).We

14
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applied this method on yeast and serum microarratg despectively and the

silhouette values are used for assessment of guoaldusters.

(i) Comparison of gene microarray expression datpatients and those of normal
people can identify disease associated genes anmanesm our understanding of
disease. In order to identify the disease-assatigtenes, we usually need to
determine for each gene whether the two sets afesgpn values are significantly
different from each other. Measuring the divergeatéwo sets of values of gene

expression data is an effective approach.

The word “different” itself is a fuzzy concept ahdzy theory has many advantages
in dealing with data containing uncertainty, thereffuzzy approaches have been
taken into consideration to analyse DNA microarraymng et al. (2006) proposed a
fuzzy set theory based approach, namely a fuzzy beeship test (FM-test), for
disease genes identification and obtained betsedtseby applying their approach on
diabetes and lung cancer microarrays. However, simtations still exist. The
most obviously one is when the values of gene rarcay data are very similar and
lack over-expression, in which case the FM-d vakresvery close or even equal to
each other. That made the FM-test inadequate itingisshing disease genes.
Meanwhile, DNA microarray data contains noise, Rengelding uncertain
information in the original data. When deriving tmeembership function for
evaluation, all of these uncertainties translat® inncertainties about fuzzy set
membership function. Traditional fuzzy sets are able to directly model such

uncertainties because their membership functiomsodally crisp.

To overcome these problems, we introduce type-2yfget theory into the research
of disease-associated gene identification. Typad2zyf sets can control the
uncertainty information more effectively than contienal type-1 fuzzy sets because
the membership functions of type-2 fuzzy sets hreet-dimensional. It is the new
third dimension of type-2 fuzzy sets that provideslitional degrees of freedom that
makes it possible to directly model uncertainties.

15



Fuzzy Methods for Analysis of Microarrays and Netkgo

(iii) Identification of protein complexes is vemnportant for better understanding the
principles of cellular organisation and unveilifgeit functional and evolutionary
mechanisms. It is known that dense sub-networksaitin-protein interactions (PPI)
networks represent protein complexes or functiomadlules. Therefore, the problem
of identifying protein complexes is equivalent tat of searching sub-networks in
the original networks. Many methods for mining piot complexes have mostly
focused on detecting highly connected sub-netwofs.extreme example is to
identify all fully connected sub-networks. Howeveris too restrictive to be useful
in real biological networks because there are nm@ntein complexes which are not
fully connected sub-networks. In this problem, wepmse a novel method which
combines the fuzzy clustering method and interacpoobability to identify the
overlapping and non-overlapping community strucume PPl networks, then to
detect protein complexes in these sub-networks. r@ethod is based on both the
fuzzy relation model and the graph model. Fuzzyiyes suitable to describe the
uncertainty information between two objects, susHsamilarity’ and ‘differences’.
On the other hand, the original graph model costalastering information, thus we
don’t ignore the original structure of the netwolbyt combine it with the fuzzy
relation model. We apply the method on yeast PRVor&ks and compare the results

with those obtained by a standard method, CFinder.

1.2 Clustering analysis of microarrays

1.2.1 Biological background and literaturereview

A DNA microarray is a multiplex technology applied molecular biology. It
consists of an arrayed series of thousands of stomc spots of DNA
oligonucleotides, called features, each contaimigpmoles of a specific DNA
sequence, known as probes or reporters. Sincaayn@n contain tens of thousands
of probes, a microarray experiment can accomplisimyrgenetic tests in parallel.
Therefore, microarray has dramatically acceleratezhy types of investigation.
Microarray technology evolved from southern blatinvhere fragmented DNA is
attached to a substrate and then probed with a krymme or fragment (Maskos and
Southern, 1992). The first reported applicatiothis method was the analysis of 378

16
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arrayed bacterial colonies each harbouring a diffesequence which were assayed
in multiple replicas for expression of genes in tipld normal and tumor tissue
(Augenlicht and Kobrin, 1982). This was expandedmalysis of more than 4000
human sequences with computer driven scanning amage processing for
quantitative analysis of the sequences in humaan@oltumors and normal tissue
(Augenlicht et al., 1987) and then to comparisoncolonic tissues at different

genetic risk (Augenlicht et al., 1991).

Following preparation of an array support with DiAgenes of interest, the basic
steps in a microarray experiment are as followsn{RNA isolation from cells; (2)
Generation of cDNA by reverse transcription witHluorescent tag attached; (3)
Hybridization of the cDNA mixture with the DNA aya(4) Image generation by
scanning of the array with lasers (Duggan et &99] Lbelda and Sheppard, 2000;
Bowtell, 2000). We show this process in Figure 1.1.

As we see in Figure 1.1, the raw output of a miceais presented as the actual
image of the colours of the array spots. Howevagngfication of the intensity of
the fluorescence and assignment of the numeridaksaare needed for analysis of
the data. Presentation and analysis of the vaatgiterated by microarrays are an
ongoing challenge, and some standards have redesgly adopted (Ball et al., 2002).
Active advances in the fields of statistics, compional biology, system biology,
and bioinformatics promise to enhance our abilayirtterpret the large amount of

data from microarrays in the future (Jason andsiieri2005).

Microarray is considered as an important tool fdwamncing the understanding of the
DNA information, molecular mechanism, biology anathmphysiology of critical
iliness. The expression of thousands of genes easfessed, complex pathways can
be more fully evaluated in a single experiment ddaand Christie, 2005). Thus,
microarrays could lead to discovery of new geneslired in disease processes.
Meanwhile, microarrays can potentially be usedremjgt disease states on the basis
of the expression profiles of specific cell popigdas, such as predicting

development of sepsis in at-risk populations (Jagod Christie, 2005; Slonim,

17
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2002). In addition, microarray can be used to nawrthe biological response to new
drugs in treatment trials (Brachat et al., 2002)rtlkermore, different expression
value of genes would be useful to classify différélavors” of a syndrome, such as

sepsis, on the basis of a molecular mechanism @ilet al., 2011).

Sample A Sample B
Al ~ZMA. 1) RNAisolation
Vs e N\ from cells
| |
A 2) cDNA generation
NN\ and labeling
\ y,

3) Hybridization to
microarray

4) Scanning and
image generation

Figure 1.1 Four basic steps of the microarray erpart. (1) mRNA is isolated
from cells; (2) cDNA is generated from the mRNA teyverse transcription, and a
fluorescent tag is attaced; (3) the resulting tdgg@NA solution is hybridized to the
DNA array; (4) the array is imaged by a laser flo@mter and the color of each sopt
is analysed. This figure is from (Lbelda and Sheppa000). In this figure, a red
spot indicates sample A>B; a green spot indicasedpée A<B, and the yellow one
indicated sample A=B. The illustrated example is docomparative hybridization
experiment. A relative intensity experiment wouldalve only one sample corrected

for background expression or normalized with cdrgemes.
Nowadays, DNA microarrays can be used in many @®ase and bioinformatics

fields. These applications include: 1. Gene exjpragrofiling. In an mRNA or gene

expression profiling experiment, the expressiorelewf thousands of genes are

18
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simultaneously monitored to study the effects attaie treatments, diseases and
developmental stages on gene expression. For oestaene expression profiling
based on microarray can be applied to identify gevigose expression is changed in
response to pathogens or other organisms by congpgéane expression in infected
to that in uninfected cells or tissues (Schenal.etl95; Lashkari et al., 1997). 2
Comparative genomic hybridization. Microarray cassess genome content in
different cells or closely related organisms (Reklat al., 1999; Moran et al., 2004).
3 Chromatin immunoprecipitation. The first chromaimmunoprecipitation assay
was developed by Gilmour and Lis (1984, 1985, 13863 technique for monitoring
the association of RNA polymerase Il with transedband poised genes in
Escherichia coli and Drosophila. 4 GenelD. Smattnoarrays can be used to check
IDs of organisms in food and feed, mycoplasms ith @dture, or pathogens for
disease detection (Kulesh et al., 1987). 5 SNRctlete For instance, people can use
microarrays to identify single nucleotide polymagsh among alleles within or
between populations (Hacia et al., 1999). 6 Fugemes microarray. A fusion gene
microarray can detect fusion transcripts from caspecimens. The principle behind
this is building on the alternative splicing micnagys (Lovf, et al., 2011). 7 Tiling
array. Genome tiling arrays consist of overlappprgbes designed to densely
represent a genomic region of interest, sometinedage as an entire human
chromosome. It is can be used to empirically deeegiression of transcripts or
alternatively splice forms which may not have beeeviously known or predicted
(Bertone et al., 2005; Zacher et al., 2010).

In these applications, techniques such as clustatysis, principal component
analysis, and latent class models are most widebduThese methods all aim to
group genes with similar expression profiles anenttanalyse the function and
relationship between these grouped genes and dig&ksnim, 2002). Clustering
analysis is the most common method for microarragluation. There are vast
methods for clustering analysis, such as hieraattoc non-hierarchical methods;
changing the distance measure that the clusterysisalises to group genes;
“supervising” the clustering with known informati@bout biological relationships
of the genes (Qu and Xu, 2004; Xiao et al, 2008)song “unsupervised” methods to
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obtain the clustering structure and clustering nemsbautomatically (Boutros and
Okey, 2005). Different methods may suit for diffier study designs and data. If
more than one method is used and the results appeaame, it strengthens the
conclusions (King and Sinha, 2001). The output frohaster analysis can be
simplified by using boxes of artificial colours tepresent changes in genes relative
to each other as we do in Chapter 2. In this metgoolps of genes with similar
expression can be visualized according to the cdioues, representing differences
ore similarities in expression pattern (Chinnaiga@al., 2001).

There is a vast literature about clustering methaasmicroarrays. Belacel et al.
(2006) gave a general view of clustering techniquesd in data analysis of
microarray gene expressions. In their work, thegvigled a survey of various
methods available for gene clustering and illusttathe impact of clustering
methodologies on the fascinating and challengiren asf genomic research. The
strengths and weaknesses of each clustering techiice pointed out. Meanwhile,
the development of software tools for clusteringliso emphasized (Belacel et al,
2006).

As the development of clustering methods on miceyar continues, some
outstanding achievements have been obtained ipastedecades. Statistical tools are
widely used in this field. Medvedovic et al. (200#gveloped different variants of
Bayesian mixture based clustering procedures fasteting gene expression data
with experiment replicates. In this method, a Bameanixture model is used to
describe the distribution of microarray data. Glustof co-expressed genes are
created from the posterior distribution of clustgriwhich is estimated by a Gibbs
sampler. In their work, they demonstrated thatBlagesian infinite mixture model
with “elliptical” variances structure is capableidéntifying the underlying structure
of the data without knowing the correct number ddsters. This is a useful

unsupervised clustering method.

Because of the experiment condition or some othetofs, microarray data are
sometimes incomplete. Missing values may affectdiustering result. Zhang and
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Zhu (2002) proposed a novel clustering approaclovercome data missing and
inconsistency of gene expression levels under réifiieconditions in the stage of
clustering. It is based on the smooth score, whsclilefined for measuring the
deviation of the expression level of a gene andatrexage expression level of all the
genes involved under a condition. The algorithm wes$ed intensively on random
matrices and yeast data. It was shown to perforrt mwefinding co-regulation

patterns in a test with the yeast data.

Many bioinformatics problems can be tackled forniresh angle offered by the
network perspective. Zhu et al. (2005) proposedreeglustering approach based on
the construction of co-expression networks thatsistrof both significantly linear
and non-linear gene associations together withroldedl biological and statistical
significance. This method is used to group funcalgnrelated genes into tight
clusters despite the expression dissimilaritiesu(#t al., 2005). According to
comparison with some traditional approaches on astygalactose metabolism
dataset, their method performed well in rediscagerihe relatively well known
galactose metabolism pathway in yeast and in ciagtgenes of the photoreceptor

differentiation pathway.

Getz et al. (2000) presented a coupled two-waytelungy approach to gene
microarray data analysis. The main idea is to ifiersubsets of the genes and
samples, such that when one of these is used wiecluhe other, stable and
significant partitions emerge. This algorithm isséd on iterative clustering and
especially suitable for gene microarray data. lapplied to two gene microarray
datasets, colon cancer and leukaemia respectiVbb/results showed this method is
able to discover partitions and correlations tlmatraasked and hidden when the full
dataset was used in the analysis. Some of theseiquer have clear biological

interpretation (Getz et al., 2000).

How to choose the cluster numbers is a criticabjem for supervised clustering

analysis. Ma and Huang (2007) proposed a metho@édbas gap statistic to
determined the optimal number of clusters. Thishoeétis a clustering threshold
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gradient descent regularization (CTGDR) method sforultaneous cluster selection
and within cluster gene selection. This approach a@plied to binary classification
and censored survival analysis. Compared with tiaadard TGDR and other
regularization methods, the CTGDR takes into actdba cluster structure and
carries out feature selection at both the clustgell and within-cluster gene level
(Ma and Huang 2007).

Thalamuthu et al. (2006) made a comparison on Isigtering methods. They are
hierarchical clustering, K-means, PAM, SOM, mixtume@del-based clustering and
tight clustering. Performance of the methods iesssd by a predictive accuracy
analysis through verified gene annotations. Thalteshow that tight clustering and
model-based clustering consistently outperform roitiastering methods both in

simulated and real data, while hierarchical clusteand SOM perform poorly. Their

analysis provides insight for the complicated gerlestering problem using

expression profile and serves as a practical gaieldbr routine microarray cluster

analysis (Thalamuthu et al., 2006).

De Bin and Risso (2011) presented a general frametoodeal with the clustering
of microarray data based on a three-step proced{iyegene filtering; (ii)
dimensionality reduction; (iii) clustering of obsations in the reduced space. Via a

nonparametric model-based clustering approachdh&ined promising results.

Gaussian mixture models are also widely used fanegelustering analysis.
McNicholas and Murphy (2010) extended a family mfhé mixture models which
utilize the factor analysis covariance structurel®b models and applied to gene
expression microarray data for clustering analybings family of models allows for
the modelling of the correlation between gene esgiom levels even when the
number of samples is small. This expanded familyGalussian mixture models,
known as the expanded parsimonious Gaussian mixthaael family, was then
applied to two well-known gene expression data. 3déte performance of this family

of models is quantified using the adjusted rankeindlrheir method performs well
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relative to existing popular clustering techniquetien applied to real gene

expression data.

There is also vast literature about the applicabbrother clustering methods to
microarray data. Koenig and Youn (2011) proposediierarchical signature
clustering method for microarray data. In their kyathey proposed a new metric
instead of Euclidean metric. Subhani, et al. (20@if)oduced a pairwise gene
expression profile alignment and defined a newadis¢ function that is appropriate
for time-series profiles. Extensive experiments well-known datasets vyield
encouraging results of at least 80% classificaioouracy. Macintyre et al. (2010)
developed a novel clustering algorithm, which ipoyates functional gene
information from the gene ontology into the clustgrprocess, resulting in more
biologically meaningful clusters. Romdhane et 20100) developed an unsupervised
“possibilistic” approach for mining gene microarrdgta. The optimal number of
clusters is evaluated automatically from the daiagithe information entropy as a
validity measure. Experimental results using reatld data sets reveal a good

performance and a high prediction accuracy from timbdel.

1.2.2 Methods

Fuzz set theory and fuzzy c-means

For the work of clustering analysis of microarrays, applied fuzzy c-means method
which is a widely used clustering method in mamyds. Traditional hard clustering
methods, such as K-means or SOM which assign eaicé gxactly to one cluster,
are poorly suited to the analysis of microarrayada¢cause the clusters of genes
frequently overlap in such data (Dembel and Kanmst@803). Fuzzy theory has
many advantages in dealing with data containingetamty, thus it is introduced

into analysis of DNA microarrays (Fu and Medico0Q2))
Zadeh (1965), the first publication on fuzzy seedty, shows the intention to

generalize the classical notion of a set and agsitipn to accommodate fuzziness in

human judgment, evaluation, and decisions. Siscagpearance, the theory of fuzzy
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sets has advanced in a variety of ways and in rdautyplines. Nowadays, there are
more than 30,000 publications about fuzzy theoxy rmethods and their applications
(Zimmermann, 2010). Roughly speaking, fuzzy sebthdras developed along two
lines during the last decades: (1) As a formal thebat, when maturing, becomes
more sophisticated and specified and is enlargedrigynal ideas and concepts as
well as by “embracing” classical mathematical areagh as algebra (Dubois and
Prade, 1997, Liu, 1998), graph theory, topologyl By generalizing or “fuzzifying”

them. This development is still ongoing. (2) As application-oriented “fuzzy

technology”, that is, as a tool for modeling, pehl solving, and data mining that
has been proven superior to existing methods inyncases and as attractive “add-

on” to classical approaches in other cases (Zimraenn2010).

Applications of this theory can be found, for exdmpn artificial intelligence
(Freeman, 1994), computer science (Yager and Zat@®?), medicine (Maiers,
1985), control engineering (Tong et al, 2010), sieci theory (Liu, 2008), expert
systems (Siler and Buckley, 2005), logic (Ross,&20fhanagement science (Grint,
1997), operations research (Herrera and Verdeg89,/)1 pattern recognition
(Pedrycz, 1990), and robotics (Fukuda and Kub@&a9y

With the development of electronic data processthgstering analysis of these data
becomes more and more important. Classical metiimdslata mining, such as
clustering techniques, were available, but sometithey did not match the needs.
Because clustering techniques, for instance, asghatedata could be subdivided
crisply into clusters, they would not fit the stuies that existed in reality. Fuzzy set
theory seems to offer good opportunities to imprexisting concepts. Bezdek (1978,
1981) was the first one to develop fuzzy clustemmgthod with the goals to search
for structure in data to reduce complexity and tovjle input for control and
decision making. He proposed and developed the famsbus fuzzy clustering
method: Fuzzy C-means Method (FCM). Nowadays, F@Mits combined methods

are applied in various fields.

24



Fuzzy Methods for Analysis of Microarrays and Netkgo

FCM combined methods are widely used for image segation. Ji et al. (2011)
proposed a modified possibilistic fuzzy c-meansstdiing algorithm for fuzzy
segmentation of magnetic resonance (MR) images liage been corrupted by
intensity inhomogeneities and noise. By combiningnavel adaptive method to
compute the spatially local weights in the objeetiunction, this method is capable
of utilizing local contextual information to impodecal spatial continuity, thus
allowing the suppression of noise and helping spikee classification ambiguity.
Comparisons with other approaches demonstrate uperisr performance of the

proposed algorithm and this method is robust taiiEation.

Zhang and Chen (2004) proposed a fuzzy segmentatiethod for magnetic
resonance imaging data. This algorithm is realibgdmodifying the objective
function in the conventional fuzzy c-means algaonthusing a kernel-induced
distance metric and a spatial penalty on the meshigefunctions. In this method,
the original Euclidean distance is replaced by médeinduced distance, and then a
spatial penalty is added to the objective functionFCM to compensate for the
intensity inhomogeneities of MR image and to allthe labelling of a pixel to be
influenced by its neighbours in the image. Expentakresults on both synthetic and
real MR images show that the proposed algorithmbletier performance when noise
and other artifacts are present than the standigoditams (Zhang and Chen, 2004).

Chuang et al. (2006) proposed a fuzzy c-means iligoithat incorporates spatial
information into the membership function for clustg. The spatial function is the
summation of the membership function in the neiginbood of each pixel under
consideration. The advantages of the new methodhardollowing: (1) it yields
regions more homogeneous than those of other me{Bpdt reduces the spurious
blobs, (3) it removes noisy spots, and (4) it isslsensitive to noise than other
techniques. This technique is a powerful methodnfuisy image segmentation and
works for both single and multiple-feature datahwapatial information (Chuang et
al., 2006).
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In bioinformatics, FCM and its combined methods aiso efficient tools for
clustering analysis. Dembel and Kastner (2003}lyirapplied FCM on clustering
analysis of microarray data. A major problem in Igjpg the FCM method for
clustering microarray data is the choice of thezfmess parametem. Usually,
researchers use = 2, however, it is not appropriate for some da&is.sThus they
proposed an empirical method, based on the dismibwf distances between genes
in a given data set, to determine an adequate odloe By setting threshold levels
for the membership values, genes which are tigiggociated to a given cluster can
be selected. Using a yeast cell cycle data seinasxample, it is shown that the
selection increases the overall biological sigaifice of the genes within the cluster
(Dembel and Kastner, 2003).

Wang et al. (2003) proposed a novel FCM methoduiror classification and target
gene prediction. In this method gene expressiofil@soare firstly summarized by
optimally selected self-organizing maps (SOMs),loleed by tumor sample
classification by fuzzy c-means clustering. Thdmg prediction of marker genes is
accomplished by either manual feature selectioaubomatic feature selection. This
method is tested on leukemia, colon cancer, bramots and NCI cancer cell lines.
The method gave class prediction with markedly ceduerror rates compared to
other class prediction approaches, and the importdnfeature selection on

microarray data analysis was also emphasized (\Waaly, 2003).

Asyali and Alci (2005) discussed reliability anasysf microarray data using FCM
and normal mixture modeling based classificatiorthogs. A serious limitation in

microarray analysis is the unreliability of the alagenerated from low signal
intensities. Such data may produce erroneous ggpeession ratios and cause
unnecessary validation or post-analysis follow-agks. Therefore, the elimination of
unreliable signal intensities will enhance repradiity and reliability of gene

expression ratios produced from microarray datahéir work, they applied fuzzy c-
means and normal mixture modeling based classtitamethods to separate

microarray data into reliable and unreliable sigmé&knsity populations. According
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to the comparison between these two methods, fappyoach is computationally

more efficient.

Seo et al. (2006) identified the effect of datamalization for application of FCM
on clustering analysis of microarray. In their wotkey used three normalization
methods, the two common scale and location tramsftons and lowest
normalization methods, to normalize three microatatasets and three simulated
datasets. They found the optimal fuzzy parameten the FCM analysis of a
microarray dataset depends on the normalizatiorhodetpplied to the dataset
during preprocessing. Lowest normalization is maieust for clustering of genes

from microarray data, especially when FCM is usethe analysis.

Empirical mode decomposition

Data analysis helps to construct models for practmroblems and understand
phenomena in many research fields. However, the alailable often have different
characteristics, such as trends, seasonality anestadionarity (Huang et al. 1998).
In these cases, researchers have to try variousoageto deal with different features.
Spectral analysis has been applied in the studhaede problems in the frequency
domain. Spectral analysis has many constraintd) sisclinearity and stationarity
(Conte and de Boor 1980). The related spectrograadsthe traditional Fourier
transform and slides along the time axis (Huangl.e1998). This method can work
well on piecewise stationary data, but it needshimose window width (Huang et al.
1998). Evolutionary spectral analysis extends Favgpectral analysis to generalized
basis (Priestley 1965). This method has a familgrtiogonal basis indexed by time
and frequency, and the signal function was expdesgth Stieltjes integration of
these orthogonal functions and the amplitude (Pexg4965). However, a constraint
of this method is to define the basis function.

The empirical mode decomposition was proposed taimbnore information from
data. It defines a class of functions called igiinmode functions that have some

specific properties. For example, the number ofeezmé and the number of zero-
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crossings are almost the same, and the mean vhthe envelope formed by local
maxima and the envelope formed by local minimaer®ZHuang et al. 1998). These
characteristics not only are used as the traditioimarow band for a stationary
Gaussian process, but also reduce the unnecessanations by asymmetric waves.
JanuSauskas et al. (2006) used EMD and waveletftnam to process ultrasound
signals for human cataract detection. They decoetpdke signal and enhanced
specific features with both methods. In their ress UMD performed better in the
detection of signal than the discrete wavelet fans.

Shi et al. (2007) studied the functional similatyproteins using the EMD method,
and they compared the results with those from thie-wise alignment and PSI-
BLAST. However, their work did not cover completentparisons, and still needs

further improvement.

1.3 Identification of disease-associated genes

1.3.1 Biological background and literaturereview

Disease-associated gene identification is one @imbst important areas of medical
research today. Many current methods for diseasecaged gene identification are
based on protein-protein interaction networks ancraarray data. It is known that
certain diseases, such as cancer, are reflectibe ichange of the expression values
of certain genes. For instance, due to genetic tions normal cells may become
cancerous. These changes can affect the exprdesi®nof genes. Gene expression
is the process of transcribing a gene’s DNA segei@mo RNA. A gene’s expression
level indicates the approximate number of copiethat gene’s RNA produced in a
cell and it is correlated with the amount of therresponding proteins made
(Mohammadi et al., 2011). Analysing gene expressiata can indicate the genes
which are differentially expressed in the diseassslies. In the past decades, both

kinds of methods have important breakthroughs aodrpsses.

Shaul et al. (2009) proposed a new algorithm fedjmting disease-causing genes

(causal genes) based on gene networks establistoenldang to gene expression
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values. The algorithm relies on the assumptionith#te disease state, one or more
causal genes are disrupted, leading to the expresshanges of downstream
(disease-related) genes through signaling regyiggathways in the network. Gene
expression data under disease conditions haveussehto highlight a set of disease-
related genes that are assumed to be in closenpitgxio the causal genes in the
gene network. Then based on this assumption, adgrbeuristic that recovers
putative causal genes as those admitting pathveagsniaximal number of disease-
related genes has been applied.

It is believed that a large number of genes areluad in common human brain
diseases. Liu et al. (2006) proposed a novel coatipuail strategy for
simultaneously identifying multiple candidate gefm@sgenetic human brain diseases
from a brain-specific gene network level perspectiVhis approach includes two
main steps as follows. (1) Construction of the harbeain-specific gene network

based on the expression value; (2) Identificatibiihe sub-network.

Kohler et al. (2008) have investigated the hypath#sat global network-similarity
measures are better suited to capture relationfigpgeen disease proteins than are
algorithms based on direct interactions or shonpashs between disease genes. In
this approach, 110 disease-gene families have HdeBned and a protein-protein
interaction network has been established basedtotabof 258314 experimentally
verified or predicted protein-protein interactionBhis approach adapts a global
distance measure based on a random walk with t§®%R) to define similarity
between genes within the protein-protein interacti@twork and ranks candidates

on the basis of this similarity to known diseaseege

Sun et al. (2011) combined four clustering methtmlslecompose a human PPI
network into dense clusters as the candidatesseade-related clusters, and then a
log likelihood model that integrates multiple bigical evidences was proposed to
score these dense clusters. They identified disedad clusters using these dense
clusters if they had higher scores. The efficiem@s evaluated by a leave-one-out

cross validation procedure. Their method achievesliecess rate of 98.59% and
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recovered the hidden disease-related clusters 0643 cases when one known
disease gene is removed. They also found that ofaste disease-related clusters
consist of tissue-specific genes that were higigressed only in one or several
tissues, and a few of those were composed of heaepaky genes (maintenance

genes) that were ubiquitously expressed in mosiefissues.

Firneisz et al. (2003) applied a friends-of-frieralgorithm to identify significant
gene clusters on microarray data. Using a set dfAicroarray chip experiments
in two mouse models of rheumatoid arthritis, thégntified more than 200 genes

based on their expression in inflamed joints angped them into the genome.

Liang et al. (2006) proposed an innovative apprpdlcd fuzzy membership test
(FM-test), based on fuzzy set theory to identifgedise associated genes from
microarray gene expression profiles. They applies inethod on diabetes and lung
cancer data. Within the 10 significant genes idextiin diabetes dataset, 6 of them
have been confirmed to be associated with diabetése literature. Within the 10
best ranked genes in lung cancer data, eight oh thave been confirmed by the

literature.

Among numerous existing methods for gene selectlon support vector machine-
based recursive feature elimination (SVMRFE) hasob®e one of the leading
methods, but its performance can be reduced becdise small sample size, noisy
data and the fact that the method does not renezitendant genes. Mohammadi et al.
(2011) proposed a novel framework for gene seleatibich uses the advantageous
features of conventional methods and addresses theaknesses. They have
combined the Fisher method and SVMRFE to utilize séldvantages of a filtering
method as well as an embedded method. Furthermasgjundancy reduction stage
is added to address the weakness of the Fisheothatid SVMRFE. The proposed
method has been applied to colon, Diffuse LargeeB-Cymphoma (DLBCL) and
prostate cancer datasets. It predicts marker gimesolon, DLBCL and prostate

cancer with a high accuracy. The predictions madéis study can serve as a list of
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candidates for subsequent wet-lab verification might help in the search for a cure

for cancers (Mohammadi et al. 2011).

Yoon et al. (2006) presented a new data miningtegfyato better analyze the
marginal difference in gene expression between caicay samples. The idea is
based on the notion that the consideration of gelmehavior in a wide variety of
experiments can improve the statistical reliabitityidentifying genes with moderate
changes between samples. This approach was ehiiate¢he re-identification of

breast cancer-specific gene expression. It suadfsgirioritized several genes
associated with breast tumor, for which the expoesdifference between normal
and breast cancer cells was marginal and thus wwaud been difficult to recognize
using conventional methods. Maximizing the utilifymicroarray data in the public
database, it provides a valuable tool particulolythe identification of previously

unrecognized disease-related genes.

Watkinson et al. (2010) presented a computatiorethodology that jointly analyse
two sets of microarray data, one in the presendeoae in the absence of a disease,
identifying gene pairs whose correlation with dseds due to cooperative, rather
than independent, contributions of genes, usingrélsently developed information
theoretic measure of synergy. High levels of sypénggene pairs indicates possible
membership of the two genes in a shared pathway leads to a graphical
representation of inferred gene-gene interactiess@ated with disease, in the form
of a “synergy network”. They applied this technique a set of publicly available
prostate cancer expression data. The results shatsynergy networks provide a
computational methodology helpful for deriving 'elise interactomes” from
biological data. When coupled with additional bgital knowledge, they can also

be helpful for deciphering biological mechanismspansible for disease.

Li et al. (2010a) proposed a method for predictbulisease-related genes based on
hybrid features. In their study, multiple sequefestures of known disease-related
genes in 62 kinds of disease were extracted, aed the selected features were

further optimized and analysed for disease-relgeetes prediction.
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Zhang et al. (2010) adopted the topological sintjam human protein-protein

interaction networks to predict disease-relatedegenThis method is specially
designed for predicting disease-related genesngfesidisease-gene family based on
PPl data. The application results show a signifimundance of disease-related

genes that are characterized by higher topologioalarity than other genes.

1.3.2 Methods

We introduced type-2 fuzzy set theory into the aesle of disease-associated gene
identification. Type-2 fuzzy set is an extensiortraflitional fuzzy set introduced by
Zadeh (1975). Of course, employment of type-2 fugets usually increases the
computational complexity in comparison with typédtzy sets due to the additional
dimension of having to compute secondary gradesé&mwh primary membership.
However, if type-1 fuzzy set does not perform sati®rily, employment of type-2
fuzzy sets for managing uncertainty may allow ushitain desirable results (Hwang
and Rhee, 2007). Mizumoto and Tanaka (1976) stuttiedset theoretic operations
of type-2 sets and the properties of membershidag®f such sets, and examined
their operations of algebraic product and algebsgim (Mizumoto and Tanaka,
1981). Dubois and Prade (1980) discussed the joth raeet operations between
fuzzy numbers under minimum t-norm. Karnik and Mand 998, 2000) provided a
general formula for the extended sup-star composif type-2 relations. Choi and
Rhee (2009) did some work on the methods for dstabg interval type-2 fuzzy
membership function for pattern recognition. Grdedfet al. (2009) discussed the
collapsing method of defuzzification for discretisenterval type-2 fuzzy sets.
Mendel (2007) introduced some important advancashhve been made during the
past 5 years for both general and interval typez2y sets and systems.

Type-2 fuzzy sets have already been used in a nuwibapplications, including
decision making (Chaneau et al.,, 1987; Yager, 1980)ving fuzzy relation
equations (Wagenknecht and Hartmann, 1988), angmpieessing of data (John et
al., 1998), neural networks (Rafik et al., 201Dntroller design (Kumbasar et al.,
2011), genetic algorithms (Wu and Tan, 2006) andrs
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Huarng and Yu (2005) presented a type-2 fuzzy ther@es model for stock index
forecasting and made a comparison with type-1 fuzogdel. Most conventional
fuzzy time series models (Type-1 models) utilizéyamne variable in forecasting.
Furthermore, only parts of the observations inti@hato that variable are used. To
utilize more of that variable’s observations indoasting, this study proposes the use
of a Type-2 fuzzy time series model. The Taiwartlsiadex, the TAIEX, is used as
the forecasting target. Their empirical resultsvshibat type-2 model outperforms
type-1 model.

Jeon et al. (2009) designed a type-2 fuzzy lodfierffor improving edge-preserving
restoration of interlaced-to-progressive conversiontheir work, they focused on
advance fuzzy models and the application of tyez2y sets in video deinterlacing.
The final goal of the proposed deinterlacing aldwn is to exactly determine an
unknown pixel value while preserving the edges details of the image. In order to
address these issues, they adopted type-2 fuzzgoseepts to design a weight
evaluating approach. In the proposed method, tphergnd lower fuzzy membership
functions of the type-2 fuzzy logic filters are wed from the type-1 fuzzy
membership function. The weights from upper andelomembership functions are
considered to be multiplied with the candidate tlaced pixels. Experimental
results showed that the performance of the propesethod was superior, both
objectively and subjectively, to other differentneentional deinterlacing methods.
Moreover, the proposed method preserved the smesshof the original image

edges and produced a high-quality progressive irfian et al., 2009).

Balaji and Srinivasan (2010) presented a multi-aggstem based on type-2 fuzzy
decision module for traffic signal control in a colex urban road network. The
distributed agent architecture using type-2 fuzey lsased controller was designed
for optimizing green time in a traffic signal todiece the total delay experienced by
vehicles. A section of the Central Business Distat Singapore simulated using
PARAMICS software was used as a test bed for viatigathe proposed agent
architecture for the signal control. The performarmf the proposed multi-agent

controller was compared with a hybrid neural neknmaised hierarchical multi-agent
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system (HMS) controller and real-time adaptivefitatontroller (GLIDE) currently
used in Singapore. The performance metrics usecd\Valuation were total mean
delay experienced by the vehicles to travel fromre® to destination and the current
mean speed of vehicles inside the road network. grbposed multi-agent signal
control was found to produce a significant improeemin the traffic conditions of
the road network reducing the total travel time ezxignced by vehicles simulated

under dual and multiple peak traffic scenarios @Band Srinivasan, 2010).

Leal-Ramirez et al. (2010) proposed an age-stredtyopulation growth model
based on a fuzzy cellular structure. An age-streckypopulation growth model
enables a better description of population dynanicshis paper, the dynamics of a
particular bird species was considered. The dynamsigoverned by the variation of
natality, mortality and emigration rates, whichtims work are evaluated using an
interval type-2 fuzzy logic system. The use of tp&uzzy logic enables handling
the effects caused by environment heterogeneittherpopulation. A set of fuzzy
rules, about population growth, are derived from ititerpretation of the ecological
laws and the bird life cycle. The proposed modelfasnulated using discrete
mathematics within the framework of a fuzzy celius&ructure. The fuzzy cellular
structure allows us to visualize the evolution ¢ ppopulation’s spatial dynamics.
The spatial distribution of the population has eeplesffect on its dynamics.
Moreover, the model enables not only to estimagepércentage of occupation on
the cellular space when the species reaches ltestquilibrium level, but also to

observe the occupation patterns (Leal-Ramirez g2@10).

Fazel Zarandi et al. (2007) presented a new typez2y logic system model for
desulphurization process of a real steel industryCanada. In this research, the
Gaussian mixture model was used for the creatioseabnd order membership
grades. Furthermore, a reduction scheme was implkegievhich results in type-1
membership grades. In turn, this leads to a redlictf the complexity of the system.
The result shows that the proposed type-2 fuzzycl®ystem is superior in
comparison to multiple regression and type-1 fukagic systems in terms of

robustness and error reduction.
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Fazel Zarandi et al. (2009) also applied type-2yset theory to stock price analysis.
They developed a type-2 fuzzy rule based expetesy®n the forecast of stock

price. The proposed method applies the technicdl fandamental indexes as the
input variables. This model is tested on stock gnicediction of an automotive

manufactory in Asia. Through the intensive expernitak tests, the model has

successfully forecasted the price variation forclssofrom different sectors. The

results are very encouraging and can be implemantedreal-time trading system

for stock price prediction during the trading pédri¢-azel Zarandi et al., 2007).

1.4 Identification of protein complexes from PPl networks

1.4.1 Biological background and literaturereview

In the “post-genome” era, proteomics (Palzkill, 20@Waksman, 2005) has become
an essential field and drawn much attention. Proteis the systematic study of the
many and diverse properties of proteins with then af providing detailed

descriptions of the structure, function, and cdnifdiological systems in health and

diseases.

A particular focus of the field of proteomics isethature and role of interactions
between proteins. Protein-protein interactions Akl 2002; Park et al., 2009;
Peink et al., 1998; Pellegrini et al., 1999; Qiakt 2007; Rao and Srinivas, 2003;
Rumelhart et al., 1986) play different roles inlbgy depending on the composition,
affinity, and lifetime of the association. It hasem observed that proteins seldom act
as single isolated species while performing thaicfions in vivo. The study of

protein interactions is fundamental to understaod proteins function within a cell.

Protein-protein interaction plays a key role in tdaflular processes of an organism.
An accurate and efficient identification of protgirotein interaction is fundamental
for us to understand the physiology, cellular fioté, and complexity of an
organism. Before the year 2000 most theoreticahoust to predict protein-protein
interactions are based on available complete gemosneh as the phylogenetic

profiles, domain fusion or Rosetta stone method,gene neighbor method, etc.
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The knowledge of protein-protein interaction canviule important information on
the possible biological function of a protein. Mugffiort has been done to detect and
analyze protein-protein interactions using expentaemethods such as the yeast
two-hybrid system which is well known. Recentlyveml algorithms have been
developed to identify functional interactions betweproteins using computational
methods which can provide clues for the experimantgthods and could simplify
the task of protein interaction mapping. As thedpron task becomes harder the
need for methods that can accommodate high levielsiissing values and are

directly interpretable by biologists increases.

Phylogenetic profiles

The phylogenetic profile (Cubellis et al., 2005;9KHms et al., 2006; Karimpour-Fard
et al., 2007), which is also called the co-consgmamethod, is a computational
method which has been used to predict functiontdractions between pairs of
proteins in a target organism by determining whetiath proteins are consistently
present or absent across a set of reference gendhissnethod was first introduced
by Pellegrino et al. (1999) and it has been sutalgsapplied to the prediction of

protein function by several groups and proved tarimee powerful than sequence

similarity alone at predicting protein function.

Hoskins et al. (2006) took E. coli K12 as the thrgenome and performed three
steps:

I. Creating a phylogenetic profile vector wh&e= 1 indicating a homolog
exists between proteinn the target genome and a protein j in a refezenc
genome;

il. Calculating similarity measurements on the proWéetors for each pair
of genes in the target genome;

ii. Defining protein interactions in the target genobmesed on proteins

sharing a profile similarity value greater tharmeeshold value.
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They measured the performance and reliability adirthmethod over previous
methods through comparing the number of interacngteins, the number of
predicted unknown proteins and the functional snty of proteins sharing a
protein-protein interaction. They showed that teéecion of reference organisms
had a substantial effect on the number of predistiavolving proteins of previously
unknown function, the accuracy of predicted inteoas, and the topology of
predicted interaction networks. They proved preidnteractions are influenced by
the similarity metric that is employed and diffeces in predicted protein

interactions are biologically meaningful.

PPI prediction with neural networks

Neural networks (Schalkoff, 1997) are now a subgganterest to professionals in
many fields and it is also a tool for many areapmblem solving. Just as human
brains can be trained to master some situationsah@etworks can be trained to
recognize patterns and to do optimization and othgks. Some researchers have

used neural networks to predict protein-proteipriattion.

Fariselli et al. (2002) proposed a method to pteERI sites with neural networks.
Their method was a feed-forward neural network (Raml Srinivas, 2003;
Rumelhart et al., 1986) trained with the standaadkkpropagation algorithm. The
network system was trained and tested to prediethen each surface residue was in
contact with another protein or not. The netwoidhé@ecture contains an output layer
which consists of a single neuron representingamndr non-contact. They tested
their predictor using different numbers of hiddexurons and the best performance
was obtained with a hidden layer containing fourdes They analyzed the
possibility of predicting the residues forming paft protein-protein interacting
surfaces in proteins of known structure. They us&d very basic sources of
information: evolutionary information as accumuthie sequence profiles derived

from family alignments, and surface patches ingirostructures identified as sets of
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neighbor residues exposed to solvent. The resulsuprising because their

prediction could come up with an average accura@bout 73%.

Mixture-of-feature-experts method

There are two important difficulties for the PPlegiction task. First, previous
classification methods estimate a set of paraméietsare used for all input pairs.
However, the biological datasets used contain mamsing values and highly
correlated features. Thus, different samples manefitefrom using different feature
sets. The second difficulty is that researchers wént to use these methods to select
experiments cannot easily determine which of thetuies contributed to the
resulting prediction. Because different researchrmesy have different opinions
regarding the reliability of the various featureuszes, it is useful if the method can
indicate, for every pair, which feature contributies most to the classification result.
So some researchers proposed a mixture-of-feaiperts (MFE) method (Qi et al.,

2007) for protein-protein interaction prediction.

There are many biological data sets that may kexiyror indirectly related to PPIs.
Qi et al. (2007) have tried to collect as many sstgossible for yeast and human
being. For different data sources, each of themitsaswn representative form.
These researchers collected a total of 162 feattirdutes from 17 different data
sources for yeast and a total of 27 feature ategirom 8 different data sources for
human being, and then divided the biological datarces into four feature

categories, which are referred to as feature expethe paper:

Expert P: direct high-throughput experimental P&hd
Expert E: indirect high-throughput data
Expert S: sequence based data sources

Expert E: functional properties of proteins.

After that Qi et al. (2007) used the MFE framewak classifiers to modify the
weights of different feature experts. To measuee dhility of the MFE method to
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predict PPIs, they compared it with other populassifiers that have been suggested
in the past for this task and showed that the MFEhod improved the classification
outcome. This method is useful for overcoming peaid in achieving high
prediction performance arising due to missing valwhich are a major issue when

analyzing biological data sets.

Properties of PPI networks

The simplest representation of PPI networks takesdrm of a mathematical graph
consisting of nodes and edges (or links). Protamesrepresented as nodes and an
edge represents a pair of proteins which physicatBract. The degree of a node is
the number of other nodes with which it is connéctié is the most elementary

characteristic of a node.

A protein-protein interaction network has three maioperties (Hu and Pan, 2007):
scale invariance, disassortativity and small-waffiect. Much work has been done

to study these properties and to find new ones.

Scale invariance: in scale-free networks, mostegmest participate in only a few
interactions, while a few participate in dozensntéractions.

Small-world effect means that any two nodes cacdmmected via a short path of a
few links. The small-world phenomenon was first @stigated as a concept in
sociology and is a feature of a range of networksrg in nature and technology

such as the most familiar one: Internet.

Disassortativity: in protein-protein interactiontwerks the nodes which are highly
connected are seldom link directly to each othéisTs very different from social
networks in which well-connected people tend toehdirect connections to each
other. All biological and technological networks/eahe property of disassortativity.

Protein-protein interaction network and protein cqolexes
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Protein complex (or multi-protein complex) is a @poof two or more proteins. No
protein is an island entire of itself or at leastyfew proteins are. Most proteins
seem to function with complicated cellular pathwagseracting with other proteins
either in pairs or as components of large compleses identification of protein
complexes is crucial for understanding the prirespbf cellular organization and
functions. As the size of protein-protein interantsets increases, a general trend is
to represent the interaction as network and to Idpveffective algorithms to detect
significant complexes in such networks. Various hods have been used to detect

protein complexes.

Partitional clustering approaches can partitionetwork into multi separated sub-
networks. As a typical example, the Restricted Neayrhood Search Clustering
(RNSC) algorithm (King et al., 2004) developed Hest partition of a network by
using a cost function. The method starts with ramgqopartitioning a network, and
iteratively moves a vertex from one cluster to hpeotto decrease the total cost of
clusters. When some moves have been reached witleatgasing the cost function,
it ends. This method can obtain the best partibypnunning multi-times. However, it
needs the number of clusters as prior knowledgdatanmdsults depend heavily on the
quality of initial clustering. Moreover, it cannalet the overlapping protein

complexes since it requires each vertex belongiraygpecific cluster.

Hierarchical clustering approaches build (aggloriez® or break up (divisive), a
hierarchy of clusters. The traditional represeatabtf this hierarchy is a tree (called
a dendrogram). Agglomerative algorithms start attp of the tree and iteratively
merge vertices, whereas divisive algorithms bedirtha bottom and recursively
divide a graph into two or more sub-graphs. Foratteely merging vertices, the
similarity or distance between two vertices should measured. The Super
Paramagnetic Clustering (SPC) algorithm (Spirin Ehighy, 2003) is an example of
iterative merging. For recursively dividing a graphe vertices or edges to be
removed should be selected properly. The Highly i@oted Sub-graph (HCS)
algorithm (Hartuv and Shamir, 2000) uses the mimmeut set to remove edges
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recursively. Girvan and Newman (Girvan and NewmadQ2; Newman, 2004)
decomposed a network based on the graph theoretaatept of betweenness
centrality. Luo et al. (2007) also used betweenrmesk developed a new algorithm
named MoNet. Hierarchical clustering approaches deplay the hierarchical
organisation of biological networks. To our knowded all methods of predicting
PPIs cannot avoid yielding a non-negligible amoeoinhoise (False Positives, FP).
As a disadvantage, the hierarchical clustering @gres are sensitive to noisy data
(Cho et al., 2007).

Density-based clustering approaches detect derseigected sub-graphs from a
network. An extreme example is to identify all fjudonnected sub-graphs (cliques)
of d = 1 (Spirin and Mirny, 2003). However, all methodf protein interaction
predictions are known to yield a non-negligibleerat false positives and to miss a
fraction of existing interactions. Thus, only migifully connected sub-graphs is too
restrictive to be used in real biological networksgeneral, sub-graphs are identified
by using a density threshold. A variety of alteivaatdensity functions have been
proposed to detect dense sub-graphs (Bader andelH2g03; Altaf-Ul-Amin et al.,
2006; Pei and Zhang, 2007). The Clique Percolalitmthod (CPM) (Palla et al.,
2005) detects overlapping protein complexes adckrel percolation clusters. A k-
cligue is a complete sub-graph of size k. On thsisbaf CPM, a powerful tool
named CFinder (Adamcsek et al., 2006) for findingrtapping protein complexes
has been developed.

There are some other methods for protein compleégctien. Habibi et al. (2010)
proposed a protein complex prediction method whghbased on connectivity
number on sub-graphs. This method was applied @ benchmark data sets,
containing 1142 and 651 known complexes respegtaet it performed well. Jung
et al. (2010) proposed a protein complex predictiethod based on simultaneous
protein interaction networks. This concept is idtroed to specify mutually
exclusive interactions (MEI) as indicated from theerlapping interfaces and to
exclude competition from MElIs that arise during tietection of protein complexes.

Ozawa et al. (2010) introduced a combinatorial aepgn for prediction of protein
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complexes focusing not only on determining memlvetgins in complexes but also
on the PPI organization of the complexes. Cannataral. (2010) proposed a new
complexes meta-predictor which is capable of ptedicprotein complexes by
integrating the results of different predictorsisibased on a distributed architecture

that wraps predictor as web/grid services thatik bn top of the grid infrastructure.

1.4.2 Methods

We combine fuzzy relation clustering method wita graph model. LeX,..., X, be

n universes. An n-ary fuzzy relatiétin X; x... x X, is a fuzzy set oX;x... xX,. An
ordinary relation is a particular case of fuzzyatigins, whose membership value is
just 0 or 1. Since the proposal of fuzzy set thdwyyZadeh in 1965, the work on
fuzzy relation clustering has been vast (Zadeh52@&raldi, et al., 1999; Borgelt,
2009).

Dib and Youssef (1991) followed Zadeh's work andregaa new approach to
Cartesian product, relations and functions in fugey theory. A concept of fuzzy
Cartesian product is introduced using a suitabtecéa A fuzzy relation is then
defined as a subset of the fuzzy Cartesian proal@liogously to the crisp case. For
fuzzy equivalence relations, they obtained simiesults to those of ordinary
equivalence relations. For fuzzy functions, thetaoled a generalization of Zadeh’s
definition in terms of a family of ordinary functis. These introduced concepts and

provided new tools to attack many problems in fuzethematics.

Dudziak (2010) studied graded propertiepfoperties) of fuzzy relations, which are
parameterized versions of properties of a fuzzgti@h defined by Zadeh. They took
into account fuzzy relations which avereflexive, a-irreflexive, a-symmetric, a-
antisymmetric, a-asymmetric, a-connected, a-transitive, wherea = [0,1]. They
studied the composed versions of these basic grepee.g. am-equivalenceg-
orders as well. They also considered the so-cdieeiak” properties of fuzzy
relations which are the weakest versions of thedsted properties of fuzzy relations.
They took into account the same types of propedses the case of the graded ones.

Using functions of n variables they considered ggregated fuzzy relation of given
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fuzzy relations. They gave conditions for functiaiespreserve graded and weak

properties of fuzzy relations.

Ciric et al. (2008) introduced and studied the emte of a uniform fuzzy relation
and a uniform F-function. They gave various chamazations and constructions of
uniform fuzzy relations and uniform F-functions arstiowed that the usual
composition of fuzzy relations is not convenientr fB-functions; thus they
introduced another kind of composition, and esshigld a mutual correspondence
between uniformF-functions and fuzzy equivalences. They applied tinéorm
fuzzy relations in some fuzzy control problem ahd tesult shows uniform fuzzy

relations are closely related to the defuzzifiaagwoblem.

Dudziak and Kala (2008) studied bipolar fuzzy rielas. This relation turns out to be
an equivalence in the family of all bipolar fuzajlations in a given set. It also has
many other properties which seem to be useful iplieations. Moreover, they

proposed new types of properties for bipolar fuezhations which are compatible

with standard relations.

A fuzzy relation can effectively describe the unaer information between two
objectives, like the concepts “similar” and “diféeit” (Zadeh, 1965). The clustering

methods based on fuzzy relation are widely apphedany fields.

Wang (2010) proposed a clustering method basedizmy fequivalence relation for
customer relationship management. In real worldiauers commonly take relevant
attributes into consideration for the selectionpadducts and services. Further, the
attribute assessment of a product or service engfiresented by a linguistic data
sequence. To partition these linguistic data secggenf customers’ assessment on a
product or service, the fuzzy relation clusteringtinod is applied in Wang's research.
In the clustering method they proposed, the linguidata sequences are presented
by fuzzy data sequences, and a fuzzy compatibbtioal is first constructed to
present the binary relation between two data sempsenThen a fuzzy equivalence
relation is derived by max—min transitive closw@nt the fuzzy compatible relation.
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Based on the fuzzy equivalence relation, the lisijridata sequences are easily
classified into clusters. The clusters representing selection preferences of
different customers on the product or service Wil the base for developing

customer relationship management (CRM).

Sun et al. (2009) adopted the fuzzy analytic hamamprocess which is a clustering
method based on fuzzy relation to determine thghitgigs for evaluation dimension
among decision makers on industrial cluster probldmom their analysis, the factor
condition is the most important driving force fadvancing the industrial cluster
performance. Moreover, the promotion of internatiolinkage policy and broader

framework policies rank the first two priorities fauster policy.

1.5 Contributions of thethesis

Chapter 2 of the thesis addresses the problem wdtering analysis on DNA
microarrays. Clustering analysis is an efficientyvta find potential information in
microarray data. A clear cluster structure is int@r and necessary for the ensuing

analysis on DNA functions and relations.

The fuzzy c-means clustering method (FCM) and thpiecal mode decomposition
method (EMD) are combined to be applied in thig.pais the first time that these
two methods are combined in clustering analysi®NA microarrays. We combine
the FCM with EMD for clustering microarray datadrder to reduce the effect of the
noise. We call this method fuzzy c-means methodh wimpirical mode
decomposition (FCM-EMD). We applied this methodyaast and serum microarray
data respectively and the silhouette values ard fgeassessment of the quality of
clustering. Using the FCM-EMD method on gene mio@a data, we obtained
better results than those using FCM only. The tesulggest the clustering structures
of denoised data are more reasonable and genegtiphter association with their
clusters. The cluster structures are much clebear before by combining EMD with
FCM. Denoised gene data without any biological rimfation contains no cluster
structure. We find that we can avoid estimatingfttezy parametem in some extent

44



Fuzzy Methods for Analysis of Microarrays and Netkgo

by analysing denoised microarray data. This makestaring more efficient. Using
the FCM-EMD method to analyse gene microarray d@ata save time and obtain

more reasonable results.

In Chapter 3, we perform the identification of @dise-related genes based on DNA
microarray data. We applied type-2 fuzzy set theathjch is an extension of
traditional fuzzy set theory, and established t2pkrzzy membership function to
describe the differences of the gene expressionesalenerated from normal

people’s genes and patients’ genes.

Type-2 fuzzy sets can control the uncertainty imfation more effectively than
conventional type-1 fuzzy sets because the memipefghctions of type-2 fuzzy
sets are three-dimensional. This is the first timthe literature that type-2 fuzzy set
theory is applied to identify disease-related gelés call our method type-2 fuzzy
membership test (type-2 FM-test) and applied ditdetes and lung cancer data. For
the ten best-ranked genes of diabetes identifietthdyype-2 FM-test, 7 of them have
been confirmed as diabetes associated genes awgotdi genes description
information in Genebank and the published litemtu®ne more gene than the
original approaches is identified. Within the 1Gtrnked genes identified in lung
cancer data, 7 of them are confirmed by the liteeatis associated with lung cancer.
The type-2 FM-d values are significantly differewtiich makes the identifications
more reasonable and convincing than the originalt&si.

Chapter 4 concentrates on identification of protmmplexes from protein-protein
interaction networks. We propose a novel methodclwhtombines the fuzzy
clustering method and interaction probability tentfy the overlapping and non-
overlapping community structures in PPl networkentto detect protein complexes

in these sub-networks.

Our method is based on both the fuzzy relation add the graph model. Fuzzy
theory is suitable to describe the uncertainty imi@tion between two objects, such
as ‘similarity’ and ‘differences’. On the other lhnthe original graph model

contains clustering information, thus we don't igindhe original structure of the
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network, but combine it with the fuzzy relation nehdNVe apply the method on yeast
PPl networks and compare the results with thosaidd by a standard method,
CFinder. For the same data, although the precisianatched protein complexes is
lower than CFinder, we detected more protein corgdeWe also apply our method
on two social networks, Zachary's karate club nekwand American college
football team network. The results showed thatraathod works well for detecting

sub-networks and gives a reasonable understanflthgse communities.

46



Fuzzy Methods for Analysis of Microarrays and Netkgo

Chapter 2

Fuzzy c-means method with empirical mode decomposition
for clustering microarray data

2.1 Introduction

2.1.1 Microarray clustering analysis

Bioinformatics is defined as the application of @uters, databases and
mathematical methods to analyses of biological datal especially genetic
sequences and protein structures. The objectivesbioinformatics are the
identification of genes and the prediction of thdunction. The scope of
bioinformatics covers completely functional genasniand the study of genomic
information has especially influenced biology aslhted fields. In the past decade or
so, there has been an increasing interest in ulireyethe mysteries of
deoxyribonucleic acids (DNA). How to gain more bimrmation from DNA is a
challenging problem. The growth in DNA data avdialio researchers is
unparalleled. Genbank, a major public database evB&A data are stored, doubles
in size approximately every year. It has becomeoitgmt to improve new theoretical

methods to conduct DNA data analysis.

Microarray techniques have revolutionized genoregearch by making it possible
to monitor the expression of thousands of gengmmllel. Since the work of Eisen
and colleagues (1998), clustering methods haverbe@okey step in microarray data
analysis because they can identify groups of genesamples displaying a similar
expression profile. Such partitioning has the maoope of facilitating data

visualization and interpretation, and can be exetbito gain insight into the

transcriptional regulation networks underlying albgical process of interest. It has
been reported that, due to the complex nature olbdpical systems, microarray
datasets tend to have very diverse structures, swae do not have well defined
clustering structures. As a result, none of theteng clustering algorithms performs

significantly better than the others when testedssmultiple data sets.

a7



Fuzzy Methods for Analysis of Microarrays and Netkgo

There are many methods for cluster analysis, sscK-means (Macqueen, 1967;
Lioyd, 1982; Hamerly and Elkan, 2002), K-nearesighleours (Cover and Hart,
1967; Terrell and Scott, 1992; Hall et al., 200B)zzy C-means (Bezdek, 1981,
Groll and Jakel, 2005), hierarchical clustering (/and Joe, 1963; Szekely and
Rizzo, 2005), self-organizing maps (Kaski, 1997 ss#ni and Safabakhsh, 2003),
simulated annealing (Kirkpatrick et al., 1983; Gerh985; Granville et al., 1994; De
Vicente et al., 2003) and graph theoretic approa¢Aegustson and Minker, 1970;
Kuznetsov and Obiedkov, 2001). These algorithmsadse applied to analysis of
microarrays. K-means clusteringis a method which is used to partitiam
observations intd& clusters in which each observation belongs to bhster with the
nearest mean. It is simple and and has been appliathny fields. Hu and Weng
(2009) proposed a method which is combined K-meansl mathematical
morphology. They applied it on segmentation of wacray image processing. The
result of the experiment shows that the methodc@urate, automatic and robust.
Kim et al. (2009) proposed MULTI-K algorithm based K-means. They newly
devised the entropy-plot to control the separatbrsingletons or small clusters.
Compared with the original approach, MULTI-K is allo capture clusters with
complex and high-dimensional structures accuratdlye K-nearest neighbour
algorithm (K-NN) is a method for classifying objecbased on closest training
examples in feature space. Liu et al. (2004) costbmenetic algorithm and KNN to
subtypes of renal cell carcinoma using a set of@aitay gene profiles. The result
shows this combined method can be efficiently useddentifying a panel of
discriminator genes. In statistichjerarchical clusteringis a method of cluster
analysis which seeks to build a hierarchy of chisst®in et al. (2003) describe a
generalization of the hierarchical clustering aidpwn that efficiently incorporates
high-order features by using a kernel function tapmhe data into a high-
dimensional feature space. Chipman and Tibshir@00&) proposed a hybrid
clustering method that combines the strengths ¢obwup hierarchical clustering
with that of top-down clustering and they illusgdahe technique on simulated and
real microarray datasets. gelf-organizing magSOM) is a type of artificial neural
network that is trained using unsupervised learnmgroduce a low-dimensional,

discretized representation of the input space etiining samples. Hautaniemi et al.
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(2003) applied SOM to analysis and visualizatiogefe expression microarray data
in human cancer. Their results show SOM is capabléelping finding certain
biologically meaningful clusters. Clustering algbms could be used for finding a
set of potential predictor genes for classificatipnrposes. Comparison and
visualization of the effects of different drugssisaightforward with SOM. Torkkola
et al. (2001) applied SOM to exploratory analysisy@ast DNA microarray data.
They found SOM not only enabled quick selectionthaf gene families identified in
previous work, but also facilitated the identificat of additional genes with similar
expression patterns. Alon and colleagues (1999)iempgimulated annealingor
identification of tumor genes. Maulik et al. (20@mbine simulated annealing with
fuzzy clustering method for analysing microarrayadaGraph theoretic approaches
are also widely used in bioinformatics. Sharan 8hdmir (1999) proposed a graph-
theoretic method based on computing minimum cut apmplied it on analysis of
gene expression data. This method is an unsupdrageroach which does not make
any prior assumptions on the number or the straatfithe clusters. Potamias (2004)
presents a novel graph-theoretic clustering (GT€hd which relies on a weighted
graph arrangement of genes, and the iterativetioaitig of the respective minimum
spanning tree of the graph. GTC utilizes informatiabout the functional
classification of genes to knowledgeably guide ¢hestering process and achieve

more informative clustering results.

DNA microarray data contain uncertainty and impmecinformation (Glonek and
Solomon, 2004; Brown et al., 2001). Hard clustermgthods such as K-means,
KNN and self-organizing maps, which assign eachegém a single cluster,
sometimes are poorly suited to the analysis of maicay data because the clusters of
genes frequently overlap in such data (Dembele Kauastner, 2003; Sharan and
Shamir, 2003). Fuzzy theory has many advantagekeating with data containing
uncertainty, therefore, fuzzy clustering approachleave been taken into
consideration to analyse DNA microarrays (Chenl.e06; He et al., 2006; Wang
et al.,, 2008; Avogadri and Valentini, 2009). The sinavidely applied fuzzy
clustering method is the fuzzy C-means (FCM) atpani Dembele and Kastner

(2003) applied FCM to analysis of microarray datd proposed a newly method for
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estimation of the fuzzy parameter Wang et al. (2003) applied FCM to tumor
classification and marker gene prediction. Kim let(2006) discussed the effect of
data normalization on FCM clustering of DNA micn@ar data. Fu and Medico
(2007) devised a cluster analysis software (GEDB&ed on FCM and the SOM

algorithm.

However, when implementing fuzzy algorithms, itmgortant to choose appropriate
values for parameters such as the fuzziness expaondfspecially, in fuzzy models
the minimization criterion for the objective furmti depends om. In the fuzzy
clustering literature, a value oh = 2 is commonly used, but this values is not
appropriate for gene expression data (Dembel amstidar, 2003; Kim et al, 2006).
How to estimate the value of fuzziness paramstas a problem in applying the
FCM method to DNA microarray data clustering. Tipéiroal values fom vary a lot
from one dataset to another. Although some reseesdhave already given some
methods for choosing the values rof these methods usually are time-consuming
(Dembel and Kanstner, 2003; Yang et al., 2007)Démbel and Kanstner's work,
DNA microarray data contain noise which would affetustering results (Li and
Johnson, 2002; Ma, 2006; Someren et al., 2006; \Warad., 2006). Research into
normalizing and removing noise from datasets ha&s la& important component of

previous works on clustering analysis (Kim et &0@&; Bertoni and Valentini, 2006).

In this chapter, we propose to combine FCM methath vempirical mode
decomposition (EMD) for clustering microarray datdne EMD method was first
proposed by Huang et al. (1998) and then Lin e{28109) proposed an alternative
EMD. Usually, EMD is used to analyse the intrins@mmponents of a signal. These
components are called intrinsic mode functions @MFMost noisy IMFs are
considered as noise in the signal. If we removetmosy IMFs from the raw data,
the trend component can be obtained. Then we wesérénd as denoised data to
perform clustering analysis. Shi et al. (2007) uE®&D to remove noise in protein
sequences and studied the functional similaritthese sequences. RecentlyYu et al.,
(2010) used the EMD method in Lin et al. (2009)gtt the trend and simulate
geomagnetic field data. Here we propose to remagenn DNA microarray data
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by the EMD method in Lin et al. (2009). Comparinghwthe results obtained by
Dembele and Kastner (2003), we can get better aringt structure by using
denoised data and choosing= 2 which avoids the estimation of the value of the
fuzziness parameter in some extent. We can alsbegetr clustering structure results
using denoised data and the estimated value atcording to silhouette measure

which has been used to assess the quality of chuste

2.1.2 Fuzzy theory

Most of our traditional tools for modelling, reasog and computing are crisp,

deterministic, and precise in character. By crigjomean dichotomous, that is, yes-
or-no-type rather than more-or-less type. In coteeal dual logic, for instance, a

statement can be true or false and nothing in etwén classical set theory, an
element can either belong to a set or not, andptimization, a solution is either

feasible or not. Precision assumes that the paesef a model represent exactly
either our perception of the phenomenon modelletth@ifeatures of the real system
that has been modelled. Generally precision alsplies that the model is

unequivocal, that is, that it contains no ambi@sitiThis is 0 and 1 logic (Klir and

Yuan, 1995; Zimmermann, 2001; Chen et al., 2001).

However, more often than not, the problems encoedtan the real physical world
are not always yes-or-no type or true-or-false tyReal situations are very often
uncertain or vague in a number of ways. Due to lafckformation the future state
of the model might not be known completely. Thipeyof uncertainty (stochastic
character) has long been handled appropriatelyrblgability theory and statistics.
This Kolmogorov type probability is essentially dreentist and based on set-
theoretic considerations. Koopman'’s probabilityersfto the truth of statements and
therefore based on logic. On both types of prolsialapproaches it is assumed,
however, that the events or the statements, ragpbgtare well defined. We shall
call this type of uncertainty or vagueness stocbastcertainty by contrast to the
vagueness concerning the description of the semanganing of the events,
phenomena or statements themselves, which we &llblfuzziness. Fuzziness can

be found in many areas of daily life, such as igie@ering, medicine, meteorology,
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manufacturing. It is particularly frequent, however all areas in which human
judgment, evaluation, and decisions are importhese are the areas of decision
making, reasoning, learning, and so on. Some reaganthis have already been
mentioned. Others are that most of our daily compation uses “natural
languages” and a good part of our thinking is doné&. For instance, instead of
describing the weather tody in terms of the exactgntage of cloud cover, we can
just say that it is sunny. In order for a termtsas sunny to accomplish the desired
introduction of vagueness, however, we cannot tise mean precisely 0% cloud
cover. Its meaning is not totally arbitrary, howeve cloud cover of 100% is not
sunny, and either, in fact, is a cloud cover of 80%e can accept certain
intermediate states, such as 10% or 20% of clovdrc@s sunny. But where do we
draw this line? If, for instance, any cloud covér26% or less is considered sunny,
does this mean that a cloud cover of 26% is noi8 iBhclearly unacceptable, since
1% of cloud cover hardly seems like a distinguighitaracteristic between sunny
and not sunny. We could, therefore, add a qualiioathat any amount of cloud
cover 1% greater than a cloud cover already coresiid® be sunny ( that is, 25% or
less) will also be labelled as sunny. We can sesyeklier, that this definition
eventually leads us to accept all degrees of clomer as sunny, no matter how
gloomy the weather looks! In order to resolve thggadox, the term sunny may
introduce vagueness by allowing some gradual tiansfrom degrees of cloud

cover that are considered to be sunny and thosetmat (Klir and Yuan, 1995).

Fuzziness has so far not been defined uniquely sgrally, and probably never will.
It will mean different things, depending on the laggiion area and the way it is
measured. However to solve the problems encounteretie real world, fuzzy
theory was proposed and developed. Fuzzy theorypn@sosed by L. A. Zadeh in
1965. From the inception of the theory, a fuzzyhset been defined as a collection
of objects with membership values between 0 (coteg&clusion) and 1 (complete
membership). The membership values express theeedgo which each object is
compatible with the properties or features distugcto the collection. A fuzzy set
can be defined mathematically by assigning to eaebsible individual in the
universe of discourse a value representing itseggaddnembership in the fuzzy set.
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This grade corresponds to the degree to whichinkatidual is similar or compatible
with the concept represented by the fuzzy set. [Timasviduals may belong in the
fuzzy set to a greater or lesser degree as indidate larger or smaller membership
grade. As already mentioned, these membership g@eevery often represented by
real-number values ranging in the closed interetivieen 0 and 1. Thus, a fuzzy set
representing our concept of sunny might assigngredeof membership of 1 to a
cloud cover of 0%, 0.8 to a cloud cover of 20%,10.4 cloud cover of 30%, and O to
a cover of 75%. These grades signify the degreehioh each percentage of cloud
cover approximates our subjective concept of suang the set itself models the
semantic flexibility inherent in such a common ligjic term. Because full
membership and full non-membership in the fuzzycset still be indicated by the
values of 1 and 0, respectively, we can considercttncept of a crisp set to be a
restricted case of the more general concept ozayfget for which only these two
grades of membership are allowed. Research onh#myt of fuzzy sets has been
growing steadily since the inception of the theorythe mid-1960s. The body of
concepts and results pertaining to the theory 8 goite impressive. Research on a
broad variety of applications has also been vetiy@a@nd has produced results that

are perhaps even more impressive (Klir and Yuaf@5)L9

In the next section, we introduce the theoreticakground needed for a description
of the fuzzy c-means method with empirical mode odguosition (FCM-EMD)
detailed in Section 2.3. We will apply this methaadl yeast and serum microarray
data respectively in Section 2.4, and the silheuedlues are used for assessment of
quality of clusters.

2.2 Theoretical background

2.2.1 Fuzzy sets

Let X be a space of points (objects), called the ungyeasdx an element oiX.
Membership in a classical subgebf X is often viewed as a characteristic function
ua from X to {0, 1} such that a fuzzy set is charaized by a membership function

mapping the elements of a universe of discodrse the unit interval [0, 1]. That is,
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Ha(X) O [0, 1]. pa(X) is the grade of membership &f Clearly, A is a subset of that

has no sharp boundary.

A is completely characterized by the set of pairghef elements irK and their

membership values,
A={(x uy(x), x0 X . (2.1)

Sometimes a sum notation is used. This allows wentonerate only elements Xf
with nonzero grades of membership in the fuzzyfet.instance, iKX= {x, X,, ...,
x.}, then the fuzzy sef = {(a/ x| x UX )}, wherea = pa (X),i = 1, ...,n, may be
denoted by

Aa1/x1+a2/x2+a3/x3+...+an/xn:Za,./>§. (2.2)

i=1

In this notation the sum should not be confusedhwhe standard algebraic
summation; the only purpose of the summation synrbtiie above expression is to
denote the set of the ordered pairs. Also, notewienA = {a/ x}, that is, when
there exists only one pointin a universe for which the membership degreeois n
null, we have a fuzzy singleton. In this sense,may also interpret the summation
symbol as union of singletons. Equivalently, on@ sammarizeA as a vector,
meaning thatA = [a;, &, ..., ap]. When the univers& is continuous, we use, to

represent a fuzzy set, the following expression:

A= jxa/ X, (2.3)

wherea = pa(X) and the integral symbol should be interpretethensame way as the

sum given above.

Two fuzzy set\ andB are said to be equal, denotke B if and only if (iff)
OXO X, 4, (%)= e (X). (2.4)

2. 2. 2 Member ship function
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The value ofua(x) describes a degree of membershig iof A and we defingia(x) as
membership function. For instance, consider theephof high temperature in, say,

an environmental context with temperatures distaun the interval [0, 50] defined

in°C. Clearly 0Cis not understood as a high temperature valuewanchay assign
a null value to express its degree of compatibikitih the high temperature concept.
In other words, the membership degree & On the class of high temperatures is
zero. Like wise, 30C and over are certainly high temperatures, and ag assign a
value of 1 to express a full degree of compatipilitith the concept. Therefore,
temperature values in the range [30, 50] have almeeship value of 1 in the class of
high temperatures. The partial quantification ofobhgingness for the remaining
temperature values through their membership vataesbe pursued as exemplified
in Figure 2.1, which actually is a membership fiorctH: T - [0,1] characterizing

the fuzzy seH of high temperatures in the universe T = [0, 50].

Membership values H(T)
© o o o o ©o
) w N (4] o ~

o
=
T
1

o
I

10 20 30 40 50
Temperature T

o

Figure 2.1 Membership function of environment terapge.
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In principle any function of the forrA: X - [0, 1] describes a membership function
associated with a fuzzy set A that depends not onlthe concept to be represented,
but also on the context in which it is used. Thapds of the functions may have very
different shapes, and may have some specific piiepefVhether a particular shape
is suitable can be determined only in the applcatcontext. In certain cases,
however, the meaning semantics captured by fuzty isenot too sensitive to

variations in the shape, and simple functions arevenient (Klir and Yuan, 1995;

Dubois and Prade, 1980).

Triangular-shaped function, trapezoidal-shaped tianc Gaussian-shaped function

and S-shaped function are the simplest membersimgtibns. Their equations and

plots are as follows:

1. Triangular-shaped membership function:

0, ifx<a
X8 ifa<xs<b
_Jb-a
f (Xl a, b, G d)_ ’ (25)
C—X .
——, ifbsxsc
C_
0, ifx=c
2. Trapezoidal-shaped membership function:
0, ifx< a
X78 ifas<xs<h
b-a
f(x,a,bcd)= 1, ifbsx<c (2.6)
47X e xed
d-s
0, ifx>d

3. Gaussian-shaped membership function:
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_ 2
f(x,0,0) = expb E=9 1, 2.7)
20
4. S-shaped function
0, if X< a
2¢(X2)? if a<x<b
S — c-a
(X8B920) ae=p, i bexsc’ (28)
1, if X>C
whereb = arc
1 T T T T

©c o o 9
o N © ©

o
~

Membership values
o
a1

o
w

0.2
0.1
0
0 2 4 6 8 10
Trapezoidal-shaped membership function
(a)
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Membership values
o o o o o o o
w iN 3] o ~ o) © [
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)
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S-shaped membership function

(d)

Figure 2.2 Four simplest membership fiomst. (a) Trapezoidal shape, (b)
Triangular shape, (c) Gaussian shapes @)ape.

As mentioned above, even for similar contexts, yugets representing the same
concept may vary considerably. In this case, howekiey also have to be similar in
some key features, irrespective of choice of mestbprfunction. It is convenient to

use a simple shape to describe the “temperatunegoi@ by a trapezoidal-shaped

membership function.

2. 2. 3 Fuzzy set operations

As a classical set, fuzzy set also has its opersitituzzy complement, intersection
and union. The classical union and intersectioromfinary subsets of X can be
extended by the following formulas, proposed byeta(lL965)

Fuzzy complement Uy =1= 1, (X);
Fuzzy intersection Hpng (X) =min[,(X), k(K]
Fuzzy union Uy s (X) = max(u, (X), g (X)];

59



Fuzzy Methods for Analysis of Microarrays and Netkgo

for all x[O X . These operations are called the standard fuzesatipns.

However, we can easily see that the standard fapeyations perform precisely as
the corresponding operations for crisp sets wherrdhge of membership grades is
restricted to the set {0, 1}. That is, the standazizy operations are generalizations
of the corresponding classical set operationss haw well understood, however,
that they are not the only possible generalizatiéias each of the three operations,
there exists a broad class of functions whose menlpialify as fuzzy
generalizations of the classical operations as.velhctions that qualify as fuzzy
intersections and fuzzy unions are usually refetoeih the literature asnormsand

t-conorms respectively.

Since the fuzzy complement, intersection and urao@ not unique operations,
contrary to their crisp counterparts, different diilons may be appropriate to
represent these operations in different contextsat Tis, not only membership
functions of fuzzy sets but also operations fumion fuzzy sets are context-
dependent. The capability to determine appropriaembership functions and
meaningful fuzzy operations in the context of epalticular application is crucial

for making fuzzy set theory practically useful.

Among a variety of fuzzy complements, intersectj@ml unions, the standard fuzzy
operations possess certain properties that given tepecial significance. The
standard fuzzy intersection (min operator) produlmesany given fuzzy sets the
largest fuzzy set from among those produced byadkible fuzzy intersections$ (
normg. The standard fuzzy union (max operator) produoesthe contrary, the
smallest fuzzy set among the fuzzy sets producedllbgossible fuzzy uniong-(
conorm$. That is the standard fuzzy operations occupycifipepositions in the
whole spectrum of fuzzy operations: the standamtyuintersection is the weakest

fuzzy intersection, while the standard fuzzy un®the strongest fuzzy union.

A desirable feature of the standard fuzzy operatigntheir inherent prevention for

the compounding of errors of the operands. If amgree is associated with the
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membership gradega(x) and pg(x), then the maximum error associated with the
membership grade of in A, AN B and AU B remainse. Most of the alternative

fuzzy set operations lack this characteristic (ild Yuan, 1995; Dubois and Prade,
1980; Zadeh, 1965)..

2.2.4 The differences between fuzziness and probability

Fuzziness is often mistaken for probability. Therefit is necessary to distinguish
these concepts. In science the two following tygfasncertainty are distinguished

(there are also other kinds):

1. Stochastic uncertainty;

2. Lexical uncertainty.

Stochastic uncertainty means uncertainty of ocogeeof an event, which is itself
precisely defined; lexical uncertainty means uraety of the definition of this event.
Uncertainty of the definition means its fuzzindsszzy system theory is engaged in
methods of creating models employing fuzzy conceplksch are used by people. It
should be mentioned that people also employ, dpam lexical fuzzy concepts,
intuitive concepts and pictures not connected latvdth any vocabulary. There are
people who know no language; there are also anjmdigh create intuitive, non-
lexical information about reality enabling them ftsaction and survive in it. The
theory of intuitive modelling may probably be trentinuation of the theory of fuzzy

modelling in the future.

To understand the distinction between fuzziness ramdomness, it is helpful to
interpret the grade of membership in a fuzzy set akegree of compatibility (or
possibility) rather than probability. As an illustion, consider the proposition “They
got out of Roberta’s car” (which is a Pinto). Theegtion is : How many passengers
got out of Roberta’s car? (Zadeh 1978) -assumingifaplicity that the individuals

involved have the same dimensions.
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Let n be the number in question. Then, with eastre can associate two numbgys
andp, representing, respectively, the possibility arelghobability thah passengers

got out of the car. For example, we may havesdorandp, :

Table 2.1 The values ofs, andp,

n 1 2 3 4 5 6 7
U, 0 1 1 1 0.7 0.2 0
P, 0 0.6 0.3 0.1 0 0 0

in which g, is interpreted as the degree of ease with whiphssengers can squeeze
into a Pinto. Thug,,= 0.7 means that, by some specified or unspecdrédrion,

the degree of ease of squeezing 5 passengers Ritdais 0.7. On the other hand,
the possibility that a Pinto may carry 4 Passenigets by contrast the corresponding
probability in the case of Roberta might be 0.1.

This simple example brings out three important fmiRirst, that possibility is not an
all or nothing property and may be present to arekegSecond, the degrees of
possibility are not the same as probabilities. Amdd, that possibilistic information
iIs more elementary and less context-dependent ghaabilistic information. But,
what is most important as a motivation for the tlgeof fuzzy sets is that much,
perhaps most, of human reasoning is based on iafamthat is possibilistic rather

than probabilistic in nature.

2.3 Methods

2.3.1 Fuzzy c-meansalgorithm

Fuzzy c-means (FCM) is a method of clustering wtattbws one piece of data to
belong to two or more clusters. This method (dgwetb by Dunn in 1973 and
improved by Bezdek in 1981) is frequently used attgrn recognitionThe fuzzy
clustering algorithm links each gene to all clustan a real-valued vector of indexes.

The valuesy,; of the components of this vector lie between 0 lanigor a given gene,
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an index close to 1 indicates a strong associatidhe cluster. Conversely, indexes
close to 0 indicate the absence of a strong asgmtien the corresponding cluster.
The vector of indexes defines thus the membershia gene with respect to the

various clusters. Membership vector valugs and cluster centroidg, can be

obtained after minimization of the total inertiderion (Bezdek, 1981):

KM= ()" F(x,.,), (2.9)
d*(%;,G)= (%G ) A (% -G ), (2.10)
Wiﬁﬂki =1 O<iﬂki <1, (2.11)

where 1<i1 <N, 1<k<K.

In equation (2.9)K andN are respectively the number of clusters and thebau of
samples (or genes) in the data,is a real-valued number which controls the
‘fuzziness’ of the resulting clusterg,, is the degree of membership of genénx
clusterk, andd?(x;,c, ) is the square of the distance from gerte centroidc, . In

equation (2.10)A¢ is a symmetric and positive definite matrix.

Equation (2.11) indicates that empty clusters areatiowed. The scalam is any
real-valued number greater that 1. Wh&nis the identity matrix, thew®(x;,c, )
corresponds to the square of the Euclidian distafcen equation (2.9), parameters
of interest are the cluster centroid vectorsand the components of the membership
vectors 4, . These unknown parameters can be obtained usiegfdhowing

algorithm (Bezdek, 1981):

(i) Initialization: Fix K, m and choose any product norm metric for calculatén
d*(x,,c ). Select randomlyk samples as initial centroids'® and then form

partitions of all others samples around these ogl#rto obtain the initial partition
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matrixU® =[g,], k=1, ....Kandi =1, ...,N. At stepl, I=1, 2, ..., perform the

following steps:

(ii) Computation of centroids,":

> (Y

c —'-Nl—- k=12, ... K, (2.12)

>y

(iii) Computation of membership valug®

|, ={k/1<k< K; d’(x,,c.") =0},

[ ={,2,...K}-I,
—, ifl, =0
. (X|’Ck(l)) (m—1)
SZ=];|: (X|'C(I))
U = 0 if20 OO0, (2.13)
ﬁ, it 0 G0l

(iv) Repetition of (2.12) and (2.13) until stabétion, i.efu® -U!™®|<s,1> 1.

After several passes through (2.12) and (2.13)atgerithm will stop, i.e. the error
between two consecutive values of the constrainedyf partition matrixJ will be
smaller than a priori specified level. ConvergeméeFCM has been proven by
Bezdek (1981).

In most works about FCM, to avoid complicated cotapan of the membershig,, ,

mis commonly fixed to 2. However, the value 2 i$ appropriate for every data set.

For example, in Fig. 2.3 when we used= 2 for the yeast microarray data, we
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observed that all the membership values were ginillaat means FCM failed to
extract any clustering structure. On the other h&mdthe serum data set, although a
clustering structure was found, all membershipsehaw values. This means that
this FCM setting failed to tightly associate anygé¢o any cluster.
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Figure. 2.3 The affect of fuzzy parameteron Yeast and Serum data sets. (a) is
yeast data, (b) is serum data. The horizontal imxmumber of clusters, the vertical

axis is membership values.

Based on observing computations on different deils, ®embele and Kastner (2003)
proposed a hypothesis that wharvaries, there might be a relationship between the
FCM membership values and the coefficient of vamatof the set of distances
between genes. They proposed a method for estim#te fuzziness parametet.

The details of this hypothesis and method are l&sifs:

It was shown that whem goes to infinity, the values qf,, go to%. Thus, for a

given data set, there is an upper bound valueniofmy,), above which the
membership values resulting form FCM are equa&toAs a first step towards the

evaluation of an appropriate value foy Dembele and Kastner (2003) first attempted
to estimatem,,. From (10), they note that membership valpgsdepend on the
distances between genes and cluster centroidsdrgplex data sets, it is reasonable
to make the approximation that the cluster censrawdl be close to some genes.
Thus they made the hypothesis that wherwaries, there might be a relationship
between the FCM membership values and the coeffickvariation (cv) of the set

of distances between genes:

1
Y, ={[ d(x ,x )] ™% k# i=L2,..., N}. (2.14)
Note thatY, depend only on the initial data set amgd and are thus completely

independent of the FCM results. To test the aboymothesis, they used the iris
dataset and two generated data sets. For eaclsatathey variean and determined

thecvandY,. They also ran the FCM algorithm to determinedistribution of the

membership values. In each case, they observédhinaalues om which lead to

membership values close tie gave a cv ofY, close to 0.08, p being the data
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dimension. However, they offered no theoreticalifagsition for this observation.
They proposed to use it to solve the following egueto evaluaten,:

0,
e Y} = \?Y ~0.03 p, (2.15)

m

where o, and Y are respectively the standard deviation and thennoé the sev .

Dembele and Kastner (2003) solved equation (2.1%pemically by using the

dichotomy search strategy. Initially they set= 2 and computed\{ Y} . This value
allowed them to decide the direction of searcH1in?] if c{ Y} <0.03 p, in [2, ]
if c{Y} >0.03 p. If my was not equal to 2, they performed successiveces@mfm

in the correct direction and computed Y} until c{ Y} =0.03 p.

The closem gets to 1, the less fuzzy membership values bec@ezedk, 1981).
Dembele and Kastner (2003) proposed to choosawer or equal to 2, to get high
membership values for genes strongly related tstets. More precisely, they chose

=My
1

m=1 +my wheremy = 1 if my, =10 andmy 0 if myp <10. This choice leads to

m = 2 whenmy, >10 andm < 2 whenmy, <10. In this section we also apply this

method to estimate the value of the fuzzy paranmmter

2.3.2 Empirical mode decomposition

The method called empirical mode decompositionrigirally designed for non-
linear and non-stationary data analysis by Huarg).€t1998), and has been applied
to signal processing in various fields since 1998.et al. (2009) briefly described
the traditional empirical mode decomposition (EMEN presented a new approach
to EMD. We outline some content of Lin et al. (2D®@re. The traditional EMD
decomposes a time series into components calladsiat mode functions to define
meaningful frequencies of a signal. An intrinsicdadunction (IMF) is defined with
two conditions (Huang et al., 1998; A. Janusauskas., 2005).
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() In the whole data set, the number of extremd @@ number of zero crossings

must be either equal or differ at most by one;

(i) The mean value of the envelope defined byltdoal maxima and the envelope

defined by the local minima is zero.

By the definition of IMF, the decomposition callsHifting process can be followed

by using envelopes.

The original EMD is obtained through an algorithalled shifting processLet X(t)
be a function representing a signal ang fe the local maxima foK(t). We useX
denote the values in this signal. The cubic spkpé) connecting the points {,
X(t))} is referred as thepper envelopef X(t). Similarly, with the local minimadg}
of X we also have the lower enveldpgt) of X(t). Then we define the operat®by

(&(1) = X(t)-%( Eu(t) + EL(t))% : (2.16)
In the shifting algorithm, the finest IMF in the EMs given by
L) =lim S"(X(9) , 12)
Subsequent IMFs in the EMD are obtained recursivigly
[ ()= LiTOS“( X() = L() = 1(t) —...— 1, _,(1)), (2.18)

The process stops wh&= X - 11- 1,- ... - Ix has at most one local maximum or
local minimum. This functiofY(t) denotes the trend &(t).

Lin et al. (2009) proposed a new algorithm for EMBstead of using the envelopes
generated by spline, in the new algorithm we udewapass filter to generate a
“moving average” to replace the mean of the envedoffhe essence of the shifting
algorithm remains. Let be an operator that is a low pass filter, for whigX)(t)

represent the “moving average” XfNow define
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T(X) =X - L(X). (2.19)

In this approach, the low pass filleiis dependent on the daaFor a giverX(t), we
choose a low pass filtdr; accordingly and seff; = | - L;, where | means the

identical operator. The first IMF in the new EMD ggven bylim T,"(X), and

subsequently thé-th IMF Iy is obtained first by selecting a low pass filtar

according to the datd - |- |- ... - Iy and iterationg, =lim T (X - 11- 12- ... - lkq),

where k=1 — Lk . Again the process stops Wheémr X - I1- I2- ... - Ix has at most

one local maximum or local minimum. Lin et al. (B)®&uggested to use the filtér
. m . m_| J| +1 .
= L(X) given byY(n) = E __a X(n+ j). We select the mask, =————, | = -
j==m ] ! m+1

m, ..., min this thesis.

Letr(t) = X(t)- 11(t)-...-lk.1(t). The original signal can be expressed as
Ky
XM= L,O+r(), (2.20)
i=1

where the numbeK; can be chosen according to a standard deviatiby. (8 our
work the number of components in IMFs is set asThe empirical mode
decomposition can be considered as an extractiorthef different frequency

components of the original series.

2.3.3TheCLICK algorithm

Before we ran FCM, we have to determine the nurabelusters K. In this thesis we
use the Cluster Identification via Connectivity Kels (CLICK) to estimate the
number of clusters. The CLICK algorithm was progbdssy Sharan and Shamir
(2000). It combines graph-theoretic and statistitathniques for automatic
identification of clusters in a data set. We fistiirn the microarray marix into a
weighted graph, and then perform cluster analykithie graph. After this work is
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done, we can obtain the number of clusters K. Tle¢hod to generate a weighted

graph is as follows:

Let S be a pairwise similarity matrix for gene micr@grdata matrixX, whereS; is

the inner product of the vectors of genasdj, i.e.,

S =2 % % 22)

then we can transform the microarray matrix intoghieed similarity graptG = (V,
E). In this graph, vertices correspond to elementsexige weights are derived from
the similarity values. The weight; of an edgei( ) reflects the probability thatand

j are mates, and is set to be

B:.ina O +(% _:uF)z_(§_/4)2
a- pl,jDQ)UT 2O-FZ 2O-TZ

w, =log , (2.22)

here f (S | L j0Q)=(§ |/,1r ,0; ) is the value of mate probability density function

atS;, Qis the set of element who are neighbours:

N 1 _(31-2—;;)
f(Sj||,JDQ)—\/§TJ e : (2.23)
T

Similarly, f(S, ‘i, j0Q)= (S| ,0:) is the value of the non-mate probability

density function a§;, Qis the set of elements who are not neighbours:

1 (S )?
(S i, joQ )= e 2% (2.24)
J‘ \/ZTUF
hence
_ 2 S 2
 =log P (§ AZIF) ($ ,Lj) | (2.25)
1-p )JT ZUF 2JT

ijoo

The basic CLICK algorithm can be described reculgias follows: The algorithm
handles some connected component of the sub-gnaipiced by the yet-unclustered

elements in each step. If the component contasiagle vertex, then this vertex is
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considered as a singleton and is handled separ@#igrwise, a stoping criterion is
checked. If the component satisfies the criteribig declared a kernel. Otherwise,
the component is split according to a minimum weiglt. The algorithm yields a
list of kernels which serves as a basis for theneaad clusters. After the algorithm is

finished, we can obtain the number of cluste(Sharan and Shamir, 2000).

2.3.4 Silhouette method

To assess the quality of clusters, we used theouslite measure proposed by
Rousseeuw (1987) which is based on the comparisaheoclusters tightness and
separation. To calculate the silhouette vaiieof a genex;, firstly we must estimate
two scalarsa(x;) and b(xj). Suppose geng belongs to clusteA, when clusterA

contains other genes apart framthen we can compute

a(x) = average distance of gene i to all other genesustel A (2.26)
Then we consider any other clustewhich is different fromA, and compute
@, C) = average distance of gene i to all objects of ®ug. (2.27)

After computingd(i, C) for all clustersC # A, we select the smallest of those values
and denote it by
b(x) = min{d(i, C)}, C#A. (2.28)

Suppose cluster B is the cluster for which thisimum is obtained, that isl(i, B) =
b(x), then we call it the neighbour of geme Now s(x) can be obtained by

combininga(x) andb(x) as follows:

s(x;) = [b(x) - a(x;) ]/ max{a(x), b(x)}. (2.29)

From the above definition we can easily see $pg is located in [-1, 1]. Whes(x)
is close to 1, it implies that the ‘within’ distama(x) is much smaller than the
smallest ‘between’ distand®x). Therefore, we can consider genés tied with its
cluster and it is ‘well-clustered’. Another situati is thats(x) is around O which
meansa(x) andb(x) are almost equal, hence it is not clear whetsegs should
belong to either clustek or B. This situation is considered as an ‘intermedcatse’.
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However, the worst situation $x;) is close to -1. It showeX) is much larger than
b(x), thus gene is much closer t@® than toA. Therefore, we consider this as a ‘bad

cluster’ (Rousseeuw, 1987).

2.4 Data analysis and discussion

2.4.1 Testing

We used two different data sets downloaded fromdatabases. The first set is the
Serum data. This data set contains 517 genes which were itbesicand used by lyer
et al. (1999). Each gene contains 13 expressiamesalt can be downloaded from:

http:// www.sciencemag.org/feature/dat@he expression of these genes varies in

response to serum concentration in human fibrahlddte second set is theeast
data. The original yeast micorarray data contains 6%8@st genes which were
measured every 10 min during two cell cycles im$M@ridization experiments (Cho
et al., 1998). We used the same 2945 genes selegfBavazoie et al. (1999). In this
selection, the data exclude values at time poidtar@2l 100 minutes. These data sets
have already been normalized in such a way thahtleeage expression values of
each gene is zero and the standard deviation bf g&we is one. For comparison, we
generate random microarray data for different data as follows: To the first gene
in the list of the data set, we associate an egmes/alue selected randomly from
the N values of the experimeptTo the second gene in the list, we associate an
expression value selected randomly from the remgiN-1) values of experiment j.
We repeat this process until we associate the rengaexpression values to the last
gene in the list.

For different data sets we estimated the optimalesaofm as in Dembele and
Kanstner (2003), which are listed in Table 2.2. U¢ed the same values wf for
random data. For comparison, we also used?2 for each data set.
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Table 2.2 Parameters and number of clusters usdea_il

Data name Number of genes m used Number of clusters
Serum (original) 517 1.25 10
Serum (denoised) 517 1.58 10
Yeast (original) 2945 1.17 16
Yeast (denoised) 2945 1.48 16

Figure 2.4 illustrates the clustering structuressefum and yeast microarray data
without noise removal. Using original data, we beth serum and yeast data have
no clustering structure whem is set to 2. Especially, in yeast data the 16
memberships for each gene to 16 clusters are warasto each other, suggesting a
poor clustering result. To avoid this problem, ve@ireated the optimal values of

for the two data sets. Then we obtain clearer efutg structure results. However, in
the two randomized data sets there are still cldastering structures. This
observation shows that noise in data affects aiugfeesults, and that clustering
structures still can be found even in data setshviio not contain any biological
significance. In order to remove noise in microgrdata, we applied EMD to the
original data. We denoised the serum data 4 timestlae yeast data 5 times. We
showed the noise removing process for serum ddgure 2.5 as an example. After
denoising it 4 times, we obtain a smooth trend Whie used as denoised serum data

to do clustering analysis.

For the denoised microarray data, firstly werseb 2. We also estimated the optimal
values ofm for the two new data set and generated randomfalathe two denoised
data sets respectively. We show the clusteringtsefar the denoised data in Figure
2.6. It is seen that both denoised serum and gedathave clear clustering structures
whenm s equal to 2 and the results are similar to #selt on the original data when
the estimated values ofl are used. This observation suggests 2 is suitable for
new data. When we used the estimated values tfe results become more extreme.
The highest membership values become closed toidhvamows genes have tight

association which cluster they belong to. Howef@rthe random data sets, there is
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no clustering structure. Because we have removes mo the original data, now it is
reassuring that there is no clustering structureamdom data without biological

significance.

2.4.2 Assessment of quality of clusters

We show scatter plots of original data and denoidath in Figure 2.7. The
horizontal axis represents the highest membershipeg of each gene and the
vertical axis represents the second highest memmipevalues. For serum data, we
obtained similar results when we used= 1.25 and 2 for the original and denoised
data respectively. When we used the estimated valgel.58 for denoised serum
data, the sum of the two highest membership valoegach gene is closed to 1,
which means the behaviour of each gene in denassedm data can be almost
entirely determined by its first and second menttipryalues. However in the
original yeast data, when we used the proper vailue 1.17, we obtained a very
dispersed distribution of the two highest membgshAfter our denoising step, we
got a better scatter plot when is set equal to 2. The sum of the two highest
membership values is close to 1 when we usedl.48.

Figure 2.8 illustrates the assessment of qualitgladters. The silhouette values lies
between -1 and 1. When the value is less than #ea;orresponding gene is poorly
classified. For serum data, we see that clusteasglts of the original datan(= 1.25)

and denoised data are similar. To some extentethdt for denoised data is better
than that for the original data because the maihgiahe box plot is higher than 0.4.
On the other hand, the result for denoised seruia (@a= 1.58) is much better than
the above two results. For yeast data, we obtagnstime result. However, the
assessment of the Ldluster of denoised yeast data is not satisfackig. silhouette

values of some genes are even lower than 0.4 vghigbests poor clustering.

Figure 2.9 gives another way to assess the gqudlitiusters. This figure is generated
by Gene Expression Data Analysis Studio (GEDAS)cWwhis a cluster software
designed by Fu (2007). The colours represent theesaf each gene at each time

point. The lower the value is, the greener the wols. The higher the value is, the
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redder the colour is. In this figure, although wse uhe same method FCM to do
cluster analysis on original and denoised yeast dpectively, we see the denoised

microarray data show better separated and homogsmhasters.
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Figure 2.9 Cluster structure plot generated by GEQBu et al., 2002). (a) Cluster
structure of denosied yeast data. (b) Cluster stre®f original yeast data
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2.5 Conclusion

Fuzzy clustering methods have been widely usedarfiaiysing gene expression data
(Dougherty et al., 2002). However the estimatiothef value of the fuzzy parameter
m s still a problem. Dembele and Kastner (2003pps®d a predetermining method
using distances between genes, but this methodsedbon observation and has no
theoretical justification. On the other hand, FC#/1sensitive to initialization. To

avoid this problem, we have to run the program nmaoye times. The FCM process

and estimation afn are all time-consuming.

In this chapter, we proposed to combine the FCMhoutwith empirical mode
decomposition for clustering microarray data. Basedthe analysis of clustering
serum and yeast gene microarray data by FCM-EMB, rdsults suggest noise
removing is necessary. For both data sets, we foleader clustering structures from
denoised data than from the original data. Esggcwak cannot find any clustering
structure in denoised random data which containsbietogical significance. It
suggests the noise has been almost removed anlittleasffect on the clustering
results. Comparing with the clustering results oiginal data, we can even avoid
estimation the fuzzy parameterfor denoised data to some extent. We can jusRuse
as the parameter value and obtain better reswdts dhiginal data using estimating

values. This makes clustering works more efficient.

We introduced the EMD method here to remove naisgicroarray data. However,
the number of times for this noise removal is stiticertain. When the signal
becomes smooth, we consider noise has been remdwgdthis may not be
sufficiently precise. Another problem is that theretimes we denoise the more
information we would lose in microarray data. THere, determination of the

number of times of denoising is a pressing probietme addressed.
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Chapter 3

Type-2 fuzzy approach for disease-associated gene identification on
microarrays

3.1 Introduction

Disease-associated gene identification is one @inbst important areas of medical
research today. It is known that certain diseasas) as cancer, are reflected in the
change of the expression values of certain genes.irfstance, due to genetic
mutations, normal cells may become cancerous. Tlobsemges can affect the
expression level of genes. Gene expression is itheeps of transcribing a gene’s
DNA sequence into RNA. A gene’s expression levalidates the approximate
number of copies of that gene’s RNA produced irlaand it is correlated with the
amount of the corresponding proteins made (Mohammidl., 2011). Analysing
gene expression data can indicate the genes whactiifeerentially expressed in the
diseased tissues. Several important breakthrougbdspeogress have been made
(Liang et al., 2006).

One effective approach of identifying genes that associated with a disease is to
measure the divergence of two sets of values oé gapression. Usually, they are
patients’ and normal people’s expression datardieroto identify the genes that are
associated with disease, one need to determine éarh gene whether or not the
two sets of expression values are significantlfedgnt form each other (Liang et al.,
2006). The two most popular methods to measuredifergence of two sets of
values are t-test and Wilcoxon rank sum test (Rox@00). According to Liang et
al. (2006), both of these two methods have somgaliions. The limitation of t-test
Is that it cannot distinguish two sets with closeams even though the two sets are
significantly different from each other. Anothemitation is that it is very sensitive
to extreme values. Although rank sum test overcotheslimitation of t-test in
sensitivity to extreme values, it is not sensitteeabsolute values. This might be
advantageous to some application but not to othdis. overcome these

disadvantages, Liang et al. (2006) proposed thetdd¥l However, some limitations
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still exist. The most obvious one is when the valaegene microarray data are very
similar and lack over-expression, in which case kFMed valves are very close or
even equal to each other. That made the FM-tedemuate in distinguishing disease

genes.

To overcome these problems, we introduce type-2yfset theory into the research
of disease-associated gene identification. Types2zyf set is an extension of
traditional fuzzy set, introduced by Zadeh (1973).course, employment of type-2
fuzzy sets usually increases the computational texitp in comparison with type-1
fuzzy sets due to the additional dimension of hgegincompute secondary grades for
each primary membership. However, if type-1 fuzatsswould not produce
satisfactory results, employment of type-2 fuzzis der managing uncertainty may
allow us to obtain desirable results (Hwang andeRB807). Mizumoto and Tanaka
(1976) have studied the set theoretic operationstypé-2 sets, properties of
membership grades of such sets, and have exantaezperations of their algebraic
product and algebraic sum (Mizumoto and Tanakal)l98ubois and Prade (1980)
have discussed the join and meet operations betimeey numbers under minimum
t-norm. Karnik and Mendel (1998, 2000) have proslidgegeneral formula for the
extended sup-star composition of type-2 relatidnge-2 fuzzy sets have already
been used in a number of applications, includingsien making (Chaneau et al.,
1987; Yager, 1980), solving fuzzy relation equagigiWagenknecht and Hartmann,
1988), and pre-processing of data (John et al8)199

In this chapter we establish the type-2 fuzzy mastip function for identification

of disease-associated genes on microarray datat@nps and normal people. We
call it type-2 fuzzy membership test (type-2 FMtteend apply it to diabetes and
lung cancer data. For the ten best-ranked gendgbétes identified by the type-2
FM-test, 7 of them have been confirmed as diabatssciated genes according to
genes description information in Genebank and tndighed literature. One more
gene than original approaches is identified. Withire 10 best ranked genes
identified in lung cancer data, 7 of them are aoméid by the literature which is

associated with lung cancer treatment. The typevRdFvalues are significantly
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different, which makes the identifications mores@@able and convincing than the
original FM-test. In the next section, we introdule theoretical background needed
for a description of the type-2 FM-test detailedSection 3.3, and we will give our

results in Section 3.4.

3.2 Theoretical background
3.2.1 Type-2 fuzzy sets

The concept of a type-2 fuzzy set was introduceddyeh (1975) as an extension of
the concept of an ordinary fuzzy set (which we cah it type-1 fuzzy set). The
transition from ordinary sets to fuzzy sets tellss when we cannot determine the
membership of an element in a set as 0 or 1, wduzzg sets of type-1. Similarly,
when the circumstances are so fuzzy that we cadet@rmining the membership
grade even as a crisp number in [0, 1], we canfusey sets of type-2. If we
continue thinking along this line, we can say thatfinite-type fuzzy set (type)
can completely represent uncertainty. Howeverywasgo on to higher types, the
complexity of computation increases rapidly. Therefin this chapter we just deal

with type-2 fuzzy sets.
We now give the definition of a type-2 fuzzy setlassociated concepts.

Definition 3.1 A type-2 fuzzy set, denoted & is characterized by a type-2
membership functiop; (X, u), wherex X and u1J ][O0, 1],

A:{((x W), 24:(x U)| 00 X0 I QD[O,l}, (3.1)
in which 0< uz (x, U) < 1. A can also be expressed as
A= [ oy Ha 0/ (x 0, 3, 00017, (32)

where[[ denotes union over all admissilandu.

In Definition 3.1, the restriction thaf ullJ, is the same with type-1 constraint that O
<u.(X) < 1. That is, if the blur disappears, then a typaémbership function must

reduce to a type-1 membership function, in whickecthe variabler equalsu, (X)
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and 0< u, (X) < 1. 0< ua (X, U) < 1 is an additional restriction which is consistefth
the fact that the amplitudes of a membership fomcshould lie between or be equal
to 0 and 1 (Mendel, 2001).

Definition 3.2: At each value of, i.e.x = X, the 2D plane whose axes are u anc,
u) is called a vertical slice of; (X, u). A secondary membership function is a vertical

slice ofuz (X, u). Itisuz (x =X, u) for X UX and JullJ, [1[0,1],

H(x=x, 0= (0= 1. (0/u 3, 001], (33)

in which 0< fy(u)< 1. Becausélx{1X, we drop the prime notation @i (X) and
refer touz (X) as a secondary membership function; it is aldgpa-1 fuzzy set,

which we also refer to as a secondary set (Me2@€l]).

Based on the concept of secondary sets, we catenmiet a type-2 fuzzy set as the

union of all secondary set,
A:{(X,,UA(X))‘DXD ><} , (3.4)
or, as

A= ﬂxy;\()o/x=jm“m £(y/ u}/> 3, 0[0,1]. (3.5)

Definition 3.3: The domain of a secondary membership functiorcaled the
primary membership of. In 3.5,J, is the primary membership &fwhereJ;[1[0,1]
for OxX (Castillo and Melin, 2008).

Definition 3.4: The amplitude of a secondary membership functi®ncalled
secondary grade. In 3.5(u) is a secondary grade; in (3,2)(x = X, u=u) is a

secondary grade.

If X andJy are both discrete, no matter by problem formufatioby discretization of
continuous universes of discourse, then the tyhez2y set can be expressed as

LES I DI 3l IR A C YT
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o] DI LT VAR S A (T [T S 1)

We can observe that x has been discretized intoihtgand at each of these values
u has been discretized intg Malues. However, the discretization along eaclklaes
not have to be the same number. The expressionisusim (3.5) can be written for
the mixed cases wheX is continuous butl is discrete, or vice-versa. The most
important case for us in the thesis will be equmaii8.6), because when a type-2
membership function is programmed it must be distad, not only oveK but also

overJ,.

There are many choices for the secondary membefghgtions, such as Gaussian,
Trapezoidal and Triangular. We associate the typmef with the name of its
secondary membership functions. If the secondarynipeeship functions are
Gaussian, then we can call it a Gaussian type-2/fset.

Note that wherfy(u)=1, OullJ«[1[0,1], then the secondary membership functions
are interval sets; we call this kind of type-2 fyzets interval type-2 fuzzy sets.
Interval secondary membership functions reflechidoum uncertainty at the primary
membership ofx. In this chapter we apply interval type-2 fuzzyssewhich can
reduce the computational complexity significanttyjdentification of disease-related
genes (Mendel, 2001).

Definition 3.5: Assume that each of the secondary membershipidumscof a type-2
fuzzy set has only one secondary grade equal Agoptincipal membership function
Is the union of all such points at which this osgure.,

Hoingipa (X) = J'me u/ x, where fi(u) = 1. (3.7)

The principal membership function for the Gausdigme-2 fuzzy set is the solid
Gaussian curve in Figure 3.1 (a) (Castillo and Me2008).

Definition 3.6: Uncertainty in the primary memberships of a tgpéizzy setA,
consists of a bounded region that we call the faatf uncertainty (FOU). It is the

union of all primary memberships, i.e.,
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FOU(A=J . 3. (3.8)

The term FOU is very useful, because it not onlguB®es our attention on the
uncertainties inherent in a specific type-2 menthiprgunction, whose shape is a
direct consequence of the nature of these uncaesjrbut also provides a very
convenient verbal description of the entire don@isupport for all the ssecondary
grades of a type-2 membership function. An exaropke FOU is the shaded regions
in Figure 3.1 (a). The FOU is shaded uniformlyndicate that it is for a Gaussian
type-2 fuzzy set.

Definition 3.7: Consider a family of type-1 membership functigp$x|ps, p2, ..., pv)
whereps, p2, ..., pv are parameters, some or all of which vary overesoamge of
values, i.e.pUP; (i =1, ...,v). A primary membership function is any one of thes
type-1 membership functions, e.gu(X|p1= pr, P2= P2, ---» V=Pv) -

It is subject to some restrictions on its parangetdthe family of all primary

membership functions creates a FOU.
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Figure 3.1 Gaussian type-2 fuzzy set. (a). FOU Gfaaissian type-2 fuzzy set. (b).

Gaussian type-2 secondary membership function. (o}erval secondary
membership function.
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3.2.2 Type-2 fuzzy set operations

In this part, we will give some introduction of dbeoretical operations of type-2

fuzzy sets. We will explain how to compute the umimtersection and complement

for type-2 fuzzy sets. Consider two type-2 fuzzgsk and B, i.e.

Az'[x,uA(x)/x:J-XUJg fx(u)/u}/x, 3°0[0,1], (3.9)

and

B=jxué(x)/x=jx[jw g(l)/ u}/) Jroo,1]. (3.10)

Union of type-2 fuzzy sets

The union ofAand B is another type-2 fuzzy set, just as the uniotypé-1 fuzzy

setsA andB is another type-1 fuzzy set,

ADB - ﬂADB(X,\o:.[XDX/JADB( )9/)(:.[>GX|:J-\DJK’D[O,11 b/ ﬁ/ o (3L

where

Joh@rv=o([,, w0/, aw W=a(u(xu(y). @12

here,p plays the role of in (3.9), which is a t-conorm function of the sedary

membership functionsy; (x) and £ (x) , which are type-1 fuzzy sets. is a t-

conorm function because the union of two type-Izyugets is equivalent to the t-
conorm of their membership functions. Following firescription of the right-hand

side of (3.9), we see that

¢(J-UDJ;‘ fx(u)/u’J-wm;V gx(V\b/V\):J-leJMJKN £(9* a(We(u W, (3.13)

when we considep is the maximum operatidn, then (3.11) and (3.13) can be

expressed as

s = [ oo RO/ V=] T G0 a(w/ (i W, (3.14)
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wheres indicates minimum or product, afidndicates union oved® x J*.

Another way to express (3.14) is in terms of theoadary membership functions of

AandB which is proposed by Mizumoto and Tanaka (1976):

Hios () =

ugdy

fmw f(We g (W/ v= (3 445 ( ¥, (3.15)

wherev = uld wand [[ indicates the so-called join operation (Mizumotal dranaka,
1976).

Equation (3.15) indicates that to perform the jddetween two secondary

membership functionsy; (x) andy, (x) ,v=uld wmust be performed between every

possible pair of primary membershipsandw, such that Ul J, and wlJ J; and that

the secondary grade @f;

05 (X) must be computed as the t-norm operation between

the corresponding secondary gradeg/ofx) andu () , f(u) andgu(x), respectively.

According to (3.11), this work must be done for ariy X to obtainu; -(X).

I nter section of type-2 fuzzy sets

The intersection ofAand Bis also another type-2 fuzzy set, just as the $eigion
of type-1 fuzzy setéd andB is another type-1 fuzzy sets,

AnB o g ((xV=[ 1 (3 % (3.16)

the development of/; .(x)is the same as that of  .(X), except that in the present

casep is the minimum or product functian,

H, B(X) :J-UDJ;I IV\DJZ\I fx(u). gx(V\b/ V. (317)

Another way to express (3.17) is in terms of theosdary membership functions of

AandB, as
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Hano0 =, [ o B0 G0W/ V=1, (3N A5 ( 3, (3.18)

wherev = ullwand [] denotes the so-called meet operation (MizumotoTarhka,

1976).

Equation (3.18) indicates that to perform the méetween two secondary

membership functionsy; (x) andg;(x) ,v=ullwmust be performed between every
possible pair of primary membershipsindw, such thau 0 J, andw J’, and the
secondary grade qff; .(x)must be computed as the t-norm operation betwezn th
corresponding secondary gradesgf(x) andu; (X) , fx(u) and g«(x), respectively.

According to (3.18), this must be done for arip X to obtairng; ;(X) .

Complement of atype-2 fuzzy set

The complement of is another type-2 fuzzy set, just as the complérnétype-1

fuzzy setA is another type-1 fuzzy sets:

Ao p(x V= () x (3.19)

In this equationu/i(x) indicates a secondary membership function; i.eeaah value

of x, ,u/i(x) is a function:
#09= ], BW/A-W=-1403, (3.:20)

where = denotes the so-called negation operation (Mizunsotd Tanaka, 1976).

Equation (3.20) indicates that to perform the niegatf the secondary membership

function/,l/i(x), 1-u must be computed d&f udJJ;, and the secondary grade of
,u/i(x) at 1-u is the corresponding secondary gradg/ k) andf(u). According to

(3.19), this must be done for aryn X to obtainu/i(x) :
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Examples of operations of type-2 fuzzy sets, joieet, negation, are as follows:

Consider two type-2 fuzzy sets :

AzluA(Xl)+'UA(X2)+'U”A()%)’ Bzﬂs(&)Jrﬂe(Xz)JrﬂB()%),
X % X X % X3
where
_ 3 _ _01 04 05 0.9 =O_.9
Hg (X)) = 2 Hi(%) =— > /JB(XZ) “05 0g Hi (%) = 06 07 M (%) 08

Following (3.14), we have

oo
;"3
]
VR
o
w
o
w
O
o
w
)
w

Hiys(%) = () L 15 (%) = (

His (%) = 1 (0) L 5 (%) = ( 4)D

O4D01 0.4] 0.«_ 01

02D05 0.21 0.¢ 05 0.6

05, 09JD0.9
06 0.7 O0.&

05D09 0.91 0.¢_ 05 09_0.9

06D08 0.71] 0.¢ 08 0.8 0.8

5 (%) = 1 () Lty (%) = (

then,
AUB= 0.3 0.4+ 0.105 04 O.§ 0.9 O'
X % X
We also can obtain meet and negation of the twe-B/fuzzy sets following (3.17)
and (3.20):

_030.1 0402 0506 09¢C

ANB
X % X3
%_0309, 0408 0504 090
X, X, X,
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3.2.3 Type-2 fuzzy member ship function

In this chapter we apply interval Gaussian typeai2zy sets to identification of
disease-related genes, therefore we give some dasmptype-2 fuzzy sets with

Gaussian primary membership function.

Consider the case of a Gaussian primary membefghgiion having a fixed mean,

m, and an uncertain standard deviation that takesbres in[o;, g,] , i.e.,

X—m

Ha(X) = exp|:_%(7j :l , ollo,0,]. (3.21)

Corresponding to each value gfwe will get a different membership curve. Here we

seto [1, 2], m= 5; we obtain Figure 3.2

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

O 1 1
0 2 4 6 8 10
Figure 3.2: FOU for Gaussian primary membershigtion with uncertain standard

deviation.
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Consider the case of a Gaussian primary membersimgtion having a fixed

standard deviatiow , and an uncertain mean that takes on values;irds}, i.e.,

2
X—m

j } , mO{my, mp}. (3.22)
g

Hn(X) = exp[—%(

Corresponding to each value of we will get a different membership curve. Here

we seto =2,m; =4, mp=7; we obtain Figure 3.3
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Figure 3.3 FOU for Gaussian primary membership tionovith mean, mand m.
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Figure 3.4 Three-dimensional view of a type-2 mersihig function.

In Figure 3.4 we have a three-dimensional view ¢yme-2 Gaussian membership
function. The structure of primary membership fimttand secondary membership

function are clearly showed in this figure.

The FOU can be described in terms of upper andrlovembership functions. In the
application we use upper and lower membership fonstto establish primary

membership functions of diabetes data and lungerathata.

Definition 3.8: An upper membership function and a lower membpréinction

(Mendel and Liang, 1999) are two type-1 members$hnetions which are bounds
for the FOU of a type-2 fuzzy sAt The upper membership function is associated
with the upper bound of FOWBJ, and is denotedr; (x) , OxO X . The lower

membership function is associated with the lowarrabof FOUA), and is denoted
Ui (X),OxO X, i.e.,

I (x) = FOU(A), OxO X, (3.23)

and
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H;(X) = FOU(A) OxO X. (3.24)

Since the domain of a secondary membership fundtias been constrained in

equation (3.2) to be contained in [0, 1], lower amgper membership functions
always exist. From (3.10), we see that

Fou(d=]J_ 3, (3.25)

and

FOUA={]J . I (3.26)

WhereJ_Xandidenote the upper and lower bounds X respectively; hence,

H;(X) :J_X and 1 (x) =J,, OxO X.

We can express (3.2) in terms of upper and lowambership functions as

A= (% U):J-meﬂ;\(x)/ X:J-ﬂxUm k(v u}/)

_ I[ [ fx(u)/u} / . (3.27)

We see from this equation that the secondary meshigefunction x;(x) can be

expressed in terms of upper and lower membersiigtifbn as

10 = |

o f.(u/u, (3.28)

in the special but important case when the secgndembership functions are
interval sets, then (3.27) simplifies to

Azj.xmx [J-LD.LJ/U}/X:J-E XUM 4:1]]/ u}/x. (3.29)
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We use upper and lower membership functions to coenfhe differences between

genes in this chapter.

For the Gaussian primary membership function witbemtain mean (Figure 3.3), the

upper membership functige (x) is

N(m,o; ¥ x<m
;. (x) = 1 ms<xsm , (3.30)
N(m,o; X x> m

where, for instancé\(m,o; X = exp[-3 (X;’u)z]. The upper thick solid curve in
o

Figure 3.3 denotes the upper membership functibe.ldwer membership function,

Ui (X), is

N(m,o; % x< mlzmz
Ui (X) = o (3.31)
N(m,o; ¥ x> mlzmz

The thick lower curve in Figure 3.3 representsldweer membership function.

From this example we see that the upper or lowanibeeship functions cannot be
denoted by just one mathematical function oveerisre x-domain. It may consist of
several branches and each is defined over a diffeegment of the entire x-domain.
When the input x is located in a specific x-domsggment, we call its corresponding
membership function branch an active branch (Liand Mendel, 2000); e.g., in

(3.31), when x > (m+my) / 2, the active branch fqu;, (x) is N(m,o; X.

For the Gaussian primary membership function witltcentain standard deviation

(Figure 3.2), the upper membership functign(x) , is

7,() = N(m,a,; 3, (3.32)
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and the lower membership functiog, (x) , is

()= N(m,;; 3, (3.33)

The upper thick solid curve in Figure 3.2 denotes ipper membership function,
and the lower thick solid curve denotes the lowenthership function. We see that
the upper and lower membership functions are sinfplethis example than for the

preceding one.

These two examples illustrate how to define theeupapnd lower membership
functions so that it is clear how to define themdther situations. However, for the
problem in this chapter, the upper and lower mestbprfunctions we established
contain uncertainty both in mean and standard tlewiaThe plot is close to Figure
3.1 (a).

3.2.4 Centroid of type-2 fuzzy sets and type-reduction

Type-reduction methods are “extended” versionsypéil defuzzification methods.
These methods give us a type-1 starting from the-8/set obtained at the output of
the inference engine which is very important fozzy logic system and fuzzy
clustering methods (such as type-2 fuzzy c-meddsfuzzification is considered as
a task of finding the centroid of a fuzzy set. Thentroid itself, as an output of a
fuzzy logic system, can mostly represent the fisetyand describe the fuzzy concept.
The centroid of a type-1 set A, whose domain isréiized into N points, is given

as

C, :% | (3.34)

similarly, the centroid of a type2 fuzz sBtwhose domain is discretized into N

points so that

Azzi“:l[ ju% f, (u)/ u} / X, (3.35)
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can be defined using the Extension Principle dsvd (Karnik and Mendel, 1998,
1999)

Ca= o, jm RACOIER WA )/le , (3.36)

where C;is a type-1 fuzzy set.

Definition 3.9: For discrete universes of discouseand U, an embedded type-2

fuzzy setAs has N elements, whefg contains exactly one element fradg,J, ,...,

J,, » namely 8,6,,....6, , each with its associated secondary grade, namely

X

£,0.),1,(8,) .., £,.(6,).1e.,

A=Zi[f@)8]/x, 4n3,0U=01. (837

Definition 3.10: For discrete universes of discourse X and U, mbesided type-1

set A-has N elements, one each framJ, ,...,J, , namehg,.,6,,...,6,, i.e.,

Xy !

S"6/x, 03, 0U=[01]. (3.38)

From the above equation we see that the ges Actually the union of all primary

memberships of the type-2 fuzzy get

Every combination of g,...6, and its associated secondary grade

f (6.)e ..o f, (6y) forms an embedded type-2 fuzzy sfgt Each element of; is
determined by computing the centroEiNﬂ)gQ/zi'iﬁ of the embedded type-1 set

Ac that is associated Witﬁ\e and computing the t-norm of the secondary grades

associated witl#,...,6, , namelyf, (6,) ...« f, (6y). The complete centroi@; is

determined by doing this for all the embedded t§sets in5b.
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a() = w : (3.39)

2i=19i

and
b(6) = fxl(ﬁl)- .o fXN @), (3.40)

then C; can also be expressed as

C,= jngJXI...LNDJW b(8)/ a®), (3.41)

in terms ofa(d) andb(d), the computation ofx involves computing the tuple(@),
b(#)) many times. Supposeq(f), b(0)) is computedr times, then, we can consider
the computation of £as the computation of thetuples (a, b), (&, k), ..., (@, b).

If two or more combinations of vectérgive the same point in the centroid set, then

we keep the largest value obp(

From (3.31), we see that the domain afv@ll be an interval [#0),a(0)] , where

3(6) = min, a(é), (3)4
and
a (6) =max, a@). (3)43

A practical sequence of computations to obtgingGsummarized as follows:

1. Discretize thex-domain intoN points x;, ..., X .
2. Discretize eachl, into a suitable number of points, denoted by M
3. Enumerate all the embedded type-1 fuzzy sets; thiirbe |_| LM]. of them.

4. Compute the centroid using (3.31), for example, wot@ theo tuples (& hx),
k=1,2,..., J_N:lMJ. , where @ and ky are given in (3.29) and (3.30),
respectively.

For an interval type-2 fuzz set, (3.26) reduces to
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N
Co=[  f 1/2;)96" . (3.44)
603, J60Jy, z a

In this chapter, we use interval type-2 fuzzy set dstablish the similarity
membership function between patients and normablpastata. In the application, we
do not use type-2 fuzzy logic system. The type-tédu step in our problem is
aimed to obtain the final membership value of timeilarity which is the basis to

verify the differences of expression values of genghe two different data sets.

3.3 Methods

In this section, we introduce two methods: fuzzymbership test and type-2 fuzzy
membership test, which are applied to identificatad disease-associated genes in

the next section and we also make some comparistwrebn these two methods.

3.3.1 Fuzzy member ship test

The fuzzy membership test (FM-test) is proposed.ibpg (2006). In this approach,
a new concept of fuzzy membership d-value (FM dwpis defined to quantify the
divergence of two sets of values. They applied EBt-to diabetes and lung cancer

expression data sets, respectively. The detatlsi®imethod are as follows.

Let S andS; be two sets of values of a particular featuretday groups of samples
under two different conditions. For the problempi@n to solve, the two sets can be
patient's and normal people’s gene expression galUdée basic idea of this
approach is to consider the two sets of valuesaagpkes from two different fuzzy
sets. For each fuzzy set, a membership functiestablished and the membership
value of each element is examined with respedi@mther fuzzy set. By calculating
the average of membership values, the divergendbeobriginal two sets can be

measured. In particular, the following steps andqumed:

1. Compute the sample mean and standard devidtiSnamdS, respectively.
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2. Characteriz&, and$; as two fuzzy setBS, andFS, whose fuzzy membership

functions, fs (x) and . (X) , are defined with the sample means and standard
deviations. The fuzzy membership functidg, (x) (i = 1, 2) maps each valug to a
fuzzy membership value that reflects the degreg, dfelonging tof.; (x) (i =1, 2).

For each gene, the value is the expression value of patients or normal fesop

wherej =1, 2,...,N.

3. Quantify the convergence degree of two s8&tsand & by the two fuzzy

membership functionsfg (x) and fs (x) . We will give the definition of the

convergence degree below.

4. Define the divergence degree (FM d-value) betwibe two sets based on the

convergence degree.

Liang (2006) applied the Gaussian function as ttezy membership function, then

the mean and standard deviation are calculated.

The sample meam of S, is calculated as

1
M:WZK, 3.45)
1 %08

whereN; is the number of elements 8, and the sample standard deviatmof S

is calculated as

1 2
0-1_\/N1_12()§ /Jl) J (3-46)

%08
then, the fuzzy membership function of Sets defined as

fig (x) = € 0207, (3.47)

The function f.g (X) maps each valuein S, to a fuzzy membership value to quantify

the degree that belongs ta-S,. A value equal to the mean has a membership value

102



Fuzzy Methods for Analysis of Microarrays and Netkgo

of 1 and belongs to fuzzy J€§, to a full degree; a value that deviates from tkeam
has a smaller membership value and belondsStdo a smaller degree. The further
the value deviates from the mean, the smaller tlezyf membership value is.
Similarly, the fuzzy membership function 8y is defined as

fes, (X) = g (x-)*/203 , (3.48)

whereu, ando, are the mean and standard deviatioS,akspectively.

Since the fuzzy membership functions can overae, element can belong to more
than one fuzzy set with a respective degree foh.ekor an element %, we

measure the degree that it belongs$ by applying its value td. (x). Similarly
we can apply its value ts (x) to measure the degree that it belong&$a The

idea of FM-test is to consider the membership valuan element irs; with respect

to S as a bond betwee® andS;, and vice versa; then the aggregation of all these
bonds reflects the overall bond between these &ig& $he weaker this overall bond
is, the more divergent these two sets are. Thagttieof the overall bond between
two sets is quantified by theg-value, which aggregates the mutual membership

values of elements i§ andS, and is defined as follows.

Definition 3.11 (FM c-value): Given two set§; and S, the convergence degree
betweerS, andS; in FM-test is defined as

S @+ fa(f)
_ €13 &S
A8 =g

Definition 3.12 (FM d-value): Given two setS; and S, the FM d-value degree
betweernS; andS; in FM-test is defined as

2 fes @+ feg(F)
d(§,9)=1-¢3 9=1- €5 .¥ -=3 &8
SIS

(3.49)

(3.50)
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3.3.2 Type-2 fuzzy member ship test

In this section, based on the FM-test of Liang @0Qve propose type-2 fuzzy
membership test for disease-associated gene idatibh. We also consideés; and

S as two sets of values of a particular featuretier groups of samples under two
different conditions, but this time we will estalitype-2 fuzzy membership for the
two set§~l andS. We choose the Gaussian function as the primamnbeeship

function. To avoid computational complexity, we bppphe interval secondary
membership function for this problem, which mealghe secondary membership
values are 1. Following the theoretical basis w&oduced above, we should
establish the upper and lower primary membershipctfans to describe the
uncertainty in the gene expression data. In pdaticthis method is performed as

follows:

1. Use the Gaussian function as the primary neeshlip function to compute the

mean(y, 12) and standard deviation,( o,) of S; andS,.

2. For each set, we establish the upper and lpwsiary membership functions.
Here, both the mean and the standard deviationbailuncertain. We use two
parametersx and which are in [0, 1] to control the uncertainty nmean and

standard deviation respectively. Based on the F-t@nd the rules of
establishing upper and lower primary membership30(3.33) forS, we obtain

the upper primary membership as

g Il 20pat if x<(L-a)y,
/TIS(X) = 1 if A-a)u, < xs@+a)y,, (3.51)
gl Wraml’/20+paf if x>1+a)y,

and the lower primary membership as
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el 20-Pof  if ye m
(X)) = ' - 3.52
Hs () e D ml 2080 e v mn (3.52)
We can obtain the upper and lower prynmembership functions
similarly fosS,:
g Do)l 2007 if x<(1-a)u,
/Tl-%(x) = 1, if A-a)u, s xsA+a)u,, (3.53)
g W l’/20p)of if x>1+a)u,
Sx-a) P 2005
e ? 2 f xsu
K5, (9= - ?/20-B)0f © (3.54)
g I awl20-p0F s X> L1,

3. Use the upper and lower primary membershigtfans He (X) and,gS (x),i=1,2;
and the secondary membership vafi(@$ to quantify the convergence $f and

S. Type-reduction work is needed in this step. Hsirgge we use the interval

type-2 fuzzy sefy(u) =1,0ul] J, J[0,1]. The secondary memberships are all

uniformly weighted for each primary membepsbi x.

4. Calculate the divergence degree betweemibeéts based on the convergence
degree.

Type-reduction is an important step for type-2 fugets. In our applicationix[1 X,

a primary membership interva,yg (X) "L_’S (X)] can be obtained. We discretize it into
N points, wheres, =/_JS(X) anda,, =l (X); then the final membership afcan be

obtained as

N

Yaxf(a)
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This type reduced membershifx) maps each valuein S; or S; into a membership
value to quantify the degree that x belongs to-&fezzy setS or§2. For simplicity,

we puta; = (@1 + ai+1) / 2,i = 2,...,N-1, whilef(a) = 1, UxUX, i = 1,...,N. (3.55)
can be expressed as

H(X) =M (3.56)

to compute the overall bond betwegmnandS,, we define type-2 FM c-values based
on Liang et al. (2006).

Definition 3.13 (Type-2 FM c-values): Given two seB and S, the convergence
degree betwee§ andS; in FM-test is defined as

D Hs () + D ()
(S, §)="=2 |Sl|+|ﬁ§| . (3.57)

We define the divergence value as follows:

Definition 3.14: Given two sets$5 andS;, the divergence degree betwegrandS,
in the FM-test is defined as

d(s, 9)=1- ¢S 9. (3.58)

Because the membership function maps the elemé@so a type-2 fuzzy sé; :

i #j, the aggregation of all membership values in W sets can be used to quantify
the similarity ofS; andS,. It can be considered as an overall bond betweesettwo
sets. The weaker this overall bond is, the morerdent these two sets are. In this

case, for a given gene, the expression values batpatients and normal people can
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be significantly different. If the elements in bd&hand S, have high membership
values,S; is very similar tdS,. In this case, for a given gene, the expressitumegado

not change a lot between patients and normal people

3.4 Data analysis and discussion

In this section, we apply type-2 FM-test to a diabeexpression dataset and a lung
cancer expression dataset, respectively. Meanwhidenake a comparison with the

results of traditional FM-test by Liang et al. (300

3.4.1 Analysis of diabetes data

The first dataset is a diabetes dataset of micagagene expression data. It contains
10831 genes and is downloaded from Yang et al. AR0Bor each gene in this
dataset, there are 10 expression values, five ognoup of insulin-sensitive (IS)
people and five from a group of insulin-resistdR) (people. Table 3.1 is an example
of the gene expression values under two conditibasnake this data more reliable,
only the genes that have null expression valuesirkided in this analysis.
Meanwhile, we also require that, for a gene tortmduded, at least five out of its ten
expression values are greater than 100.

Table 3.1: The gene expression values of diabetswhder two conditions.

Gene IR IS
1 123 142 11 406 220 305 398 707 904 688
2 200 191 220 83 197 49 81 116 111 135
3 750 559 649 695 639 310 359 135 97| 178
4 246 213 232 134 67 86 79 77 94 61
5 598 424 695 451 141 342 260 266 229 23

Ten best-ranked genes of diabetes identified bytythe-2 FM-test and the original
FM-test are shown in table 3.2. From this tablesge that the results of the two
methods are not too much different. The bold |steme names of genes which are

associated with diabetes.
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Table 3.2 Ten best-ranked genes associated witeidis.

Type-2 FM-test
Probe Set Gene Description T2 d-value
U49573 Human phosphatidylinositol (4,5) bisphosphate 03673
X53586 Human. mRNA for integrin alpha 6 0.6131
M 60858 Human. nucleolin gene 0.6080
u61734 Homo sapiens transmembrane emp24-likedkaffj protein 10 0.5831
D85181 Homo sapiens mRNA for fungal sterol-C5-deseste homolog 0.5808
226491 Homo sapiens gene for catechol o-methyltrans-fease 0.5773
L07648 Human MXII mRNA 0.5769
M95610 Human alpha 2 type IX collagen (COL9A2) mRNA 0.5760
L 07033 Human hydroxymethylglutaryl-CoA lyase mRNA 0.5749
X81003 Homo sapiens HCG V mRNA 0.5525

FM-test

Probe Set Gene Description FM d-value
U45973 Human phosphatidylinostiol (4,5) bisphosphate 08998
M 60858 Human nucleolin gene 0.9351
D85181 Homo sapiens mRNA for fungal sterol-C5-desee homolog 0.8918
M95610 Huamn alpha 2 type IX collagen (COL9A2) mRNA 0.8718
L07648 Human MXII mRNA 0.8575
L07033 Human hydroxymethylglutaryl-CoA lyase mMRNA 0.8554
X53586 Human mRNA for integrin alpha 6 0.8513
X81003 Homo sapiens HCG V mRNA 0.7914
X57959 Ribosomal protein L7 0.7676
u06452 Melan-A 0.7566

For type-2 FM-test, within the 10 significant genéentified, 7 of them have been
confirmed to be associated with diabetes accortirgenes description information
in Genebank and the published literature. One rgerne than original approaches is
identified. According to the further research e fpublished literature, we have the

following information.

Human phosphatidylinositol (4, 5) bisphosphate 6gpimatase homolog (gene
U45973) was found to be differentially expressednsulin resistance cases. Over-
expression of inositol polyphosphate 5-phospha?a&HIP2 has been shown to
inhibit insulin-stimulated phosphoinositide 3-kieagPI3K) dependent signalling
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events. Analysis of diabetic human subjects hagaled an association between
SHIP2 gene polymorphism and type Il diabets mallituiso knockout mouse studies
have shown that SHIP2 is a significant therapeaatiget for the treatment of type-2
diabetes as well as obesity (Dyson et al., 2008hofelndreier et al. (2001) have
described a regulatory role of integrin alpha h@X53586) in Ca2+signalling that
is known to have a significant role in insulin stance (Kulkarni et al., 2004).
Csermely et al. (1993) reported that insulin mexdiat
phosphorylation/dephosphorylation of nucleolar gironucleolin (gene M60858) by
simulating casein kinase Il, and this may play e rin the simultaneous

enhancement in RNA efflux from isolated, intact ceiclei (Csermely et al., 1993).

For gene 226491, the Homo sapiens gene for catechwthyltrans-fease (COMT)
was found to be differently expressed and helgiukifeatment in diabetic rat. Wang
et al (2002) compared the activity of COMT in theets of diabetic rats with that in
normal rats; the results suggested the activit@OMT is lower in diabetic rats than
in normal rats. Lal et al. (2000) examined the &ffd nitecapone, an inhibitor of the
dopamine-metabolizing enzyme COMT and a potenbaitkant, on functional and
cellular determinants of renal function in ratshwiiabetes. The results suggested
that the COMT inhibitory and antioxidant propertie$ nitecapone provide a
protective therapy against the development of diab®&phropathy. These works
proved that gene Z26491 is related with diabetdseatment. C-myc is an oncogene
that codes for transcription factor Myc that alavigh other binding partners such as
MAX plays an important role widely studied in var® physiological processes
including tumor growth in different cancers. Myc dutates the expression of
hepatic genes and counteracts the obesity andrimesistance induced by a high-fat
diet in transgenic mice overexpressing c-myc iredi¥Riu, et al., 2003). Max
interactor protein, MXI1 (gene LO7648) competesN#X thus negatively regulates
MYC function and may play a role in insulin resrsta. In the presence of glucose or
glucose and insulin, lecucine is utilized more aéintly as a precursor for lipid
biosynthesis by adipose tissue. It has been shbainduring the differentiation of
3T3-L1 fibroblasts to adipocytes, the rate of lipidsynthesis from leucine increase

at least 30-fold and the specific activity of 3-hyxly-3-methylglutaryl-CoA lyase
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(gene L0O7033), the mitochondrial enzyme catalydimg terminal reaction in the
leucine degradation pathway, increases 4-fold dudifferentiation (Frerman et al.,
1983). HCGV gene product (gene X81003) is knowmltabit the activity of protein
phosphatise-1, which is involved in diverse signgllpathways including insulin

signalling (Zhang et al., 1998).

In summary, from Table 3.2 we see, for the reshtaimed by the FM-test, genes
U49573, M60858, L07648, LO7033, X53586 and X81008 associated-disease
genes. For the result obtained by type-2 FM-temeg U49573, X53586, M60858,
726491, L07648, LO7033 and X81003 are confirmebddamssociated with diabetes
disease. One more gene than FM-test is identifeshe X57959, D85181, M95610
and U06452 are recommended by Liang et al. (209&aadidate genes which are
associated with diabetes disease. Here we recomiéhd34 as a candidate gene

for the future research in this field.

3.4.2 Analysis of lung cancer data

The lung cancer dataset contains 22283 genes almvisioaded from Wachi (2005).
For each gene, there are 10 expression values.fifdtefive values are from
squamous lung cancer biopsy specimens and theso#rer from paired normal
specimens. We also use type-2 FM-test and FM-teshis dataset and then make a

comparison.

The results are shown in Table 3.4. From the talglsee that the results obtained by
the two methods are very different. The bold Isttare names of genes which are
associated with lung cancer disease. For thetrebthined by type-2 FM-test, 7
genes in ten best ranked are identified. For thelr@btained by traditional FM-test,

8 genes are identified. However, when we appliedRN-test on lung cancer data,
there are more than 80 genes having the same Faluds; they are all equal to one,
which makes it difficult to rank and distinguisisdase associated genes from others.
We have to choose the overexpressed genes from 8degenes for analysis, which
made the task more complicated, and it may misesamportant genes. The reason

is that the gene expression values in lung canceroarray data are very close to
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each other, and the original data is noisy. Tal8eg8/es some example genes in this
data set. These reasons imply the dataset contaie umcertainty information and

the traditional fuzzy set does not seem to be @btkeal with these factors suitably.

Table 3.3 The gene expression values of lung cateterunder two conditions

Gene Normal Squamous lung cancer
1 9.185 9.618 9.369 9.61 9.372 10.52910.343 | 10.484 | 10.934 | 11.332
2 6.282 6.389 6.402 6.395 6.34 6.80B 6.717 6.6l6 6 6/ 7.067
3 6.508 6.48 6.587 6.658 6.794 6.514 6.427 6.557 4866. 6.436
4 8.945 9.004 9.145 9.032 8.71 8.898 9.017 9.017 .7918 8.725
5 3.974 4.142 4.296 4.043 4.043 4.007 4.15%7 4.294 0684 | 4.082

As shown in Table 3.4, 8 genes in ten overexpregggees are identified as the
disease associated genes. Cytokeratines are aepalyiamily of insoluble proteins
and have been proposed as potentially useful mauedifferentiation in various
malignancies including lung cancers (Camilo et 2006). Dystonin (DST/BPAG1)
is @ member of plakin protein family of adhesiongtion plaque proteins. A recent
study showed the expression of BPAG1 in epithdlimhor cells (Schuetz et al.,
2006). Maspin (SERPINB5) was has been shown tonkehied in both tumor
growth and metastasis such as cell invasion, aegesgjs, and more recently
apoptosis (Chen and Yates, 2006). Tumor protein-ligé3 (TP73L/P63) is
implicated in the activation of cell survival andtiapoptotic genes (Shisa et al.,
2006) and has been used as a marker for lung cdhbas been suggested that the
p63 genomic amplification has an early role in lunmorigenesis (Massion et al.,
2003). CLCAZ belongs to calcium sensitive chlomd@ductance protein family and
has been used in a multi-gene detection assay éor 8mall Cell Lung Cancer
(NSCLC) (Hayes et al., 2006). Plakophilins (PKPs) mmembers of the armadillo
multigene family that function in cell adhesion aignal transduction, and also play
a central role in tumorigenesis (Schwarz et alQ630 Desmoplakin (DSP) is a
desmosomeprotein that anchors intermediate filasnéat desmosomal plaques.
Microscopic analysis with fluorescencelabeled ardibs for DSP revealed high

expression of membrane DSP in Squamous cell CangeqgSCC) (Young et al.,
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2002). The data analysis also identified cell cyelgulatory proteins such as CDC20
and Cyclin B1. Overexpression of CDC20 has beemwshim be associated with
premature anaphase promotion, resulting in mitakinormalities in oral SCC cell
lines (Mondal et al.,, 2006). Mini chromosome mairiece2 (MCM2) protein is
involved in the initiation of DNA replication and imarker for proliferating cells
(Chatrath et al., 2003). Here in Liang et al. (2006onclusion, gene NM_023915
and NM_019093 are suggested as potential candidiatdsiological investigation
(Liang et al., 2006).

Table 3.4 Ten best-ranked genes related with langer.

Type-2 FM-test

Probe Set Gene Description T2 d-value
NM_002405 N cetglucosamimyiranstorase 0.7435
NM_001335 CTSW: cathepsin W 0.7285
NM_017761 PNRC2: praline-rich nuclear receptor tiwator 2 0.7266
AV728526 DTX4: deltex homolog 4 (Drosophila) 0.7265
NM_0002694 ALDH3BL1: aldehyde dehydrogenase 3 family, member B1 0.7259
NM_024830 LPCATL1: lysophosphatidylcholine acyltransferase 1 .7203

BE789881 RAB31: member RAS oncogene family 0.7204
AAB88858 PDE3B: phosphodiesterase 3B, cGMP-inhibited 0.7194
NM_006079 CITED2: cbp/psoccgigtgzxrsig?n% itr:gln[s‘gﬁ:g/iﬁtgr, withu@sp-rich 0.7186
AF026219 DLC1:deleted in liver cancer 1 0.7145

FM-test (Overexpressed)

Probe Set Gene Description FM d-value
NM_173086 KRT6E: Keratin 6E 1
NM_001723 DST: Dystonin 1
NM_002639 SERPINBS: Serpin peptidase inshibitor, clade B (buatin), member 1
AB010153 TP73L: Tumor protein p73 like 1
NM_023915 GPR87: G protein-coupled receptor 87 1
NM_006536 CLCA2: Chloride channel, calcium activated, fanmigmber 2 1

NM_001005337 PKPI: Plakophilin 1 ( ectodermal dysplasia/skirgfliy syndrome) 1
AF043977 CLCA2: Chloride channel, calcium activated, fanmigmber 2 1
NM_004415 DSP: Desmoplakin 1
NM_019093 UGTIA9: UDP glucuronosyltransferase ! fighpolypeptide A9 1
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7 genes in ten are identified by type-2 FM-testFNWG is a member of the fringe
gene family which also includes radical and lundiicge genes. They all encode
evolutionarily conserved secreted proteins thatimdhe Notch receptor pathway.
The activity of fringe proteins can alter Notchragng (Gene bank). Activation of
the Notch 1 signaling pathway can impair small aalg cancer viability (Platta et
al., 2008). The protein encoded by CTSW is foursbeisited with the membrane
inside the endoplasmic reticulum of natural kildK) (Gene Bank). NK cells play a
major role in the rejection of tumors and cellsesteéd by viruses (Oldham et al.,
1983). ALDH3BL1 is highly expressed in kidney andduGene Bank). Marchitti et
al. (2010) found ALDH3B1 expression was upregulatedaimigh percentage of
human tumors; particularly in lung cancer cell waue is highest. Increasing
ALDH3B1 expression in tumor cells may confirm a gt advantage or be the
result of an induction mechanism mediated by irgirgpoxidative stress (Marchitti
et al., 2010). LPCAT1 activity is required to acreehe levels of SatPC essential for
the transition to air breathing (Bridges et al.1@Dand it is also upregulated in
cancerous lung (Mansilla et al., 2009). Gene PDB2B mentioned in (Lo et al.,
2008) as the most significantly amplified geneha tumors. CITED?Z is required for
fetal lung maturation (Xu et al., 2008). Researshimmund CITED2 was highly
expressed in lung cancer but not in normal tisswagh demonstrates that CITED2
plays a key role in lung cancer progression (Chaal.e2010). Gene DLC1 encodes
protein deleted in liver cancer (Liang et al., 2006his gene is deleted in the
primary tumor of hepatocellular carcinoma. It majoms 8p22-p21.3, a region
frequently deleted in solid tumors. It is suggedtet this gene is a tumor suppressor
gene for human liver cancer, as well as for presthing, colorectal and breast
cancers (Gene Bank). Our analysis also identified 0807761, AV_728526,
BE789881. Here we suggest these genes as poteanididates in this field.

3.5 Conclusion

Fuzzy approaches have been taken into considerttianalyse DNA microarrays.
Liang et al. (2006) proposed a fuzzy set theoryeBagpproach, namely a fuzzy
membership test (FM-test), for disease genes fimiton and obtained better

results by applying their approach on diabeteslangl cancer microarrays. However,
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some limitations still exist. The most obvious liation is when the values of gene
microarray data are very similar and lack over-egpion, in which case the FM-d
values are very close or even equal to each oflvat makes the FM-test inadequate

in distinguishing disease genes.

To overcome these problems, we introduced typez2yfset theory into the research
of disease-associated gene identification. Typed2zyf sets can control the
uncertainty information more effectively than contienal type-1 fuzzy sets because
the membership functions of type-2 fuzzy sets aree-dimensional. In this chapter
we established the type-2 fuzzy membership functoyndentification of disease-
associated genes on microarray data of patientsiamdal people. We call it type-2
fuzzy membership test (type-2 FM-test) and appiied diabetes and lung cancer
data. For the ten best-ranked genes of diabetesifidd by the type-2 FM-test, 7 of
them have been confirmed as diabetes associateds gaocording to genes
description information in Genebank and the pullishiterature. One more gene
than original approaches is identified. Within tt@ best ranked genes identified in
lung cancer data, 7 of them are confirmed by ttegdiure which is associated with
lung cancer treatment. The type-2 FM-d values aaifgcantly different, which
makes the identifications more reasonable and cemg than the original FM-test.
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Chapter 4

| dentification of protein complexesin PPl networks based
on fuzzy relationship and graph model

4.1 Introduction

Protein-protein interactions are fundamental toltodogical processes within a cell.
Beyond individual interactions, there is a lot megstematic information contained
in protein interaction networks. Complex formatisnone of the typical patterns in
the network and many cellular functions are perfminby these protein complexes
(Qi, 2008). Identification of protein complexes fiache PPl network is useful for
better understanding the principles of cellular amigation and unveiling their

functional and evolutionary mechanisms (Li et 2010).

In general, a protein interaction network is représd by an undirected and
unweighted networks(V, E), where proteins are vertices and interactionsedges

in the network. On the assumption that membershan game protein complex
strongly bind to each other, a protein complex lsartonsidered as a connected sub-
network with in a protein interaction network. Marsub-network clustering
algorithms have been proposed in recent years. rélgnethese methods can be
categorised into three groups: partitional clustgriKing et al., 2004), hierarchical
clustering (Girvan and Newman, 2002; Newman, 20Chp et al., 2007) and
density-based clustering (Sprin and Mirny, 2003laPet al., 2005; Adamcsek et al.,
2006; Zotenko et al., 2006, Guldener et al., 2005).

Density-based clustering methods are widely usedignfield. This approach detects
densely connected sub-graphs from a network. Bobanetwork with n vertices and
m edges, the density is measured vdth 2m/(n(n-1)). An extreme example is to
identify all fully connected sub-networks df= 1 (Spirin and Mirny, 2003). The
most popular density-based clustering method is Ghque Percolation Method
(CPM) proposed by Palla et al. (2005) for detectioin overlapping protein
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complexes as k-clique percolation clusters. A ket is a complete sub-network of
size k. Based on CPM, a powerful tool named CFirideidentifying overlapping
protein complexes has been developed by Adamcsak €2006). In general, less
protein complexes can be identified for larger ealwf k. The authors of CPM
suggest using the values of k between 4 and 6 atysa PPI networks. However,
mining fully connected sub-network is too restrietito be useful in real biological
networks. There are many other topological str@suhat may represent a complex
on a PPI network, for example, the star shapeliibar shape, and the hybrid shape.

In Figure 4.1 we show some examples of real conaslevith different topologies.

a. / \ d.
CKAZ HRR25 GLCB GAC1

NP A

CKB2 .CKB1 \ YCK2 YCK3 5D522 REGH
/ e N \ / \ ‘ //
CKA1 YCK1
GLCT

VPS33

Figure 4.1 Projection of selected yeast MIPS corgdeThis figure is taken from Qi
(2008). a. Example of a clique. All nodes are cater by edges. b. Example of a
star-shape, also referred to as the spoke modExample of a linear shape. d.

Example of a hybrid shape where small cliques ammected by a common node.

Therefore, if we just identify the fully connectedb-networks, we will miss lots of
protein complexes with the shape described in Eigdrl and the amount of
identified protein complexes will decrease. To ceene this problem, we combine
the fuzzy relation clustering method with the grapbdel. Since the fuzzy set
theory was proposed by Zadeh in 1965, fuzzy clusjenas been applied in many
fields (Zadeh, 2005; Baraldi et al., 1999; Borgel)09). Fuzzy relation can
effectively describe the uncertainty informationtvibeen two objectives, like the
concepts “similar” and “different” (Zadeh, 1965hds we establish a fuzzy relation
model between every pair of nodes in the netwoik ase the operations of fuzzy

relation to obtain sub-networks. However, we cangoobre the original structure of
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the network which contains important information étustering analysis. That's why
we consider the sub-networks obtained from fuzigticln model as the skeleton and
compute the interaction probability of each nodalemtify the overlapping and non-
overlapping sub-networks. In these sub-networksiesprotein complexes exist.

We applied the method on yeast PPl networks andpaced with the clique

percolation method. For the same data, we detested protein complexes. We also
applied our method on two social networks. The Itesshowed our method work
well for detecting sub-networks and give a reastmamderstanding of these

communities.

In the next section, we introduce the theoreticakground needed for a description
of the fuzzy relation combined graph model methethited in Section 4.3. We will
apply this method on two social networks and y&#lL networks respectively in

Section 4.4. The conclusion will be given in Sec#o5.

4.2 Theoretical background

4.2.1 Topological propertiesof PPl networks

The topology of a network concerns the relativenamtivity of its nodes. Different
topologies affect specific network properties. laitiformatics, the topological

structures have been analysed for the followingaea (Han et al., 2005).

1. The architectural features of molecular interact@tworks within a cell are
often reflected to a large degree in other compiestems as well, such as the
Internet, World Wide Web or organizational networkihe unexpected
similarity indicates that similar laws may govermsh complex networks in
nature. This enables the expertise from large agltmapped non-biological
systems to be utilized for characterizing the cooapbd inter-relationships

that govern cellular functions (Barabasi et alQ4£20
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2. Cellular function is a contextual attribute of cdep interaction patterns
between cellular constituents (Barabasi et al.4200he quantifiable tools of
networks theory offer possibilities for providingsights into properties of the
cell’'s organization, evolution and stability.

3. The relative positions of proteins within the imetion networks might
indicate their functional importance. For instanee,positive correlation
between biological essentiality and graphical caotigey has been
demonstrated (Han et al.,, 2005), suggesting a ioektip between

topological centrality and functional essentiality.

Therefore it is important to describe the topolagiand dynamic properties of
various biological networks in a quantifiable mannghe literature on topological

analysis of real networks is vast; therefore irs tbhapter we just give a briefly
discussion on the related concepts and prope@iemprehensive reviews can be
found in (Han et al., 2005; Faloutsos et al., 19%Bakrabatrti et al., 2005; Virtanen
et al., 2003). Here, we give an example of one qfatie yeast PPI network in Figure

4.1 by which we can understand these conceptsbette

Definition 4.1 A graph (or network) is a ordered p&ir= (V, E), where
() V={vi, Va,...,Vn}, V@ , is called the vertex or node set@f
(i) E = {e, &,..., en} is the edge set d& in whiche = {v;, v} or <v;, v¢> is the edge

linking two nodes; andw..
Definition 4.2 If every edge in a grap& is undirected, the grapB is called an
undirected graph; if every edge in a graphs directed, the grapl is called a

directed graph.

Definition 4.3 The two nodes linked by one edge are called adjacedes; the

edges linking the same node are called adjacemisedg
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Networks are naturally represented in matrix foArgraph ofN nodes is described
by an NxN adjacency matriXA whose non-zero elemendg indicate connections
between nodes. For undirected networks, a non-dalggdement; of an adjacency
matrix is equal to the number of edges between siodedj, and so the matrix is
symmetric. In our method, adjacency matrix is usedcalculate the similarity

between two different nodes.

Figure 4.2 An example of protein-protein interaeicmetwork in yeast. This figure is
obtained from (Han et al, 2005), included as bamkgd information only. It is a
fully connected network and a few highly conneatedes (hubs) hold the network

together.

Definition 4.4 A simple graph is an undirected graph that hasonpd and no more
than one edge between any two different nodes.fhected graph is one in which
there is at least one path connecting any two m@iffenodes in the graph. A graph is

a weighted graph if a weight is assigned to eadge ed
Definition 4.5 In the weighted graph, the shortest path is a patlveen two vertices

such that the sum of weights of its constituentesdg minimized. In the unweighted

graph, the shortest path is the minimum numbedgés linked two vertices.
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The shortest path can be considered as the distataeen two vertices. For any
positive integer k, the k-distance neighbourhood/ @bntains every vertex with a
distance from v that is not greater thanThus, fork = 1, those vertices which are
adjacent tor can be called the direct neighborsvptienoted by;(v). Fork > 1, we
can call these neighbors the indirect neighbors, afenoted byN(v) (Mete et al.,
2009; Palla et al., 2005).

A real network may be a disconnected graph (thelevhetwork can be divided into
some connected sub-networks). If there is no patinecting two given vertices,

then conventionally their distance is defined dsite. The standard algorithms to
find shortest paths such as Dijkstra’s algorithmih® breadth-first search method
have been proposed in Cormen et al. (2001), Sedge{P88) and Ahuja et al.

(1993).

Definition 4.7 The network diameteD is defined as the maximum value of the
lengths of all shortest paths between any two noddse network.

Definition 4.8 The characteristic path length L is defined as dkierage of the
lengths of all shortest paths in the netwGik.e.,

3" df (d)

L =<7
> f(d)

(4.1)

wheref(d) is the frequency of shortest paths with lergjth

The characteristic path length describes the dererg of the nodes in the network,
that is, how small the network is. A surprised inglin the study of complex
networks is that the characteristic path lengthmainy real complex networks is
much smaller than expected. This is the so-caltadall-world effect”, which was
originally observed in the research on social nétw@nd is often characterized as

the famous “six degrees of separation” (Chakrapa@05). Figure 4.1 shows that
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cellular networks are different from social netw®ik terms of connections between
hub nodes. In PPI networks, highly connected nadesd linking directly to each
other and instead connect to proteins with onlgwa interactions, whereas in social
networks, well-connected people tend to know edlsardHan et al., 2005).

Definition 4.9 The small-world property means that the charastierpath length.
and the number of nodéshave the following relationship:

L ~log(N). 3.

Definition 4.10 The degre&, of nodev in a graphG is the number of edges that

connectto it, i.e.,

K, =|e(u V)], u V3 V. (4.3)

The degree distribution is the probability disttibn of these degrees over the whole

graph; it is independent of the size of the graph.

Definition 4.11 The scale-free property means the degree disoibwf a network

has a power law (Newman and Watts, 1999)
pk)= k", (4.4)

where y[J[2,3] for a common case and it is called power law egptnThe degree

distribution appears linear when plotted on the-ltoy scale (Figure 4.3d). The
significance of power law distributions has to dithvtheir being heavy tailed, which
means that they decay more slowly than the exp@iemt Gaussian distribution
(referred to as random networks, Figure 4.3c). Thysower law degree distribution
would be much more likely to have nodes with a udgh degree than the other two
distributions (Chakrabarti, 2005) (Figure 4.3). Matellular interaction networks
have been shown to be scale-free. Such a diswibutidicates that most proteins in
the network participate in only a few interactiongile a few proteins participate in
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many (hubs). Figure 4.2 shows a protein interaatiap of the yeast as predicted by
previous systematic two-hybrid screens. Most pnsteparticipate in only a few
interactions, and only a few participate in dozehs is typical of scale-free network

(Han et al., 2005; Stelzl et al., 2005).

Random Scale-free

c d
J i ‘I-
4 II." 11| 0.1
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Figure 4.3: Degree distribution of random netwostsus scale-free network. The
Figure is modified from Box 2 of (Han et al.,, 200%)cluded for background
information only. (a) A schematic representation aofrandom network; (b) A
schematic representation of a scale-free netwark.The degree distribution of
random network obeys a Gaussian distribution, (@) @egree distribution of scale-

free network obeys a power-law distribution.
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Definition 4.12 Let the degree of node be K, and the number of edges present

among itK, adjacent nodes li&; then the clustering coefficient vfis

__2E _E
= K,(K,-) CZ° -

The clustering coefficient of a node quantifies holese its neighbours are. The
clustering coefficient of a network is defined &g tmean value of the clustering

coefficients of all nodes in the network.

Definition 4.13 The edge clustering coefficient (Radicchi et 2004) is defined as
the number of triangles which really include thage divided by the number of all
triangles which possibly include this edge. KgtandK, be the degrees of nodes u

andv respectively. Then the clustering coefficientlod edge linkingt andv is

(3)
3) - Zu,v
"V omin{K, -LK, -1’

(4.6)

where Z{? means the number of triangles built on the edgevever, this definition

is not feasible when the network has few triangEesors will occur when the
number of possible triangles is zero. To avoid imstation, Sun et al. (2011)
modified the definition of edge clustering coeféiots by calculating the common
neighbours instead of the triangles. Thus a newniiein of edge clustering

coefficient is given:

_INAN[+1

RNCE T o

whereN, andN, represent the sets of neighbours of nodasdu respectivelyC,
is a local variable; it quantifies how similar ttveo nodesv andu are connected by

the edges, .. If there is no edge between node v and u, thenamsiderC,,= 0. Ifv
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andu are the same node, then weQgt,= 1. From the definition we can see that the
larger the value is, the more similar the two noaes In our method we us€g, , to
calculate the similarity value between two protam®PI| networks and transfer the
adjacent matrix of PPl networks into a similarityatnx. We then use the fuzzy
relation method in clustering analysis to find se-networks, which is possibly

protein complexes in PPI networks.
Property: The range o€, is [0,1].

Proof : (1) If there is no path between vertieesdu in the graptG, C,, = 0.

(2) If vertices andu are the same node, th€p, = 1.

(3) Ifv and u are connected by an edge ané u, let N, = m, Ny =
n,m=nx1.

TheN(v) is the number of direct neighbourswvof

There are two extreme situatiqlhds(:v)ﬂ N( u)| =0, or|N(v)ﬂ N( u)| = n1.

IN,AN[+1 1
JNGN,  /mn’

Sincem= nx1, we havéd<C, <1

() 1 NN N(Y|= n1, then AN FL_ \/Esl.

JNN,  Jmn

(i) If0|N(v) N N(W)| =0, then

ThereforeC, U[O, 1].

4.2.2 Fuzzy relation

Fuzzy relation is also proposed by Zadeh. In thapter we will give some
introduction on fuzzy relation theory. The letté&® ‘can denote not only a fuzzy

relation, but also a fuzzy matrix based on the yuztation.

Concept of fuzzy relation
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Definition 4.14 Let U andV be nonempty sets. A fuzzy relati®iF(UxV) is a
fuzzy set of the Cartesian produgkV, F(UxV) is the set of all the fuzzy relations
of UxV (Klir and Yuan, 1995).

O (u, V)OUxV, R(u, v) can be interpreted as the grade of membershipeobrdered
pair (U, v) in R. If U =V, then we can say thRtis a binary fuzzy relation ib. Here,
we apply the binary fuzzy relation for identificati of protein complexes. We give

an example to explain the definition as follows.

Example 1 Let X = (<o, +0), the fuzzy relation concep “less than” can be defined
as: Lx, yl X,

0 XY,
R(x y) = 100

L+ = (4.8)

I ox<y’

thenR s a fuzzy relation oiX, such afk(0, 1) = 0.010R(10, 20)=0.5R(100, 400) =
0.990.

Example 2 Let U = {us, Uy, U, Us}, V={Vy, Vo, v3}. FOr every pair (;,v;), if we have a
membership value in Table 4.1, then the fuzzy i@iaR betweenU andV is also

determined.

Table 4.1 The membership values of fuzzy relaRdretweerlJ andV

Y1 Y2 ¥3
X1 0.7 0.5 0.3
X2 0.2 0.9 0
X3 0.4 0.6 0.8
X4 0 0.4 0.3

From the above table we see that a fuzzy rela®aran be expressed as a fuzzy

matrix
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R=(r) =R(y, v)0[0,1]. (4.9)

nxm? rij

If r, 0{0,1}, thenR is an Boolean matrix and it is a classic relatibherefore, the

membership function maps a fuzzy relation to a yuratrix, and a classic relation

would be mapped to a Boolean matrix (Wolkenhau@®,12.
Operation of fuzzy relations

Because a fuzzy relatidR is also a fuzzy set, thus it also can be perforasetizzy
set operations such as complement, intersectioruaimh, and these operations can

be put in fuzzy matrix form. LeR=(¥ )., S=(§)mms T = ({)nxmthen we have

the following operations:

IntersectionRN S=(f O §), .’

Union RUS=(f 0 $)n

Complemen®® = (1-1 ) .

RUR= R, RNR=R,(R°)°=R;

RUS®F RN S,(RNY°= RU S;

RUS= &J FLRNS= 91 F,

(RUUT= RI( Y T;

RO9YNT= R T;

RUN T=(R JU( & TL(RNYU T=(RJ TN( & T.

Property 4.1 ORO F(UxV), we have

ORDO E,OUR=R,0NR=0;
EUR=E, ENR=R;
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where
0 O 0 1
O 0 ... 0 1 1
0= andE =
0 O 0 1 1 1

They are called zero matrix and full matrix respaty. (See Dubois and Prade,
1980)

Property 42 If RO SOF(U xV), then we have
RUS= SRNS= KRR OS.
(see Dubois and Prade, 1980)

Property 4.3 If ROS,R OS,then

RURDSU S RNRD SN S
Note: RUR # E, RN R #0.
(see Dubois and Prade, 1980)
where

Definition 415 Let R=(¥) 0A0[0,1], we haveR, =(r, (1))

nxm? nxm?

1, rzA
rij(/l):{o < .X0)

ij

We call R, theA cut matrix ofR, and if
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1, >
ruu):{o g 1)

then we callR, the strongl cut matrix ofR. If this chapter, we apply strong cut set

to transfer a fuzzy matrix to a Boolean matrix ¢arstering sub-networks.
Compositions of fuzzy relations

Definition 4.16 Let RO F(UxV), SO F(Vx W). The composition betwedr and

S is a new fuzzy relation from U to W, which is dé&mb by Ro S, and its

membership function is

(ReS(y w=L(RuYD 8.V,

when RO F(UxU), we haveR* = Ro R, R"= R™ o R. We still use Example 1 to

explain the definition. If R is a fuzzy relatior is less thary”, then the composition
fuzzy relationRe Rmeans X is far less thaly”. We need to obtain the membership
function (Re R(x U:

From definition,z which makeR(x 2 andR(z y)exist, and
(ReR(x Yy=0(R x I R.z)y=R(x 7).

X*y

Let R(x,2 = R(zy), then we havez, = . The membership function therefore

becomes

0 X<y
RoR( X Y= e+ 100 It oxsy (4.12)
)’
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If the domain is finite, then the composition okfy relations can be expressed by
product of fuzzy matrices.

Definition 4.17 Let Q=(q,).J F(UxV) , R=(f)..OF(VxW) , then the

mxt mxt

composition ofQ andR is
QoR=S=(5)0 KW W,
t
where § =0(q 0Of), ((=1,2,..m,j=12.n .

From definition we see that the operation of pradiiduzzy matrices is very similar
that of traditional matrices. Here we give an exknrip show how to calculate the

product of fuzzy matrices.

Example 2
0.8 0.3
0.3 0.7 O.
Q=( a,R= 0.1 0.8|,
1 0 09
05 0.6
then QoR:(%1 Sizj,
Si1 S

wheres, =(0.3000.8)1J (0.70 0.1 (0.2 0.5) O;
s, =(0.300.3)0 (0.7 0.8) (0.21 0.9 O;
s,, =(1000.8)1 (00 0.1)7 (0.9J 0.55 O,
S,, =(100.3)J (0 0.8)7 (0.9 0.65 O,

0.3 0.
then QoR= .
0.8 0.6
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The properties of composition of fuzzy relations as follows:

Properties 4.4 1(Q°RS=Q(R §
(®'-R'=R""
BYR=Rc0=0,cR=Ro I =1;

1 u=v

where, 0 is Zero Relatioa O(u, v) = 0, | is Identical Relatioa 1(u,v) :{0 .
Uz v
WIR=QSI R {QUR=QOR;

(5B (QUR=(S QU( & F, (QUR-S=(Q SU( R E
(see Dubois and Prade, 1980).
Fuzzy equivalence relation

Before doing clustering analysis based on fuzzyrimaive have to make sure the
fuzzy relation is a fuzzy equivalence relation. &lere give the definition of fuzzy

equivalence relation and fuzzy equivalence matrix.

Definition 4.18 LetRO F(UxU). R is a fuzzy equivalence relation if it satisftee

following conditions:

(1) Reflexivity: OuOU, R(u, U =1;
(2) SymmetryO(u,,u ) OUxU, R(y, u)= R, u);

(3) Transitivity: RO .

If U is finite, then the fuzzy relatidR onU can be expressed by fuzzy matrix, which
can be called a fuzzy equivalence matrix.

Definition 4.19 A fuzzy matrix R(r, Is a fuzzy equivalence matrix if it satisfies

)nxm

the following conditions:
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(1) Redvity: r, =1;
(2) Syetry:r, =r1;;
(3) Tedtivity: r, = El(rik Or) -

Because of reflexivityr, =1, then we have
L Org) 2r Dy =r

Because of transitivity, we haw’ = R. If the fuzzy matrix just has transitivity, then

it is called a transitive fuzzy matrix.

From definition we see that a fuzzy equivalencatieh is a very stable relation. It
won’'t change by the composition of itself. Therefobased on this stable relation,
we turn the fuzzy matrix to a Boolean matrix Hy-cut set and then perform
clustering analysis. However, in practice, it igch#o obtain a fuzzy equivalence
relation. Mostly, we just find fuzzy relations whisatisfy reflexivity and symmetry;
this kind of fuzzy matrices is called fuzzy simitgrmatrices. To turn a fuzzy
similarity matrix to a fuzzy equivalence matrix, weed to compute its transitive

closure.

Definition 4.20 Let R be a fuzzy matrix. The smallest transitive fuzzgtnx of R is
called the transitive closure & denoted by(R). The transitive closure @&, t(R),

should satisfy the following conditions:

(R -t(RO (R;
(2p U S;
GRS 31 S 8§ (t)
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Theorem 4.1 Let R be a fuzzy similarity matrix, then there is a dewl nature
numberk (k<n) such that(R) = R. On the other hand, for ahygreater thark, we
always haveR = R".

(see Klir and Yuan, 1995).

The above theorem suggeRR) is a fuzzy equivalence relation and the fuzzyrinat
based on it is a fuzzy equivalence matrix. We cansfer a fuzzy similarity matrix
to a fuzzy equivalence matrix by computing the srawe closurd(R). For simplicity,

we use the method of squares to comp(iRge

R - R2—> R1—>...—> ﬁk—»...,

If RoR = R, thenRis the transitive closurgR).

Now we know that, to use fuzzy matrix to perfornustering, the fuzzy matrix
should be a fuzzy equivalence matrix. In practmoestly fuzzy matrices established
are fuzzy similarity matrices, thus we need to cotapts transitive closure by the
method of squares. After we obtain its transitil@sere, we need to transfer it to a
Boolean matrix by computing ifs-cut matrix. Here we give more details about how

to use fuzzy relation matrix to perform clusteranplysis.
Clustering method based on fuzzy equivalence matrix
In fuzzy clustering analysis, the objects we needrialyse are called samples. To

cluster them reasonably, we need to know the observvalues of each sample.
Suppose there are n samples,

X ={% %%},

eachx having m observation values, that is,
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X = (X0 Xor %0 ),

then the observation value matrix of samples is

Xi XKoo e Xy
Xog  Kpy e Xy
Xo Xz o Xm

where x; means th¢-th observation value of theth sample.

1. Data normalization.
Because the order of magnitude in all obsematmay be different, the effect of

observation values with large order of magietwould be exaggerated, and the
effect of observation values with small ordemagnitude would be
underestimated. This would make the clustemmgasonable. Thus to make the
observation values in the same order of magnitweeneed the normalization

step, usually we make the mean of observatiorzeleand variance be one by

where

2. Establishing fuzzy similarity matrix.
After normalization of observation values, we catablish fuzzy similarity matrix

via computing the similarity relation between amptsamples. For

% = (X Xgroes X ) @ANA X = (K45 X 5,0, %, ), WE cOmpute the similarity value
between them, which should satife r; <1, i, j=1, 2, ..., n. Then we obtain a

fuzzy similarity matrix R which shows the similagribetween every pair sample:
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r.11 r12 r I
R= er r22 r gl
rnl rl’]2 rnn

To compute the similarity between sampland samplg, we use the following
methods:

(1) Dot product
1 i=] -
r. = m , whereM = max o X )
ij iz)ﬁk.x |¢ J ig (kZ:;)gk X]k)

(i) Correlation coefficient

Z|)§k _X”)ﬁk _75‘
= ——= - , whereX = Zxk X =

1
\/kZ_(&k—X)z-\/kZ_(&k -%)? i e

> %

(i)  Max-Min

(iv)  Arithmetic mean minimum

zmm()ﬂk’
—_la

r, =— ;
kz aX()ﬂk + X]k )

[

[EEN

N

v) Geometric mean minimum
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(vi)  Absolute value index

(vii)  Absolute value subtractor
1 i=]

r = n .., Wherec can make0<r; <1.
1_CZ‘)§k_)ﬁk‘ 17 ]
k=1

In practice, we need to choose a proper methodntpate the similarity value. We
can also define a new method which is suitabletlier clustering analysis in the
problem. In our problem we apply the clusteringfioent defined by Sun et al.
(2011) based on the interaction matrix of a network

—‘NiﬂNi‘ﬂ if (i, ) OE,i # ]
r = 0, if (,j)0E (4.13)
1, ifi = j

whereN; and N, are sets of neighbours of verticesind j respectively.‘Ni N Nj‘

represents the number of joint neighbours of vesii@ndj. Note that verticesandj
are also connected by an edge. We proved thatubkgedng coefficient is in [0, 1] in
Section 4.2.1.

3. Computing the transitive closure of the fuzayifarity matrix via the method of

squares.
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4. Transforming the transitive closure to a Booleaatrix via computing thel -cut

matrix. The Boolean matrix is the skeleton of chuisty result.

4.3 M ethod

4.3.1 The FRIPH method
In this part we introduce our method on identificatof protein complexes. We

combine fuzzy relation clustering analysis withu@ue and hub structure in sub-

networks, which we call the FRIPH method.

We can obtain the cluster skeleton of a PPl sulvorét via the Boolean matrix
transformed from the transitive closure of a fuzsayilarity matrix. Some protein
complexes may be in these clusters. However, sonmeip complexes are
overlapping on each other, which means each prate@n be involved in multiple
complexes. This is particularly true for proteiteiraction networks for most proteins
having more than one biological function. For ins& there are 2750 proteins in the
CYGD database (Guldener et al., 2005), howeveatheunt of protein complexes is
8931. Thus, it is very significant to identify olegsping protein complexes. Li et al.
(2010) proposed a new concept, Interaction ProibabiP,; , to measure how
strongly an outside vertex v connects to anothesmaiwork which doesn’t contain
Interaction probabilitylP,; of any vertex v with respect to any sub-networ&f

sizgV/| is defined as
IP, =%, @1
Where|Evi| is the number of edges between the vextend the sub-network As

shown in Figure 4.3 below, thB,; of the vertex to the sub-networkis 0.5.
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Figure 4.4 The interaction probabilit,; of a vertexv with respect to the sub-

networki is 0.5

For every vertexv in the original PPl network, we calculate 1®,; in all sub-
networks, =1, 2, 3, ..., m. Suppose vertexs in sub-network. If sub-network has
the greatestP,; with vertexv, thenv can be “added” to sub-network thus sub-

networki will overlap with sub-network. To summarize,

If IR, = ml:':lx(IPVk )k=12,..m, then vis also in sub-network i.

However, sometimes vertex has the same greate$t value with several sub-
networks. In this situation, we need to comparertbdes connected to vertexn
these sub-networks. If vertexis connected with a hub in sub-netwaykhenv can

be also in sub-netwotk Figure 4.4 show a hub structure in PPl networks.

AN

Figure 4.5 The hub structures in PPI networks.
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The algorithm FRIPH can be divided into the follogisteps: 1. Generate an
adjacency matrix from PPl data. 2. Choose a s@itai#thod to compute similarity
between each node in the network. 3. Compute tremsilosure of the fuzzy matrix.
4. Transform the transitive closure to Boolean matia A -cut matrix. 5. Compute
IP values and compare hub structure in the orignesvork to make sub-networks
overlap. We give an example to explain our mett®uh et al. (2011) showed this

example in their articles; here we use it to illatt our method.

Example 3 Consider a small network containing six nodes aedges. Its adjacency

matrix A is as follows:

01 0011
1 01100
01 0100
A= :
011001
1 000O00O
1 001 00Q0

We use equation (4.13) to compute the similaritgath pair of nodes and obtain the
fuzzy matrix R:

1 033 0 0 0.58 0.41
033 1 082 067 0 O
0O 082 1 08 0
0 067 082 1 0 04f
058 0 0 0 1
041 O 0 041 O

After obtaining the fuzzy matrix, we need to congits$ transitive closurgR):

1 0.41 041 041 0.58 0.4
041 1 0.82 082 041
041 082 1 082 041
041 082 082 1 041
058 041 041 041 1
041 041 0.41 041 041

© o

t(R) =

© o
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According to the transitive closure matrix, we aamose a propet cut set for
clustering. In the matrix(R) there are four different values, 0.41, 0.58, 0.82
respectively. For each value we can obtain aneut set. We need to find out the

best A cut set which is the skeleton of the overlappingrseatworks.

=~

° @ s

' @
2 6 e )
3 I,’—\\\ , ’—\\\
3 4 '\\.f' 4'\\.1'

(a) (b)

010011 100000
101100 010000
A_0101oo:>t(R) 001000
011001 AHeEU g 001 00
100000 000O0T10
100100 000O0O0 11
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t(R)/]>O.58 = t(R)A>O.41 =

O B O O O O
P O O O O O
O r O O O B
O r O O O P
P O O O O O

o o+ B O
o O P Pk O
o O B+ O

o O ©O O O B
o o B+ O
o o K+ O
o o B+ O

Figure 4.6 Differentd cut sets and clustering structure.

In Figure 4.6, (a) is the original graph of thewnatk, andA is its adjacency matrix.
(b) When A is in (0.82, 1], each node is clustered as oneawvemlapping sub-
network. This is an extreme situation. When we Aeajreater than 0.58, then we
have 4 sub-networks. Nodes 2, 3, 4 become one bgdgenetwork. If we sed
greater than 0.41, then node 5 and node 1 becomsuinnetwork, nodes 2, 3, 4 is
one sub-network and node 6 is separated. Thiseclogtstructure can be considered
as a skeleton of non-overlapping sub-networks.

After we obtain the skeleton of the non-overlappsg-networks, we need to
compute the IP value of each node with the otherraiwork and check whether
some nodes’ neighbour has hub structure in thenatiginetwork. We would make
these sub-networks overlapped W values and hub structure. From the original
network of graph 4.6 (a) we see that node 6 is ecteal with node 1 and node 4, its
IP value with sub-network nodes 5, 1 is 0.5 andifhealue with sub-network 2, 3, 4
is 0.33; thus node 6 can belong to sub-network iode Then a new sub-network is
generated consisting of nodes 5, 1, 6. Node 1 add & are connected. Both of them
have hub structure. Therefore, these two sub-né&swveain overlap on each other. In

Figure 4.5 we show the details. We give a graplagrdm of the FRIPH method.
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Figure 4.7 Overlapping sub-networks with respectPovalues and hub structure.
According to the IP values and hub structure, tmed separated sub-networks

become three overlapping sub-networks.

Input network Generate adjacent Compute similarity between
data matrix A of the pairs of nodes and obtain
g network » fuzzy matrix R(l}j Ve

Choosé. cut
matrix and v
If T (,]) =1, then > transform it Compute the transitive
d” i and nod T (A)= I into Boolean closure
nodei and nod¢ < ij 0 F<A | t(R) = (T
belong to the same Ll (R =( i )nxn
cluster
A 4
Each cluster is a Compute the IP value Overlapping
non-overlapping of each node and sub-networks

\ 4

check hub structures o
its neighbours

A 4

sub-network.

End

A 4
A

Figure 4.8 The graphic diagram of FRIPH
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4.3.2 CFinder software

CFinder (the community cluster finding program) ase of the most popular
software for protein complex identification. It gsthe clique percolation method
(CPM), which is proposed by Palla et al. (2005)loiate the k-cligue communities
of unweighted, undirected networks. Complete swplgs in a network are callde
cliques, where k refers to the number of nodeshen dub-graph, and a k-clique-
community is defined as the union of kitliques that can be reached from each
other through a series of adjacent k-cliques. Twatidues are said to be adjacent if

they sharé-1 nodes. The outline of the community finding aithon is as follows:

(1) The k-cligue community finding algorithm implemied in CFinder first extracts
all such complete sub-graphs of the network thatrat included in any larger
complete sub-graph. These maximal complete sulhgrape simply called
cliques (the difference between k-cligues and cliques & #cligues can be

subsets of larger complete sub-graphs).

(2) Once the cliques are located, the clique-cliquerlap matrix is prepared. In this
symmetric matrix each row (and column) representdique and the matrix
elements are equal to the number of common nodegebe the corresponding

two cliques, while each diagonal entry is equah®size of that clique.

(3) The k-clique-communities for a given value ddrie equivalent to such connected
cliqgue components in which the neighbouring cligaeslinked to each other by
at least k-1 common nodes. These components cirube by erasing every off-
diagonal entry smaller than k-1 and every diaget&inent smaller than k in the
matrix, replacing the remaining elements by oned #imen carrying out a
component analysis of this matrix. The resultingasate components will be

equivalent to the different k-cligue-communities.

In the next section, we will make a comparison leetavour method and CFinder.
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4.4 Results and discussion

4.4.1 Application to two social networks

Firstly, we apply our method to two social network$e first one is Zachary's
karate club network. The second one is Network mieAcan college football teams.

We aim to identify the non-overlapping sub-netwarkghe two networks.

Zachary’s karate club network

This is a widely used data as a test example fahoaks of identifying sub-networks
in complex networks. In this data, there are 34esodepresenting 34 people.
Zacahry observed them for more than 2 years. Duliig study, a disagreement
developed between the administrator (node 34) efcthb and the club’s instructor
(node 1), which ultimately resulted in the instartg leaving and starting a new club,
taking about a half of original club members wititmh Zachary constructed the
network between these members in the original blaked on their friendship with
each other and using a variety of measures to adithe strength of ties between
individuals. Figure 4.9 shows the graph of the mekwThere are 78 edges and two
non-overlapping sub-networks in the graph, reprasgriwo groups of people with
the administrator (circle label) and the instrugsmuare label). We apply our FRIPH
to try to identify the two groups.

Following the step of FRIPH described in Figure, & separated the original
networks into two sub-networks and two single nogteen we choose the value of

A as 0.75. Figure 4.10 shows the result we obtain.

Comparing Figure 4.10 with the original networkHigure 4.9, the instructor group
is perfectly separated from the original networkr Ehe administrator group, node
10 and node 28 are not in the group but as twdesipgints. The remaining nodes
are all in administrator’s group. Then we calculdite IP values of node 10 and node
28. For node 28 in Figure 4.9, it is connected witlides 34, 24 and 25, which all

belong to administrator’'s group; only node 3 bebg instructor’s group, thus the
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IP value of node 28 in administrator’s group isagee than that of node 28 in
instructor’s group. Node 28 should belong to adstrator’s group. For node 10, it is
just connected with nodes 34 and 3. However, nddes $he administrator which is
the hub of that group. Therefore, node 10 alsorgsaio administrator's group.
From the result of karate club data, the FRIPH weitthetects the two sub-networks
correctly. However, the edges in the sub-networnlestatally changed; these new

edges have no meaning in the sub-network. But thaye no effect on the
correctness of groups of sub-networks.

Figure 4.9. Zachary’'s karate club network. Squarges and circle nodes represent

the instructor’'s faction and the administrator’stian, respectively. This figure is
from Newman and Girvan (2002).

Figure 4.10 Sub-networks of Zachary's karate clatwork, obtained by FRIPH
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American college football teams network

The second social network we test is the networkroérican college football teams
which represents the game schedule of the 200@seafsDivision | of the US
college football league. In this data set, theee BHt5 nodes representing the teams
and 613 edges presenting games played in the cofirdee year. The teams are
divided into 12 conferences containing around 8td@ms each. We apply our
method on this data set and obtain the result stiowéigure 4.11. However, the
result is not satisfactory. We make a comparisdth e result of Zhang et al.
(2007) which is considered as a good one and shoviagure 4.12. For our result
most nodes in the last three sub-networks belontheéoSunbelt conference and
should be in the same group of the grey pointsiguré 4.12, but they divide into
three sub-networks and group with members of thest@vie Athletic conference.
This happens because the Sunbelt teams playedy nemarimany games against
Western Athletic teams as they did against teantair own conference (Girvana
and Newman, 2002). Thus our method fails in thisecaMeanwhile, there are 8
points which cannot be grouped in any sub-netwohksFigure 4.12, the same
problem exists and these points are shown in rémlicoThat’'s because these nodes
generally connect evenly with more than one comtyutihus our method cannot
group them into one specific sub-network correcliiiese nodes are the “fuzzy”
nodes which cannot be classified correctly by theremt edge information.
Generally, these points play a “bridge” role in two more sub-networks of the

original network.
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Figure 4.12 Sub-networks of American college fobhttemm network. This figure is
taken from Zhang et al. (2007).
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4.4.2 | dentification of protein complexes

Identification of protein complexes from PPI netwas crucial to understanding
principles of cellular organisation and predictprgtein functions. Cui et al. (2008)
have shown that sub-networks such as cliques aad-dliques indeed represent
functional modules or protein complexes. Thus idieation of sub-networks from a
complex network becomes an important issue. Ingbgion, we apply our method
on the protein interaction network of Saccharomyaesevisiae, which was
downloaded form the MIPS database (Mewes, 2006)naakie a comparison with

the popular software CFinder.

After removing all the self-connecting interactioard repeated interactions, the
final network includes 4546 yeast proteins and P28teractions. The network

diameter is 13 and the average shortest path lengtd2. According to the annotate
in MIPS database for Sacchromyces cerevisiae, tagre216 protein complexes
identified by experiment, which consist of two ocoma proteins. The largest complex
contains 81 proteins, the smallest complex justaina 2 proteins and the average

size of all the complexes is 6.31.

To evaluate the effectiveness of FRIPH for ideimifly protein complexes, we
compare the predicted clusters with known proteimglexes in the MIPS database.
There are 216 manually annotated complexes whinkisbof two or more proteins.
We use the scoring scheme which is also appliedimg et al. (2004), Altaf-Ul-
Amin et al. (2006), and Bader and Hogue (2003) ¢teicnine how effectively a
Predicted ClusterRc) matches a Known ComplexX€). The overlapping score
between a predicted cluster and a known complesaisulated by the following

formula:

OS( Pg K¢ = (4.15)

12
|
1
Vee| [V

wherei is the number of nodes which are the intersect®einof size of predicted

cluster and known complefy,|is the size of predicted sub-network gug|is the
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size of known complex. If a known complex does hatve the same protein in a
predicted sub-network, then the overlapping scer@,iand if they perfectly match
with each other, the overlapping score is 1. A knamemplex and a predicted cluster
are considered as a match if their overlappingestolarger than a specific threshold.
The number of matched known complexes with respedtifferent overlapping
score threshold is shown in Figure 4.13 and Talde 4

250 T T T T T T T T T

—6e— CFinder k=4
9 —&—FRIPH A=0.5
200 —s—FRIPH A=0.3 1
“ —&— CFinder k=3
—<—FRIPH A=0.7

150

100

50

Number of matched protein complexes

! ! ! ! ! ! Y S 2z &
00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Overlapping score threshold

Figure 4.13. The number of known complexes matdtyedredicted sub-networks of

FRIPH and CFinder with respect to different pararseaind overlapping score.

As shown in Figure 4.13 and Table 4.2, CFinderiabtaest matching whek= 3.
The number of known complexes matched to the prediisub-networks detected by
CFinder usingk = 3, 4, 5, 6 are 55, 43, 20 and 11 with respe@%Pc, Kc) = 0.2.
The number of matched protein complexes decreas&srareases. In the work of
Zhang et al. (2006) and Jonsson et al. (2006),rds8lt was also deduced. That's
because when k is determined, CPM just identifiescomplexes which contain k or
more proteins. For the FRIPH method, whei®), the PPl network doesn’t change
and all the nodes are in the same group.AAascreases, the number of matched

complexes increases. Wher 0.9, FRIPH obtains the best result and the nurobe
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matched complexes whose overlapping score is lafgar 0.5 is stable. That is
because when is increasing, the number of single proteins @easing, thus the

protein complexes with 2 or 3 proteins can be foomath easier out of the original
PPI network.

Table 4.2 The number of known complexes matcheg@rbygicted sub-networks of

FRIPH and CFinder with respect to different paraareaind overlapping score.

Overlapping | CFinder | CFinder | FRIPH | FRIPH | FRIPH | FRIPH | FRIPH
Score (K=4) (K=3) A=0 A=0.3 | A=0.5 | A=0.7 | A=0.9
0 216 216 1 190 216 216 216
0.1 55 75 1 45 60 176 216
0.2 43 55 0 40 45 93 104
0.3 35 42 0 28 32 39 40
0.4 24 36 0 20 28 31 28
0.5 18 22 0 15 23 18 20
0.6 10 15 0 11 15 16 20
0.7 9 11 0 4 10 10 20
0.8 7 7 0 1 4 10 20
0.9 6 6 0 1 4 10 20
1 3 4 0 1 2 10 20

In Figure 4.14, for a known complex of 10 proteitige overlapping score obtained
by FRIPH is 0.83. CFinder groups another 8 protewhsch do not belong to the
known complex and the overlapping score is 0.56n¥% 3. However, whek = 4,

CFinder can identify the protein complexes perfectl

In Figure 4.15, for a known complex of 14 proteitige overlapping score obtained
by FRIPH is 0.7. CFinder groups another 5 proteutéch do not belong to the
known complex and the overlapping score is 0.61n¥&e 4. However, whek = 6,
CFinder can produce a sub-network matching the knosomplexes with
overlapping score 0.875.

As shown in Figure 4.16, for a known complex ofrétpins, FRIPH identifies the
sub-networks which perfectly match the protein ctaxgs while CFinder groups

two other proteins and miss one protein. Theserdgsuggest FRIPH is more
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suitable for identifying sparse sub-networks whichnot have too many edges than
CFinder.

10 2
11

______

Known protein complexes Predictedst®ts obtained by FRIPH

L1

Predicted sub-network obtained bynGér

Figure 4.14 A known protein complex of 10 protearsl the matched sub-network
generated by FRIPH and CFinder. The overlappingescobtained by FRIPH and
CFinder are 0.83 and 0.56, respectively.

The names of proteins are 1.YDR108w, 2.YOR115c KR®¥68c, 4.YMLO77w,

5.YDR472w, 6.YDR246w, 7.YMR218c, 8.YGR116w, 9.YBR®Z5 10.YDR407c,
11. YILOO4, 12.YLRO78c.
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______

Predicted ieltssobtained by FRIPH

Predicted sub-network obtained by CFinder

Figure 4.15 A known protein complex of 14 protearsl the matched sub-network
generated by FRIPH and CFinder. The overlappingescobtained by FRIPH and
CFinder are 0.7 and 0.61, respectively.

The names of proteins are 1.YDR290c, 2.YHR041cY@L148c, 4. YDR392w,
5.YDR448w, 6 YBR448w 7.YDR448w, 8. YDR176w, 9.YB®w, 10.YOL112c,
11.YBR198c, 12.YGLO66w, 13.YPL254w, 14. YDR145w,.18MR236w, 16.
YHRO99w, 17. YBR081c, 18.YCL010c, 19.YGR252c, 201¥285w.
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______

Known protein complexes: : Predictedstdus obtained by FRIPH

L1

Predicted sub-network obtained byn@ér

Figure 4.16 A known protein complex of seven prwgeand the matched sub-
network generated by FRIPH and CFinder. The suleorkt generated by FRIPH

perfectly matches the protein complexes.

The names of proteins are 1.YPRO41lw, 2.YMR309c,BRY879c, 4.YNL244c,
5.YOR361c, 6.YNLO62c, 7.YDR429c, 8.YPL106c.

152



Fuzzy Methods for Analysis of Microarrays and Netkgo

Recall-precision analysis

Recall and precision are two important methods stmate the performance of
algorithms for identifying protein complexes. Redal the fraction of the True-

Positive (TP) predictions out of all the true priins. Precision is the fraction of
the true-positive prediction out of all the postipredictions. They are defied as

follows:

TP

recall = ——,
TP+ FN

precision= T ,
TP+ FP

where TP is the number of matched sub-networks FEMds the number of not
matched known complexes. FP is the number of timeairéng identified sub-
networks. According to the assumption in Bader Hndue (2003), a predicted sub-
network and a known complex are considered to kiehwed if the overlapping score
is larger than 0.2. Thus we also use 0.2 as thehedtoverlapping threshold. Table
2 compares recall and precision of the two method§.able 4.3, for FRIPH, the
recall is increasing when the parameter valuedeemsing. That's because when the
parameter value increases, more and more nodeseperated from the original
network and compose sub-networks from which prateimplexes can be identified.
The extreme case is wheén= 1, every node is considered as a sub-networthign
case, the complexes which just contain 2 or 3 pretean be easily identified. Thus
the amount of identified protein complexes increaas the parameter increases.
However, when the number of sub-networks increabesnumbers of sub-networks
which are not protein complexes also increasest’'sthahy the precision is
decreasing as the parameter is increasing for FRO®Hhe contrary, for CFinder, as
the parameter is increasing, the recall is deangaand the precision is increasing.
That is because the CPM algorithm aims to findigugs in the original network.
The larger k is, the less cliques it will find coift the original PPI network. That’s
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why the authors of CPM suggest using the values loétween 4 and 6 to analyse

PPI networks.

Table 4.3 The comparison of FRIPH and CFinder ealf@nd precision.

Algorithm Parameter Recall Precision

FRIPH 1=0.3 18.5% 21.05%
A =05 20.8% 10.1%

A =0.7 43.5% 9.26%

A =0.9 48.1% 6.67%

CFinder k=3 25.5% 27.6%
k=4 19.9% 53.3%

k=5 9.8% 75.2%

k=6 3.3% 79.3%

45 Conclusion

Identification of protein complexes is very impatdor better understanding the
principles of cellular organisation and unveilifgeit functional and evolutionary

mechanisms. Many methods are proposed for theifidation of protein complexes.

The Clique Percolation Method (CPM) is one of thestrpopular one. The CPM is a
density-based method which aims to detect dens#igacted sub-networks (cliques)
from a network. However, in real PPI network, itriet enough to just identify

cligues because many protein complexes do nothageé the clique shape, some
have star shape, hybrid shape, or even linear sidgesoftware CFinder which is
developed based on CPM is a powerful tool for id@nty protein complexes, but it

Is very sensitive to the value kf

In this chapter, we proposed a novel method whmmkines the fuzzy clustering

method and interaction probability to identify tbeerlapping and non-overlapping
community structures in PPI networks, then to dgteatein complexes in these sub-
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networks. Our method is based on both the fuzatiosel model and the graph model.
Fuzzy theory is suitable to describe the uncegamfbrmation between two objects,
such as ‘similarity’ and ‘differences’. On the otheand the original graph model
contains significant clustering information, thuse wdo not ignore the original
structure of the network, but combine it with thedy relation model. We applied
the method on yeast PPI networks and compared@#thder. For the same data set,
although the precision of matched protein compleiseower than CFinder, we
detected more protein complexes. We also applied method on two social
networks. The results showed that our method wadsfor detecting sub-networks

and gives a reasonable understanding of these caitiesu
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Chapter 5

Summary and futureresearch

In this thesis we proposed several new fuzzy aghemto analyze DNA microarray
data and protein-protein interaction networks. Weeused on three research
problems: (i) fuzzy clustering analysis on DNA noiarrays, (ii) identification of
disease-associated genes in microarrays, andd@iyification of protein complexes
on PPI networks.

5.1 Resear ch conclusion

In Chapter 2, we addressed the problem of detedtindhe fuzzy c-means (FCM)
method, clustering structures in DNA microarraysgpted by noise. We introduced
a more efficient method for clustering analysisDiMA microarrays which contain

noise and uncertainty information.

Because of the presence of noise, some clustetingtwes found in random data
may not have any biological significance. In the&tpwe combined the FCM with
the empirical mode decomposition for clustering nmécray data. Applied on yeast
and serum microarrays, this combined method detedearer clustering structures
in denoised data, implying that genes have tighs=ociation with their clusters.
Furthermore we found that the estimation of thezyuparametem, which is a

difficult step, can be avoided to some extent bglysing denoised microarray data.

In Chapter 3 we approached the problem of idemtfydisease-associated genes
from DNA microarray data which are generated urdiferent conditions. Making
comparison of these gene expression data can emlmamaunderstanding of onset,

development and progression of various diseases.

We developed a type-2 fuzzy membership (FM) fumctior identification of

disease-associated genes. This approach was afiptigmbetes and lung cancer data,
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and a comparison with the original FM test wasiedrout. Among the ten best-
ranked genes of diabetes identified by the typevRt€st, seven genes have been
confirmed as diabetes-associated genes accordiggn description information in
Gene Bank and the published literature. An additiagene is further identified by
our method. Among the ten best-ranked genes ideohtih lung cancer data, seven
are confirmed that they are associated with lungeaor its treatment. The type-2
FM-d values are significantly different, which makes tidentifications more
convincing than the original FM test.

In Chapter 4 we addressed the problem of identifypnotein complexes in large
interaction networks. Identification of protein cplexes is crucial to understand the
principles of cellular organisation and to pregicdtein functions.

In this part, we proposed a novel method which doe® the fuzzy clustering
method and interaction probability to identify tbeerlapping and non-overlapping
community structures in PPI networks, then to dgteatein complexes in these sub-
networks. Our method is based on both the fuzatioel model and the graph model.
We applied the method on several PPI networks antpared with a popular protein
complex identification method, the clique percaatmethod. For the same data, we
detected more protein complexes. We also applied method on two social
networks. The results showed our method works feelletecting sub-networks and

gives a reasonable understanding of these comrasiniti

5.2 Possible futurewor k

Fuzzy methods on clustering analysis of DNA micrags is a worthy research
problem. DNA microarray data contain noise and uagay information, and fuzzy
methods are suitable for dealing with this probleviany methods have been
proposed over the past several decades, and thendeoh understanding functions
and groups of DNA requires more efficient methddsour research, although we
can reduce the influence of noise on the clustamsglts, the more times we denoise

the microarray data, the more information in them would miss. Thus, more
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efficient denoising methods are needed. On ther dthed, FCM, which is a simple
and efficient fuzzy method for clustering analydias been widely used in many
fields. However, as a supervised clustering metk@M still requires to determine
the number of clusters firstly. We cannot apply FGMthe data that we don’t know
the clustering number. Therefore, developing arupessised fuzzy method is very
significant for analysis of DNA microarrays. Typef2CM method has been
proposed (Rhee, 2007). An application of this meéthm the unsupervised fuzzy
problem would be promising.

There are many methods for identification of digseassociated genes. In Chapter 3,
we proposed type-2 FM test method. However, thepcdation complexity of type
reduction of type-2 fuzzy set is high. We have mapinterval type-2 fuzzy set to
this problem, but the interval type-2 fuzzy set mayt properly describe the
differences between expression values under twderdiit conditions. Thus
establishing a good membership function to comgheedivergence of the two sets
Is an important step. Meanwhile, most methods arsisve to different data sets.
Thus it is necessary to devise a strategy to coenblifierent methods to obtain the

best result.

For the identification of protein complexes, altgbuve identified more complexes
than CFiner, the accuracy rate is low. Thus we rieagchprove the accuracy rate of
FRIPH. Meanwhile, the edges in identified sub-neksare not the original edges.
We need to connect nodes in sub-networks basetieonriginal network. We also

need to define the IP value in a different way eolasot only on the relation between
the nodes and other sub-networks, but also onéla¢ion between the nodes and
their neighbours. We also need to develop typez2yfuelation membership function

on the network to describe the similarity betweair pf nodes in a network. Type-2

fuzzy relation method would be a useful approactsédving this problem.
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