
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Lee, Justin A. & Rakotonirainy, Andry (2011) Acoustic hazard detection
for pedestrians with obscured hearing. IEEE Transactions on Intelligent
Transportation Systems, 12(4), pp. 1640-1649.

This file was downloaded from: http://eprints.qut.edu.au/48109/

c© Copyright 2011 IEEE

Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this mate-
rial for advertising or promotional purposes, creating new collective works
for resale or redistribution to servers or lists, or reuse of any copyrighted
components of this work in other works.

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1109/TITS.2011.2163154

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10908887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Lee,_Justin.html
http://eprints.qut.edu.au/view/person/Rakotonirainy,_Andry.html
http://eprints.qut.edu.au/48109/
http://dx.doi.org/10.1109/TITS.2011.2163154


TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 4, DECEMBER 2011 1

Acoustic Hazard Detection for
Pedestrians with Obscured Hearing

Justin Lee, and Andry Rakotonirainy

Abstract—Pedestrians’ use of mp3 players or mobile phones
can pose the risk of being hit by motor vehicles. We present an
approach for detecting a crash risk level using the computing
power and the microphone of mobile devices that can be used to
alert the user in advance of an approaching vehicle so as to avoid
a crash. A single feature extractor classifier is not usually able to
deal with the diversity of risky acoustic scenarios. In this paper,
we address the problem of detection of vehicles approaching a
pedestrian by a novel, simple, non resource intensive acoustic
method. The method uses a set of existing statistical tools to
mine signal features. Audio features are adaptively thresholded
for relevance and classified with a three component heuristic.
The resulting Acoustic Hazard Detection (AHD) system has a
very low false positive detection rate. The results of this study
could help mobile device manufacturers to embed the presented
features into future potable devices and contribute to road safety.

Index Terms—Environmental Sound Recognition, Pedestrian
Safety

I. INTRODUCTION

THIS paper presents a novel approach to using environ-
mental sound processing as a means of detecting motor

vehicle hazards for pedestrians who are inattentive or have
their hearing obscured by music listening devices.

Pedestrians who do not pay attention to other road users
and road signs are more exposed to crashes. Pedestrians are
particularly vulnerable to being struck by vehicles when their
hearing is obscured, reducing their awareness of oncoming
traffic. This problem has become more prevalent in the past
few years due to the ubiquity of personal music players. Not
only does this cause pedestrians hearing to be obscured by the
music played through their headphones, but it also distracts the
pedestrian from being aware of potential dangers. For example
the use of mobile phones impairs pedestrians ability to cross
roads safely.

With the convergence of mobile phones and mp3 players, in
devices such as the iPhone, many personal music players will
be equipped with microphones. By processing environmental
sounds from the embedded microphone, potential vehicle
hazards may be identified and the pedestrian warned in time
to avert being hit by an oncoming vehicle.

In this paper we present a new Acoustic Hazard Detection
(AHD) system for detecting when a motor vehicle is approach-
ing a pedestrian, based solely on the environmental sounds
detected via the microphone embedded within a mobile phone
handset. The proposed algorithm is simple, decomposable and
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based on adaptive thresholding. It has a very small footprint
and has a very low false positive detection rate. This system
can be used to warn a pedestrian, who may be listening to
music or engaged in a phone conversation, so as to avoid
being struck by a vehicle.

In regards to audio classification, while there has been a
considerable amount of work done on voice and speaker recog-
nition, and some work done on music and musical instrument
recognition [10], [11], [4], [17]), there has been comparatively
little work done on environmental sound recognition.

Some of the work done on environmental sound recognition
includes: mobile phone localization [2]; sound classification
and localization [3]; sound classification for autonomous
surveillance [7], [24]; auditory scene classification [5], [6];
automatic recognition of acoustic environment [1]; classifica-
tion of fatigued bills [22]; and classification and retrieval from
audio database [15].

Some work has already been done in using acoustic process-
ing to classify approaching vehicles by type, and to determine
their speed [3]. Although this uses specialized equipment and
is primarily aimed at military applications. Recently, work has
been done utilising mobile phone’s microphone and camera
capabilities to identify location within a GPS locale [2]. This
work shows that it is possible to utilise a mobile phone’s
microphone for detecting environmental features.

In general environmental sound recognition is approached
as a two part process, composed of feature extraction and
classification. Feature extraction involves taking various time
and frequency domain measures of the audio signal that can
be used to characterise the sounds contained in the signal.
Classification takes the extracted features and then compares
these to known sounds, to form a hypothesis regarding what
this sound may be. Typically classification is done using
machine learning techniques, such as neural networks, or by
comparing with a database of sounds indexed by features.

In this paper we present a method of identifying approach-
ing vehicles using a manually chosen subset of audio features
that are adaptively thresholded for relevance and classified
with a three component heuristic. The use of such a simple
and decomposable system, as opposed to machine learning
techniques, has obvious advantages for deployment as an ac-
tual application embedded in real devices in real environments.
Hence, computational and memory requirements are kept to
a minimum, the behaviour of the system is predictable and
reproducible, and the system can be further refined to improve
performance.

The rest of this paper is organised as follows. Background
is given in Section II followed by the presentation of the
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design requirements in Section III. Section V presents the
experimental analysis followed by discussion on the findings.
Section VIII concludes this paper and highlights future work.

II. BACKGROUND

A typical approach to environmental sound recognition
involves feature extraction with a time-frequency algorithm,
such as wavelets or a Short Time Fourier Transform (STFT),
followed by classification of the extracted features using
machine learning approaches, such as a neural network.

Feature extraction involves the manipulation of audio to
extract a set of characteristic features of the sounds present
in the audio. Time-frequency extraction algorithms are able to
extract both time (when a sound occurred) and frequency (the
sound’s properties) information. The STFT is easy to imple-
ment, intuitive and fast. It is implemented by applying a Fast
Fourier Transform (FFT) to successive overlapping windows
of audio data, and produces spectral information (including
phase and magnitude) for the frequency components in the
signal.

The STFT’s main problem is that to increase the frequency
resolution, the time resolution must be decreased, and vice
versa. Wavelets are used to combat the resolution problem of
the STFT by applying good time resolution (and hence poor
frequency resolution) at high frequencies, and good frequency
resolution (with poor time resolution) at low frequencies. The
fast (discrete) wavelet transform is usually used for encoding
and decoding of signals, while the continuos wavelet transform
is used in recognition applications [9].

Another time-frequency algorithm is the Wigner-Ville dis-
tribution, which has higher resolution than the STFT, but
suffers from cross-term interference and produces results with
coarser granularity than wavelet techniques, while also being
extremely slow to compute [9].

Mel Frequency Cepstral Coefficients (MFCCs) are a
psuedo-frequency technique that is popular in speech and
music recognition. However, while the signal is split into
time-slices, it is not a true time-frequency technique as each
time-slice needs to be taken in context with other time-slices
to generate useful information [9]. While MFCCs have been
shown to work well for structured sounds, such as speech and
music, their performance degrades in the presense of noise.
Furthermore, MFCCs are not effective at analyzing noise-
like signals that have a flat spectrum. Environmental audio
contains a wide variety of sounds, including those that have a
strong temporal component but are noise-like with a broad flat
spectrum, and these cannot be modelled by MFCCs [6]. Some
examples of sounds like this, include rain, bird chirping, and
vehicle noise.

Other feature extraction techniques and sound classification
have been published and can be found in [9], [7], [5], [6],[16],
[18], [20], [14], and [13].

III. DESIGN REQUIREMENTS

For vehicle detection to be usefully deployed to pedestrians,
it needs to be embedded within a portable music player or
phone, provide reliable detection (low rate of false positive),

and work in real time. These devices can vary considerably in
their computational capabilities, and to perform in real time,
it is necessary that a streamlined approach is taken.

Wavelets are a popular method of extracting time-frequency
information from an audio signal. However, wavelets are
resource intensive and hence slow. The STFT is able to
give comparable results at the time and frequency resolutions
required in this application, while being less computationally
expensive. The STFT is also more intuitive, which helps when
analysing extracted features.

While the use of machine learning techniques is prevalent in
categorising extracted audio features, we have taken a heuristic
approach that doesn’t require training, and allows the me-
chanics of categorisation to be understood and incrementally
improved upon. This also eliminates artefacts of the training
data and equipment that may create unforeseen results when
transferred to other equipment and environments. In other
words, the results presented here should accurately reflect the
performance in a real device.

IV. MINING ACOUSTIC RECORDS

There are many ways to integrate features and classifiers.
Different existing tools are used to extract relevant acoustic
features identifying approaching vehicles. Relevant frequency
ranges and a set of signal feature extraction methods are
presented in the next sections.

A. Identifying Relevant Frequency Ranges

A spectrogram was used on recordings of passing vehi-
cles to observe acoustic patterns. The audio recordings were
viewed with Spectrogram 16, using a logarithmic frequency
axis, and varying the threshold, specified in decibels (dB) to
eliminate background noise.

Using the spectrogram, it was straightforward to identify
the strongest relevant frequency components in the audio, that
stand out from other background noise. This revealed that
wind (from a passing car or otherwise) tends to create the
strongest signals, showing up as a thin but strong (short time,
but intense) band extending across a wide range of frequencies,
but strongest at low frequencies (around 0-200Hz or so).

Vehicle sounds include:
• tires on the road, which may be particularly strong when

there is gravel on the road);
• the running engine, of which changes in speed (accel-

eration, deceleration) and gear changes are noticeable
acoustically;

• theoretically brakes should create discernible sounds, but
this never occurred even when brakes were applied in
tests.

A spectogram, graphed logarithmically on the frequency (Y)
axis, with a cutoff at -70dB and is illustrated in Figure 1. It
shows an approaching vehicle, a gap, then another approaching
vehicle, which had a second vehicle close behind. Analysis of
spectograms from many scenarios showed that:

• There are two (usually two to five in all our recordings)
frequency bands (typically 5-10 Hz wide) of high energy
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Fig. 1. Spectogram diagram: an approaching vehicle, a gap, then another
approaching vehicle, which had a second vehicle close behind (scenario 39).

in the 50-200 Hz range (with shifting frequency over
time) associated with the engine of an approaching or
departing vehicle

• The sound of a vehicle’s tyres as it passes is similar
to wind, but covers a wider range of frequencies, from
around 40 Hz - 3 kHz (and briefly up to around 5 kHz).

• Useful information for identifying vehicles appears to be
within the frequency range extending up to around 5 kHz.

• Vehicle audio signatures are hard to generalise, and lower
fidelity classification based on strength of frequency
components doesn’t appear sufficient for identifying a
vehicle over other sound sources.

Based on these findings, subbands were chosen in a close-
to-logarithmic fashion, inspired by MFCCs and human hearing
models. According to [14], sounds are typically classified
according to perceptual similarity, and perceptually relevant
features often lead to robust classification. Therefore, per-
ceptually logarmithmically equivalent frequency ranges, such
as 100-200 Hz and 10-20 kHz, are approximately equally
important.

The following frequency subbands (specified in Hz) were
chosen, based on the spectographic analysis: 0-40, 41-70 71-
110, 111-150, 151-200, 201-250, 251-300, 301-400, 401-500,
501-750, 751-1000, 1001-1500, 1501-2000, 2001-3000, 3001-
5000, 5001-11025. Note that there is a 10 Hz granularity limit,
and that for low fidelity recordings at 22050 Hz, 11025 Hz is
the upper limit.

B. Adaptive Thresholding

Tests with spectrograms showed that to be able to discern
useful spectral magnitude (loudness) information from an
audio signal, an appropriate threshold needs to be set to filter
out background noise. Unfortunately, background noise can
vary considerably, from the low level noise in a park to the
high levels of noise in a busy city location. This makes it
impossible to specify a static threshold in dB that will work
across a wide range of scenarios.

To address this, an approach was developed that adjusts over
time to the loudness of the audio signal. Adaptive thresholds
were developed based on the moving average and Standard

Deviation (SD) of extracted signals over a window of time.
Thresholds are based on the mean and SD of the frequency
component magnitudes within subbands, or the entire spec-
trum. These can be used to eliminate background noise, while
allowing sounds of interest to be identified. Thresholds are
defined as:

τi = SMA(mi)± κρσ(mi) (1)

Where i is the index in time, mi is the mean magnitude (in
dB) of the frequency components, for the spectrum or subband,
at that given time. SMA is the Simple Moving Average, with
addition or subtraction being used for testing above or below
the moving average, and the distance from the moving average
is set using the standard deviation, σ, scaled by a constant
κ. Thresholding of the global spectrum was solely used for
viewing the audio through a spectogram, for which κ was set
to 2.5. Subband thresholding was used extensively (see Section
V-F2), and in this case kappa was set to 1.0. ρ is the roll off
factor, defined in Section V-F1, and is set to 1 if roll off is
not used to modulate the threshold.

The standard deviation can either be calculated across an
entire recording, for post analysis, or for a window of audio
samples in real time. In the latter case, a moving standard de-
viation is used. A moving standard deviation can be expressed
in terms of the moving average of a set of samples, and the
corresponding moving average of its squares as follows [21].

σ =

√
n

(n− 1)(x2m− xm2)
(2)

Where xm is the average of the last n (the window size)
samples of the signal x, and x2m is the average of its squares.

Prior to the first window of n samples being collected, the
standard deviation of the existing samples can be used (i.e. n
is set to the number of samples collected so far).

V. EXPERIMENTAL ANALYSIS

This sections presents the methodology we used to build our
Acoustic Hazard Detection (AHD) system. Recordings were
done in many traffic (and non-traffic) locations and conditions,
with vehicles approaching directly, passing in front and to the
side (on both sides of the road). Different type of vehicles
(2WD and 4WD), trucks and buses were present in these
scenarios.

A. Methodology

The following steps has been used:
1) record audio with an iPhone from various environmental

scenarios;
2) apply STFT to recorded audio signal;
3) identify useful frequency ranges, and create sub bands

based on these;
4) extract and identify useful features;
5) combine features heuristically to determine vehicle pres-

ence.
The equipment used in the work presented here was:
• An Apple iPhone 3G.
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• Recorder Pro (DAVA Consulting) software for recording
audio in AIFF format, using 22050 Hz sampling rate.

• AIFF convert to WAV (for using with Matlab) with
Winamp Nullsoft Disk Writer plugin.

• Spectogram 16 by Visualization Software LLC.
• Matlab to analyse data.
1) Recording procedure: We were not aware of any pub-

licly available online database which we could use to test our
system, therefore we have created our own set of record-
ings. A wide range of audio recordings were taken with
an iPhone microphone so that the quality of the sound is
similar to existing portable devices. The recordings covered
staged vehicle drivebys, quiet suburban streets with infrequent
vehicles, busy roads, a low density intersection, a high density
Central Business District (CBD) intersection with buses and
cars, a suburban park with no vehicle sounds, a noisy cafe,
a supermarket, an underground bus station walkway with
pedestrian and escalator noise, and an in vehicle recording.
Staged vehicle driveby recordings lasted 15-60 seconds, while
unstaged recordings lasted for several minutes. The speed of
the passing vehicles and their distance to the iPhone were
estimated subjectively by the person performing the recording.

A few representative recordings were chosen for examin-
ing how features correlate with audio events. In particular,
recordings of a single vehicle passing were looked at first,
then low level traffic on a quiet suburban road, an urban
intersection, and finally a busy CBD intersection. Non-vehicle
recordings were also looked at to determine how the features
correlated with other environmental sounds. A noisy cafe, an
underground bus station with pedestrian and escalator noise,
and a quiet suburban park were chosen as representative
scenarios.

To determine the utility of various features, they were
calculated globally, where relevant for temporal features, and
for subbands; normalised and graphed for comparison; scaled
in terms of their standard deviation and graphed relative to the
moving average.

B. Selection of Data Sets

The vehicle Acoustic Hazard detection (AHD) algorithm
was written in Matlab. Ten representative scenarios were
selected from the forty or so recordings. Nine of the scenarios
ran for the first 80 seconds of audio from the selected
recordings, while the other ran for the entire 66 seconds of
the selected recording. The ten scenarios were:

• low traffic intersection [scenario 01];
• crossing busy road from bus stop [scenario 03];
• cafe morning [scenario 06];
• busy CBD intersection [scenario 08] ;
• underground bus station walkway [scenario 09] ;
• quiet park [scenario 11];
• suburban street in rain [scenario 13];
• supermarket [scenario 14] ;
• suburban street 1 [scenario 38] ;
• suburban street 2: representing an approaching vehicle,

a gap, then another approaching vehicle, which had a
second heavier vehicle close behind [scenario 39].

Fig. 2. Detection Score (scenario 39)

Vehicle detection scores are comprised equally of both sub
band magnitude and sub band spectral features, i.e. 50% each
(see Section V-F for more details). Thresholds for vehicle
detection events were set as follows:

• none (score 0): below 10% activation – nothing or some
partial features only, or a low magnitude event only;

• weak (score 1): 10 − 29% activation – feature only, or
magnitude event only gives scores 0-25 (both magnitude
and spectral features should be present at the same time
if they aren’t, the score is halved);

• medium (score 2): 30 − 59% activation – both feature
and magnitude events present, but low magnitude and no
vehicle immanence contribution;

• strong (score 3): 60−100% activation – both feature and
magnitude events present with good strength, and either
immanence triggered and/or magnitude high.

In this classification, strong events correspond to a loud or
close vehicle, medium corresponds to distinct vehicles, while
weak correspond to background or distant vehicles. Figure 2
illustrates a scoring (red scare) for a given signal (green). It
represents the signal of the three vehicles passing by in the
spectrogram shown in Figure 1 (scenario 39).

Each scenario was examined by ear to identify vehicle
events, and to manually categorise these as strong, medium,
or weak events, so as to coincide with accurate classification
of events by the AHD system. Scenarios were then tested with
three variants of the AHD system: default (incorporating roll
off modulated thresholds and using the standard deviation of
signals over the entire recording), moving standard deviation
(the same as default but with a moving standard deviation
using a 30 second window), and no roll off (the same as
default, but thresholds aren’t adjusted according to roll off)

C. Correlating Events with Temporal and Global Spectral
Measurements

We have mined the audio signal with temporal and spectral
tools. Temporal features include: Root Mean Square (RMS),
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Autocorrelation Coefficients, Zero Crossing Rate (ZCR), and
Short Time Energy (STE). While spectral features derived
from the STFT include: spectral centroid, bandwidth, skew-
ness, kurtosis (flatness), roll off frequency, energy, band energy
ratio, decrease, flux and entropy.

Amplitude, which reflects the loudness of the sound, was
the first feature considered, as it can be used to indicate the
strength and distance to the sound source. As expected, when
graphed it shows the approach and passing of vehicles, as
well as any other loud noises. Spectral energy (or equivalently
RMS), which is derived from signal amplitude, shows the
same effects, and when graphed together, they follow each
other [15], [10] . Spectral energy, however, has the advantage
of being able to be calculated for subbands, to show the
loudness of sounds within the given frequency ranges. Short
time energy [6] showed sharp peaks on the occurrence of
wind, but otherwise followed signal amplitude (i.e. spectral
energy). Spectral bandwidth [18] and spectral entropy [23]
also followed the signal amplitude.

Roll off [18] has a tendency to oscillate a lot, and have many
brief spikes, associated with short duration high frequency
noises (e.g. bird calls, gusts of wind past the microphone).
However, when roll off is smoothed with a median filter (with
1 second window), it shows changes in traffic conditions as
shown in Figure 3. This graph represents the rolloff frequency
(green), rolloff frequency smoothed over a 1 second window
(blue) and the change in smoothed rolloff frequency over a
10 second window (red), for the traffic scenario presented
in Figures 2 and 1. The figure is graphed logarithmically
on the frequency (Y) axis. Figure 3 is the rolloff associated
with the spectrogram shown in Figure 1 corresponding to an
approaching vehicle, a gap, then another approaching vehicle,
which had a 2nd vehicle close behind (scenario 39).

In a low traffic (or otherwise quiet) environment, roll off
hovers around 100-300 Hz, but when a vehicle passes, roll off
climbs to and plateau’s around 1-2 Khz, before dropping back
after the vehicle has passed.

However, in a noisy traffic environment (at an intersection
for example), roll off may be continuously above 1 kHz, and
actually drop when a loud, or closeby, vehicle passes, or starts
from a stopped position. Roll off may also be high in noisy
non-traffic environments, such as a busy cafe, but is also a
lot flatter than in a traffic environment, where passing vehi-
cles cause significant rises and falls. These findings indicate
that significant and sustained changes in smoothed roll off
frequency can be a good indicator of an approaching vehicle.

The spectral centroid [10], which correlates with the bright-
ness of a sound, appeared to be a noisy signal that didn’t
correlate strongly with the sound of approaching vehicles as
it was affected too much by other environmental sounds.

The zero-crossing rate [10] appeared to be a noisy signal,
but seems to back up the roll off frequency to a large degree,
with short high pitched components showing up as spikes,
lower frequency sounds show up as a lower amplitude signal,
and approaching and passing vehicles show up as peaks.

Spectral entropy [23] appears to largely follow signal am-
plitude, but with smoothing (i.e the signal doesn’t drop off so
fast) if higher frequency components are still present (i.e. after

Fig. 3. Rolloff (scenario 39)

a vehicle has passed, or approaches).
Spectral flux [18] largely appears to be a smoothed in-

verse of signal amplitude, dropping where amplitude increases
rapidly, and reverting to baseline as amplitude returns to
normal. It drops, in a smooth but rapid manner, to zero or
less as a vehicle passes, creating a valley feature. While other
street noises can cause flux to drop to less than zero, these
often just spikes in the signal.

Spectral decrease [18] seems to correlate inversely with
the recorded signal amplitude to some extent. It rises from
negative to zero with loud noises, including vehicles and wind
etc.

Spectral kurtosis (flatness) [12] appears to be the inverse
of spectral decrease, but less noisy. It decreases and drops to
around zero as a vehicle approaches, but is not as strongly
affected by wind as spectral decrease, though it may also be
affected by other strong noises.

Spectral skewness [12] follows flatness, to which it is
closely related, but offset in amplitude slightly.

Autocorrelation coefficients [19] didn’t appear to show a lot
more than signal amplitude, although abrupt events show up
strongly. We have used the inverse Fourier transform (IFFT)
to calculate the correlation coefficients from each windowed
spectral sample.

Overall, it appeared that the duration of a signal level (i.e.
whether it is just a brief spike or not) needs to be considered
along with the signal’s level when determining what event the
signal is characterising.

D. Correlating Events with Subband Measurements

Graphing of spectral energy, and equivalently mean band
amplitudes, showed that wind can be seen clearly in subbands
up to 500 Hz, and passing vehicles can be seen clearly in
subbands from 251 Hz – 3 Khz, though there may be some
noise in some bands above 1 kHz as illustrated in Figure
4 (which corresponds to the traffic scenario 39 presented
in the previous graphs). It features E: energy (in black),
BW: bandwidth (in green), entropy (in blue), flatness (dotted
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magenta), autocorrelation coefficient zero (in red) and flux (in
cyan).

The subband energy ratio wasn’t as strongly correlated
with the sound of a passing vehicle, however, but does show
increases in low bands (0-40 Hz, 41-70 Hz) and decreases in
subbands above 150 Hz, and notably low in the noisiest band
(151-200 Hz) (see Figure 4 3rd graph on the right). This
reflects the wide spectral spread of vehicle noise.

Bandwidth appeared to be a good indicator of vehicle
activity. Subbands 251 Hz – 3 kHz increase as a vehicle
approaches. Subbands 3 kHz and above also increase, but may
pick up high frequency noises as well. Subbands below 251
Hz are quite noisy. Entropy shows they same behaviour as
bandwidth.

Subband centroids appeared to be fairly flat and noisy in
most bands, but with some movement in bands up to 200 Hz.

Flux is a weak indicator, being basically flat in most
subbands, but with fairly small drops in a few bands as
vehicles approach. However, flatness is a stronger indicator,
dropping strongly as vehicles pass, except in the first few
subbands up to 150 Hz. At other times, flatness is either high,
or very noisy. Skewness also decreases as vehicles passes,
mostly in bands from 251 Hz and up. However, it is a noisier
signal than flatness.

Subband spectral decrease was simply too noisy to have any
use in vehicle detection.

Auto correlation coefficient 0 increases in bands 251 Hz
and up as a vehicle approaches. Lower bands corroborate this,
but also pick up wind.

E. Choosing Features

Many of the temporal and global spectral features didn’t
appear useful in detecting vehicles (for example spectral cen-
troid), and those that did (for example spectral energy) provide
more detailed information in subbands. Roll off was the only
global feature that appeared to provide useful information.

The most obvious feature that we have retained is signal
amplitude, which indicates how close a vehicle is. There are
three signal amplitude measures that are basically equivalent,
these being spectral energy, RMS and STE. Of these spectral
energy was chosen as the representative feature. In particular,
subband energy provides information on the loudness of the
sound, while allowing loud noises that sound nothing like a
vehicle to be filtered out.

When a vehicle approaches energy, bandwidth, entropy, and
auto correlation coefficient 0 should be high, while flatness,
flux, and the absolute value of spectral decrease should be low.
Many of these features are interrelated. From smoothed (one
second window) graphs it appears that, ignoring offsets:

• flux follows flatness but is less detailed (flatter with just
a few peaks and valleys);

• spectral decrease mirrors flatness;
• bandwidth follows spectral decrease (but is flatter);
• entropy follows bandwidth;
• entropy also follows energy to a large degree.
From these features, the strongest and least noisy are chosen

as vehicle detection features: spectral energy, bandwidth and

flatness. Autocorrelation coefficient 0 and flux have strong
responses when an approaching vehicle is very close, so these
are chosen as vehicle imminence detectors.

F. Heuristic For Approaching Vehicle Detection

From the previous section, it can be seen that many features
provide the same information, so only the clearest of each of
these sets of features has been utilised in the classification
process.

Three sets of information are extracted from the audio:
• Subband audio signal amplitude (the mean of its con-

stituent frequency component magnitudes).
• Subband spectral features: energy, bandwidth, flatness,

flux and autocorrelation coefficient 0.
• Global spectral roll off.
The first two sets of information are thresholded, while

the last is used to modulate the threshold for foreground
vs background determination. Subband amplitude is used to
determine if something that might be a vehicle is significantly
loud to warrant attention, while subband spectral features assist
in characterising the sound.

A heuristic based on these has been developed, and is
outlined in the following sections.

1) Adjusting Sensitivity with Spectral Roll Off: Changes
in spectral roll off frequency are used for adjusting the
sensitivity of detecting activity in subband amplitude and
spectral features. Roll off can be a very noisy signal with
large oscillations, and so before it can be utilised, the signal
needs to be smoothed to look at long term patterns. A moving
average with a window of one second is used for smoothing.

After the signal has been smoothed, the logarithmic amount
of change in the last ten second window is calculated as

roffD = log10 max(r)− log10 min(r) (3)

where r is the smoothed rolloff values within the window.
roffD values typically range from less than 0.1 to above 1.0,
with higher values generally associated with a vehicle passing.
This measure of the logarithmic change in roll off is then used
to increase or decrease sensitivity to subband amplitudes and
spectral features.

A roll off factor (ρ) is then set based on roffD as follows:
• roffD ≤ 0.65: set ρ = 0.75 to decrease the threshold, for

increased likelihood that the sound is a vehicle;
• roffD between 0.35 – 0.65: set ρ = 1.0 to leave the

threshold unaltered;
• roffD < 0.35: set ρ = 1.5 to increase the threshold, so

reducing the likelihood that the sound is a vehicle.
Thresholds based around the standard deviation from the

moving average are multiplied by rofactor to scale the
threshold of subband amplitude and features (see Eq. 1 in
Section IV-B.

2) Subband Amplitude-based Classification: From examin-
ing the thresholded subbands, under various scenarios, it was
shown that a good first pass, which allows through some false
positives that can be eliminated using other measures, is to
count the number (N ) of “active” subbands, those having their
mean amplitude above or equal to their subband amplitude
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Fig. 4. Spectral energy and equivalent mean band amplitutes (scenario 39)

threshold, in bands 2-11 (41-1000Hz). Then, if band 11 is
active, add the count of active subbands from 12-14 (1-3 kHz).
Subbands above 3 kHz are not used here.

The top active subband (F ), up to and including 14 (i.e.
≤ 3 kHz), is recorded, and if F ≥ 9 (i.e. if the top active
subband is at least 401-500Hz), or if subband 1 (0-40 Hz) is
inactive (indicating that the sound is unlikely to be wind), then
set N to the number of active subbands with a ceiling at 10.
Otherwise set N to 0. 1088c1091

This gives an instantaneous score, that taken in isolation can
be a little noisy, containing brief spikes of activity. This can
be improved by taking into account its history. At this point, a
simple spike-removal approach has been taken, whereby spikes
in the score, starting and returning to zero, are removed if
their width of activity is less than 500ms. This successfully
removes most false positives without adversely affecting the
identification of significant vehicle activity.

3) Subband Feature-based Classification: The second part
of the test for approaching vehicles uses the chosen extracted
subband spectral features; the three primary features spectral
energy, bandwidth and flatness; and the two imminence fea-
tures Autocorrelation coefficient 0 and spectral flux.

As with subband amplitude, a thresholding approach is used
to determine whether a feature is considered active or not.
For any given subband of interest, a feature is considered
significant or active, if it is at least κρ times the standard
deviation away from the moving average, in the direction of

interest (i.e. above or below the average). See section IV-B for
details.

For energy and bandwidth features, the main subbands of
interest are from 401-2000 Hz (subbands 9-13), with optional
subbands being 251-400Hz (subbands 7,8), 2 kHz - 11kHz
(subbands 14-16). These two features are considered ”active”
(i.e. a vehicle is detected) if either four out of the five main
subbands, or three of the main subbands plus three out of the
five optional subbands are at or above their subband feature
threshold.

For the flatness feature, this feature is considered to be
”active” if the subband flatness is less than the moving average
for most (four out of six) of the subbands ≥ 751 Hz (subbands
11-16).

These three features have their activity status counted to
obtain a score from 0-3. Spikes (emanating from zero and then
dropping back to zero) in activity with a width of activity less
than 500 msec are then removed to eliminate noise

If, after spikes have been eliminated, the sum of these three
features (energy, bandwidth and flatness) has a positive score,
then the other two features, flux and autocorrelation coefficient
0, are tested as imminence (vehicle very close) indicators.

For the flux feature to be considered active, flux must be
at or below the subband threshold for most (four out of six)
subbands in the range 251 Hz - 2 kHz (subbands 7–14).

For the autocorrelation coefficient 0 feature to be considered
active, it must at or above the subband threshold for most (six
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out of ten) of the subbands from 251 Hz (subbands 7-16).
If both autocorrelation and flux are ”active”, then add these

imminence detectors to the feature score to give a score from
0 − 5, and then multiple this by two so as to have equal
weighting to the active subband amplitude score.

4) Combining Amplitude and Feature Classifications: A
total score indicating likelihood is made by combining the
subband amplitude and feature scores. When a vehicle is
approaching (or passing) both subband amplitude and spec-
tral features should be present at the same time, however,
thresholding based on roll off affects band amplitude more
than features. Furthermore, while subband spectral features,
in themselves are not sufficient for determining whether a
vehicle is approaching, it will register an approaching vehicle
before the vehicle’s sound becomes prominent (that is, before
subband amplitudes exceed the threshold).

For this reason, in an actual embedded application, if the
subband amplitude score is 0, set the total score to be half
the feature score, to reduce false positives, but to still have
some effect. But if the subband spectral features score is 0
and the subband amplitude score is positive, then set the total
score to be the amplitude score, as it has fewer false positives,
and unexpected loud noises may be worth registering even
if they are not from a vehicle. However, for the recognition
testing experiments presented in this paper, rather than actual
application, scores are done slightly differently. In this case,
both band amplitude and spectral features should be present
at the same, and if they aren’t, then the score (from amplitude
or features) is halved.

The behaviour of this heuristic is such that as a vehicle
approaches, the total score will rise from zero to a peak
determined by how close the vehicle comes, the vehicle size,
and the refractory period associated with the roll off threshold
scaling mechanism. With many passing vehicles, the first
vehicle will trigger the greatest response, while following
vehicles will have less impact. An isolated vehicle will trigger
a stronger response than a constant stream of traffic.

Erroneous readings (false positives) are unlikely to rise to
scores above 20, and are often narrow peaks that are easily
filtered out. Background traffic may register with low (10-20)
or medium (up to 40) scores, while out of the ordinary (rel-
atively loud) passing vehicles or irregular traffic will register
scores that peak above 50, and reach scores of 100 for isolated
vehicles that pass close to the pedestrian. This total score can
be used to notify the pedestrian of approaching vehicles.

G. Summary results

The results for each of these experiments is summarised by
method in Table I. All type of vehicles (buses, trucks, 4-wheel
drive, sedan) were all successfully detected. Each (Strong,
Medium, Weak) column shows the number of events of this
category matched, with trailing ’+’s and ’-’s indicate that an
event was reported stronger or weaker than the actual event,
while a ’*’ indicates that an event reported two categories
higher than actual (i.e. a weak event reported as strong). The
’False’ column gives the number false detection events, with
’w’, ’m’ and ’s’ to indicate the strength (weak, medium or

TABLE I
SUMMARISED RESULTS BY METHOD

Method Strong Medium Weak False
actual 10 5 12 N/A
default 10 5– 9 8w
mov std 10 5+++(+) 7* 9w + (7w) + (1m) +

[ early trigger of strong vehicle alert ]
no rolloff 10- 5+– 9+ 9w + 1m + 1s

strong). Parenthesis in the moving standard deviation method
is used to indicate an event that occurred well before the
sliding window for the moving standard deviation was filled –
typically in the first 15 seconds of the recording. Our results
shows that vehicle with strong and medium signal are mostly
detected accurately.

VI. DISCUSSION

There was a total of 786 seconds of audio tested in the
experiments outlined in the previous section. All strong vehi-
cle events were detected accurately, by all methods (though
without roll off modulating the threshold, one strong event
was detected as medium). Likewise all medium level events
were detected, however the default method under classified
two of these as weak, while the method not utilising roll
off misclassified three (one as strong and two as weak), and
using moving standard deviation, three were misclassified as
strong, with an additional strong misclassification occurring
well before the window was filled. All methods were unable
to detect all of the 12 manually detected weak level events.
The default method detected 9, as did the method without
roll off (although one event was misclassified as medium).
The method using moving standard deviation was only able
to detect 7 weak events, with one of these misclassified as
strong.

All methods produced false positives, although these were
primarily weak level events. The default method reported 8
weak false positives, while using a moving standard deviation
reported 9 weak (plus 7 weak and one medium well before
the standard deviation’s sliding window is filled) and an
early triggering of a strong vehicle alert (where there was
considerable wind before the vehicle approached), and the
method that didn’t modulate the thresholds based on roll off
reported 9 weak, one medium and one strong false event.

Although the number of weak false positives appears signif-
icant, weak level events only postulate that the sound may be
a distant or non-significant vehicle, and so in real application
these would not be reported to the pedestrian. Furthermore,
these primarily occur in situations where vehicle activity
doesn’t occur (for example, in a cafe), and could be removed
through the incorporation of GPS information.

The misclassification of event levels by a single level is
difficult to fault as level cut offs were chosen somewhat
arbitrarily, and correlating medium and weak event strengths
with what is heard can be difficult.

The experiment demonstrated that using roll off to modu-
late thresholds assists in removing false positives, especially
medium and strong level false events caused by loud environ-
mental noises, and increases the accuracy of categorisation of
event levels.
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However, using a moving standard deviation appears to
lower the accuracy of classification level for medium and weak
events, and has more difficulty in detecting weak events, which
is not necessarily a bad thing in a real application, as it is
detecting that they are simply background noise. However, it
is possible that using a longer window would help to increase
accuracy. In addition many false positives only occurred prior
to the first window of samples being adequately filled. This
could be countered in a real application by not activating alerts
immediately (several false events occurred at the very start of
recordings) and only reporting strong events in the first partial
window.

VII. POTENTIAL SAFETY IMPACTS OF AHD

The description of the human machine interface aspects
of AHD is out of the scope of this paper. However we
anticipated that when the portable device detects a car then
it will block the current conversation or music and issue
a strong auditory/vibration warning to the pedestrian. This
section addresses the question about whether the detection
provides enough reaction time to the pedestrian to act upon
from the pedestrian safety viewpoint.

AHD is designed for an urban environment where the speed
of vehicles are not too high (e.g less than 40 km/h). Brisbane
city is an example of such a urban environment where the
speed limit is 40 km/h. The stopping distance of a vehicle is a
function of initial travel speed and can be calculated with basic
laws of kinematics which is derived from Newton mechanics
described as

v2 = u2 + 2as (4)

where v is final speed, u initial speed,s distance travelled, a =
µg with µ is friction coefficient and g is gravitational constant
9.8m/sec2. Corben et al. [8] use Equation 4 to calculate the
stopping distance for different speed as illustrated in Figure 5
(a). It shows that it takes 15 m of vehicle traveling at 30 km/h
to stop considering that a driver has on average 1.2 seconds
of reaction time.

We have developed a prototype of AHD on the iPhone based
on the algorithm developed in Matlab. The iPhone prototype
is under development, however initial tests and estimations of
the detection distance based on the Matlab algorithm show that
vehicles are detected between 20 to 30 m from the pedestrian.
The detection depends on the amount of background traffic
noise (as obviously with more traffic it is harder to detect if
a particular vehicle is of relevance to the pedestrian or not).
Low level warnings could be available at around 3 seconds
before the vehicle passes the pedestrian, while 2 seconds
warning would be typical for a medium level warning, and a
high intensity warning would typically occur around 1 second
before the vehicle passes.

Assuming that a vehicle is detected at 25m and the reaction
time of a pedestrian is 1.2 seconds, a car travelling at 30km/h
would be 15m away from the pedestrian before she or he can
reacts. The pedestrian has 1.8s left to take evasive actions. This
is not much time but we could assume that (i) the pedestrian
could potentially steps away or perform relevant action to
avoid or reduce the crash severity (ii) the driver has started

to break before the last 15m therefore reducing the likelihood
of severe injury. The combination of the two actions provides
sufficient time for the pedestrian to jolt back to an awareness of
the traffic surrounds, and at least avoid stepping into a vehicles
path, while at best, being able to take action to avoid being
struck by an out of control vehicle or negligent or dangerous
driver.

Figure 5 (b) shows that the probability of pedestrian fa-
tality increases drastically other 40km/h. The increase is less
pronounced under 40km/h which means that the severity of
the crash decreases when the impact speed is reduced. AHD
could reduce the likelihood or severity of impact by warning
the pedestrian about the presence of an approaching vehicle.

Fig. 5. Stopping Distance and crash severity (extracted from [8])

VIII. CONCLUSION

In 2008, 13 per cent of the 1464 people killed on Australian
roads were pedestrians, with pedestrians often being at fault.
MP3 players and mobile phones are a recipe for pedestrian
disaster, according to insurance company research (AAMI
Insurance survey, 2010).

A novel vehicle detection method based solely on audio
from a microphone has been proposed. The extraction of
sound features from a noisy environment is a challenging task.
Audio features were mined, selected for utility, and combined
heuristically using existing statistical tools.

The main advantage of our approach is that it doesn’t require
heavy machine learning classification techniques which makes
the processing lightweight and portable on PDAs and mobile
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phones. The research results are promising as were able to
detect approaching vehicles while incurring a very low rate of
false positives under a wide range of environmental conditions.

Our approach has a number of limitations. The experi-
ments conducted in this paper used an unobstructed iPhone
microphone for recording audio. However, in real application,
music players are often placed in a bag or pocket. This would
have the effect of creating more microphone brushing noises,
which in the conducted experiments showed up as weak false
positives, as well as dampening many frequency components.
The absence of publicly available data recordings, as a bench-
mark, to compare the performance of our system against
others and to test the general applicability of our method
prevented us from demonstrating the true advantages of our
system. However the sample of data used in our experiment
are realistic and general enough for a pilot study.

Our system doesn’t differentiate between passing vehicles
and approaching ones especially when passing vehicles are
very close. Both are classified as vehicles approaching the
AHD system. This could lead to a considerable number of
unwanted and distracting warnings about vehicles which do
not pose direct threats to the pedestrian. However the system
was designed for walking pedestrians who could collide with
approaching vehicles or passing vehicles should the pedestrian
is stepping towards the passing vehicle’s trajectory. In the later
case the role of our system is to prevent the pedestrian from
walking towards the passing vehicle.

Further work needs to be conducted to assess performance
improvement when using a moving standard deviation, as
a static recording-length standard deviation is only feasible
in offline tests. This system could also be enhanced by
incorporating GPS location awareness information, and motion
information (from the iPhone’s internal gyroscopes) to filter
out situations where crash risk are very low (e.g in-door or
pedestrian not moving). Our future work will concentrate on
detailed validation and improvements of the AHD system
which includes Human Machine Interface (HMI) studies,
differentiating approaching and passing by vehicles, objective
measurement of road safety benefits and further performance
measures on different type of mobile phones and PDAs.
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