
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Costello, Craig, Lauter, Kristin, & Naehrig, Michael (2011) Attractive sub-
families of BLS curves for implementing high-security pairings. Lecture
Notes in Computer Science : Progress in Cryptology - INDOCRYPT 2011,
7017, pp. 320-342.

This file was downloaded from: http://eprints.qut.edu.au/47971/

c© Copyright 2011 Springer-Verlag Berlin Heidelberg

This is the author-version of the work. Conference proceedings published,
by Springer Verlag, will be available via SpringerLink, Lecture Notes in
Computer Science. http://www.springer.de/comp/lncs/

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1007/978-3-642-25578-6_23

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10908775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Costello,_Craig.html
http://eprints.qut.edu.au/47971/
http://dx.doi.org/10.1007/978-3-642-25578-6_23

Attractive Subfamilies of BLS Curves for
Implementing High-Security Pairings

Craig Costello1,2?, Kristin Lauter2, and Michael Naehrig2,3

1 Information Security Institute
Queensland University of Technology, GPO Box 2434, Brisbane QLD 4001, Australia

craig.costello@qut.edu.au
2 Microsoft Research

One Microsoft Way, Redmond, WA 98052, USA
klauter@microsoft.com

3 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands

michael@cryptojedi.org

Abstract. Barreto-Lynn-Scott (BLS) curves are a stand-out candidate
for implementing high-security pairings. This paper shows that particular
choices of the pairing-friendly search parameter give rise to four subfami-
lies of BLS curves, all of which offer highly efficient and implementation-
friendly pairing instantiations.
Curves from these particular subfamilies are defined over prime fields
that support very efficient towering options for the full extension field.
The coefficients for a specific curve and its correct twist are automat-
ically determined without any computational effort. The choice of an
extremely sparse search parameter is immediately reflected by a highly
efficient optimal ate Miller loop and final exponentiation. As a resource
for implementors, we give a list with examples of implementation-friendly
BLS curves through several high-security levels.
Keywords: Pairing-friendly, high-security pairings, BLS curves.

1 Introduction

Current public-key security recommendations have influenced a concentrated
effort from the pairing-based community towards optimizing the implementation
of pairings on Barreto-Naehrig (BN) curves [4]. Indeed, aside from an array of
many other attractive properties (see [20, 23] for more details), BN curves are
perfectly suited to the security level of 128 bits (cf. [2], [32], and [12, §1.1]), since
they achieve an optimal balance between the necessary sizes of the three groups
involved in the pairing e : G1 × G2 → GT . The BN pairing speed record of 10
million cycles set by Hankerson et al. in 2008 [14] stood until mid 2010, when

? Acknowledges funding from the Australian-American Fulbright Commission, the
Queensland Government Smart State PhD Scholarship, and an Australian Post-
graduate Award.

three papers appeared in rapid succession [22, 7, 1], each one shaving more time
off the previous record and pushing the limit of efficiency at this security level.
This work was pinnacled by Aranha et al. [1], who applied a combination of
improvements to accelerate the entire pairing computation to less than 2 million
cycles. As implementors seemingly converge towards a “satisfaction asymptote”
at the 128-bit security level, the focus is now beginning to shift to optimizing
pairings at higher security levels.

As Scott details [25], scaling security in pairing-based cryptography is fun-
damentally different than doing so in traditional public-key protocols that only
require one group definition. Whilst increasing the security of other number the-
oretic protocols usually requires an increase in the size of the modulus, an opti-
mized scaling in the context of pairing-based cryptography can be achieved by
increasing the embedding degree. Utilizing the flexibility of a higher embedding
degree allows an implementor to inflate the size of the finite field target group
GT at a greater rate than the corresponding inflation in the elliptic curve groups
G1 and G2, paying respect to the faster subexponential attacks that must be
resisted in GT . Stepping up to a significantly higher security level therefore calls
for a different family of pairing-friendly elliptic curves altogether, and although
many of the previous optimizations (e.g. for BN curves) can be immediately or
easily transferred to computing pairings on the new curves, there are naturally
new issues that arise when advancing towards a thorough optimization.

This work focuses on pairings that employ the Barreto-Lynn-Scott (BLS)
family with k = 24 [3] (see also [12, §6.6]). The BLS family has already been
identified as the prime candidate for 256-bit secure pairings by Scott [27], who
now holds the current software speed record at this level. The aim of this paper
is to provide some of the finer details that will begin to pave the way for imple-
mentors who may wish to further accelerate the state-of-the-art timings on BLS
curves. The bulk of our discussion is motivated by Pereira et al.’s work in the
case of BN curves [23], where they detail a very simple method of generating
highly optimal instantiations of implementation-friendly BN curves. With the
same intent, we point out four highly attractive subfamilies of BLS curves that
facilitate very efficient instantiations of high-security pairings.

The proposed curves are found by restricting the search parameter x in the
polynomial representation to any one of four specific congruency classes, namely
x0 ≡ 7, 16, 31, 64 (mod 72). These choices result in prime fields of characteristic
p ≡ 19 (mod 24), which in turn leads to three very efficient towering options for
the full extension field Fp24 . We show that all curves found in any of the proposed
subfamilies can immediately be given by the same short Weierstraß equation
over Fp, and the unique sextic twist E′ of correct order for use in the ate pairing
setting is automatically determined. Not only is there no computational effort
necessary to write down the curve equations once the prime p is found, both
E and E′ can be represented very compactly by the polynomial parameter x0

alone.
We give some details on line function computation and discuss an efficient ver-

sion of the hard part in the final exponentiation. As a resource for implementors,

we give elaborate lists of example curves covering a range of high-security levels
between 192- and 320-bit security, including the dedicated BLS security level of
256 bits. We have chosen the examples with a very sparse parameter x which
leads to a low number of addition steps in the Miller loop and simultaneously
very efficient exponentiations by x, which are needed in the final exponentiation.

The remainder of this paper is organized as follows. Section 2 gives a brief
background on the BLS family for embedding degree k = 24 and on computing
optimal pairings on BLS curves. Section 3 describes the proposed implementation-
friendly subfamilies of BLS curves, whilst Section 4 details some choices that can
facilitate more simple pairing code. In Section 5 we apply the work of Scott et al.
[29] to give details on the final exponentiation routine. Lists of example curves at
several security levels are presented in Section 6. Finally, Appendix A provides
timing results of a C implementation of the optimal ate pairing on BLS curves.

2 Background

The BLS family with embedding degree 24. In [3], Barreto, Lynn and
Scott propose polynomial parametrizations for certain complete pairing-friendly
curve families for specific fixed embedding degrees. All curves belonging to one of
these so-called cyclotomic families have CM discriminant D = 3 (i.e. j-invariant
j = 0) and can be given by a short Weierstraß equation E : y2 = x3 + b. For
embedding degree k = 24, the Barreto-Lynn-Scott (BLS) family is given by the
following parametrization (see also [12, Construction 6.6]):

p(x) = (x− 1)2(x8 − x4 + 1)/3 + x, r(x) = x8 − x4 + 1,

n(x) = (x− 1)2(x8 − x4 + 1)/3, t(x) = x+ 1,

f(x) = (x− 1)(2x4 − 1)/3. (1)

Finding a specific BLS curve is achieved by running through integer values x0 ≡ 1
(mod 3) until p(x0) and r(x0) are both prime (note that x0 ≡ 1 (mod 3) leads to
all involved parameters being integers). For each set of parameters, there exists
an elliptic curve E over Fp such that #E(Fp) = n(x0). The correct curve E can
be found by trying different values for b (i.e. different twists) and checking for
the right group order. Another alternative is to compute the coefficient by the
algorithm described in [24]. Since r(x0) | n(x0), there is a subgroup of E(Fp) of
prime order r(x0). The CM discriminant is D = 3 because 4p(x0) − t(x0)2 =
3f(x0)2. The family has a ρ-value of ρ = deg(p)/ deg(r) = 1.25.

BLS curves achieve the smallest ρ-value for k = 24 (see [12, Section 8]);
they have twists of degree 6 and allow for many optimizations when computing
pairings, similar to Barreto-Naehrig (BN) curves. A particularly nice property is
that the ate pairing [15] already provides an optimal pairing [33]. The number
of iterations in Miller’s algorithm to compute the ate pairing is log(t(x0)− 1) =
log(x0) ≈ log(r(x0))/ϕ(k) = log(r(x0))/8.

According to key size recommendations in [2], [32], and [12, Section 1], BLS
curves are a good choice for pairings at the high-security 256-bit level. Indeed,

Scott [27] recently demonstrated an efficient implementation of pairings on BLS
curves at that level.

An optimal ate pairing. We now briefly recall the ate pairing on BLS curves
and the arithmetic that is involved in its computation. Let E/Fp be a BLS
curve with parameters constructed as above given an integer x0 ≡ 1 (mod 3),
i.e. p = p(x0), r = r(x0) and so forth. Then there exists a unique twist E′/Fp4
with r | #E′(Fp4) with twisting isomorphism ψ : E′ → E over Fp4 . Let us define
the usual groups G1 = E(Fp)[r] and G2 = ker(φp − [p]) ⊂ E(Fp24)[r] as the
1- and p-eigenspaces of the Frobenius endomorphism φp on E[r]. Let the group
G′2 = ψ−1(G2) be the preimage of G2 under ψ.

Let T = t − 1. As outlined in [9], we can either compute the original ate
pairing

aT : G′2 ×G1 → F∗p24 , (Q′, P) 7→ fT,ψ(Q′)(P)
p24−1

r ,

by “untwisting” Q′ for the computation of fT,ψ(Q′); or we can compute

a′T : G′2 ×G1 → F∗p24 , (Q′, P) 7→ fT,Q′(ψ−1(P))
p24−1

r ,

i.e. compute entirely on the twist by “twisting” P to E′.
A function fT,R(S) for points R,S on E or E′ as above is computed with

Miller’s algorithm [19]. It involves curve arithmetic in G′2, i.e. doubling and
addition of points on the curve E′ over the field Fp4 and the computation of line
functions from points in G′2 evaluated at a point in G1 or its preimage under ψ.
The computations in Fp4 for point doubling and addition and for obtaining the
corresponding line function coefficients share partial results and are thus usually
optimized together. Depending on the context in which the pairing is used and
the computing platform, one needs to choose between affine and different variants
of projective coordinates to find the best formulas for these operations.

The function fT,R(S) is built up by accumulating the line function values.
This requires efficient squaring and multiplication-by-line-function operations in
the full extension field Fp24 . The final exponentiation on elements in F∗p24 has a
fixed exponent and it is possible to use specialized more efficient squaring op-
erations as well as other optimizations [13, 17, 1]. Full extension field arithmetic
needs to be particularly efficient as pairing efficiency strongly depends on it. It
is therefore important to work with a well-chosen extension field tower [6].

3 Particularly friendly subfamilies

In this section we show that specializing the congruency classes of the curve-
finding search parameter gives rise to four subfamilies of k = 24 BLS curves that
are highly efficient in terms of all operations required in a pairing computation.
Specifically, we show that rather than searching with x0 ≡ 1 (mod 3), searching
with any of x0 ≡ 7, 16, 31, 64 (mod 72) guarantees that the curves found offer
(among other things) the following advantages.

– The curve constant b is immediately determined (see Proposition
3 below). This saves performing expensive computations that test different
values of b and the corresponding group order until the correct twist is found;
or the checks for quadratic and cubic residuosity and root computations for
the algorithm in [24].

– Highly efficient field tower options are available (see Proposition 2
below). This facilitates very efficient field arithmetic in the full extension
field (and all intermediate subfields).

– The correct twist is immediately determined (see Proposition 4 be-
low). Among other savings, having an automated and general representation
for the correct twist saves group arithmetic on curves over the quartic exten-
sion field Fp4 in the generation phase. Also, the representations of the twists
are always simple and facilitate nice back-and-forth isomorphisms between
E and E′.

In addition to the above efficiency benefits, generating curves with identi-
cal or consistent parameters also offers the advantage of code reusability across
different instantiations and security levels. This allows an implementor the flex-
ibility of scaling parameter sizes to better match a neighboring security level
without changing any of the pairing code.

Furthermore, having fixed coefficients for the curve and its twist leads to a
very compact way of representing the curve data. Note that in this setting, the
knowledge of the generating parameter x0 uniquely determines all information
about both curves. What only remains is to give generators for the groups G1

and G′2, except for the case of x0 ≡ 64 (mod 72) for which a compact generator
in G1 is always available as [h](3, 5) with high probability, where h is the cofactor,
i.e. [h] maps elements of E(Fp) into G1.

x0 p(x0) n(x0) efficient E E′

(mod 72) (mod 72) (mod 72) tower
(eq. (1)) (eq. (1)) (Prop. 2) (Prop. 3) (Prop. 4)

7 19 12 3 y2 = x3 + 1 y2 = x3 ± 1/v

16 19 3 3 y2 = x3 + 4 y2 = x3 ± 4v

31 43 12 3 y2 = x3 + 1 y2 = x3 ± v
64 19 27 3 y2 = x3 − 2 y2 = x3 ± 2/v

Table 1. Four attractive subfamilies of BLS curves

We split the rest of this section into two subsections. The first subsec-
tion is dedicated to proving the claims in Table 1 and showing that taking
x0 ≡ 7, 16, 31, 64 (mod 72) will always give rise to highly efficient BLS instanti-
ations. The intention of the second subsection is to detail why x0 ≡ 7, 16, 31, 64
(mod 72) reign supreme over the other possible congruence classes.

3.1 Using the four classes x0 ≡ 7, 16, 31, 64 (mod 72)

We start with a lemma that is instrumental in some of the proofs that follow.
For a prime p, let QR(p) denote the set of quadratic residues modulo p.

Lemma 1. Let x0 ∈ Z be any of x0 ≡ 7, 16, 31, 64 (mod 72), and let p = p(x0)
with p given by (1) be a prime. Then 2 is neither a quadratic nor a cubic residue
modulo p.

Proof. A simple calculation shows that for x0 ≡ 7, 16, 64 (mod 72), we have
p(x0) ≡ 19 (mod 72). For x0 ≡ 31 (mod 72), we have p(x0) ≡ 43 (mod 72). In
both cases, it is easy to deduce that 2 6∈ QR(p).

It remains to show that 2 is not a cube modulo p for each of the x0 values.
For all four cases, we use [16, Prop. 9.6.2], which states that for p ≡ 1 (mod 3),
2 is a cubic residue modulo p if and only if there exist integers C,D such that
p = C2 + 27D2. According to [16, Prop. 8.3.2], for p ≡ 1 (mod 3) there always
exist integers A and B such that 4p = A2 +27B2 and A,B are unique up to sign.
Thus, if A and B in this unique representation are both even, 2 is a cube modulo
p, otherwise it is not. In each of the four cases x0 ≡ 7, 16, 31, 64 (mod 72), we
examine A and B in terms of the polynomials from (1). The CM norm equation
for the BLS family is 4p = t2 + 3f2, where f = (x0 − 1)/3 · (2x4

0 − 1), see (1).
For x0 ≡ 64 (mod 72), we have f(x0) ≡ 0 (mod 3) which allows us to write

4p(x0) = t(x0)2 + 27 · (f(x0)/3)2, so A = t(x0) = x0 + 1 ≡ 65 (mod 72) and
B = f(x0)/3 = (x0−1)/9 · (2x4

0−1) ≡ 25 (mod 72) are both odd, meaning that
for x0 ≡ 64 (mod 72), 2 is not a cubic residue modulo p(x0).

For the other three cases x0 ≡ 7, 16, 31 (mod 72), it is easy to show that
f(x0) 6≡ 0 (mod 3), so the CM equation does not directly yield A and B. The
two cases x0 ≡ 7, 16 (mod 72) can be handled by considering a transformation
of the CM norm as

4p =
(

3f + t

2

)2

+ 27
(
t− f

6

)2

.

For x0 ≡ 7 (mod 72), t(x0), f(x0) ≡ 2 (mod 6), so that both A = (3f + t)/2
and B = (t − f)/6 are integers. Furthermore, f(x0) ≡ 2 mod 4 and t(x0) ≡ 0
(mod 4) reveal that 3f + t ≡ 2 (mod 4) so that A is odd, from which it follows
that 2 is not a cubic residue modulo p(x0) for x0 ≡ 7 (mod 72).

For x0 ≡ 16 (mod 72), we have t(x0), f(x0) ≡ 1 (mod 2) and t(x0), f(x0) ≡
2 (mod 3). Furthermore, since t(x0) ≡ 1 (mod 4) and f(x0) ≡ 3 (mod 4), again
we conclude that 3f + t ≡ 2 (mod 4), meaning that A = (t− 3f)/2 is odd and
2 is not a cube modulo p(x0) for x0 ≡ 16 (mod 72).

Finally, for x0 ≡ 31 (mod 72), we require a slightly different transformation
of the CM equation as

4p =
(
t− 3f

2

)2

+ 27
(
t+ f

6

)2

.

In this case t(x0) ≡ 2 (mod 6) and f(x0) ≡ 4 (mod 6) so that A = (t − 3f)/2
and B = (t+f)/6 are integers. Since t(x0) ≡ 0 (mod 4) and f(x0) ≡ 2 (mod 4),

it follows that A ≡ 1 (mod 4) is odd and 2 is not cube modulo p(x0) for x0 ≡ 31
(mod 72). ut

The ideal way to form a quadratic extension field arises when p ≡ 3 (mod 4)
which allows us to take Fp2 = Fp(u), u2 + 1 = 0. Operations in Fp[u]/(u2 + 1)
are cheaper than operations in Fp[u]/(u2−α) for any other non-residue α ∈ Fp,
since multiplication by α 6= ±1 costs additions in Fp (or see [10]). Since we have
p ≡ 19 (mod 24) in all four cases, we always have p ≡ 3 (mod 4).

For the extension from Fp2 to Fp4 = Fp2(v), the ideal irreducible binomial
in terms of simplicity would be v2 + u. Unfortunately the following proposition
shows that if we form Fp2 as above, then this binomial cannot be used to define
Fp4 (and this statement is true for any quartic extension fields, whether in the
context of pairings or not).

Proposition 1. If p ≡ 3 (mod 4), and Fp2 is constructed as Fp(u), u2 + 1 = 0,
then the polynomial x2 + su with s ∈ Fp is reducible over Fp2 . In particular, Fp4
cannot be constructed over Fp2 using a binomial of the above form.

Proof. Since −1 /∈ QR(p), precisely one of s/2 or −s/2 is a quadratic residue
modulo p. In the first case, write x2 + su = x2 + 2a2u = (x+au−a)(x−au+a)
for s = 2a2, a ∈ Fp. In the second case, taking s = −2a2 for some a ∈ Fp gives
x2 + su = x2 − 2a2u = (x + au + a)(x − au − a). Thus, x2 + su with s ∈ Fp is
reducible over Fp2 . ut

Nevertheless, a binomial that is almost as attractive in terms of efficiency is
v2 + (u+ 1), since multiplications by u+ 1 in Fp2 also come almost for free. The
following proposition shows that the proposed subfamilies of BLS curves always
allow Fp4 to be constructed using this binomial. Furthermore, we also show that
the rest of the tower up to Fp24 can be constructed in three different ways; all
three of which employ optimal binomials, but may be preferred by implementors
depending on various factors, such as the nature of previous pairing code, or
whether compression is desired.

Proposition 2. Let x0 ∈ Z be any of x0 ≡ 7, 16, 31, 64 (mod 72). If p = p(x0)
given by the polynomial in (1) is prime, then the extension field Fp24 can be
constructed using any of the following towering options T1, T2, T3:

Fp8
z3+w // Fp24 ; T1,

Fp
u2+1 // Fp2

v2+u+1 // Fp4

w2+v
==||||||||

w3+v
((QQQQQQQQQQQQQQQ

z6+v // Fp24 ; T2,

Fp12
z2+w

// Fp24 ; T3.

Proof. For all four congruency classes x0 ≡ 7, 16, 31, 64 (mod 72), we have
p(x0) ≡ 19 (mod 24), so that p ≡ 3 (mod 4) and we can use Fp2 = Fp(u) =
Fp[u]/(u2 +1). For the remaining irreducibility arguments, we make use of a the-
orem due to Benger and Scott [6, Thm. 4]. We immediately note that 2, 3 | p−1.

Let us compute NFp2/Fp
(−(u + 1)) = NFp2/Fp

(−1)NFp2/Fp
(u + 1) = (u +

1)p+1 = (u+ 1)p(u+ 1) = (1− u)(u+ 1) = 2. Since 2 is not a quadratic residue
modulo p, Theorem 4 of [6] ensures that v2 + u + 1 is irreducible in Fp2 [v] and
we can construct Fp4 = Fp2 [v]/(v2 + u+ 1).

Next, we compute NFp4/Fp
(−v) = NFp4/Fp

(−1)NFp4/Fp
(v) = NFp4/Fp

(v) =

v1+p+p2+p3 = (v1+p2)1+p = ((−(u + 1))1+p
2
)(1+p)/2 = ((u + 1)2)(1+p)/2 = (u +

1)p+1 = 2. Lemma 1 tells us that 2 is neither a quadratic nor a cubic residue
modulo p, and thus it follows from [6, Thm. 4] that w2 + v, w3 + v and z6 + v
are all irreducible over Fp4 , giving rise to the tower T2, to T1 up to Fp8 and T3

up to Fp12 .
For the remaining parts of T1 and T3, we similarly compute NFp12/Fp

(−w) =

2(1+p4+p8)/3 and NFp8/Fp
(−w) = 2(1+p4)/2. Since p ≡ 1 (mod 6) for all cases, it

follows that (1 + p4 + p8)/3 is odd and so NFp12/Fp
(−w) is not a square in Fp

since 2 is not a square by Lemma 1. Similarly, (p4 + 1)/2 ≡ 1 (mod 3) and so
NFp8/Fp

(−w) is not a cube in Fp. Therefore, [6, Thm. 4] ensures irreducibility of
the remaining polynomials and completes the proof. ut

We have now shown that once a BLS prime p is found using x0 ≡ 7, 16, 31, 64
(mod 72), a highly efficient tower is immediately available. The following two
propositions show that the curve constant and twisted curve are also immediate
in all four cases.

Proposition 3. If x0 ≡ 7, 31 (mod 72) in (1) produces a prime p = p(x0),
then the curve E/Fp : y2 = x3 + 1 is always such that r = r(x0) | n = #E(Fp).
Similarly, for x0 ≡ 16 (mod 72), the desired curve is always E/Fp : y2 = x3 +4.
Finally, for x0 ≡ 64 (mod 72), the desired curve is always E/Fp : y2 = x3 − 2.

Proof. It is well known that if g is neither a square nor a cube in Fp, then all
possible group orders an elliptic curve E : y2 = x3 + b can have over Fp occur as
the order of one of the 6 twists with b ∈ {1, g, g2, g3, g4, g5}. Specifically, choosing
b as exactly one of {1, g, g2, g3, g4, g5} will give the correct number of points (cf.
[31, §X.5]), i.e. the curve with r | n = #E(Fp). Lemma 1 shows that we can take
g = 2, so that in all four cases the correct b is exactly one of {1, 2, 4, 8, 16, 32}.

For both x0 ≡ 7 (mod 72) and x0 ≡ 31 (mod 72), we have n(x0) = (x0 −
1)2(x8

0 − x4
0 + 1)/3 ≡ 12 (mod 72) from (1). Thus, both cases have 2, 3 | n,

meaning that the correct curves E/Fp necessarily contain points of order 2 and
points of order 3. This implies that b is both a quadratic and cubic residue
modulo p, from which it follows that b = 1 is the only option.

For x0 ≡ 16 (mod 72), observe that n(x0) ≡ 3 (mod 72) and thus the correct
curve E has a point of order 3, but not a point of order 2. This rules out b = 1, 8,
since the points (−1, 0) and (−2, 0) have order 2 on the respective curves. The

curve E/Fp : y2 = x3 + b has a point of order 3 if and only if b is a square in
Fp, which rules out b = 2, and therefore b = 32 as well. To rule out b = 16,
we first observe that since n = n(x0) ≡ 3 (mod 72), 9 - n and E/Fp has at
most three points of order 3. If b = 16, then two such points are (0,−4) and
(0, 4). It is easy to see that −3 ∈ QR(p), so let ν2 = −3 for ν ∈ Fp, and write
P = (−4, 4ν) ∈ E(Fp) : y2 = x3 + 16. An easy calculation (e.g. using point
doubling formulas) shows that [2]P = (−4,−4ν) = −P , so that P has order 3,
and similarly for −P . Thus, there are at least four points of order 3 in Fp if
b = 16 contradicting 9 - n, which leaves b = 4 as the only option.

For x0 ≡ 64 (mod 72), we can make use of Algorithm 3.5 in [24], where
in our case U = t/2 and V = f/2. Since 2V = f(x0) ≡ 0 mod 3 and 2U =
t(x0) = 2 mod 3, we immediately have E/Fp : y2 = x3 + 16 as the correct curve.
Lastly, since −2 ∈ QR(p), write µ2 = −2 for µ ∈ Fp, so that µ6 = −8. Since
E/Fp : y2 = x3 + 16 is isomorphic to Ẽ/Fp : y2 = x3 + 16/µ6 over Fp, we can
take b = 16/− 8 = −2 as the curve constant instead. ut

Proposition 4. If x0 ≡ 7 (mod 72) produces the BLS curve y2 = x3 + 1 de-
scribed in Proposition 3, and Fp4 is constructed as in Proposition 2, then the
correct sextic twist with r = r(x0) | #E′(Fp4) can be obtained as both E′/Fp4 =
y2 = x3 + 1/v and E′/Fp4 : y2 = x3 − 1/v. Similarly, x0 ≡ 16 mod 72 gives rise
to the correct twist as both E′/Fp4 : y2 = x3 + 4v or E′/Fp4 : y2 = x3 − 4v;
x0 ≡ 31 mod 72 gives rise to the correct twist as both E′/Fp4 : y2 = x3 + v or
E′/Fp4 : y2 = x3 − v; and finally, x0 ≡ 64 mod 72 gives rise to the correct twist
as both E′/Fp4 : y2 = x3 + 2/v or E′/Fp4 : y2 = x3 − 2/v.

Proof. We first note that −1 = u6 is a sixth power in Fp2 . Therefore, for b′ ∈ Fp4 ,
the curves given by y2 = x3 + b′ and y2 = x3 − b′ are isomorphic over Fp4 .

In each case the correct twist E′ is unique with the property that r | #E′(Fp4)
and it has degree 6 (see [15]). Since there are exactly two twists of E of degree 6
over Fp4 , there are only two possible group orders. We have #E(Fp4) = p4+1−t4,
where t4 can be computed from t and f (notation as before) as t4 = (t4−18t2f2+
9f2)/8 (see [31, §V.2]). If we define f4 by 4p4 = t24 + 3f2

4 , the possible group
orders for the sextic twist are given in [15] as

n4,1 = p4 + 1− (3f4 − t4)/2, n4,2 = p4 + 1− (−3f4 − t4)/2.

We compute both n4,1 and n4,2 as polynomials in terms of the parametrization
(1), and evaluate them at each of the congruency classes which reveals opposing
parities each time. The remainder of the proof is essentially the same for all four
congruencies classes, so we demonstrate completely with x0 ≡ 16 (mod 72).
Taking x0 ≡ 16 (mod 72) gives n4,1 ≡ 28 (mod 72) and n4,2 ≡ 49 (mod 72).
In particular, n4,1 is even and n4,2 is odd in this case. From the polynomial
parametrization, it is easy to check that r | n4,1. Therefore, the unique sextic
twist we are looking for in this case has an even group order over Fp4 .

Proposition 2 shows that v is neither a square nor a cube in Fp4 , so the
correct twist can be given as y2 = x3 + 4v or as y2 = x3 + 4v5. We have
4v = (NFp4/Fp

(v))2v = v3+2p+2p2+2p3 as in the proof of Proposition 2. Since the

exponent on the right hand side of the last equation is divisible by 3, we conclude
that 4v is a cube in Fp4 . Similarly, one can show that 4v5 is not a cube. Since
4v is a cube, the curve y2 = x3 + 4v has a point of order 2, namely (−c, 0) with
c3 = 4v. Hence its order is even and we have found the correct twist for x0 ≡ 16
(mod 72). The other three cases are proven analogously. ut

3.2 The other congruency classes

We now show why the four congruency classes x0 ≡ 7, 16, 31, 64 (mod 72) stand
out over the other congruency classes. After all, restricting x0 ≡ 1 (mod 3) to
any or all of the proposed classes essentially discards 20 out of 24 other congru-
ency classes modulo 72. Of course, there will always be examples where some of
the discarded congruency classes produce curves that also perform highly effi-
ciently. However, we argue that x0 ≡ 7, 16, 31, 64 (mod 72) are the only classes
for which we can always simultaneously guarantee the propositions in the previ-
ous subsection.

Quadratic extension to Fp2 : We start by eliminating the classes of x0 mod 72
which do not facilitate the quadratic extension as Fp2 = Fp(u), u2 + 1 = 0. Of
the 24 possible x0 values modulo 72 in {1, 4, 7, ..., 67, 70}, 12 have x0 ≡ 1, 10
(mod 12), which always (undesirably) produce p ≡ 1 (mod 12). The remaining
12 are {4, 7, 16, 19, 28, 31, 40, 43, 52, 55, 64, 67} with x0 = 4, 7 (mod 12), which
always produce p(x0) ≡ 7 (mod 12).

Quadratic extension to Fp4 : If Fp4 is to be constructed as Fp4 = Fp2(v), v2 +
u+ 1 = 0, then (refer back to the proof of Proposition 2) we can only guarantee
this if NFp2/Fp

(−(u + 1)) = 2 is not a quadratic residue in Fp. Substituting the
remaining 12 candidates for x0 (mod 72) into (1) reveals only 4 possibilities for
p (mod 72), those being p ≡ 7, 19, 43, 55 (mod 72). It is easy to check that only
two of these have 2 /∈ QR(p), namely p ≡ 19, 43 (mod 72). These correspond to
6 of the remaining x0 congruencies, shrinking the pool of preferred candidates
to {7, 16, 31, 40, 55, 64}.

Sextic extension to Fp24 : The proposed sextic extensions in Proposition 2
that employ simple binomials to form Fp24 over Fp4 require that 2 is not a cube
in Fp. This does not always happen for x0 ∈ {40, 55}. For the sake of counter
examples, x0 = 12856 ≡ 40 (mod 72) and x0 = 1135 ≡ 55 (mod 72) produce
BLS curves where 2 is a cube modulo p, and therefore fields which can not use
the tower in Proposition 2. Even if alternative binomials can be found in such
cases, the fact that 2 is a cubic residue also affects the ease of guaranteeing the
smallest identical curve constant b for all curves in the subfamily, as we were able
to do for the proposed four congruency classes in Proposition 3. For example,
the smallest curve constant for the curve found with x0 = 12856 ≡ 40 (mod 72)
is b = −3, whilst the smallest constant for the curve found with x0 = 25312 ≡ 40
(mod 72) is b = 9.

4 Choosing simple lines: twisting vs. untwisting

The aim of this short section is to detail some choices that can facilitate more
simple (and theoretically faster) pairing code.

For 128-bit security BN implementations, the complexity of a single Miller
loop is higher than complexity of a single final exponentiation (see any of [22,
7, 1]). However, as the security level and embedding degree increases, a final
exponentiation becomes much more costly than a Miller loop [11] (or see our
timings in Appendix A). This could influence implementors paying less attention
to more complicated subtleties within the Miller loop, like adopting projective
coordinates, and instead focusing on speedups within the exponentiation routine.
On the other hand, a large number of recent pairing protocols like attribute-based
encryption (ABE) require many Miller loops for each exponentiation (see Scott’s
recent work [27] for an in depth look), and therefore in these scenarios savings
within the loop again become more significant overall. In any case, a thoroughly
optimized implementation will make use of the fastest formulas inside the Miller
loop, so even though our implementation slightly favored affine coordinates, and
indeed Scott’s current 256-bit record [27] also employed affine coordinates, it
could well be that a thoroughly optimized projective routine (like [1] for k = 12)
ends up outperforming affine formulas at this level too. We refer to [8, 9, 18]
for ways to find the most efficient coordinate system depending on the specific
protocol and implementation situation.

As we mentioned briefly in the previous section, the choice of which tower
(T1, T2, T3 in Proposition 2) to use in an implementation could be influenced
by a number of factors. For example, if low bandwidth requirements favored
maximum compression techniques [28], then T1 would seem most appropriate.
On the other hand, if the major priority is raw speed, then one could employ the
field arithmetic presented in [10, §6] and favor the (slightly faster) quadratic over
cubic extension offered by T3. Or perhaps most commonly, if the implementor
is adopting BLS curves to scale a prior (say BN) pairing implementation to a
higher security level, then the towered code for the BN sextic extension from
Fp2 to Fp12 could be easily updated to BLS code for the extension from Fp4
to Fp24 . In any case, there are efficient formulas available for all three of the
towering choices [10, 9], so we will treat all three cases in parallel and highlight
the differences that arise.

One such difference lies in the sparse doubling and addition lines that are
used to update the pairing function. For each of the proposed congruency classes,
Table 2 follows the exposition in [26, §5] and details the correct placing of the
line function coefficients for the three tower choices T1, T2, T3 and the two twist
choices in Proposition 4, both of which have the same group order but result in
different looking line functions.

The point P is always kept in affine coordinates (xP , yP). For the affine
formulas the line simply is `(P) = yP − λxP − c, where λ ∈ Fp4 is the slope
of the line as usual and c ∈ Fp4 is the constant coefficient. Projective formulas
for these line functions usually output three coefficients L0,0, L1,0, L0,1 ∈ Fp4 [9]
that define the evaluated update `(P) = L0,0 +L1,0xψ−1(P) +L0,1yψ−1(P) ∈ Fp24

by being attached to different algebraic elements in the representation of Fp24
over Fp4 depending on the twisting isomorphism ψ. In all cases `(P) is a sparse
element of Fp24 , with the only difference being the places that the `i occupy as
a result of the different algebraic towerings and maybe a sign change.

To explain the different lines in Table 2, let us briefly look at the conversion
between representations of an element in the different towering options T1, T2,
and T3. Let us start with an element a in T2 given by the coefficients a0, . . . , a5 ∈
Fp4 , i.e. a = a0 + a1z + a2z

2 + a3z
3 + a4z

4 + a5z
5. Converting to T1, we take

z3 7→ w and thus the same element is represented as a = (a0 + a3w) + (a1 +
a4w)z + (a2 + a5w)z2. To go to T3, we use z 7→ −uz (i.e. z2 7→ w) and obtain
a = (a0 + a2w + a4w

2) + (−a1u− a3uw − a5uw
2)z.

An optimized routine must take advantage of the sparse nature of `(P) and
tailor make a specialized multiplication routine to exploit the presence of zero
entries. Roughly speaking, the options in Table 2 will give rise to similar speeds,
but it is obvious to see which twist constant an implementor would choose (all
other things being equal) if their choice of tower is already concrete. For example,
if T1 is the chosen tower, then using b′ = −4v gives a slightly easier line function
to code than using b′ = 4v.

A more important difference arises when choosing whether to leave P ∈ E
and “untwist” Q′ ∈ E′ to Q ∈ E for the line function computation, or choosing
to put both points on the twist for the entire routine [9]. The nature of the
proposed tower actually means that there is a significant difference between the
simplicity of the twisting and untwisting isomorphisms, and one option will be
more desirable to implement than the other. For example, when using T1 and
b′ = −4v, the untwisting isomorphism ψ is ψ : (x′, y′) 7→ (x/z2, y/w) = (wvz(u−
1)/2 · x′, wv(1 − u)/2 · y′), which is more annoying to code (and theoretically
slightly slower) than using ψ−1 : (x, y) 7→ (z2x,wy) to twist the second argument
P instead. On the other hand, if the twist is given as E′ : y2 = x3 ± b/v, as is
the cases when x0 ≡ 7, 64 (mod 72), then it is the untwisting isomorphism that
is clearly preferable.

5 The final exponentiation

An optimized final exponentiation routine is critical for fast pairings at high-
security levels. Scott et al. [29] propose the most efficient algorithm to date,
which exploits the polynomial representations of p and r to reduce the work
encountered after the Miller loop. The first step is to split the exponent into two
parts by factoring (pk− 1)/r and exploiting the Frobenius operator which raises
elements to the power of p almost for free. In our case the exponent splits as:

(p24 − 1)/r = [(p12 − 1) · (p4 + 1)] · [(p8 − p4 + 1)/r]
hard part

.

After exploiting Frobenius operations to quickly raise the output of the Miller
loop to the exponent in the left square parentheses, we then face the major

c
o
n
g
.

tw
is

t
to

w
er

tw
is

t
is

o
m

o
rp

h
is

m
M

il
le

r
li
n
es

c
la

ss
b′

ch
o
ic

e
ψ
−

1
:
E
→
E
′

A
ffi

n
e

P
ro

je
ct

iv
e

T
1

(x
,y

)
7→

(−
z
2
x
,u
w
y
)

[
1

−
c

1

:
y

P
·u

w

|
z

0 1

:
0 w

|
z
2

λ
·x

P

1

:
0 w

]
[

1

L
0
,0

1

:
L

0
,1
·y

P
u

w

|
z

0 1

:
0 w

|
z
2

−
L

1
,0

1

·x
P

:
0 w

]

bv
T

2
(x
,y

)
7→

(−
z
2
x
,u
z
3
y
)

[
1 −
c

:
z 0

:
z
2

λ
·x

P
:

z
3

y
P
·u

:
z
4 0

:
z
5 0
]

[
1

L
0
,0

:
z 0

:
z
2

−
L

1
,0
·x

P
:

z
3

L
0
,1
·y

P
u

:
z
4 0

:
z
5 0
]

1
6
,3

1
T

3
(x
,y

)
7→

(−
w
x
,w
z
y
)

[
1

−
c

1

:
λ
·x

P

w

:
0 w
2
|

z

0 1

:
y

P w

:
0 w
2
]

[
1

L
0
,0

1

:
−
L

1
,0
·x

P

w

:
0 w
2
|

z

0 1

:
L

0
,1
·y

P

w

:
0 w
2
]

T
1

(x
,y

)
7→

(z
2
x
,w
y
)

[
1

−
c

1

:
y

P w

|
z

0 1

:
0 w

|
z
2

−
λ
·x

P

1

:
0 w

]
[

1

L
0
,0

1

:
L

0
,1
·y

P

w

|
z

0 1

:
0 w

|
z
2

L
1
,0
·x

P

1

:
0 w

]

−
bv

T
2

(x
,y

)
7→

(z
2
x
,z

3
y
)

[
1 −
c

:
z 0

:
z
2

−
λ
·x

P
:

z
3

y
P

:
z
4 0

:
z
5 0
]

[
1

L
0
,0

:
z 0

:
z
2

L
1
,0
·x

P
:

z
3

L
0
,1
·y

P
:

z
4 0

:
z
5 0
]

T
3

(x
,y

)
7→

(w
x
,u
w
z
y
)

[
1

−
c

1

:
−
λ
·x

P

w

:
0 w
2
|

z

0 1

:
−
y

P
·u

w

:
0 w
2
]

[
1

L
0
,0

1

:
L

1
,0
·x

P

w

:
0 w
2
|

z

0 1

:
−
L

0
,1
·y

P
u

w

:
0 w
2
]

tw
is

t
to

w
er

u
n
tw

is
t

is
o
m

o
rp

h
is

m
M

il
le

r
li
n
es

b′
ch

o
ic

e
ψ

:
E
′
→
E

A
ffi

n
e

P
ro

je
ct

iv
e

T
1

(x
′ ,
y
′)
7→

(−
z
2
x
′ ,
u
w
y
′)

[
1

y
P 1

:
−
c
·u

w

|
z

−
λ
·x

P
·u

1

:
0 w

|
z
2

0 1

:
0 w

]
[

1

L
0
,1
·y

P

1

:
L

0
,0
·u

w

|
z

L
1
,0
·x

P
·u

1

:
0 w

|
z
2

0 1

:
0 w

]

b/
v

T
2

(x
′ ,
y
′)
7→

(−
z
2
x
′ ,
u
z
3
y
′)

[
1 y
P

:
z

λ
·u
·x

P
:

z
2 0

:
z
3

−
c
·u

:
z
4 0

:
z
5 0
]

[
1

L
0
,1
·y

P
:

z

−
L

1
,0
·u
·x

P
:

z
2 0

:
z
3

L
0
,0
·u

:
z
4 0

:
z
5 0
]

7
,6

4
T

3
(x
′ ,
y
′)
7→

(−
w
x
′ ,
w
z
y
′)

[
1

y
P 1

:
0 w

:
0 w
2
|

z

λ
·x

P

1

:
−
c

w

:
0 w
2
]

[
1

L
0
,1
·y

P

1

:
0 w

:
0 w
2
|

z

−
L

1
,0
·x

P

1

:
L

0
,0

w

:
0 w
2
]

T
1

(x
′ ,
y
′)
7→

(z
2
x
′ ,
w
y
′)

[
1

y
P 1

:
−
c

w

|
z

λ
·x

P

1

:
0 w

|
z
2

0 1

:
0 w

]
[

1

y
P 1

:
L

0
,0

w

|
z

−
L

1
,0
·x

P

1

:
0 w

|
z
2

0 1

:
0 w

]

−
b/
v

T
2

(x
′ ,
y
′)
7→

(z
2
x
′ ,
z
3
y
′)

[
1 y
P

:
z

−
λ
·x

P
:

z
2 0

:
z
3 −
c

:
z
4 0

:
z
5 0
]

[
1 y
P

:
z

L
1
,0
·x

P
:

z
2 0

:
z
3

L
0
,0

:
z
4 0

:
z
5 0
]

T
3

(x
,y

)
7→

(w
x
′ ,
u
w
z
y
′)

[
1

y
P 1

:
0 w

:
0 w
2
|

z

−
λ
·u
·x

P

1

:
−
c
·u

w

:
0 w
2
]

[
1

y
P 1

:
0 w

:
0 w
2
|

z

L
1
,0
·u
·x

P

1

:
L

0
,0
·u

w

:
0 w
2
]

T
a
b
le

2
.

D
et

a
il
s

o
f

th
e

M
il
le

r
li
n
e

fu
n
ct

io
n

d
ep

en
d
in

g
o
n

th
e

ch
o
ic

e
o
f

to
w

er
(a

n
d

tw
is

t
co

n
st

a
n
t)

.

bottle-neck in the exponentiation: raising a value m ∈ Fp24 to the power of “the
hard part”.

One helpful observation which aids the remaining computations is that, af-
ter exponentiation to the power p12 − 1, the value m ∈ Fp24 is now such that
NFp24/Fp12 (m) = 1. This allows any inversions in Fp24 to be computed for free us-
ing a simple conjugation [28, 21, 29], and any squarings in Fp24 to be computed
more efficiently than standard squarings [13, 17, 1]. To apply the algorithm in
[29], we use the parameterizations in (1) to write the hard part as

(p(x)8 − p(x)4 + 1)/r(x) =
7∑
i=0

λi(x)p(x)i.

In an appendix of her thesis, Benger [5] computed the λi for a range of curve
families, including BLS curves with k = 24, giving λi = νi/3, where

ν7(x) = x2 − 2x+ 1,

ν6(x) = x3 − 2x2 + x = x · ν7(x),

ν5(x) = x4 − 2x3 + x2 = x · ν6(x),

ν4(x) = x5 − 2x4 + x3 = x · ν5(x),

ν3(x) = x6 − 2x5 + x4 − x2 + 2x− 1 = x · ν4(x)− ν7(x),

ν2(x) = x7 − 2x6 + x5 − x3 + 2x2 − x = x · ν3(x),

ν1(x) = x8 − 2x7 + x6 − x4 + 2x3 − x2 = x · ν2(x),

ν0(x) = x9 − 2x8 + x7 − x5 + 2x4 − x3 + 3 = x · ν1(x) + 3.

This representation reveals another nice property exhibited by k = 24 BLS
curves: namely, a very convenient way to compute the νi with essentially just
multiplications by x. Letting µi = mνi(x0), this structure allows us to write the
hard part of the final exponentiation as

m(p8−p4+1)/r = µ0 · µp1 · µ
p2

2 · µ
p3

3 · µ
p4

4 · µ
p5

5 · µ
p6

6 · µ
p7

7 ,

where the µi can be computed using the following sequence of operations:

µ7 = (mx0)x0 · (mx0)−2 ·m, µ6 = (µ7)x0 , µ5 = (µ6)x0 , µ4 = (µ5)x0 ,

µ3 = (µ4)x0 · (µ7)−1, µ2 = (µ3)x0 , µ1 = (µ2)x0 , µ0 = (µ1)x0 ·m2 ·m.

The computation of m(p8−p4+1)/r requires 9 exponentiations by x0, 12 multi-
plications in Fp24 , 2 special squarings, 2 conjugations to compute the inverses
and 7 p-power Frobenius operations. We detail a possible scheduling for the full
exponentiation routine in Table 3. Note that we can simply forget about the
difference between the λi and the νi; by leaving away the 3 in the denominators,
we just compute the third power of the pairing.

By far the most costly stage of the final exponentiation is the nine exponenti-
ations by x0, which are performed using a standard square-and-multiply routine.

FinalExp Input: fr,Q(P) ∈ Fp24 and loop parameter x0

Initialize f ← fr,Q(P),

t0 ← 1/f , m← f , m← m · t0, t0 ← π4
p(m), m← m · t0,

m1 ← mx, m2 ← mx
1 m1 ← m2

1, m1 ← m1, µ7 ← m2 ·m1, µ7 ← µ7 ·m,
µ6 ← µx

7 , µ5 ← µx
6 , µ4 ← µx

5 , µ′7 ← µ7, µ3 ← µx
4 , µ3 ← µ3 · µ′7,

µ2 ← µx
3 , µ1 ← µx

2 , µ0 ← µx
1 , m′ ← m2, µ0 ← µ0 ·m′, µ0 ← µ0 ·m,

f ← πp(µ7), f ← f · µ6, f ← πp(f), f ← f · µ5, f ← πp(f), f ← f · µ4,
f ← πp(f), f ← f · µ3, f ← πp(f), f ← f · µ2, f ← πp(f), f ← f · µ1,
f ← πp(f), f ← f · µ0,

Return fr,Q(P)(p
24−1)/r ← f .

Output: fr,Q(P)(p
24−1)/r

Table 3. The final exponentiation for BLS curves with k = 24

This is where the BLS pairing computation benefits most from the faster squar-
ings in Fp24 , and also from an x0 value that has low hamming-weight which
reduces the Fp24 multiplications encountered. In the following section we give
several examples of very low hamming-weight x0 values that give rise to curves
in the proposed implementation-friendly BLS subfamily.

6 Example curves

This section provides four lists of implementation-friendly BLS curves at security
levels where the entire BLS family is either competitive across all families, or
is clearly the current outright favorite. Each list (Table 4 through to Table 7)
corresponds to one of the four proposed subfamilies.

We start with 192-bit security since our timings of a C implementation of the
optimal ate pairing at this level (see Appendix A) agreed with Scott’s comment
[27] that the stand-out candidate curve family at this level is not yet as obvious
as the 128- and 256-bit levels. In our implementation both a k = 12 BN curve
and k = 24 BLS curve outperformed a k = 18 KSS curve at this level.

Each table lists curves where x0 is very sparse in signed binary represen-
tation, meaning here that it has weight 3, 4 or 5. Working with signed binary
representation for the Miller loop parameter and the powerings in the final ex-
ponentiation can be considered standard and extends the space of nice curves
compared to just using plain binary representation. Nevertheless, we also in-
cluded many x0 values which have the same plain binary representation as the
signed binary representation; these are the x0 values which share the same sign
for each power of 2.

All curves given have the implementation-friendly properties outlined in the
previous sections. In particular, curves in Table 4 and Table 6 have x0 ≡ 7

(mod 72) and x0 ≡ 31 (mod 72) respectively, and are given by E : y2 = x3 + 1;
curves in Table 5 have x0 ≡ 16 (mod 72) and are given by E : y2 = x3 + 4, and
curves in Table 7 have x0 ≡ 64 (mod 72) and are given by y2 = x3 − 2. In all
cases all parameters are uniquely defined by the short value x0.

The curves in all four tables were found by trying all possibilities for the
signed binary representation of x0 with a fixed weight such that x0 belongs to
the right congruence class modulo 72. In our search, we did not find any curves in
the considered range of parameter sizes where x0 is plus or minus a power of 2 (i.e.
weight 1) or where it is a binomial, a sum of two such powers (i.e. weight 2). In
this sense, our search indicates that weights 3, 4 and 5 are optimal for the security
levels considered in this paper. The even congruencies (x0 ≡ 16, 64 (mod 72))
gain the slight advantage over the odd congruencies (x0 ≡ 7, 31 (mod 72)), since
the last bit of the binary representation of odd congruencies is obviously forced
to be 1. Thus, curves in the even congruency classes commonly have weights
3 and 4 whilst curves in the odd congruency classes commonly have weights 4
and 5. On the other hand, the odd congruencies both give rise to curves with
b = 1 which would make for slightly faster point operations, but (all other things
being equal) one would probably achieve a faster implementation by taking the
x0 value with the lowest weight possible, since one less bit in x0 saves over 10
full Fp24 multiplications per single pairing.

Restricting x0 to sparse values only results in a certain inflexibility when
adjusting the parameter sizes to exact values, for example certain multiples of
word sizes on a target implementation platform. However, recent high-speed
implementations of pairings at the 128-bit security level have shown that lazy
reduction techniques give significant improvements in the field tower arithmetic
and thus the overall pairing computation [7, 1]. Such techniques can be employed
efficiently when the bit size of the prime characteristic p is a few bits less than a
multiple of the word size, which provides a certain space for delaying reductions
for field arithmetic. In Tables 4, 5, 6 and 7 we have tried to account for this
(as far as possible), by including different choices of curves at each security level
that have a varying gap between the prime field size and multiples of standard
word sizes 32 and 64, which are also given in the table. We believe that most
implementors of pairings in software will find a suitable curve at the desired
security level in our tables, or else will be able to find a suitable curve themselves
with similar properties.

References

1. Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, and
Julio López. Faster explicit formulas for computing pairings over ordinary curves.
In Kenneth G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in
Computer Science, pages 48–68. Springer, 2011.

2. Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid.
Recommendation for key management - part 1: General (revised). Technical re-
port, NIST National Institute of Standards and Technology, 2007. Published as

security x0 ≡ 7 (mod 72) weight p words r words security
level (bits) for p (bits) for r (bits)

192 −1− 28 + 238 + 245 4 449 15× 32 361 6× 64 181
−1 + 23 − 25 − 219 + 246 5 459 368 184
−1− 211 − 226 − 235 − 247 5 469 377 189
−1 + 219 − 224 + 227 − 248 5 479 384 192
−1− 211 − 228 − 235 − 249 5 489 8× 64 393 13× 32 197
−1− 24 − 221 − 250 4 499 401 201
−1 + 211 − 228 − 251 4 509 409 205

−1− 222 − 226 − 236 − 252 5 519 17× 32 417 7× 64 209
−1 + 244 + 251 + 253 4 532 427 214

224 −1− 23 − 229 − 238 − 255 5 549 9× 64 441 7× 64 221
−1 + 23 − 211 − 251 + 256 5 558 448 224
−1− 215 − 222 − 256 4 559 449 15× 32 225

−1− 216 + 223 − 228 + 257 5 569 456 228
−1− 228 + 251 + 258 4 579 19× 32 465 233

−1− 212 − 228 − 250 − 258 5 579 465 233

256 −1 + 215 + 243 − 261 4 609 10× 64 488 8× 64 244
−1 + 249 + 255 + 262 4 619 497 249

−1− 219 − 223 − 226 − 263 5 629 505 253
−1− 28 − 235 − 261 − 263 5 632 507 254
−1 + 217 − 254 + 261 − 264 5 637 511 256
−1 + 235 + 260 − 264 4 638 512 256

−1 + 210 + 214 − 218 + 264 5 639 512 256
−1− 23 − 237 − 250 − 265 5 649 21× 32 521 17× 32 261

288 −1− 252 + 259 − 281 4 809 13× 64 648 21× 32 282
−1− 226 − 274 + 282 4 819 656 283
−1 + 221 − 273 − 282 4 819 657 283

−1− 27 − 213 − 227 − 282 5 819 657 283
−1− 211 − 223 − 232 − 283 5 829 665 285
−1− 248 − 252 − 272 − 284 5 839 27× 32 673 11× 64 286
−1 + 28 − 212 + 216 − 285 5 849 680 287
−1− 23 + 231 − 286 4 859 688 289
−1− 216 − 220 − 287 4 869 14× 64 697 290
−1 + 253 − 256 + 288 4 879 704 292
−1 + 223 + 267 + 290 4 899 29× 32 721 23× 32 295

320 −1− 212 − 293 − 295 − 2107 5 1069 17× 64 857 27× 32 317
−1 + 265 − 275 + 2109 4 1089 35× 32 872 14× 64 319
−1− 264 − 2100 + 2110 4 1099 880 321
−1 + 215 + 293 − 2111 4 1109 888 322
−1− 213 + 257 − 2112 4 1119 896 323

Table 4. BLS curves with low-weight parameter x0 ≡ 7 (mod 72) aiming at several
security levels given in the first column. The columns “words for p” and “words for
r” give the necessary number of 32- or 64-bit words to store the values for p and r,
respectively. The last column provides the estimated actual security by the formula in
[32].

security x0 ≡ 16 (mod 72) weight p words r words security
level (bits) for p (bits) for r (bits)

192 247 + 216 − 25 3 469 15× 32 377 12× 32 188
247 + 243 + 236 + 23 4 470 377 188
247 + 244 − 232 + 27 4 471 378 189
−247 − 245 + 232 + 228 4 472 379 189
−248 + 245 + 231 − 27 4 477 383 191
248 − 214 − 212 − 24 4 479 384 192
−250 + 221 + 217 − 213 4 499 8× 64 400 7× 64 200
251 − 248 + 246 − 216 4 507 407 203
−251 + 247 − 222 + 215 4 508 408 204
−251 − 28 − 26 − 24 4 509 409 204
−251 − 248 + 245 + 239 4 510 410 205

224 256 − 253 − 231 − 29 4 557 9× 64 447 7× 64 223
−256 + 240 − 226 − 26 4 559 448 224

256 + 240 − 220 3 559 449 15× 32 224
257 + 225 + 218 + 211 4 569 457 228
257 + 254 + 251 + 239 4 571 458 229

256 263 − 247 + 238 3 629 10× 64 504 8× 64 252
263 + 259 + 245 − 217 4 630 505 252
−263 − 260 − 244 − 216 4 631 506 253
−264 + 261 − 235 + 23 4 637 511 254
264 − 246 + 215 + 29 4 639 512 255

288 283 − 278 + 260 − 222 4 828 13× 64 664 11× 64 284
−283 − 246 + 224 3 829 665 285

283 + 281 + 212 + 27 4 832 667 285
−286 + 282 + 271 − 224 4 858 27× 32 688 22× 32 289
286 + 277 − 254 + 227 4 859 689 289
−289 + 286 + 228 − 215 4 887 14× 64 711 12× 64 293
289 − 284 − 250 + 210 4 888 712 293
289 + 233 − 229 − 26 3 889 713 293

320 2108 + 266 − 242 3 1079 17× 64 865 14× 64 318
−2108 − 2105 + 255 + 211 4 1081 866 318
2109 − 2106 + 271 + 222 4 1087 871 319

2111 + 270 + 266 3 1109 35× 32 889 28× 32 322
2111 + 2109 − 2100 − 283 4 1112 891 322
2111 + 2110 + 2103 + 243 4 1115 893 322
−2112 + 2107 − 257 + 233 4 1118 896 323

2112 − 266 + 242 3 1119 896 323

Table 5. BLS curves with low-weight parameter x0 ≡ 16 (mod 72) aiming at several
security levels given in the first column. The columns “words for p” and “words for
r” give the necessary number of 32- or 64-bit words to store the values for p and r,
respectively. The last column provides the estimated actual security by the formula in
[32].

security x0 ≡ 31 (mod 72) weight p words r words security
level (bits) for p (bits) for r (bits)

192 −1 + 216 + 221 + 245 4 449 15× 32 361 6× 64 181
−1− 217 + 220 − 236 + 246 5 459 368 184
−1− 228 − 237 + 247 4 469 376 188
−1− 26 − 216 − 247 4 469 377 189

−1− 213 − 225 − 230 + 248 5 479 384 192
−1− 215 − 232 − 248 4 479 385 13× 32 193
−1 + 227 − 243 − 248 4 479 385 193

−1− 215 − 219 − 231 − 248 5 479 385 193
−1− 28 + 215 + 217 − 250 5 499 8× 64 400 200
−1− 28 − 215 + 251 4 509 408 204
−1 + 218 − 228 − 252 4 519 17× 32 417 7× 64 209

224 −1− 237 + 240 − 243 + 255 5 549 9× 64 440 7× 64 220
−1− 218 + 229 + 235 − 256 5 559 448 224
−1 + 214 − 222 + 257 4 569 456 15× 32 228
−1 + 217 + 227 − 257 4 569 456 228

−1− 28 − 234 − 250 − 258 5 579 19× 32 465 233
−1 + 213 − 230 − 259 4 589 473 237

256 −1 + 216 + 220 − 224 + 262 5 619 10× 64 496 8× 64 248
−1 + 245 − 249 + 263 4 629 504 252

−1− 29 + 211 − 227 + 264 5 639 512 256
−1− 210 − 222 − 224 − 264 5 639 513 17× 32 257
−1− 23 − 236 − 257 − 265 5 649 21× 32 521 261
−1 + 220 − 243 + 258 + 265 5 649 521 261

288 −1 + 225 + 249 − 281 4 809 13× 64 648 21× 32 282
−1 + 23 − 274 − 281 4 809 649 282
−1− 211 + 257 − 282 4 819 656 283
−1− 218 − 239 + 283 4 829 664 285
−1− 218 − 239 + 283 4 829 664 285
−1 + 231 − 277 − 284 4 839 27× 32 673 11× 64 286
−1− 220 + 271 + 286 4 859 689 289

320 −1− 239 − 254 + 2107 4 1069 17× 64 856 27× 32 317
−1 + 23 + 210 + 218 − 2109 5 1089 35× 32 872 14× 64 319
−1 + 226 + 236 + 257 − 2111 5 1109 888 322
−1− 28 − 224 + 237 + 2111 5 1109 889 322

Table 6. BLS curves with low-weight parameter x0 ≡ 31 (mod 72) aiming at several
security levels given in the first column. The columns “words for p” and “words for
r” give the necessary number of 32- or 64-bit words to store the values for p and r,
respectively. The last column provides the estimated actual security by the formula in
[32].

security x0 ≡ 64 (mod 72) weight p words r words security
level (bits) for p (bits) for r (bits)

192 −216 − 227 + 246 3 459 15× 32 368 6× 64 184
28 + 212 + 240 + 246 4 459 369 185
−214 + 219 + 221 − 247 4 469 376 188
−212 − 230 − 235 − 248 4 479 385 13× 32 193
−210 − 214 − 217 − 248 4 479 385 193
215 + 222 + 225 + 249 4 489 8× 64 393 197
212 − 217 − 231 − 249 4 489 393 197

231 − 233 − 249 3 489 393 197

224 210 + 221 − 228 + 255 4 549 9× 64 440 7× 64 220
−24 − 230 + 232 − 256 4 559 448 224
25 − 210 + 227 + 256 4 559 449 15× 32 225
28 + 210 + 216 − 257 4 569 456 228
231 + 235 − 241 + 257 4 569 456 228
−27 + 210 + 216 + 258 4 579 19× 32 465 233
27 − 225 + 231 − 260 4 599 480 240

256 219 − 226 − 237 − 262 4 619 10× 64 497 8× 64 249
216 − 242 − 260 − 262 4 622 499 250
29 − 238 − 256 − 263 4 629 505 253
−214 + 239 − 256 − 263 4 629 505 253
−223 − 242 − 244 − 264 4 639 513 17× 32 257
−212 − 221 − 260 − 264 4 640 513 257
217 − 252 − 254 − 265 4 649 21× 32 521 261
−211 − 235 − 255 − 265 4 649 521 261

288 −240 − 249 − 281 3 809 13× 64 649 21× 32 282
−27 − 248 − 270 − 282 4 819 657 283
−27 − 246 − 254 − 282 4 819 657 283
−215 − 217 + 283 3 829 664 285

241 + 247 + 268 + 283 4 829 665 285
217 + 221 + 229 + 284 4 839 27× 32 673 11× 64 286
29 + 213 + 234 + 285 4 849 681 287
−231 − 266 + 286 3 859 688 289

28 + 226 + 234 + 286 4 859 689 289
234 − 282 − 287 3 869 14× 64 697 290

213 + 217 − 227 − 288 4 879 705 23× 32 292
−210 − 212 − 214 − 289 4 889 713 293
−26 − 245 + 290 3 899 29× 32 720 295
260 − 267 + 291 3 909 728 296

320 214 + 217 − 238 + 2107 4 1069 17× 64 856 27× 32 317
26 − 232 + 239 + 2107 4 1069 857 317
25 − 218 − 225 − 2108 4 1079 865 14× 64 318
220 + 249 + 271 + 2111 4 1109 35× 32 889 322

Table 7. BLS curves with low-weight parameter x0 ≡ 64 (mod 72) aiming at several
security levels given in the first column. The columns “words for p” and “words for
r” give the necessary number of 32- or 64-bit words to store the values for p and r,
respectively. The last column provides the estimated actual security by the formula in
[32].

NIST Special Publication 800–57, http://csrc.nist.gov/groups/ST/toolkit/

documents/SP800-57Part1_3-8-07.pdf.
3. Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing elliptic

curves with prescribed embedding degrees. In Stelvio Cimato, Clemente Galdi,
and Giuseppe Persiano, editors, SCN, volume 2576 of Lecture Notes in Computer
Science, pages 257–267. Springer, 2002.

4. Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of
prime order. In Bart Preneel and Stafford E. Tavares, editors, Selected Areas in
Cryptography, volume 3897 of Lecture Notes in Computer Science, pages 319–331.
Springer, 2005.

5. Naomi Benger. Cryptographic Pairings: Efficiency and DLP Security. PhD thesis,
Dublin City University, May 2010.

6. Naomi Benger and Michael Scott. Constructing tower extensions for the implemen-
tation of pairing-based cryptography. In Anwar Hasan and Tor Helleseth, editors,
International Workshop on the Arithmetic of Finite Fields (WAIFI) 2010, Lecture
Notes in Computer Science. Springer, 2010.

7. Jean-Luc Beuchat, Jorge E. González-Dı́az, Shigeo Mitsunari, Eiji Okamoto, Fran-
cisco Rodŕıguez-Henŕıquez, and Tadanori Teruya. High-speed software implemen-
tation of the optimal ate pairing over barreto-naehrig curves. In Marc Joye, Atsuko
Miyaji, and Akira Otsuka, editors, Pairing, volume 6487 of Lecture Notes in Com-
puter Science, pages 21–39. Springer, 2010.

8. Craig Costello, Huseyin Hişil, Colin Boyd, Juan Manuel González Nieto, and Ken-
neth Koon-Ho Wong. Faster pairings on special Weierstrass curves. In Shacham
and Waters [30], pages 89–101.

9. Craig Costello, Tanja Lange, and Michael Naehrig. Faster pairing computations
on curves with high-degree twists. In P. Q. Nguyen and D. Pointcheval, editors,
Public Key Cryptography (PKC) 2010, volume 6056 of Lecture Notes in Computer
Science, pages 224–242. Springer, 2010.

10. Augusto Jun Devegili, Colm Ó hÉigeartaigh, Michael Scott, and Ricardo Dahab.
Multiplication and squaring on pairing-friendly fields. Cryptology ePrint Archive,
Report 2006/471, 2006. http://eprint.iacr.org/.

11. Luis J. Dominguez Perez and Michael Scott. Private communication, November
2010.

12. David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly
elliptic curves. J. Cryptology, 23(2):224–280, 2010.

13. Robert Granger and Michael Scott. Faster squaring in the cyclotomic subgroup
of sixth degree extensions. In Phong Q. Nguyen and David Pointcheval, editors,
Public Key Cryptography, volume 6056 of Lecture Notes in Computer Science, pages
209–223. Springer, 2010.

14. Darrel Hankerson, Alfred J. Menezes, and Michael Scott. Software implementation
of pairings. In M. Joye and G. Neven, editors, Identity-Based Cryptography, pages
188–206. IOS Press, 2008.

15. Florian Heß, Nigel P. Smart, and Frederik Vercauteren. The eta pairing revisited.
IEEE Transactions on Information Theory, 52:4595–4602, 2006.

16. Kenneth Ireland and Michael Rosen. A Classical Introduction to Modern Number
Theory, volume 84 of Graduate texts in mathematics. Springer-Verlag, 1990.

17. Koray Karabina. Squaring in cyclotomic subgroups. Cryptology ePrint Archive,
Report 2010/542, 2010. http://eprint.iacr.org/.

18. Kristin Lauter, Peter L. Montgomery, and Michael Naehrig. An analysis of affine
coordinates for pairing computation. In M. Joye, A. Miyaji, and A. Otsuka, edi-

tors, Pairing-Based Cryptography - Pairing 2010, volume 6487 of Lecture Notes in
Computer Science, pages 1–20. Springer Berlin / Heidelberg, 2010.

19. Victor S. Miller. The Weil pairing, and its efficient calculation. Journal of Cryp-
tology, 17:235–261, 2004.

20. Michael Naehrig. Constructive and computational aspects of cryptographic pairings.
PhD thesis, Eindhoven University of Technology, May 2009.

21. Michael Naehrig, Paulo S. L. M. Barreto, and Peter Schwabe. On compressible
pairings and their computation. In Serge Vaudenay, editor, Progress in Cryptology
– AFRICACRYPT 2008, volume 5023 of Lecture Notes in Computer Science, pages
371–388. Springer, 2008.

22. Michael Naehrig, Ruben Niederhagen, and Peter Schwabe. New software speed
records for cryptographic pairings. In Michel Abdalla and Paulo S. L. M. Barreto,
editors, LATINCRYPT, volume 6212 of Lecture Notes in Computer Science, pages
109–123. Springer, 2010.

23. Geovandro C. C. F. Pereira, Marcos A. Simpĺıcio Jr, Michael Naehrig, and Paulo S.
L. M. Barreto. A family of implementation-friendly BN elliptic curves. Journal of
Systems and Software, 84(8):1319–1326, 2011. http://cryptojedi.org/papers/

\#fast-bn.
24. K. Rubin and A. Silverberg. Choosing the correct elliptic curve in the CM method.

Mathematics of Computation, 79:545–561, 2010.
25. Michael Scott. Scaling security in pairing-based protocols. Cryptology ePrint

Archive, Report 2005/139, 2005. http://eprint.iacr.org/.
26. Michael Scott. A note on twists for pairing friendly curves.

Personal webpage: ftp://ftp.computing.dcu.ie/pub/resources/crypto/twists.pdf,
February 2009.

27. Michael Scott. On the efficient implementation of pairing-based protocols. Cryp-
tology ePrint Archive, Report 2011/334, 2011. http://eprint.iacr.org/.

28. Michael Scott and Paulo S. L. M. Barreto. Compressed pairings. In Matthew K.
Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Computer Science,
pages 140–156. Springer, 2004.

29. Michael Scott, Naomi Benger, Manuel Charlemagne, Luis J. Dominguez Perez, and
Ezekiel J. Kachisa. On the final exponentiation for calculating pairings on ordinary
elliptic curves. In Shacham and Waters [30], pages 78–88.

30. Hovav Shacham and Brent Waters, editors. Pairing-Based Cryptography – Pairing
2009, volume 5671 of Lecture Notes in Computer Science. Springer, 2009.

31. Joseph H. Silverman. The Arithmetic of Elliptic Curves. Number 106 in Graduate
texts in mathematics. Springer-Verlag, 1986.

32. Nigel Smart (editor). ECRYPT II yearly report on algorithms and keysizes (2009-
2010). Technical report, ECRYPT II – European Network of Excellence in Cryp-
tology, EU FP7, ICT-2007-216676, 2010. Published as deliverable D.SPA.13,
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf.

33. Frederik Vercauteren. Optimal pairings. IEEE Transactions on Information The-
ory, 56(1):455–461, 2010.

A Timings

This section provides timings of a plain C implementation of the (optimal) ate
pairing on BLS curves with embedding degree k = 24 and parameter x0 ≡ 16
(mod 72). We give timings for field operations of base field and all extension

fields. Timings for pairings are split up into timing for the Miller loop, the final
exponentiation, and the complete pairing. The number denoted “Product” refers
to the time per pairing in a product of 20 pairings.

add sub M S I
cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 227 0.08 176 0.06 513 0.17 506 0.17 13793 4.61
Fp2 379 0.13 342 0.11 2633 0.89 2463 0.83 32946 11.06
Fp4 731 0.25 650 0.22 13129 4.44 12066 4.07 84355 27.82
Fp12 2182 0.75 1870 0.62 101401 34.21 93935 31.83 466969 156.43
Fp24 4229 1.41 3745 1.25 337762 113.44 314790 105.03 1467723 486.79

Pairings Miller loop Final exp. Single pairing Product
cyc 12,278,079 44,760,054 57,038,133 9,766,162
ms 4.14 14.87 19.01 3.24

Table 8. Cycle counts and timings: pfc-bls256-p319-k24a

add sub M S I
cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 343 0.09 220 0.08 824 0.27 820 0.27 17174 5.70
Fp2 487 0.16 436 0.15 3835 1.33 3695 1.23 43117 14.35
Fp4 940 0.32 835 0.28 18395 6.26 17296 5.96 111150 37.02
Fp12 3278 1.03 2440 0.82 141948 47.44 132764 44.63 635264 211.70
Fp24 5649 1.88 5200 1.65 470743 155.93 437528 145.64 2012589 670.70

Pairings Miller loop Final exp. Single pairing Product
cyc 21,451,197 72,193,868 93,645,065 16,978,941
ms 7.18 24.13 31.31 5.68

Table 9. Cycle counts and timings: pfc-bls320-p399-k24a

add sub M S I
cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 320 0.10 248 0.08 1112 0.34 1026 0.36 20320 6.83
Fp2 540 0.18 487 0.16 4627 1.52 4414 1.44 52334 17.16
Fp4 1068 0.35 942 0.32 21722 7.21 20532 6.76 131246 43.65
Fp12 3510 1.19 2750 0.93 163570 54.83 154325 51.21 744451 247.18
Fp24 6269 2.15 5536 1.85 539026 179.70 506029 168.13 2326049 777.80

Pairings Miller loop Final exp. Single pairing Product
cyc 30,335,982 97,561,935 127,897,917 24,124,734
ms 10.00 32.62 42.62 8.05

Table 10. Cycle counts and timings: pfc-bls384-p478-k24a

add sub M S I
cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 334 0.11 288 0.09 1235 0.41 1232 0.41 24918 8.23
Fp2 606 0.20 541 0.19 5529 1.82 5202 1.72 61942 20.70
Fp4 1219 0.41 1107 0.36 26159 8.64 24532 8.19 158822 52.81
Fp12 3710 1.36 3124 1.11 194825 65.07 183680 61.00 895588 297.69
Fp24 7601 2.53 6678 2.24 641578 215.21 603282 202.31 2801070 936.49

Pairings Miller loop Final exp. Single pairing Product
cyc 42,945,862 157,289,781 200,235,643 35,992,064
ms 14.64 52.65 67.29 11.99

Table 11. Cycle counts and timings: pfc-bls448-p559-k24a

add sub M S I
cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 367 0.12 393 0.10 1475 0.52 1465 0.49 28511 9.70
Fp2 659 0.22 587 0.20 6272 2.09 5973 1.99 71990 23.96
Fp4 1272 0.42 1146 0.38 29253 9.70 27512 9.24 181534 60.34
Fp12 3884 1.36 3443 1.15 218255 72.04 209100 68.05 1010078 337.78
Fp24 7644 2.68 6982 2.32 708585 236.46 665836 221.82 3127211 1041.84

Pairings Miller loop Final exp. Single pairing Product
cyc 53,827,736 168,824,048 222,651,784 41,951,965
ms 17.98 56.29 74.27 13.99

Table 12. Cycle counts and timings: pfc-bls513-p639-k24a

add sub M S I
cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 429 0.14 343 0.11 1986 0.67 1988 0.66 32906 10.91
Fp2 762 0.25 691 0.23 8130 2.71 7981 2.59 85001 28.16
Fp4 1521 0.49 1338 0.45 37086 12.55 35429 11.87 218090 72.35
Fp12 4588 1.54 4048 1.35 274377 91.71 259148 87.00 1240720 413.50
Fp24 9267 3.12 8237 2.72 895818 297.14 846330 281.03 3880459 1296.70

Pairings Miller loop Final exp. Single pairing Product
cyc 76,886,954 243,839,131 320,726,085 61,395,564
ms 25.64 81.41 107.05 20.44

Table 13. Cycle counts and timings: pfc-bls577-p719-k24

add sub M S I
cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 454 0.15 369 0.12 2312 0.80 2306 0.77 36851 12.36
Fp2 816 0.28 728 0.24 9193 3.07 9014 2.97 96213 31.90
Fp4 1607 0.59 1435 0.49 41690 13.92 40217 13.38 245558 81.78
Fp12 4972 1.66 4355 1.45 304961 101.76 289686 96.56 1498809 463.72
Fp24 10011 3.39 8795 2.92 990278 330.80 938942 313.90 4336510 1449.92

Pairings Miller loop Final exp. Single pairing Product
cyc 93,910,489 290,363,980 384,274,469 74,149,199
ms 30.98 97.06 128.04 24.73

Table 14. Cycle counts and timings: pfc-bls640-p797-k24

