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Abstract 

Background: The objective of this study was to scrutinize number line estimation behaviors 

displayed by children in mathematics classrooms during the first three years of schooling. We 

extend existing research by not only mapping potential logarithmic-linear shifts but also 

provide a new perspective by studying in detail the estimation strategies of individual target 

digits within a number range familiar to children.  

Methods: Typically developing children (n = 67) from Years 1 – 3 completed a number-to-

position numerical estimation task (0-20 number line). Estimation behaviors were first 

analyzed via logarithmic and linear regression modeling. Subsequently, using an analysis of 

variance we compared the estimation accuracy of each digit, thus identifying target digits that 

were estimated with the assistance of arithmetic strategy.  

Results: Our results further confirm a developmental logarithmic-linear shift when utilizing 

regression modeling; however, uniquely we have identified that children employ variable 

strategies when completing numerical estimation, with levels of strategy advancing with 

development.  

Conclusion: In terms of the existing cognitive research, this strategy factor highlights the 

limitations of any regression modeling approach, or alternatively, it could underpin the 

developmental time course of the logarithmic-linear shift. Future studies need to 

systematically investigate this relationship and also consider the implications for educational 

practice.  
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Background 

Estimation is a required skill for everyday life. Numerical estimation skills are an 

example of what Piaget [1] described as logico-mathematical knowledge. While Piaget did 

not carry out numerical estimation tasks specifically he considered logic-mathematical 

knowledge to be the mental relationships between and among objects/representations. 

Understanding the development of numerical estimation is particularly important to 

psychologists and educators, as several studies indicate the benefits of advanced estimation 

skills. For example, many studies (e.g. [2-5]) have determined a strong, positive correlation 

between the accuracy of numerical estimation and standardized tests of mathematics 

achievement. Furthermore, LeFevre, Greenham and Waheed [6] propose the tendency of 

skilful estimators to have a better conceptual understanding of mathematics, as well as better 

counting and arithmetic skills. Here we provide an investigation of numerical estimation skills 

at the beginning of primary school. We used a number range familiar to the children and 

analyzed dependent variables for each target digit in depth. This approach goes beyond 

studying a potential logarithmic-linear representational shift in estimation and allows further 

insight into the development of children’s estimation strategies. 

Several studies (e.g. [2, 5, 7-11]) have investigated developmental changes in 

numerical estimation in school-aged children. Estimation requires the translation between 

alternative quantitative representations. For example presenting a child with a number and 

asking them to position it on a number line can be described as a translation from a numerical 

to spatial representation [5].   

Much of the research into numerical estimation (hereafter: estimation) has focused on 

how magnitudes might be mentally represented and how this representation changes with 

maturity. It is assumed that estimation is based on internal models of magnitudes. Two 

models attempt to describe the internal representation of number, namely the accumulator 

(linear) model [12] and the logarithmic model [13]. The accumulator model suggests that 
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magnitudes are represented linearly and that the accuracy of this mental representation 

decreases with increasing magnitude [8]. The variability of estimations in relation to the 

magnitudes estimated remains in a constant ratio; this is termed ‘scalar variability’ [14]. 

Dehaene [13] argued that quantities are represented in a logarithmic fashion.  This mental 

representation results in an exaggeration of the distance between small number magnitudes in 

comparison to distances between large number magnitudes. In relation to the core systems of 

number; namely the small number system for small number enumeration and the approximate 

number system (ANS) for larger numerosities [15], it is the approximate number system that 

would encode the numerosities in an estimation task. Specifically, Halberda and Feigenson 

[16] found that ANS acuity was still developing in children aged 3-6 years and speculated that 

sharpening of the ANS was not complete until late in adolescence. Furthermore, Berteletti et 

al. [7] argues for an approximate number system that is a logarithmic representation first, with 

numerate children and adults acquiring greater precision, and thus a linear representation. 

This shift to a linear representation is evident first with familiar number contexts and then 

subsequently with less familiar number ranges [17].  

Many of the developmental studies have used pure numerical estimation with large 

number scales (e.g. 0-100 and 0-1000: [2, 5, 10]). On a 0-100 number line, this research ([2, 

5, 10]) purports that both representations are evident and pinpoints a logarithmic-linear shift 

at around Grade 2 (7-8years).  Booth and Siegler [2] declare a linear best fit for 74% of Grade 

2 children in their study; with the remainder of participant behaviors being best represented 

by a logarithmic model or in a minority of cases, an exponential model. With younger 

participants the logarithmic-linear distinction is less clear; for example in Siegler and Booth 

[5], 5% of kindergarteners produced a series of estimates better characterized by the linear 

than the logarithmic model and 45% were best modeled by a logarithmic representation.   
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It could also be argued that these results, particularly those of children in kindergarten, 

could be influenced by the unfamiliarity of the number ranges. Verifying this proposition 

Ebersbach et al. [8], in a similar 0-100 task, found that only 17% of kindergarteners and 38% 

of Grade 1 children who participated in the study could count to 100.  While this might 

question the validity of the logarithmic-linear claim, Berteletti et al. [7] utilized 1-10, 1-20 

and 0-100 number lines in an estimation task and found evidence for the logarithmic to linear 

representational shift. Of the preschool aged children (3.5-6.5 years) who participated in the 

0-100 task all groups displayed a logarithmic dominant representation. For the 1-10 task the 

youngest group (approximately 4 years) was best fit by both models, the middle and older 

groups (approximately 5 and 6 years respectively) were now demonstrating a linear 

preference for this reduced number scale. In the 1-20 estimation task the youngest group was 

best fit by a logarithmic model, whereas the middle and oldest groups were equally well 

represented by logarithmic and linear models.  These findings [2, 5, 7, 10] reinforce the belief 

that child estimation behaviors demonstrates a logarithmic phase prior to linearity and that 

this transition is evident first with familiar and then unfamiliar number contexts.  

Berteletti et al. [7] acknowledges that the exact path that leads from logarithmic to 

linear representations is still unclear. Siegler, Thompson and Opfer [18] argue it to be a 

process important to education. Thompson and Siegler [11] interpret the flexibility/variability 

of behaviors within Siegler’s [19] overlapping waves theory; whereby representations and 

strategies are used selectively when most effective and that individual choice of learned 

(external) mechanisms contribute to numerical representations. In various adult studies of 

numerical processing (e.g. [20-23]), it has been determined that many different strategies can 

be used to solve a single problem, whether that be estimation, multiplication or equation 

solving. Dowker [20] in her study of expert mathematicians found that individual strategy 

selection for the same problem can vary between trials. Smith [24], in a study with school 
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aged children and adolescents, investigated reasoning with rational numbers (expressed as 

fractions) and found that higher level competence required rich and diverse knowledge, 

numerically specific and invented strategies, as well as those general strategies learned 

through educational instruction. Huntley-Fenner [25] attributes the variability children 

demonstrate in estimation tasks as being the result of reduced knowledge of estimation 

strategies. While the influence of individual strategies was mentioned in the numerical 

estimation child studies of Siegler and Booth [5] and Siegler and Opfer [10], Barth and 

Paladino [26] and Ebersbach et al. [8] discussed the use of estimation strategies and proposed 

the need for an alternative modeling approach in order to capture child behaviors. The 

alternative models were found to factor in the use of a half-way reference point [26] and 

number familiarity [8]. Ebersbach et al. [8] posited a model composed of two linear segments, 

with the change point an indicator of number familiarity. Thompson and Opfer [17] found 

that the segmented model change point varied depending on number scale and questioned the 

claims of Ebersbach et al. [8]. Importantly, Opfer, Siegler and Young [27] still maintain the 

validity of the transition from logarithmic to linear representations, and  caution that the fit of 

power models, as used by Barth and Paladino [26], could be influenced by the noise created 

during averaging procedures. Using an eye-tracking methodology, along with gaze pattern 

and fixation analysis Schneider et al. [28] found that children in the first years of school do 

spontaneously use orientation points (external markers) to support spatial-numerical processes 

such as numerical estimation. In light of these studies ([17, 27, 28]) we chose to focus on the 

established logarithmic and linear (not segmented) models and have only included the power 

model at the coefficient of determination analysis, with subsequent analyses focusing on 

individual target digits which were likely to have been positioned with the aid of an external 

factor or strategy. 
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A common strategy would be to utilize the number line itself, providing two external 

anchor points that could improve estimation accuracy of numbers located within close 

proximity to the end numbers (e.g. 97 is 3 units back from 100). The youngest participants 

may be limited to a counting strategy and may not factor in the spatial representation, as is 

their level of conceptual understanding. A more advanced possibility, as posited by both 

Barth and Paladino [26] and Ebersbach et al. [8], could be the application of mental anchor 

points, however, such a strategy would require understanding of the part-whole (proportion) 

relation. For example on a scale of 0-100, 50 could be a mental anchor point that arises from 

the participant dividing the number scale into two equal parts and matching this spatial 

division with the knowledge that 50 is half of 100. As with external anchor points, estimations 

that occur near these mental partitions are likely to have increased accuracy in comparison to 

those numbers located a greater distance away from a reference point; as suggested earlier, 

further individual variation is likely to be associated with number knowledge. Studies ([29, 

30]) have given corrective feedback for target digits near a particular landmark (150 on a 0-

1000 number line) and found that estimates were less accurate when the target numbers were 

more distant from the landmark. This evidence from feedback studies (e.g. [29, 30]) indicates 

that children can utilize both external and mental anchor points. In the Barth and Paladino 

[26] study the midpoint was highlighted to participants prior to commencing the task, but this 

prompt was not an inclusion within the present investigation.  

This study further examines the putative logarithmic-linear shift of mental 

representations for the familiar number range (0-20) with children in Years 1, 2 and 3; with a 

focus on determining if external factors (i.e. strategy) may be at play during the estimation of 

specific target digits. Using the most established logarithmic and linear regression analysis of 

Berteletti et al. [7], Booth and Siegler [2]; Siegler and Booth [5] and Siegler and Opfer [10] as 

a foundation, this research extends the analysis systematically to investigate estimation 



8 

 

behaviors of individual target numbers. First, a logarithmic or linear best fit model will be 

determined for individual data and used as a reference point to the Berteletti et al. [7] study 

that also utilized a number line with a maximum of 20. Second, the residuals to each target 

digit from both the logarithmic and linear models will be investigated to identify how well the 

two models represent the estimates of specific numeric values. Third and finally, the accuracy 

of estimation for individual target digits will be scrutinized, without any regression modeling. 

It is proposed that employing a familiar number range will increase the likelihood of strategy 

application and the novel analysis will indicate individual digits which might be the target of 

selective strategy use as suggested by Ebersbach et al. [8] and Thompson and Siegler [11]. It 

is hypothesized that the developmental shift from logarithmic to linear mental representation, 

after approximately two years of school ([2, 5, 10]), will also be the transition period where 

strategy use becomes evident. Based on existing speculation (e.g. [8, 26]), this is likely to be 

located in close proximity to external anchor points or, in an advanced circumstance, mental 

anchor points which require the division of the number line into equal portions. For this 

reason, the present study is interested in main effects, but also the interaction between the 

variables, with a particular focus on separate year group behaviors. For example, it may be for 

particular target digits that the linear and logarithmic models demonstrate the greatest 

disparity, and that this varies developmentally. It is intended that this information will inform 

subsequent investigations that will seek to determine the various components (e.g. cognitive 

mechanisms, learned strategies) that contribute to the developmental path from logarithmic to 

linear representations and/or to the development of strategy use in numerical estimation, and 

any relationship between mental representations and strategy use.  
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Methods 

Participants 

 Participants were 67 British children from Years 1, 2 and 3 (Year 1: n = 20, mean age 

6.4 ± 0.24 years, 11 females. Year 2: n = 24, mean age 7.3 ± 0.33 years, 13 females. Year 3: 

n = 23, mean age 8.5 ± 0.36 years, 10 females).  All participants performed within one and a 

half standard deviations of the mean on a brief version of the Wechsler Intelligence Scale for 

Children, 3
rd

 edition (WISC-III: Vocabulary, Blocks and Digit Span); with no significant 

difference between the year groups for the WISC-III triad (F (2, 64) = 1.592, p = 0.211). 

 Written informed consent was obtained from the parents/guardians of the children in 

this study. The study obtained ethical approval from the Cambridge Psychology Research 

Ethics Committee. 

Task and procedures 

 The assessment instrument was a number-to-position (NP) pencil and paper task, 

where participants were given a number and had to mark its position on a 160mm number 

line. The number line had the range of 0-20 and the target digits were evenly distributed 

across the scale with 2, 4, 7, 8, 11, 13, 16 and 17. Two examples (3 and 9) on a 0-10 scale 

were completed together by the participant and researcher prior to commencement; this was 

discussion based to ensure understanding of the task and did not propose any strategies. 

During the testing trials (0-20) no corrective feedback was provided, just encouragement to 

continue onto the next item.  

Analysis 

The NP task was assessed in the following way: The distance from the left end point 

(zero on the number scale), to the participant marking was measured in millimeters. The 

distances to the line markings were converted to numerical estimates for each target number. 
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Mirroring the method employed by Siegler and colleagues [2, 5, 10], the following equation 

was used to determine the target number estimates: 

Distance from left end point 

to marking (mm) × scale of number line 
Total length of line (mm) 

 

An example of this calculation if a mark was placed 25 mm from the left end point of a 0-20 

number line would be |25 ÷ 160| × 20; which means the target number estimate equates to 

3.125.  

The target number estimates were used in two main analyses; regression modeling and 

estimation accuracy for individual target digits. The regression modeling built on the method 

initially utilized by Siegler and Opfer [10] and two derived measures were used: the 

Coefficient of Determination values for individual participants, as well as Model Residuals 

for group level models.  The unique component of the analysis was that of Estimation 

Accuracy. Taking the foundation from Siegler and Booth [5], this research gained a more 

detailed perspective into the numerical values that are likely to be estimated more accurately 

due to the contribution of external factors, such as learned strategy.   

Coefficient of Determination. This analysis began with fitting linear and logarithmic 

models to the target number estimates, for each participant. Then for individual models (linear 

and logarithmic) a coefficient of determination (R
2
) was calculated. Comparing the linear 

coefficient (R
2

Lin) and logarithmic coefficient (R
2

Ln), for each child, it could be determined 

which model best represented each child’s mental representation. The coefficient of 

determination values were entered in a 3 × 2 ANOVA. Factors were: Year (Year 1, 2 or 3) × 

Model (Linear or Logarithmic).  

In addition to this analysis, we explored the proportion judgment power model 

adopted by Barth and Paladino [26]. On an individual basis, for both 1-cycle and 2-cycle 

models, values of R
2
 were determined, along with the parameter β (the exponent determining 
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the shape of the power function relating psychological to physical magnitude). We selected 

the β with the highest R
2
 and subsequently compared the best R

2 
for the 1-cycle and 2 cycle 

models (Figure 1). These findings were interpreted in relation to the logarithmic-linear shift, 

with β = 1 corresponding to a linear model and then the further the value from 1, the closer to 

a logarithmic model. This additional model was then entered into a separate 3 × 3 ANOVA. 

Factors were: Year (Year 1, 2 or 3) × Model (Linear, Logarithmic or Power). 

Model Residuals. Following the approach of Siegler and Opfer [10] the target number 

estimates were tabulated and analyzed at a group level. The median score for each year group 

was used to generate a graph of estimates versus actual target numbers. The median was 

selected because it is less affected by outliers, which could occur in this type of task. Each 

year group graph was then used to calculate both a linear and logarithmic regression model. 

The Siegler and Opfer [10] method calculated residuals to the group level median values and 

entered this into a paired-samples t-test. This would only determine if there significant 

difference between the residuals of the two models overall, omitting the variation of model 

residuals that could occur for individual target numbers. Extending the approach of Siegler 

and Opfer [10], the present study calculated residuals to individual target number estimates of 

each participant. This allowed the residuals to be entered into a more powerful 3 × 8 × 2 

repeated measures ANOVA. Factors were: Year group (Year 1, 2 or 3) × Target Number (2, 

4, 7, 8, 11, 13, 16 or 17) × Model (Linear or Logarithmic). This analysis allowed for a more 

detailed examination of how the model residuals varied for each target number and whether 

this interacted with year group.   

To add further descriptive detail we followed the approach of Geary, Hoard, Byrd-

Craven, Nugent and Numtee [32] and used the absolute residuals (from the group level 

models) to classify all trials as linear or logarithmic based on whether the child’s estimate was 

closer to the predicted value of the linear of logarithmic model (i.e. which model produced the 
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smaller residual). When the residuals of the linear and logarithmic models had a difference 

less than ±0.4 units these trials were classified as ambiguous; this value was determined based 

on the distribution of the individual residuals. 

 Estimation Accuracy. The absolute percent error for each target number was 

calculated according to the equation: 

Estimate – Target Number 
× 100 

Scale of number line 

 

If the estimate was determined to be 3.125 and the target number 2, the equation would be 

|(3.125 – 2) ÷ 20| × 100 to obtain the error of 5.625%. In an attempt to reveal information 

about estimation accuracy of individual target numbers, and thus the potential application of 

external and mental anchor point strategies this study extends the method to reveal accuracy 

details about individual target numbers. This more detailed information was maintained and 

the percent absolute error values were entered into a 3 × 8 ANOVA, with factors: Year group 

(Year 1, 2 or 3) × Target Number (2, 4, 7, 8, 11, 13, 16 or 17). The Greenhouse-Geisser epsilon 

(ε) correction for sphericity was used in all ANOVAs whenever necessary. Reporting indicates 

the original degrees of freedom, the epsilon value, followed by the corrected (more conservative) 

significance level. All post hoc analyses were Tukey HSD tests. In the results section values 

represent mean ± standard deviation, unless otherwise stated.  

 To further investigate the potential for external and mental anchor points, we sought to 

explore the standard deviation of estimates as a function of target number, used by Cohen and 

Blanc-Goldhammer [33]. This was conducted on a year group basis in conjunction with the 

percent absolute error; lower standard deviations could pinpoint the location of an external or 

mental anchor point that was consistently applied by members of a year group. 

Results 

Coefficient of Determination. 50% of Year 1, 75% of Year 2 and 74% of Year 3 

children had higher coefficients of determination for the linear rather than the logarithmic 
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models. The analysis of the coefficient of determination values revealed that the main effect 

of Model was significant (F (1, 64) = 9.96, p = 0.002, η
2
 = 0.129). That is, the linear model 

(R
2

Lin = 0.87 ± 0.20) explained a greater degree of variance than did the logarithmic model 

(R
2

Ln = 0.84 ± 0.18). There was a main effect of Year (F (2, 64) = 10.63, p < 0.001, η
2
 = 

0.249) because the amount of variance explained by either model was significantly lower for 

Year 1, than Year 2 (p < 0.001) and Year 3 (p < 0.001); there was no significant difference 

between Years 2 and 3. There was no Model × Year interaction.  

As the power model is sensitive to noise [27], some participants were discarded from 

the analysis leaving 51 in total. In terms of 1- or 2-cycle models majority of the participants 

were best represented by a 1-cycle model, with β values often very close to 1 (Table 1). Table 

1 presents the individual power model results in comparison to the coefficient of 

determination values (R
2
) of the best fit logarithmic and linear models reported in the 

previous paragraph. The separate 3 × 3 ANOVA returned similar results. There was a main 

effect of model and a main effect of year (Model: F (2, 96) = 11.92, ε = 0.83, p < 0.001, η
2
 = 

0.196; Year: F (2, 96) = 5.19, p = 0.009, η
2
 = 0.177). Overall, the linear model (R

2
Lin = 0.90 ± 

0.13) explained more variance than both the power (R
2

Pwr = 0.86 ± 0.15, p < 0.001) and 

logarithmic models (R
2

Ln = 0.88 ± 0.11, p = 0.007). The main effect of year also indicated that 

the variance explained by any of the three models was significantly lower for Year 1, than 

Year 2 (p = 0.01) and Year 3 (p = 0.02); there was no significant difference between Years 2 

and 3. There was no Model × Year interaction.  

Using individual data and individual regression models, these results indicate that in 

Years 2 and 3 the majority of participants had higher R
2
 values derived from a linear model, 

indicating a linear best fit model. This was not the case with Year 1 as the variance explained, 

by any model, was significantly lower. This information supports our hypothesis that Year 2 

indicates the onset of the dominance of the linear mental representation. Importantly, these 
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findings do not clearly argue for a logarithmic to linear shift, as that would require the Year 1 

participants to have the highest variance explained for a logarithmic model; what these 

findings argue for the dominance of a linear representation in Years 2 and 3 only.  

Model Residuals. This approach utilized individual residuals for each target number, 

calculated from group level median models (Figure 2). The linear model had a significantly 

smaller mean residual than did the logarithmic model (F (1, 51) = 36.71, p < 0.001, η
2
 = 

0.388. Linear vs. Logarithmic: 1.72 ± 1.96 and 2.01 ± 1.78 units, respectively). The Model × 

Year interaction was significant (F (2, 51) = 3.43, p = 0.040, η
2
 = 0.073). Linear model 

residuals were smaller than logarithmic model residuals for Years 2 and 3, but not Year 1. For 

Year 1 participants, the mean linear residual (2.45 ± 2.33 units) was found to be not 

significantly smaller than the mean logarithmic residual (2.56 ± 2.18 units). The main effect 

of Year was marginal (F (2, 51) = 3.00, p = 0.058, η
2
 = 0.105). 

Overall the interaction of Target Number × Model was significant (F (7, 357) = 8.77, ε 

= 0.55, p < 0.001, η
2
 = 0.143). Post hoc comparisons indicated that linear residuals were 

significantly smaller than logarithmic for target numbers 2 (p < 0.001) with a residual 

difference of 1.1 units, and 17 (p < 0.001) with a 0.7 unit difference in residuals. This 

difference was not significant for any other target numbers. These numbers were the focus of 

separate year group analyses (Table 2), with significant effects in Years 2 and 3 only.   

Using the approach of Geary at al. [32] we further explored how model residuals 

would be distributed if we included an ambiguous category in addition to linear and 

logarithmic. As described in the methods, an ambiguous trial would occur when the residuals 

of the linear and logarithmic models had a difference less than ±0.4 units. The overall 

percentages of trials classified as linear, logarithmic or ambiguous are provided in Table 3, 

including a breakdown by individual target digits in Table 4. These classifications support the 

residual Model × Year analysis, with Years 2 and 3 demonstrating a higher percentage of 
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trials classified as linear in contrast to logarithmic, and the linear dominance less clear in Year 

1. Overall, this analysis of model residuals has further explored the linear and logarithmic 

mental representations and the transition at Year 2, but this time highlighting specific target 

digits in relation to a group level model. 

 Estimation Accuracy. There was a main effect of Target Number (F (7, 357) = 6.61, ε 

= 0.46, p < 0.001, η
2
 = 0.109). Tukey post hoc comparisons indicated that the significant 

differences were in reference to the target numbers 2 and 4, which produced the lowest 

absolute errors. Error for target number 2 was significantly lower than for numbers 7, 8 and 

13 (p < 0.01), and errors for target number 4 were significantly lower than for digits 7 and 13 

(ps < 0.05). The mean estimation error rates decreased as years of education increased (Year 

1: 12.40 ± 7.51 %, Year 2: 8.39 ± 6.55 %, Year 3: 6.47 ± 3.91 %), but the main effect of 

Year did not reach significance (F (2, 51) = 2.66, p = 0.079, η
2
 = 0.095).  

Figure 3 shows the marginally significant Target Number × Year interaction (F (14, 

357) = 1.56, p = 0.087, η
2
 = 0.051). To increase the confidence of this marginal finding and 

protect against a potential type 2 error, univariate analyses were completed and indicated that 

there were significant differences between the year groups for target digits 11 and 13 (F (2, 

53) = 3.38, p = 0.042, η
2
 = 0.117 and F (2, 53) = 6.10, p = 0.004, η

2
 = 0.193, respectively). 

Closer scrutiny demonstrated that for target digit 11 the Year 1 mean error was higher and 

marginally significant in comparison to Year 2 (p = 0.09) and significantly higher when 

compared to Year 3 (p = 0.01). A similar pattern was evident with target digit 13; Year 1 

children had a mean error which was significantly higher than both Years 2 and 3 (p < 0.01). 

Years 2 and 3 produced no significant differences for target digits 11 and 13.  

Separate Year group ANOVAs indicated a main effect of target number for Year 1 

children (F (7, 91) = 4.33, p = 0.006, η
2
 = 0.250). Post hoc analysis of Year 1 data again 

pointed towards target digits 11 and 13 and this is evident in Figure 3. The accuracy of 
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estimating 13 was significantly poorer than the estimation accuracy of numbers 2, 4 and 17 

(ps < 0.05). This significant accuracy difference was also evident with positioning target 

numbers 11 and 2 (p < 0.001). In contrast to the Year 1 children, there was no effect of target 

number in Years 2 and 3. Overall, this analysis has examined number line estimation, without 

regression modeling, in order to pinpoint individual digits that might be the target of selective 

strategy use. The year group comparisons indicated that digits 11 and 13 were poorly 

estimated by the Year 1 participants, thus separating them from Years 2 and 3. This was 

further confirmed through the comparison of the standard deviation of estimates for each 

target digit, with 11 and 13 with the highest standard deviation in Year 1 (Figure 4). 

Discussion 

The aim of this investigation was to explore the developmental transitions of the mental 

representations associated with numerical estimation (logarithmic-linear shift). This was 

achieved by focusing on the estimation behaviors of individual target digits within a familiar 

number range (0-20), adapting and extending the methods of Siegler and colleagues [2, 5, 10] 

and building on the ideas of Barth and Paladino [26], Berteletti et al. [7], Ebersbach et al. [8] 

and Thompson and Siegler [11]. The statistical analysis of individual numbers inferred that 

there is merit in future in depth analyses of strategies application in conjunction with 

regression modeling. 

On a developmental front, Year 1 children did not demonstrate a dominance of any 

representation in either the individual regression models or group level residuals.  In fact, 

looking at the individual regression models alone, the variance explained by any model 

(linear, logarithmic or power), was significantly lower in Year 1 than in Years 2 and 3. When 

examining the group level model, children in Years 2 and 3 demonstrated the lowest residuals 

from a linear model, in comparison to a logarithmic model. The complexity of this transition 

to a linear mental representation is indicated by the categorization of residuals into linear, 
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logarithmic and ambiguous (Table 4). For selected target digits, there were a high percentage 

of Year 1 participants who demonstrated linear-like behaviors however this was not always 

the case (e.g. target digits 7 and 8, Table 4). In contrast, Years 2 and 3 demonstrated a 

consistently high percentage of participants with trials that were best represented by a linear 

model. This matches the trend observed across the three groups of preschool children in the 

Berteletti et al. study [7]. In the familiar number scale tasks used in that study (1-10 and 1-20) 

the youngest group (mean age 4 years) did not demonstrate a bias towards either 

representation, meanwhile the middle and oldest groups (4.5-6.5 years) indicated a 

significantly lower linear residual. Furthermore, the present findings are in line with the 0-100 

number line developmental findings of Siegler and colleagues [2, 5, 10] except in Year 1 with 

no significant bias.  

Extending the analysis to include 1- and 2-cycle power functions [26], in this case, did 

not create any further clarity in terms of R
2
 values. Perhaps it was the reduced number range 

(0-20) and minor differences in task instructions that limited the potential for power models to 

represent the data, as Barth and Paladino [26] focused on a 0-100 number line and indicated 

50 as being ‘halfway’ at the beginning of the experiment.  The individual data in the present 

study was typically best fit by a 1-cycle model (Table 1), which aligns with the fact that 

participants were not directed towards the ‘halfway’ point when task instructions were given. 

Further exploration into the use of proportional power models is required, particularly in 

relation to the appropriateness of using such an approach, as highlighted by Opfer et al. [27].  

Extending the work of Siegler and Opfer [10] the results from the individual target 

digits are a unique contribution to the body of literature, as this begins to explore the 

possibility that the development of mental representations could be marked by the use of the 

external ‘anchor points’ as described by Ebersbach et al. [8]. In the case of this research 

application of external anchor points should be observed for target digits 2 and 17. According 
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to existing research [2, 5, 7, 8, 10], a low linear residual would indicate a more accurate 

mental representation. The number scale 0-20 is familiar to students in Years 1-3, however, 

the strategies involved in positioning numbers accurately on an externally represented number 

line may not be fully established. For Year 1 the linear and logarithmic residuals for both of 

these numbers were similar (Table 2). Year 2, showed a significantly lower linear residual for 

target number 2, and perhaps as a function of the magnitude effect or incomplete transition, 

only a marginal preference for a linear model for target number 17 (Table 2). Finally then, for 

Year 3, the difference between linear and logarithmic residuals for target numbers 2 and 17 

was significant with a linear model providing the lowest residual (Table 2). This indicates a 

developmental transition, but also highlights that the greatest disparity between the 

logarithmic and linear models is likely to occur in close proximity to external anchor points. It 

is this external anchor point reasoning that we use to speculate that both target digits 2 and 17 

have lower linear residuals in comparison the logarithmic model residuals.   

Parallels can be drawn between the observations of the present study and the 

developmental progression seen with arithmetic strategies in the classroom. Existing research 

(e.g. [34-36]) purports the importance of sequences and counting in the early stages of 

development, but also identifies that the application of the base-ten structure in constructing novel 

relationships among numbers up until approximately 9 years of age. As a further example, Dutch 

mathematics education programs teach mental arithmetic strategies that employs 

decomposition as the basis of instruction. From Grade 2, Dutch children are encouraged to 

use mental jumps and decomposition, often beginning on a number line, in order to encourage 

flexible mental strategies [37].  Given this information and linking back to the present data, it 

is proposed that the Year 1 children did not demonstrate any clear anchor point application 

because they were limited to counting strategies and were unable to link the numerical value 

to the spatial cues provided by the number line. Subsequently, in Years 2 and 3 we do see 
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evidence of the continued development of more flexible strategies, and use of anchor points, 

that utilize decomposition and part-whole relations.    

A question that comes out of this discussion is, given the flexibility of strategy 

application, is it in fact meaningful to try and model the mental representation of numbers 

using a fixed linear/logarithmic model? What the previous paragraph has posited is that 

specific numbers could exhibit unique behaviors as a function of the familiarity with the 

number range, proximity to either external or mental anchor points, as well as knowledge of 

arithmetic strategy. While Ebersbach et al. [8] focused on the role of external anchor points, 

the mental anchor points in particular would relate to more advanced strategy application, 

such as knowledge of proportions (e.g. half, quarter etc.) and ability to mentally partition the 

external number. This potential for individual difference represents a limitation of the 

linear/logarithmic modeling approach. In the followings we discuss what a more detailed 

approach could add to the current knowledge base. 

Siegler and Booth [5], in their first experiment with 0-100 scale, had error rates of 

27% for Kindergartners, 18% for Grade 1 and 15% for Grade 2. The later Booth and Siegler 

[2] study demonstrated a more obvious plateau with Kindergartners: 24%, Grade 1: 12%, 

Grade 2: 10%, and Grade 3: 9%. This could be a function of the 0-100 number scale being in 

the unfamiliar range. In these two studies [2, 5], the youngest groups were always 

significantly different to the subsequent year levels; however, this was not the case in the 

present research, as average percent absolute error was lower and there was no significant 

group difference.  

Overall, the results from the percent absolute error data indicated that the most 

accurately estimated numbers on the 0-20 number line were digits 2 and 4. This could be for 

two reasons; first, referencing the lower values (2 and 4) to the external lower anchor point of 

zero or their knowledge of one. Second, it could be that number magnitudes up to 4 have a 
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stronger representation, because these quantities are understood from infancy [38-40] in what 

Feigenson et al. [15] describes as the small number system. This could also be linked to how 

frequently these numbers are encountered in a young child’s everyday language (e.g. [13, 

25]). This also fits with theories of enumeration and subitizing abilities being present prior to 

verbal counting (e.g. [41-43]). The fact that these enumeration and subitizing abilities are 

limited to numerosities of four (e.g. [44, 45]), and that they are present from infancy, could 

explain the strength of the representation of digits 2 and 4, and thus producing more accurate 

estimations. This is further evidenced in the categorization of trials (Table 4), where all year 

groups demonstrated a high percentage of linear classifications of digits 2 and 4. Then for the 

subsequent numbers 7 and 8, Year 1 stood out with a high percentage of logarithmic 

classifications, which were not evident in Years 2 and 3 (Table 4). It is our interpretation that 

for Year 1 digits 7 and 8 are likely to be less frequently encountered and could contribute to 

the variation.    

On the developmental front, the Year 1 children again showed separation from the 

older year groups in the estimation accuracy of individual target digits. For the positioning of 

numbers 11 and 13, Year 1 children produced estimates that were significantly less accurate 

than Years 2 and 3 (Figure 3). This gained further support when investigating the standard 

deviations for each target digit, with the greatest variation evident for digits 11 and 13 for 

Year 1 participants (Figure 4).  The idea of applying external anchor points to aid in the 

estimation of numbers has been purported, although only briefly in existing studies [5, 8]. 

However, it could be argued that a further number estimation strategy could be to apply 

mental anchor points and divide/partition the external number line into segments which would 

increase the accuracy of positioning.  The Year 2 and 3 children of this study were probably 

exhibiting these behaviors. A potential mental partition would be that of halfway, and number 

11 was the closest target digit to the mental anchor point of 10.  It is proposed that, in Year 1, 
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as both a result of both mental representation (no clear logarithmic-linear preference) and 

educational experience, children lacked the requisite representations/skills to apply mental 

anchor point strategies and accurately estimate these central numbers (i.e. 11 and 13). The 

core learning concepts for Year 1, as prescribed by the National Framework in England focus 

on counting and skills related to addition and subtraction, not division or the part-whole 

relation. The early understanding of division principles often stems from the relationships 

between doubling and halving, which is promoted in Year 2. This knowledge of ‘half’ is 

required for the application of mental anchor point strategies, which as a function of 

educational experience the Year 1 children do not typically possess. The fact that the formal 

teaching of this concept in Year 2, coincides with increased accuracy of estimation for central 

digits (Figure 3), lends further support to this argument. Further detailed analyses would be 

required to strengthen these proposals and will be the focus of subsequent studies.       

Examining percent absolute error for specific target numbers allowed the discussion to 

go beyond the limitations of structured modeling to further explore the potential of strategy 

application. The merits of both external and mental anchor points, as estimation strategies 

were supported. In line with the initial hypothesis, Year 2 appeared to represent a transitional 

phase, with the apparent onset of part-whole strategies to aid the creation of mental anchor 

points. It was hypothesized that the developmental shift from logarithmic to linear mental 

representation would likely coincide with evidence of strategy use; the present study supports 

this.  

The development of the anchor point strategy application could be described as 

follows; the first would be to utilize the external anchor points to assist positioning of the 

numbers. Children in the first year of school may only use the left most point, rather than 

having the strategic knowledge to employ both extremes. The developmental progression, 

along with the logarithmic-linear shift, extends to include the use of both anchor points after 



22 

 

Year 1. This is followed by some level of mental partitioning, which again advances in 

complexity and is the result of educational experience, which became evident in Year 2 

(Figure 3). It would be an interesting investigation to more closely map the development of 

these individual strategies and educational experience with the logarithmic and linear 

modeling scenarios. This extension would ideally include saturation of all target digits within 

the prescribed number range and a direct means of determining the strategy used to solve the 

problem, whether requesting verbal reports from participants or applying the use of eye-

tracking technology as introduced by Schneider et al. [28]. Furthermore, it would be 

worthwhile to investigate whether the type and flexibility of strategies used during these first 

years of school could predict later mathematical achievement. It is the combination of these 

proposals that could facilitate the most meaningful insights for informing education.  

Conclusions 

To summarize, prior cognitive research into children’s numerical estimation behaviors 

has argued for both logarithmic and linear models being able to describe the mental 

representation; with different models having dominance depending on development and 

familiarity of the number range. To convert this understanding to being more applicable for 

educational practice and understand the path from logarithmic to linear dominance the present 

study took this theoretical basis and conducted a number-to-position number line estimation 

task with children from Years 1-3. The use of a familiar (0-20) number line meant that our 

analysis could extend beyond the more abstract linear and logarithmic modeling 

interpretations and examine the variable strategic behaviors associated with individual target 

numbers. This analysis provided the most meaningful link to strategy application and 

identifies a future direction of research. Results indicated that when operating within a 

familiar number range, a linear representation dominates from Year 2, but also there was 

indication that beginning in Year 2 children start to apply estimation strategies, which become 
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more advanced in Year 3. These most advanced children provided evidence of applying 

external anchor point strategies for lower and upper bound target digits, as well as the 

possibility of mental anchor points. For Year 1 children, positioning central numbers such as 

11 and 13 seemed to produce the highest errors, whereas children in Years 2 and 3 were more 

accurate and were thought to be applying a ‘halfway’ mental anchor point that improved the 

placement of central numbers. This study concludes that further scrutiny of estimation 

strategies, when combined with modeling techniques, could greatly increase the 

understanding of developing mental representations.  
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Table 1 

Year 1 n = 13 Year 2 n = 19 Year 3 n = 19 

Power Log Linear Power Log Linear Power Log Linear 

1-
cycle 
or 2-
cycle β R

2 
R

2 
R

2
 

1-
cycle 
or 2-
cycle β R

2 
R

2 
R

2
 

1-
cycle 
or 2-
cycle β R

2
 R

2 
R

2
 

1 0.78 0.70 0.85 0.78 2 0.53 0.69 0.85 0.94 1 1 0.88 0.98 0.97 

1 0.7 0.62 0.71 0.77 1 0.73 0.73 0.85 0.79 1 0.82 0.88 0.89 0.88 

1 0.84 0.91 0.93 0.95 1 1 0.98 0.90 0.98 1 1 0.98 0.94 0.99 

1 0.88 0.71 0.74 0.73 2 0.81 0.96 0.89 0.98 1 0.88 0.63 0.68 0.79 

1 1 0.85 0.75 0.86 1 0.97 0.93 0.96 0.93 1 1 0.99 0.95 0.99 

1 0.92 0.95 0.89 0.97 1 0.89 0.84 0.87 0.93 1 1 0.92 0.92 0.98 

2 0.75 0.89 0.92 0.92 2 0.75 0.89 0.88 0.97 2 0.8 0.91 0.93 0.98 

1 0.47 0.24 0.28 0.22 1 0.74 0.96 0.92 0.99 1 0.67 0.43 0.76 0.62 

1 1 0.75 0.77 0.87 2 0.93 0.98 0.91 0.99 1 0.93 0.79 0.89 0.86 

1 0.73 0.74 0.79 0.73 1 0.69 0.80 0.89 0.79 1 0.98 0.97 0.96 0.97 

1 1 0.74 0.77 0.77 1 1 0.94 0.89 0.98 1 0.83 0.81 0.92 0.98 

2 0.69 0.96 0.94 0.97 1 1 0.91 0.88 0.94 1 0.76 0.80 0.85 0.84 

1 1 0.93 0.96 0.95 1 1 0.98 0.91 0.99 1 1 0.99 0.94 0.99 

 2 0.53 0.87 0.91 0.95 2 0.65 0.96 0.86 0.96 

1 0.95 0.81 0.92 0.99 1 1 0.97 0.96 0.98 

2 0.96 0.97 0.94 0.99 1 0.84 0.87 0.97 0.99 

1 1 0.95 0.94 0.98 1 1 0.93 0.94 0.95 

1 1 0.97 0.87 0.90 1 0.96 0.99 0.94 0.99 

1 0.93 0.88 0.95 0.90 1 1 0.96 0.92 0.97 

 

 

 

 

Table 2 

Group Interaction Target Number × Model 

Residuals from group level models (mean ± SD) 

Model 
Tukey HSD 

Target number 2 Target number 17 

Year 1 F (7, 91) = 2.02, ε = 0.54, p = 0.06, η2 = 0.134 
Linear 0.9 ± 0.7 

ns 
2.1 ± 2.2 

ns 
Logarithmic 1.5 ± 1.1 2.6 ± 1.8 

Year 2 F (7, 133) = 5.30, ε = 0.45, p < 0.001, η2 = 0.218 
Linear 0.5 ± 0.7 

p < 0.001 
1.8 ± 2.4 

p = 0.09 
Logarithmic 2.1 ± 1.7 2.5 ± 1.9 

Year 3 F (7, 133) = 3.59, ε = 0.43, p = 0.001, η2 = 0.159 
Linear 0.7 ± 0.4 

p < 0.001 
1.0 ± 0.9 

p = 0.001 
Logarithmic 1.8 ± 0.7 1.9 ± 0.6 
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Table 3 

Group 

Residual fit (trial-by-trial) Residual from group level models 

Linear Logarithmic Ambiguous Linear Logarithmic 

% % % M SD M SD 

Year 1 46 37 17 2.5 2.3 2.6 2.2 

Year 2 56 25 19 1.5 1.8 2.0 1.6 

Year 3 54 21 25 1.3 1.6 1.7 1.4 
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Table 4 

 

Group 

2 4 7 8 11 13 16 17 

Lin Ln Amb Lin Ln Amb Lin Ln Amb Lin Ln Amb Lin Ln Amb Lin Ln Amb Lin Ln Amb Lin Ln Amb 

% % % % % % % % % % % % % % % % % % % % % % % % 

Year 1 55 25 20 68 32 0 25 69 5 33 61 6 56 44 0 0 0 100 67 27 6 61 39 0 

Year 2 96 0 4 63 29 8 57 39 4 60 36 4 50 37 13 0 0 100 63 29 8 65 26 9 

Year 3 70 0 30 74 26 0 43 39 17 57 29 14 52 22 26 0 0 100 50 36 14 83 17 0 
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Figure and Table captions 

Figure 1. Prediction proportion judgment cyclic power models as used in Hollands and Dyre [31] and 

Barth and Paladino [26]. a) 1-cycle model, with no central reference point; b) 2-cycle model, with one 

central reference point. In both a) and b) β is the exponent in the power function describing the 

relationship of psychological to physical magnitude.  

Legend: Green β = 0.1, Aqua β = 0.3, Blue β = 0.5, Red β = 0.7, Black β = 1.0.  

NB. When β = 1, the function is linear. 

 

Figure 2. Medians estimates for each year group, including linear and logarithmic regression 

equations for Years 1-3.  

 

Figure 3.  Developmental trends, by year group, of the absolute percent error for each target 

number. The error bars represent ± 95% confidence interval from the mean.  

 

Figure 4. Relationship between the standard deviations of the estimates and the individual 

target numbers, by year group.  

 

Table 1. Fits of power, logarithmic and linear models for individual children in Years 1-3. 

For the power model it indicates whether a 1- or 2-cycle model was better supported by the 

data and the corresponding coefficient of determination (R
2
) and shape of the function (β). 

For logarithmic and linear models best supported by individual data, the R
2
 values are 

reported.  

 

Table 2. Statistical results for separate year group analyses for the Target Number × Model 

interaction (including post hoc analyses for target numbers 2 and 17). 

 

Table 3. Percentage of trials with best residual fit for linear and logarithmic models, or 

ambiguous (both linear and logarithmic model residuals within ± 0.4 units of one another). 

Summary (M ± SD) of residuals from group level models, by year.   

 

Table 4. Percentage of trials with best residual fit for linear and logarithmic models, or 

ambiguous (both linear and logarithmic model residuals within ± 0.4 units of one another), by 

year group and target number. Please note, that for target number 13, all are ambiguous 

because the residuals are identical as this is the location where the linear and logarithmic 

models intersect. 

 

 

 

 

 

 

 

 

 


