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ABSTRACT 

In this work, we present the development of a 
Pt/graphene/SiC device for hydrogen gas sensing. A 
single layer of graphene was deposited on 6H-SiC via 
chemical vapor deposition. The presence of graphene C-C 
bonds was observed via X-ray photoelectron 
spectroscopy analysis. Current-voltage characteristics of 
the device were measured at the presence of hydrogen at 
different temperatures, from 25°C to 170°C. The dynamic 
response of the device was recorded towards hydrogen 
gas at an optimum temperature of 130°C. A voltage shift 
of 191 mV was recorded towards 1% hydrogen at −1 mA 
constant current. 
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1. INTRODUCTION 

In recent years, much research effort has been 
devoted to investigation of graphene as a gas sensing 
material due to its unique properties. These include room 
temperature ballistic electronic transport [1, 2], strong 
hydrogen affinity [3], metal-like characteristics [4-6] and 
its large surface area, which make graphene incredibly 
well suited for gas sensing applications [7-13]. 

Graphene is a two-dimensional material comprising 
carbon atoms arranged in six-membered rings [2, 4, 14, 
15]. It can be classified as: a single-layer graphene (SG), 
bilayer graphene (BG) and few-layer graphene (FG, 
number of layers ≤ 10) [15]. Many techniques have been 
developed for the deposition of graphene. A 
micro-mechanical cleavage method was initially used to 
exfoliate highly oriented pyrolitic graphite using 
‘scotch-tape’ [2]. Other methods include a direct epitaxial 
growth of graphene from SiC via thermal decomposition 
[16], chemical vapor deposition (CVD) [17] and the 
synthesis of graphene via a chemical reduction of graphite 
oxide [18]. 

In this work, a Pt/graphene/SiC device for hydrogen 
gas applications has been developed. SiC is a favourable 
substrate for the formation of graphene-based sensors due 
to the fact that graphene can be epitaxially grown on SiC 
by annealing at elevated temperatures [19]. Pt was chosen 
as the electrode metal as it forms an electrical contact and 
also it functions as an excellent hydrogen catalyst. The 

work herein investigates a graphene based device as it is 
applied as a sensor toward hydrogen with different 
concentrations in a synthetic air. The current-voltage 
(I-V) characteristics are studied as a function of 
temperature and hydrogen concentration. The electron 
transport mechanism at the Pt/graphene and graphene/SiC 
interfaces are also investigated and used to explain the 
sensing performance. 

2. EXPERIMENTAL 

A Pt/graphene based device was fabricated on n-type 
6H-SiC substrate (Tankeblue Co. Ltd.). The native oxide 
on the substrate surface was removed via etching in 
hydrofluoric acid. A double metal layer of Ti/Pt 
(40/100 nm) was deposited at the unpolished backside of 
the substrate using electron beam evaporation. 
Subsequently, the samples were annealed at 500°C in N2 
for 30 min to form an electrical contact.  

A single layer of graphene was grown on Cu foils by 
CVD technique using methane as a precursor. The 
as–grown graphene layer was spin-coated with a thin 
layer of polymethyl metha-acrylate (PMMA). This film 
was separated from the Cu foil by dissolving in diluted 
ferric chloride solution. The graphene/PMMA was then 
transferred onto a SiC substrate. Subsequently, the 
PMMA film was removed by heating at 500°C with a 
stream of hydrogen gas.  

Finally, a circular pad of Pt (~25 nm thickness) was 
deposited onto the graphene layer to form the electrical 
contact. The fabricated Pt/graphene/SiC device was 
placed in a multichannel gas testing system to investigate 
their electrical properties and gas sensing performance. 
The testing process has been explained in our previous 
works [8, 9, 20, 21].  

3. RESULTS AND DISCUSSION 

The deposited graphene layers were characterized by 
transmission electron microscopy (TEM), X-ray 
photoelectron spectroscopy (XPS) and Raman 
spectroscopy. Figure 1 shows the TEM micrographs of 
the graphene layer. The thickness of the synthesized 
graphene material was measured to be ~0.3 nm.  

XPS analysis (Figure 2) revealed a peak at 285.0 eV 
which identifies the C-C bond and is ascribed to graphene 
[22]. An attenuated Si-C peak was observed at 283.3eV 
[23]. Other bonds that were identified include C-OH 
(285.9eV), C=O (287.1eV) and C-C=O (289.2eV) [22]. 



 
 
Figure 1: TEM micrograph of the graphene layer. 
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Figure 2: XPS spectra of graphene layer deposited on a SiC 

substrate. 

 

Raman spectroscopy was used to characterize the 
quality and thickness of the graphene. The major features 
of the Raman spectrum are the G band at 1584 cm-1 and 
the 2D band at 2690 cm-1. The G band is due to the E2g  

vibrational mode, and the 2D band is a second order two 
phonon mode. The D band at 1350 cm-1 is not Raman 
active for pristine graphene but can be observed where 
symmetry is broken by edges or in samples with some 
defects. The shape, position and intensity of 2D band 
depend on the number of layers. The strong and 
symmetrical Lorentzian 2D band and the weak intensity 
of the D band indicate the CVD-grown graphene was of 
reasonably good quality. 
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Figure 3: Raman spectrum of the CVD-grown graphene layer. 
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Figure 4: Plot of voltage shift of Pt/graphene/SiC device as a 

function of temperature towards different hydrogen gas 

concentrations at a constant reverse bias current of 1 mA. 

The I-V characteristics and dynamic responses of the 
Pt/graphene/SiC device were measured at the presence of 
hydrogen gas at temperatures of 25, 35, 60, 100, 130 and 
170°C. The most significant hydrogen response was 
found at 130°C and was chosen as the optimal operating 
temperature. Figure 4 shows the measured voltage shifts 
of the device as a function of temperature at different 
hydrogen concentrations. 

Figure 5 shows the I-V characteristics of the 
Pt/graphene/SiC device at the presence of hydrogen (with 
different concentrations of 0.06, 0.125, 0.25, 0.5, 1%) at 
130°C. The device was therefore operated in reverse bias 
as the voltage shift towards hydrogen was significantly 
larger than in forward bias.  

The I-V characteristics of the Pt/graphene/SiC device 
can be explained by the electron transport mechanism at 
two interfaces of Pt/graphene and graphene/SiC [8]. 
Initially, the electron transfer will encounter a transition 
from the n-type SiC to the semi-metallic graphene and 
then to the metallic Pt. The conduction behaviour will be 
similar to that between a metal to a metal junction. 
However, the non-linear I-V curves (Figure 5) were 
observed as the graphene behaves semi-metal like. 
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Figure 5: I-V characteristics of the Pt/graphene/SiC device at 

the presence of hydrogen gas at 130°C. 



Giovannetti et al. [24] showed that as a thin Pt layer 
is deposited on the graphene layer, it physisorbs onto the 
surface and leads to a weak interaction energy (van der 
Waals) at the Pt/graphene interface and hence preserves 
the electronic structure of graphene. As the work function 
of Pt (WM) is larger than work function of graphene (WG), 
it causes electrons transfer from graphene to Pt and as a 
result the Fermi levels achieve equilibrium. This electron 
transfer between the Pt and graphene results in the 
formation of a dipole layer at the interface and forms a 
potential step (∆V) as shown in the energy-band diagram 
(Figure 6) of Pt on graphene [24].  

It is assumed that the graphene layer acts as 
'semi-metal' like when deposited on SiC substrate as 
shown by Tongay et al. [25]; and the main transport 
mechanism at the graphene/SiC interface is dominated by 
thermionic emission. 

Upon exposure of the device to hydrogen gas, the 
dissociation of hydrogen molecules occurs on the Pt 
surface. Then hydrogen atoms diffuse through the Pt 
catalyst onto graphene. Here, two assumptions are made 
[8]: (1) the work function of graphene (WG) increases; 
and/or (2) the separation distance between the Pt and 
graphene (d) increases, which causes an increase in the 
Fermi-level shift (∆EF) [24]. Both increases in ∆EF and 
WG decrease the potential step according to Equation (1):  

FGPt EWWV ∆−−=∆    (1) 

Therefore, this decrease results in an increase in the 
current density in the I-V characteristics.  

The dynamic response of the device was measured at 
130°C, towards different hydrogen concentrations at a 
constant reverse bias current of 1 mA (Figure 7). Voltage 
shifts of 6, 18, 41, 91 and 191 mV were recorded for 0.06, 
0.125, 0.25, 0.5 and 1% hydrogen, respectively. The 
device showed a stable baseline and excellent 
repeatability over a period of two weeks testing towards 
hydrogen.  

 

 
 

Figure 6: A theoretical energy-band diagram of a Pt/graphene 

contact, where WM is the Pt work function; WG is the graphene 

work function; W is the Pt-coated graphene work function; d is 

the equilibrium separation distance; ∆EF is the Fermi-level 

shift, and ∆V is the potential change generated by the 

Pt/graphene interaction. 
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Figure 7:  Dynamic response of the Pt/graphene/SiC device 

towards 0.06, 0.125, 0.25, 0.5 and 1% hydrogen gas in 

synthetic air at 130°C. 

 

4. CONCLUSION 

A hydrogen gas sensor based on Pt/graphene/SiC 
device was successfully fabricated. The TEM showed a 
single layer of graphene with thickness of ~0.3 nm. The 
developed device operated at an optimal temperature of 
130°C. A voltage shift of 191 mV was recorded for 1% 
hydrogen at 130°C at a reverse constant bias of −1 mA. 
These results also indicated that hydrogen gas is readily 
adsorbed and desorbed from the device, which attribute to 
its repeatability over two weeks of testing.  
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