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Abstract. Most recommendation methods employ item-item similarity 
measures or use ratings data to generate recommendations. These methods use 
traditional two dimensional models to find inter relationships between alike 
users and products. This paper proposes a novel recommendation method using 
the multi-dimensional model, tensor, to group similar users based on common 
search behaviour, and then finding associations within such groups for making 
effective inter group recommendations. Web log data is multi-dimensional data. 
Unlike vector based methods, tensors have the ability to highly correlate and 
find latent relationships between such similar instances, consisting of users and 
searches. Non redundant rules from such associations of user-searches are then 
used for making recommendations to the users.  

 

Keywords: Tensor, clustering, association rule mining, web log data, 
recommendation. 

1   Introduction 

With the popularity of World Wide Web, use of recommenders to suggest relevant 
products and services to online users is gaining momentum. Collaborative filtering 
(CF) techniques of recommendation have been used by many websites like Amazon, 
ebay, CdNow, Netflix, Yahoo Answers and many more. CF techniques can be 
grouped into two general classes, namely the  neighbourhood and model-based 
methods [1]. Neighbourhood (or memory-based or heuristic-based) methods use Item-

to-Item or User-to-Item correlations to find the nearest neighbours and then 
subsequently use this information to make recommendations. The Item-to-Item 
correlation methods adopt a content-based approach where knowledge about the 
products (contents) is used for recommendation and only similar matching 

content/products are recommended [2], [4]. The User-to-Item correlation methods 
combine interests of a group of people to find the highest rated interests and then 
interests consisting of items/ products/people are recommended to the individuals in a 
group [4],[14].  



       

 

A user’s search generally consists of multiple attributes e.g. in the case of a car 
website, a user may search for a particular make, model, body type, cost, new or old 
car type. A user may have made n number of searches within a website. Modeling or 

comparing such users-items data having multi-dimensional properties is a complex 
process. Traditional CF methods employed for finding similarity between users-items 
ignore this multi-dimensional nature of search log data and are unable to recommend 
unique items to different users [2]. These methods consider an item as an object, 

whereas, the item may be a combination of many features, represented as a vector 
itself. Finding the latent relationships between user’s searches and item’s features is 
often ignored by two dimensional data models such as vectors and matrix.  
Recommendation systems need to handle very high dimensional profiles of users-
items, in order to find the correlations between users and items. A noteworthy 
consideration as also discussed by [3], is that distance measures used for clustering or 
comparisons may reflect strange properties in  high dimensional space and might not 
be as useful as they seem.  

In this paper, we propose a novel recommendation method which utilizes the 
implicit information about users by using the search log data. This methodology 
utilizes the search log data to infer the user rating about items. This is a collaborative 
approach which group users based on their common searches and then finds users–

items correlations within a group. To find the correlations between users according to 
their usage of items, we employ tensor, the high dimensional data model. Once users 
are clustered using the proposed tensor based clustering method, the associations 
shared by a group of users represented as top ‘n’ items, are used for making 

recommendations within the group.  Unlike most of previously adopted tensor models 
consisting of three dimensions, we have modeled users search log into more than 
three dimensions, and used the tensor factorization information for making 
recommendations. Empirical results on real car sales datasets show that the 

recommendation for all users suggested by the proposed tensor based 
recommendation method outperforms the recommendations given by the traditional 
collaborative based methods, which mostly employ vector/matrix methods to find 
similarity between users-items. Taking the average of recommendations done by CF 

methods and tensor based methods, on an average there was an improvement of about 
40% in the precision, 52.78% in recall and 36.84% in F-score values. 

2 Related Work 

There are a myriad of work published, we present some of the recent related work 
employing CF and hybrid recommendations techniques. A collaborative filtering 

method to provide an enhanced quality of recommendations, derived from user-
created tags is discussed by [4]. In this work collaborative methods of tagging item 
are employed to find users preferences for items. Data cubes consisting of three 2 

dimensional matrices (User–item, User–tag and Tag–item frequency) which are 
transformed from three dimensional space for collaborative tagging are used. For 
recommendation Naïve Bayes classifier are used. The performance of such an 
approach was found out to be far superior than the plain collaborative 



 

 

recommendation approaches. A genetic algorithm that formulates purposeful 
association rules out of the transactions database of a transportation management 
system has been proposed by [5]. The constructed rules are recommended to the 

associated users. The recommendation process takes into account the constructed 
rules and techniques that are derived from collaborative filtering.  

In another work [6] a novel hybrid recommendation method that combines the 
segmentation-based sequential rule method with the segmentation-based KNN-CF 

method is proposed. Here a sequential rule-based recommendation method analyses 
customers purchase behaviour over time to extract sequential rules.  Sequential rules 
are extracted for each group from the purchase sequences to make recommendations. 
Consequently, the segmentation-based KNN-CF method provides recommendations 
based on the target customer’s purchase data for the current period. The results of the 
two methods are combined to make final recommendations. A hybrid 
recommendation for an online retail store is proposed by [7]. The method adopts six 
steps for recommendation which are product taxonomy formation, grain specification, 

extracting product, category attributes, user (customer) profile creation, and user–user 
and user–product similarity calculation and recommendation generation. 
Experimental results show that proposed technique improves recommendation when 
compared to other similar CF based methods. Another recent work that proposes a 

hybrid approach that uses neural nets for recommendation is [8]. The proposed 
approach trains the artificial neural networks to group users into different clusters, and 
applies the well-established Kano’s method for extracting the implicit needs of users 
in different clusters. The approach is applied on a tour and travel website to 

demonstrate the improvement for the problem of information overload. 
Tensors have previously been used extensively in chemometrics and psychometric 

and some Web mining tasks like Web link analysis [9] and chat room analysis [10].  
Recently some recommendation models, which have used three dimensional tensors 

for recommending music, tags and objects, have been proposed. A recommender 
model, using HOSVD for dimension reduction, have been proposed for 
recommending personalized music [11] and Tags [12]. Researchers [13] have used 
TSM based tag recommendation model which uses tensor factors by multiplying  the 

three features matrices with core matrix each consisting of user, items and tags. 
Another collaborative filtering approach based on tensor factorization for making 
recommendations, where, the users, items and related contextual information are 
modeled as a three dimensional tensor is proposed by [20].  

3. Model Construction, Decomposition and Clustering 

Tensor notations and conventions used are similar to the notations used by previous 
authors [14]. Scalars are denoted by small letters a, b, vectors are denoted by boldface 
small letters like a, b. All subscript are shown by small letters starting from i..n. 

Matrices are shown using capital bold letters like A, B and the element (i, j) of a 

matrix is shown by aij. All tensors are represented using calligraphic fonts TTTT,  e.g. 

1 2 3 ..× × ×
∈ ℝ nM M M M

TTTT  and the entries are shown using aijk and the subscript (i, j, k) 

range from 1..to I, J, K in each mode. A tensor is a multi-dimensional data array 



       

 

which has n dimensions (or modes).  The order of a tensor is the number of 

dimensions. For example, the tensor 1 2 3 ..× × ×
∈ ℝ nM M M M

TTTT is of an order n with n 

dimensions. Each element of a tensor needs n indices to represent or reference its 

precise position in a tensor, for example, the element aijklmn  is an entry value at the i, 

j, k, l, m and n modes. In various tensor decomposition techniques the dimensions are 
flattened to represent matrices of various sizes before the subsequent decomposition 
technique is applied. Matricizing, unfolding or flattening of a tensor is a useful 

operation for transforming a given multi-dimensional array into a matrix. A third 

order tensor I J K× ×
∈ℝAAAA  is able to form three matrices of  , ,× × ×I JK J IK K IJ . More 

details on tensors and their properties can be found out in [14],[15]. 

3.1 Model Construction 

Prior to creating the tensor model, the data is preprocessed. Pre processing includes 
arranging searches in different sessions made by a user into records, removing 
unwanted attributes from such records. This data is then grouped for each user based 
on the various searched parameters, and frequency of such records as grouped is 

counted. The prominent attributes from the users’ data are identified and such 
attributes are then represented as modes of the tensor model. A tensor is created with 
all such features and the users as one dimension. For example, the structure of a 
tensor created, consisting of 5 searched dimensions and the users are as follows:  

          
          

 
Make Model Bodytype Search Type Cost Type Users× × × × ×

∈ℝTTTT        
(1) 

For each user the term frequency of each similar search is counted. A similar search 
is a search whose all searched parameters are same. As an example for a given user, 
the different searched parameters like make, model, body type, search type and cost 
of a car may be same, and user may have searched them many times in different 
sessions. The term frequency value for all the searches of a user are found out. Next 

theses values are populated in the tensor. As an example, the term frequency ijklmnt  is 

an entry value at the i, j, k, l, m and n modes, where i represents the Make, j the 
Model, k the Bodytype, l the search type, m the cost ranges and n the user id. 

3.2 Decomposition 

In multi-dimensional data modeling, the decomposition process enables to find the 
most prominent components (i.e. tensor entries and modes) as well as the hidden 
relationships that may exist between different components. We have used the popular 
and widely used PARAFAC [16] tensor decomposition technique to decompose the 
constructed model. PARAFAC is a generalization of PCA (Principal Component 

Analysis) to higher order arrays. Given a tensor of rank 3 as X I J K× ×
∈ℝ , a R-

component PARAFAC model can be represented as 



 

 

                                             1

R

ijk ir jr kr

r

a b c E

=

+∑x =                                 (2) 

where , ,i i ia b c  are the thi  column of component matrices ,I R J R× ×
∈ ∈A Bℝ ℝ and 

K R×
∈C ℝ respectively and

I J KE × ×
∈ℝ  is the three way array containing residuals. 

ijkx  represents an entry of a three way array of X  and  in the thi  row, 
th
j  column 

and thk  tube. Thus in our case when the users tensor (equation 1) is decomposed 

using [17], the various matrices formed are as shown in the figure 1 below. In figure 

1, 1 2 nM ,M ..M are the various component matrices formed after the decomposition 

of the tensor, and R is the desired best rank tensor approximation, which is set as 1, 2, 
and 3 in all the experiments. 

 

 

Fig. 1. PARAFAC Decomposed tensor of users-searches, gives component matrices as shown. 

3.3 Clustering 

Clustering is done on the component matrices 1, 2 nM M ..M obtained after PARAFAC 

decomposition and representing decomposed values of each mode, from 

1 2, , ... nM M M respectively. Each component matrix 1, 2 nM M ..M  is of dimension 

i r×M where i  is the number of ways in a mode nM , and  r  is the value of best rank 

approximation of the tensor. The nth matrix obtained after PARAFAC decomposition 
(Shown as M6 in fig. 1) represents the users’ dimension. Clustering on row values of 
this matrix is achieved by using two clustering methods the EM (Expectation 

Maximization) and k means [18]. We have taken the last component matrix nM  as 

clustering input since it represents the users dimension in the proposed data model. 

Entries (or values) in the matrix nM depicts the correlations between users based on 

the multiple factors of the tensor. Therefore, clustering on the matrix nM  results in 

grouping users according to similar search behaviour which is based on multiple 
search components as modeled in the tensor. 



       

 

4 Discovering Association within clusters 

All searches made by users in a cluster are grouped and frequent associations based 
on desired query components (like make-model in our case) are mined. Thus each 
cluster contains the searched parameters, as searched by users of the respective 
cluster. Association rules are mined from each individual cluster. We have considered 
associations of length two, as the occurrence of associations of length greater than 2 
was very rare, especially when the number of users in a cluster is small. The whole 
recommender process is explained in the algorithm in figure 2. 

 
Input: Processed search data users and searched parameter wise, n the number of 
recommendations desired. 
Output: Top n recommendations. 

Let k be the number of clusters (here k=10, 20, 30). Let Rule = ⇒rk r rX Y  be the rule mined for 

cluster k on item set mX  and mY  such that , ,  and ,∈ = ∅∩r r m m r rX Y X Y X Y  where m is the 

number of item sets in a cluster, on which association rules are mined and r be number of 
rules generated for each cluster k. Let j be a counter variable, initialized at zero. 
Begin 

Step 1. Create users-searches tensor (TTTT). 

Step 2. Decompose the tensor (TTTT), and cluster the last component matrix .nM
 

Step 3.  // Find Association rules for each cluster from  1  to  k.  

Step 4.  //Order Association rules in decreasing order of confidence score. 

   for  i= 1  to  k //Evaluating distinct rules for each cluster from 1 to k 

                  j= 0 ;  r= 1 ;  

                  Do While ( ) j != n  
                        Extract (r); //Function retrieves top rth rule with highest confidence from    
                        cluster k. 

                        If ( ) ( )⇒ = ⇒r r r rX Y Y X  then 

                                
( ) ;⇒r rSave X Y  //Save(r) function saves the distinct item sets from   

                                                               association rules for the cluster k.
 

                               
 j= j+1 ;  r= r+1 ;

 
                        Else 

                                      //Retrieve rules with next highest confidence score. 

                                     
( ) ;⇒r rSave X Y

 

                               
 j= j+1 ;

 

                               
( ) ;⇒r rSave Y X

 

                               
 j= j+1 ;  r= r+1 ;

 
   End for 

  // Cluster wise Top n recommendations 

  Top n  = ;⇒k n nX Y
 

   End 

 
Fig 2. Complete Recommendation algorithm. 



 

 

5.1 Experimental Design  

All experiments have been done on server log data collected from a live Australian 
car sales website1. Search log data of duration 1 month was used. Out of a total 
number of users, 949 users who had made searches in that period were used in 
experiments. These users were identified based on IP address (IP), web browser and 
Geo segmentation details like location and PIN number. These users had made leads 
or enquiries about a car of their interest, showing that these users were interested in 
buying the particular car, for which they had made the lead. All leads about a car were 

made by emailing the dealer through the e-mail feature (contact us) provided by the 
website. In all the experiments, the data used for making recommendations were 
taken prior to a user had made a lead. The major objective was to match leads with 

the correctly made recommendations by various traditional collaborative methods and 
collaborative methods based on tensor model. Some statistics for the user searches 
and leads are shown below in Table 1:  

Table 1. Statistics of filtered data used for tensor modeling. 

No. of  

Sessions 

No. of 

Users 

Average 

searches per user 
No. of 

Leads 

Avg. 

Lead/User 

2692 949 14 1649 1.74 

 
Five parameters used for searching like make, model, body type, cost, search type 
(e.g. like new or used) plus a sixth dimension (users) were taken as dimensions of the 

tensor model (Table 2). 

Table 2. Number and Sample of Dimensions Used in the Tensor Model. 

Dimension 

Name 

No of unique 

ways or modes 

Sample dimension values 

Make 68 Toyota, Holden, Ford 

Model 644 RAV4, Liberty. 

Body Type 12 Sedan, Hatch 

Search Type 5 New, Used, Ex Demo. 

Cost Type 13 $1-2500 

Users Id 949 1, 2,..949 

 
Once the data was pre processed the users-items tensor model was created as 

68  644  12  5  13  949  .× × × × ×
∈ℝTTTT  Subsequently, decomposition was achieved 

using the PARAFAC model. In the absence of an ideal clustering solution, three 
cluster solutions consisting of 10, 20 and 30 clusters were used for evaluation. For 

each cluster, association rules with highest confidence score and make/model as 
associated items were taken. For each cluster the number of association rules 
generated was 3, 5, 10, and 15.  Once frequent patterns in the form of association 
rules are mined cluster wise, only rules having highest support and distinct make-
model were taken for recommendations from these rules. These top n make-models 

                                                           
1 Due to privacy issues we are unable to specify the details about the website. 



       

 

were given as recommendation to each of the users belonging to a same cluster. A 
sample of some association rules are shown as below. 

 
Best rules found: 

1. X-TRAIL=X-TRAIL 10 ==> NISSAN=NISSAN 10      conf:(1) 

2. NISSAN=NISSAN 10 ==> X-TRAIL=X-TRAIL 10       conf:(1) 

          3. X-TRAIL=GRAND VITARA 2 ==> NISSAN=SUZUKI 2  conf:(0.89) 

          4. NISSAN=SUZUKI 2 ==> X-TRAIL=GRAND VITARA 2  conf:(0.75) 

Fig.3 Sample of associations found out for a cluster1. 

Example for the above case as shown in Figure 3 the top 3 cars recommended with 
make-model were: 1. NISSAN- X-TRAIL, 2 SUZUKI- GRAND VITARA and 3 
SUBARU- OUTBACK. All users with similar interests belonging to a cluster 

(Evaluated based on users-searches using tensor) will be recommended these top n 
cars. 

5.2 Evaluation Criteria 

To evaluate the quality of top-m recommendations given by each method we used the 

following metrics. Let nL  be the number of leads made by a user nU , and let
m
nR , be 

the top-m recommendations given by various methods to nU , where 

m 3 and m 15, m {{3},{5},{10},{15}}.≥ ≤ ∈  Precision  ( )nPr  and recall ( )nRe for 

each user nU  is evaluated as  

( )

m
n n

n m m
n n n n

R L
Pr

R L R L
=

+ −

∩

∩
      And recall as 

( )

m
n n

n m m
n n n n

R L
Re

R L L R
=

+ −

∩

∩
           (3) 

5.3 Results 

The average details of clustering results for each method are shown below in Table 3, 

where the acronyms used in the table 3 are U-ESM (Users-users Euclidian Similarity 

Measure) and U-CSM (Users-users Cosine Similarity Measure). U-ESM and U-CSM 

are evaluated based on users-items relationships, where such relationships are 

represented as vectors in two dimensional spaces. Clustering is done on these vectors 

to find users with similar interests. P1-EM, P2-EM and P3-EM are the PARAFAC 

best rank approximation of rank 1, 2, 3 respectively, with clustering achieved using 

Expectation Maximization (EM) [18]. Similarly P1-kM, P2-kM and P3-kM are the 

PARAFAC best rank approximation of rank 1, 2, 3 respectively, with clustering 

achieved using k means. The other values are Pr=precision, Re=recall and Fs=F 

Score.  

 



 

 

Table 3. Average Recommendations for various methods. 

 
Top 3 

Recommendation 

Top 5 

Recommendation 

Top 10 

Recommendation 

Top 15 

Recommendation 

 Pr Re Fs  Pr  Re Fs    Pr Re Fs Pr     Re  Fs 

U-ESM 0.08 0.10 0.06 0.06 0.12 0.06 0.07 0.16 0.06 0.07 0.16 0.06 

U-CSM 0.24 0.46 0.31 0.23 0.56 0.31 0.22 0.59 0.30 0.22 0.68 0.29 

P1-EM 0.35 0.60 0.43 0.32 0.59 0.40 0.22 0.67 0.30 0.21 0.69 0.28 

P2-EM 0.25 0.38 0.25 0.24 0.4 0.25 0.17 0.55 0.18 0.16 0.61 0.18 

P3-EM 0.34 0.56 0.40 0.29 0.57 0.36 0.24 0.69 0.29 0.23 0.72 0.28 

P1-kM 0.15 0.25 0.17 0.11 0.26 0.15 0.13 0.53 0.21 0.11 0.57 0.17 

P2-kM 0.22 0.47 0.29 0.21 0.51 0.27 0.14 0.65 0.22 0.12 0.73 0.19 

P3-kM 0.22 0.44 0.28 0.19 0.48 0.25 0.16 0.63 0.24 0.14 0.67 0.21 

Average 0.23 0.41 0.27 0.21 0.44 0.26 0.17 0.56 0.23 0.16  0.60 0.21 

6 Discussion 

Due to very high number of dimensions of interest vector of users (742 dimensions 
excluding users and as shown in table2) clustering based on Euclidean (ESM) using k 

means and EM was unable to produce good clustering of users which ultimately 
resulted in not so high quality of recommendations. This can happen because as the 
number of dimensions grows significantly, ESM (Euclidian Similarity Measure) and 
CSM (Cosine Similarity Measure) eventually become less similar. In very high 

dimensional spaces  as dimension gets higher (≥ 128) [19], the two similarity 
measures start having small variations between them. However, the rate of decrease 
of similarity is very slow. Similarity vectors of instances in such high dimensional 
spaces starts loosing inter component relationships, when traditional two dimensional 
distance based methods are employed. On the other hand cosine (CSM) measure 
produced average quality of results. This happens because cosine similarity is able to 
map the different dimensions, but due to the two dimensional model, latent 
relationships between users-items are lost.  

In contrast the tensor based methods are able to extract hidden relationships 
between the datasets and give much improved similarity results for the users-items 
data. For making CF based recommendations, traditional k means algorithm with 
Euclidian and Manhattan similarity measures performed worse, whereas CSM 

methods performed average. On the other hand, EM based methods performed 
exceptionally well. These contrasting results confirm that distance based approaches 
using Euclidian, Manhattan or cosine base similarity measures used in high 
dimensional data mappings reflect strange properties [18] which include loss of inter 
component relationships and unable to map inter component latent relationships. EM 
is density based clustering algorithm, and rather than using a distance based clustering 
measure, it assigns a probability distribution to each instance, indicating the 
probability of it belonging to each of the other clusters. 



       

 

From the results (table 3, figure 4) it is clear that, the number of best 
recommendations made to a user is around 3-5. The aggregate recommendation 
scores of precision, recall and F Score for each datasets using simple CF based 

methods and PARAFAC –EM and PARAFAC-kM based methods are shown below 
in table 4. 

Table 4. Average Aggregate Recommendations for various methods. 

Methods Precision Recall F-Score 

CF-Distance Based 0.15 0.36 0.19 

PARAFAC-kM 0.16 0.52 0.22 

PARAFAC-EM 0.25 0.59 0.30 

Avg. PARAFAC-EM+kM 0.21 0.56 0.26 

 

The other noteworthy observation was that in most associations with large lengths ( > 

2) , there was a reduction in number of frequent item sets  discovered in the process, 

which had high support and confidence values. Association with length=1 had too 

many rules, and such rules were biased towards rules with highest frequency. Hence 

such rules were ignored for analysis in the experiments. An interesting observation 

which is shown in figure 5 shows relevant F-score when tensor best rank 

decomposition are considered. In the figure 5, 1EM, 2EM, 3EM refer to PARAFAC 

decomposition with best rank approximation of 1, 2 and 3 respectively, where 

clustering was achieved using EM clustering algorithm. Similarly 1KM, 2KM, 3KM 

refer to PARAFAC decomposition with clustering achieved using k-means clustering 

method. In both cases, using EM and KM performance starts decreasing with the 

increase in rank and number of recommendations. In case of KM clustering, rank 1 

performs worst. KM clustering methods use distance measure for clustering. Due to 

the availability of singular values per instance for clustering, some useful 

relationships between instances may not be clearly distinguishable. When 

decomposing with higher ranks the extra factors available for clustering, which have 

the ability to preserve some information, KM’s performance starts to increase. 

However decomposition at higher ranks may start loosing valuable inter component 

relationships, due to complete flattening of the tensor.  

 

   
Fig.4 F-Score for Top n recommendations           Fig.5 F-Score Rank Wise, top n with various             
                        cluster sizes.                                                        recommendations.  



 

 

The figure 5 clearly separates top3, top 5 recommendations from top10 and 15. 

Rank 1 approximation using EM clustering performed the best among all cases. In 

case of KM, rank 1 gave best results when number of clusters was 30 and for rank 3, 

KM gave best when it was 30. These contrasting results in case of KM are clear 

indicator that distance measures may not work well when intra distance between 

instances is small. The other observation is that distance measures need larger cluster 

sizes to maximize the distance between instances and in hence improve overall 

performance. 

7  Conclusion 

This paper presented a novel method of recommendation based on tensor clustering 

and associations. Users-items similarity measures were evaluated using high 

dimensional data model tensors. Once the model was decomposed using PARAFAC, 

clustering was achieved on the users matrix. Association rules for users, clustered in a 

group were found out. Once such rules were found out, only unique rules with highest 

confidence were taken as top n recommendation for the users in a cluster. 

Experimental results show that tensor based recommendation method and unique 

association rule generation for making recommendations outperforms the traditional 

CF based methods, which perform user-items similarity measure using vector or 

matrix based methods.  Since most of the processes for generating rules, creating and 

clustering users can be done offline, the system can effectively be used for generating 

high quality of online recommendations, thus limiting recommendation to top 3-5 

recommendations per user. However as of now, since the process of identifying top n 

unique recommendations from association rules is not automated, a lot of time is 

needed to generate such top n recommendations for each group.  
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