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Abstract

This paper presents a practical framework to syn-
thesize multi-sensor navigation information for lo-
calization of a rotary-wing unmanned aerial vehicle
(RUAV) and estimation of unknown ship positions
when the RUAV approaches the landing deck. The
estimation performance of the visual tracking sensor
can also be improved through integrated navigation.
Three different sensors (inertial navigation, Global
Positioning System, and visual tracking sensor) are
utilized complementarily to perform the navigation
tasks for the purpose of an automatic landing. An
extended Kalman filter (EKF) is developed to fuse
data from various navigation sensors to provide the
reliable navigation information. The performance of
the fusion algorithm has been evaluated using real
ship motion data. Simulation results suggest that the
proposed method can be used to construct a practical
navigation system for a UAV-ship landing system.

1 INTRODUCTION

RUAVs have received increasing interest in the past
few decades. Compared with their fixed-wing coun-
terparts, maneuverability of RUAVs is significantly

improved due to the particular structural and aerody-
namic characteristics. The resultant operational flex-
ibility, including vertical take-off and landing capa-
bility, hover at a desired height, longitudinal and lat-
eral manoeuvre, etc., makes RUAVs an indispensable
platform to perform a variety of applications such as
surveillance and reconnaissance, search and rescue,
urgent cargo transportation, and scientific investiga-
tions on specified ocean areas or volcanoes. There is
also a growing desire to operate RUAVs in a maritime
environment which introduces new challenges owing
to the adverse turbulence over the flight deck, vari-
ational ship motion through waves, and the induced
interactions when the RUAV approaches the super-
structure of the ship. A successful automatic landing
of a RUAV requires highly accurate navigation capa-
bility to plan a smooth trajectory, which results from
its vulnerability to impact forces during touchdown
caused by its small size and random deck motion.

The combination of various navigation sensors pro-
vides a feasible means of achieving high accuracy
whilst reducing the cost. Integrated navigation sys-
tem makes significant efforts to take advantage of
auxiliary attributes of multiple sensors for the pur-
pose of estimation enhancement with a better ac-
curacy. The current integrated navigation system



carried onboard our RUAV comprises three measure-
ment sensors: Inertial Navigation Sensor (INS), GPS,
and Tracking Sensor (TS). GPS/INS are combined
complementarily to estimate translational positions
and velocities of the RUAV. For an automatic land-
ing, of particular interest are ship positions and atti-
tudes which are not directly available for the RUAV.
However, they can be estimated if instantaneous rel-
ative position information between the ship and the
RUAV is measured properly. Therefore, an auxiliary
TS can be used onboard the RUAV [6], providing
consistently relative positions. The fusion of INS,
GPS, and TS makes it feasible to provide naviga-
tion information with satisfactory precision by devel-
oping effective filtering algorithms that account for
noisy measurements, and estimate ship motion dy-
namics. Moreover, the effective estimation of ship po-
sitions facilitates extraction of the monotonous trend
of the landing deck, relieving the RUAV of changing
its height to track the instantaneous deck dynamics
which would cause substantive consumption of power.
The GPS/INS synergy strategy is an efficient in-

tegration able to operate in a wide range of scenar-
ios and provides low-cost high-accuracy estimation
performance, and has been discussed extensively in
a number of articles [11, 2, 3, 12]. Dittrich et al.
[2] considered design and development of a practical
avionics system which can provide reliable navigation
information for the flight computer of an autonomous
helicopter. The navigation system was constructed
using the extended Kalman filtering technique by fus-
ing measurements from GPS, IMU, sonar and radar
altimeters. A family of nonlinear Kalman filters
called sigma-point Kalman filter was presented for
integrated navigation in [10]. It was reported that
the proposed Kalman filter can capture the poste-
rior mean and covariance more accurately, and its
implementation was often substantially easier than
the EKF. The example given in this paper showed
an approximate 30% error reduction in attitudes and
positions can be achieved compared with the EKF
when the proposed method was applied to a rotor-
craft platform. Zhang et al. [13] presented a naviga-
tion system for an autonomous vehicle by integrating
measurements from IMU, GPS and digital compass.
To overcome low precision of separate sensors, system

estimation was implemented by using the unscented
Kalman filter which had a higher calculation accu-
racy compared with the EKF. The unscented Kalman
filter is a derivative-free variant of Kalman filter and
can capture the posterior mean and covariance ac-
curately to the third-order (Taylor series expansion)
for nonlinear systems [10]. Implementation of the
unscented Kalman filter requires a set of weighted
sigma points to be chosen such that certain prop-
erties of these points match those of the prior dis-
tributions [9]. Also, additional weight parameters
should be selected according to the type of sigma-
point approach used [10]. Therefore, implementation
of the unscented Kalman filter requires careful choice
of weight parameters, and it is time-consuming to ob-
tain these parameters by implementing the nonlinear
unscented transformation online for a flight computer
performing multiple tasks during flight operations.
In our case, we are targeting a feasible filtering ap-
proach which can be implemented easily at the cost
of limited flight computer memory and provide suffi-
cient estimation accuracy. Also, due to the fact that
introduction of high order (second order and higher
orders) system dynamics does not generally lead to
an improvement in system performance [5], we use
the EKF in this paper to perform the sensor fusion
task.
In the considered application, positions and ve-

locities of the RUAV can be estimated accurately
through combination of GPS and INS. For automatic
landing, of particular interest are ship positions which
cannot be measured by the RUAV. However, they can
be estimated if the relative position information be-
tween the ship and the RUAV is obtained.
The following paper proposes a novel and feasible

systematic framework for estimating unknown ship
position in an automatic landing system for RUAVs.
The sensor fusion approach relies on relatively low-
cost sensors and yields estimation results with high
accuracy. This eliminates the dependency on expen-
sive high-accuracy sensors during this type of tasks.
The combination with high-intensity color tracking
sensors guarantees that the proposed sensor fusion al-
gorithm can be applied during the night or in a gusty
environment, which extends applicability of the pro-
posed method to a large number of maritime flight



Figure 1: Vision based tracking sensor [8]

operations.
This paper is organised as follows: In Section 2 we

provide a description of the tracking sensor used in
our approach. In Section 3 we present the mathemat-
ical formulation of the sensor fusion approach. Sec-
tion 4 depicts the simulation results obtained, and
finally some brief conclusions are presented in Sec-
tion 5.

2 Tracking Sensor

The combination of IMU/GPS is able to give satis-
factory estimation of helicopter positions. However,
ship positions are unknown. To provide the missing
information, a visual tracking sensor has been de-
veloped which can give relative motion information
between a RUAV and the ship deck.

In previous work, Garratt et al. [4] developed a
system of three visual landmarks on the ground to
control a small RUAV in hover. The tracking sys-
tem suffers from the problem of losing track when it
is used for tracking landmarks on an oscillating ship
deck. This results from the possibility that the sea
spray could obscure parts of a visual pattern or parts
of the pattern disappear from the field of view fre-
quently due to the combined motion of the RUAV
and the ship.

To improve the estimation accuracy, two colored
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Figure 2: Structure of the tracking sensor hardware

beacons are employed with known configuration in-
formation [8], as shown in Fig. 1. The use of color en-
ables the left and right beacons to be discriminated.
The combination of a digital camera and a target
detection algorithm can provide reliable relative mo-
tion information between a RUAV and a ship deck.
The relative motion information can be obtained by
tracking the motion of the center of the two beacons.
Range, azimuth and elevation are functions of the
frame coordinates of the captured images (center of
the beacons) within the field of view. The relative
range can be derived based on the beacon horizontal
separation information and positions of the heading
pointer within the frame [8].

The structure of the tracking sensor hardware is
depicted in Fig. 2. The beacon tracking system is
lightweight, self-contained, and consumes low power.
The employment of a mega-pixel CMOS image sensor
makes it possible to combine all of the necessary im-
age processing and coordinate determination within a
single Xilinx Spartan IIE Field Programmable Gate
Array (FPGA). The FPGA interfaces to the flight
control system using RS232 serial communications,
and provides extra diagnostics to an external moni-
tor. The preliminary tests have shown that robust
color segmentation and accurate target coordinate
generation are achieved with minimal use of FPGA
resources [8]. Additionally, the data generated from



the tracking algorithm can be used to obtain an ac-
curate estimate of the relative range up to 30 m.

3 Sensor Fusion Algorithm us-

ing the EKF

To derive the system update equations and measure-
ment equations for the EKF, two sets of coordinate
frames (body frame and navigation frame) are de-
fined for coordinate transformation, as illustrated in
Fig. 3. The body frame is fixed orthogonally to the
origin Ob located at the Center of Gravity (CG) with
axis set aligned with the roll, pitch and yaw axes of
the RUAV. The INS and TS are installed with respect
to the body frame. The second coordinate frame,
also referred to as the North-East-Down (NED) co-
ordinate frame, defines its origin On at the location
of the navigation system where a proper navigation
solution is found out. Its orthogonal axes align with
the directions of north, east, and the local vertical
(down) [11, 7].

The structure of the integrated navigation scheme
is shown in Fig. 4. Due to the fact that the GPS-
based receiver is susceptible to jamming in a dy-
namic environment and velocity measurements from
the GPS are also noisy owing to variations in sig-
nal strength, the effects of changing multi-path and
user lock instability [11], it is necessary to incorpo-
rate the INS into the navigation system to yield ben-
efits over operating the GPS alone. Normally, mea-
surements from different sensors require calibrations
before the sensor fusion is performed. The GPS on-
board uses a Novatel OEM4-G2L GPS cards which
perform differential corrections. In the IMUs used
in these sort of projects (e.g. Crossbow NAV-440,
NovAtel SPAN), corrections for offsets and other er-
rors are already compensated inside these commer-
cially available systems. Hence further error com-
pensation is not warranted for the attitude and rate
states. The major source of errors is in the position
and velocity estimates and we address these issues in
our sensor fusion paradigm. Standard deviations of
noise levels in measurements of azimuth and eleva-
tion angles from the visual tracking sensor are 0.18o,

which is accurate enough to be used for sensor fu-
sion. The proposed sensor fusion algorithm aims to
smooth out noise in RUAV position and velocity mea-
surements. Besides, it serves to estimate deck dis-
placement by fusing the following groups of measure-
ments: helicopter positions (xh, yh, zh) and velocities
(vxh, vyh, vzh) from GPS, relative motion information
(αr , βr, dr) described in spherical coordinates from
TS, and helicopter accelerations (ax, ay, az) and an-
gular rates (p, q, r) from INS. Here, helicopter veloc-
ities (u, v, w) in body frame are related to velocities
(vxh, vyh, vzh) in navigation frame by the direction
cosine matrix Cnb

[vxh, vyh, vzh]
T = Cnb [u, v, w]T (1)

with Cnb expressed in quaternion parameters (see
page 7) [11]. Here, quaternion elements are denoted
by q = [q0, q1, q2, q3]

T . The quaternion attitude ex-
pression is a four-element representation based on
the viewpoint that a transformation from one frame
to another can be interpreted as a single rotation
about a vector defined with respect to the reference
frame [11]. The singular problems encountered when
attitudes are expressed in Euler forms can be avoided
via adoption of the quaternion form.

The discrete-time system updating model of EKF
takes the form of

Xk = f(Xk−1, k − 1) + εk (2)

where state vector X corresponds to 17 state vari-
ables

X = [xh, yh, zh, u, v, w, xs, ys, zs, vxs, vys, vzs, xr, yr, zr,

ψs, Vψs]
T (3)

and system noise (mutually independent with Gaus-
sian distributions) is ε = [ε1, · · · , ε17]

T .

Here, RUAV positions (xh, yh, zh), ship positions
(xs, ys, zs) and velocities (vxs, vys, vzs), and relative
positions (xr , yr, zr) are in navigation frame. Ship
yaw and yaw rate are denoted by ψs and Vψs. The
RUAV can receive ship heading (yaw) information
from radio signals sent by the ship. Equation (3) can



be expressed in an explicit form

(xh)k = (xh)k−1 + Ts[(c11)k−1uk−1 + (c12)k−1vk−1

+ (c13)k−1wk−1] + (ε1)k (4)

(yh)k = (yh)k−1 + Ts[(c21)k−1uk−1 + (c22)k−1vk−1

+ (c23)k−1wk−1] + (ε2)k (5)

(zh)k = (zh)k−1 + Ts[(c31)k−1uk−1 + (c32)k−1vk−1

+ (c33)k−1wk−1] + (ε3)k (6)

uk = uk−1 + Ts[rk−1vk−1 − qk−1wk−1 + (ax)k−1]

+ (ε4)k (7)

vk = vk−1 + Ts[−rk−1uk−1 + pk−1wk−1

+ (ay)k−1] + (ε5)k (8)

wk = wk−1 + Ts[qk−1uk−1 − pk−1vk−1 + (az)k−1]

+ (ε6)k (9)

(xs)k = (xs)k−1 + Ts(vxs)k−1 + (ε7)k (10)

(ys)k = (ys)k−1 + Ts(vys)k−1 + (ε8)k (11)

(zs)k = (zs)k−1 + Ts(vzs)k−1 + (ε9)k (12)

(vxs)k = (vxs)k−1 + (ε10)k (13)

(vys)k = (vys)k−1 + (ε11)k (14)

(vzs)k = (vzs)k−1 + (ε12)k (15)

(xr)k = (xr)k−1 + (ε13)k (16)

(yr)k = (yr)k−1 + (ε14)k (17)

(zr)k = (zr)k−1 + (ε15)k (18)

(ψs)k = (ψs)k−1 + Ts(Vψs)k−1 + (ε16)k (19)

(Vψs)k = (Vψs)k−1 + (ε17)k (20)

Eq. (4)-(20) propagate states variables from time
instant k − 1 to k, and sampling time is denoted by
Ts. System noise ε(·) and covariance matrix of system
noise Q(·) satisfies

E{εi(·)[ε
j

(·)]
T } = δ(i− j)Q(·) (21)

where δ is Kronec function taking the form of

δ(i− j) =

{

1 if i = j
0 if i 6= j

Eq. (4)-(6) describe relationship of velocities between
body frame and navigation frame. Local velocity
propagations are revealed in Eq. (7)-(9) with knowl-
edge of accelerations (ax, ay, az). In the considered

Figure 3: Frame relationship between body frame
and navigation frame

application, it is not possible to build up an accu-
rate ship motion model. However, it is reasonable to
assume ship speed remains constant in forward and
sideways directions during landing phase, as is shown
in Eq. (10)-(15). Of particular significance is local
displacement motion greatly affecting magnitude of
the impact force during touchdown moment. Deck
displacement speed is tentatively set to be constant,
and it will be demonstrated later that the EKF is
able to estimate the displacement motion effectively
as relative motion (αr , βr, dr) provided by TS can
correct the estimation performance.
Nonlinearities in system model Eq. (2) stem from

the quaternion components cij in direction cosine ma-
trix Cnb , which should be linearized when deriving
the state transition matrix Φk|k−1. The differential
equations for quaternion attitude in continuous-time
are [5]
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For a sufficiently small sampling time interval Ts, Eq.
(22) can be linearized using the first-order approxi-



Figure 4: Architecture of EKF for multi-sensor fusion

mation

∆q ≈ −
1

2
ΩqTs (23)

Since it is expected to determine the change of vectors
relative to the body frame, then quaternion vector is
set to be q = [1 0 0 0]T . Following Eq. (22), the
change in attitude over the time interval Ts is given
by
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and the change in attitude over the time interval rel-
ative to body frame is
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pTs/2
qTs/2
rTs/2









(25)

Defining

P̃ ,
pTs
2
, Q̃ ,

qTs
2
, R̃ ,

rTs
2

(26)

the rotation matrix Cnb can be recast as (27) (see
next page).
Substituting Eq. (27) into Eq. (4)-(6) leads to Eq.

(28)-(30)(see next page). Therefore, the state tran-
sition matrix Φk|k−1 can be derived by differentiat-
ing Eq. (28)-(30) and Eq. (7)-(20) with respect to

each state. Here, the angular rates at time instant
k are described by pk, qk, rk. In our case, the body
rate information obtained from the INS has been fil-
tered and can be used for sensor fusion. Angular rates
(pk, qk, rk) do not remain constant and keep updating
when measurements from the INS change.
The measurement model can be described by

Zk = h(Xk, k) + ǫk (31)

where 10 measurements are Z =
[xh, yh, zh, vxh, vyh, vzh, αr, βr, dr, ψs]

T and mea-
surement noise ǫ is

ǫ = [ǫ1, . . . , ǫ10]
T (32)

The detailed measurement equations are

(xh)k = (xh)k + (ǫ1)k (33)

(yh)k = (yh)k + (ǫ2)k (34)

(zh)k = (zh)k + (ǫ3)k (35)

uk = uk + (ǫ4)k (36)

vk = vk + (ǫ5)k (37)

wk = wk + (ǫ6)k (38)

(αr)k = arctan{
(yr)k
(xr)k

}+ (ǫ7)k (39)

(βr)k = arccos{
(zr)k

√

[(xr)k]2 + [(yr)k]2 + [(zr)k]2
}

+ (ǫ8)k (40)

(dr)k =
√

[(xr)k]2 + [(yr)k]2 + [(zr)k]2 + (ǫ9)k (41)

(ψs)k = (ψs)k + (ǫ10)k (42)

Measurement noise ǫ(·) is mutually independent
with Gaussian distributions, and covariance matrix
of measurement noise R(·) satisfies

E{ǫi(·)[ǫ
j

(·)]
T } = δ(i− j)R(·), (43)

Given the system model and measurement model,
an EKF can be developed to fulfill the sensor fusion
task by taking the following procedure [1, 7]:
Computing the prior state estimate:

X̂k|k−1 = f(X̂k−1|k−1, k − 1) (44)



Cnb =





c11 c12 c13
c21 c22 c23
c31 c32 c33



 =





q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23





Cnb =





1 + P̃ 2 − Q̃2 − R̃2 2(P̃ Q̃− R̃) 2(P̃ R̃+ Q̃)

2(P̃ Q̃+ R̃) 1− P̃ 2 + Q̃2 − R̃2 2(Q̃R̃− P̃ )

2(P̃ R̃ − Q̃) 2(Q̃R̃+ P̃ ) 1− P̃ 2 − Q̃2 + R̃2



 (27)

(xh)k = (xh)k−1 + Ts[(1 +
(p2k−1 − q2k−1 − r2k−1)T

2
s

4
)uk−1 + 2(

pk−1qk−1T
2
s

4
−
rk−1Ts

2
)vk−1

+ 2(
qk−1rk−1T

2
s

4
+
qk−1Ts

2
)wk−1 + (ε1)k] (28)

(yh)k = (yh)k−1 + Ts[2(
pk−1qk−1T

2
s

4
+
rk−1Ts

2
)uk−1 + (1 +

(q2k−1 − p2k−1 − r2k−1)T
2
s

4
)vk−1

+ 2(
qk−1rk−1T

2
s

4
−
pk−1Ts

2
)wk−1] + (ε2)k] (29)

(zh)k = (zh)k−1 + Ts[2(
pk−1rk−1T

2
s

4
−
qk−1Ts

2
)uk−1 + 2(

qk−1rk−1T
2
s

4
+
pk−1Ts

2
)vk−1

+ (1 +
(r2k−1 − p2k−1 − q2k−1)T

2
s

4
)wk−1] + (ε3)k (30)

Computing the predicted measurement:

Ẑk = h(X̂k|k−1, k) (45)

Linearize system updating equations:

Φk|k−1 ≈
∂f(X, k − 1)

∂X
|
X=X̂k−1|k−1

(46)

Conditioning the predicted estimate on the mea-
surement and linearize measurement equation:

X̂k|k = X̂k|k−1 +Kk(Zk − Ẑk) (47)

Hk|k−1 ≈
∂h(X, k)

∂X
|
X=X̂k|k−1

(48)

Computing the prior covariance matrix:

Pk|k−1 = Φk|k−1Pk−1|k−1Φ
T
k|k−1 +Qk−1 (49)

Computing the Kalman gain:

Kk = Pk|k−1H
T
k|k−1[Hk|k−1Pk|k−1H

T
k|k−1 +Rk]

−1

(50)
Computing the posteriori covariance matrix:

Pk|k = {I −KkHk|k−1}Pk|k−1 (51)

The flow chart for EKF implementation is shown in
Fig. 5. The EKF algorithm is implemented as a C-
file S-function block in MATLABrSimulink and can
be easily integrated into the ship/helicopter landing
system.

4 Simulation Results

In this section, the EKF algorithm is tested using
real-time deck displacement data for a Vario heli-



Figure 5: Flow chart for implementation of the EKF

copter model. In the simulation, the RUAV is sup-
posed to follow the middle line of the ship, approach
the deck in the constant speed of 3m/s, and hover
at a height of 10 m. For the NovAtel GPS receiver
on our helicopter, the distance accuracy is 2 cm ĩn
the longitudinal-lateral plane and 4 cm in the eleva-
tion. Thus, white noise with standard deviations of
2cm, 2cm and 4cm were added to real positions of
the RUAV to test the performance of the EKF. Also,
azimuth angle αr and elevation angle βr were con-
taminated by white noise with standard deviations
of 0.18o. This agrees with the noise levels in our vi-
sual tracking sensor.

Performance of the EKF when applied to estimate
positions of the RUAV is shown in Fig. 6. For the
sake of observation convenience, estimation results
for the first 10 seconds are plotted. It is noticed that
noise effects in positions are attenuated efficiently.
Also, the unknown ship positions are estimated ac-
curately, as shown in Fig. 7. Estimations of relative
positions between the ship and the RUAV are given

in Fig. 8. It takes around 80 seconds for the EKF to
capture the system dynamics accurately. In particu-
lar, deck displacement is estimated smoothly, which
greatly contributes to extracting instantaneous mean
deck position for landing operations. The standard
deviations of the estimated states are shown in Ta-
ble 1. It is seen that the EKF can smooth out the
noisy measurements and estimate ship positions ef-
fectively.

5 Conclusion

In this paper, a practical sensor fusion algorithm
is proposed based on measurements from GPS, INS
and tracking sensor. It employees low-cost sensors
to estimate unknown ship positions with high accu-
racy in a dynamic environment when the RUAV ap-
proaches the landing deck. Performance of the pro-
posed method has been evaluated using real ship mo-
tion data and simulation results demonstrate feasi-
bility of the proposed method into real-time appli-
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Figure 6: Estimation of RUAV positions using the
EKF
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Figure 7: Estimation of ship positions using the EKF
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Figure 8: Estimation of relative positions

cations. The effective estimation of ship positions
will facilitate extraction of the monotonous trend of
the landing deck, relieving the RUAV of changing
its height to track the instantaneous deck dynamics
which would cause substantive consumption of power
during the descent period.
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