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Abstract

The idea of body weight regulation implies that a biological mechanism exerts control over energy expenditure and food intake. This is a

central tenet of energy homeostasis. However, the source and identity of the controlling mechanism have not been identified, although it is

often presumed to be some long-acting signal related to body fat, such as leptin. Using a comprehensive experimental platform, we have

investigated the relationship between biological and behavioural variables in two separate studies over a 12-week intervention period in

obese adults (total n 92). All variables have been measured objectively and with a similar degree of scientific control and precision, includ-

ing anthropometric factors, body composition, RMR and accumulative energy consumed at individual meals across the whole day. Results

showed that meal size and daily energy intake (EI) were significantly correlated with fat-free mass (FFM, P values ,0·02–0·05) but not with

fat mass (FM) or BMI (P values 0·11–0·45) (study 1, n 58). In study 2 (n 34), FFM (but not FM or BMI) predicted meal size and daily EI

under two distinct dietary conditions (high-fat and low-fat). These data appear to indicate that, under these circumstances, some signal

associated with lean mass (but not FM) exerts a determining effect over self-selected food consumption. This signal may be postulated

to interact with a separate class of signals generated by FM. This finding may have implications for investigations of the molecular control

of food intake and body weight and for the management of obesity.
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The concepts of energy homeostasis and body weight

regulation imply that some biological mechanism exerts

control over food intake(1–3). The precise source of this mech-

anism has not been confirmed, but it is widely presumed to be

some signal related to body fat, such as leptin(4), as envisaged

in the lipostatic hypothesis of Kennedy(5). In a discussion of

body energy homeostasis, Keesey & Powley(6) identified

two major sources of signals for the regulation of body

energy stores: adipose tissue and the gastrointestinal tract.

However, in a consideration of the dynamics of human

body weight change, more emphasis is given to fat and lean

tissue as separate components of body composition that

influence regulation(7). This issue is related to conjecture

about the metabolic drive underlying appetite, and theorising

about the role of energy expenditure (EE) in determining

energy intake (EI). Following the work of Kleiber(8),

extensively used by Keesey & Powley(6), it is recognised that

in order to exist in an energy balance, an obese person

(with high energy requirements) would need to consume

more energy than a lean person with lower requirements

(assuming that volitional or spontaneous activity is the

same). Part of the higher energy requirement of obese

people is dependent on a higher RMR, and this carries an

implicit acknowledgement of a link between EE and EI.

Edholm et al.(9) argued that EI was driven by EE as the process

through which the energy balance was regulated. RMR is a

significant component of daily EE and strongly determined

by fat-free mass (FFM)(10). Edholm et al. did not detect any

significant relationship between EE and EI within any single

day and, surprisingly, the issue has not been investigated

thoroughly with improved and more recently developed

experimental methods. Moreover, there appears to be no
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definitive evidence (in humans) of relationships between FFM,

fat mass (FM), RMR or some other aspect of bodily metabolism

and the behavioural act of food (or energy) intake, which

could throw light on the relationship between metabolism

and appetite. This is partly because researchers in the field of

biosciences usually operate in segmented areas of expertise.

For example, researchers specialising in measuring behaviour

(food intake) may have little expertise (or interest) in indirect

calorimetry or body composition. Conversely, researchers

who specialise in physiology may not have the expertise or

interest in accurate measures of behaviour. In those studies

of energy balance in which food intake has been measured

accurately, the intake is often fixed (or clamped) and therefore

is not free to vary as a dependent variable. Consequently,

although the concept of behavioural regulation (of internal

states) has been tacitly accepted among psychobiologists(11)

as a process through which energy utilisation could drive

behaviour, the key variables have seldom been measured with

a similar degree of accuracy. Finally, in situations in which every-

thing has been measured accurately, researchers’ hypotheses

may not have drawn them to examine relationships among

different classes of variables.

Within the concept of ‘energy homeostasis’, it is intuitive

that the body’s need for energy is a significant driver of food

intake. Indeed, the argument is often made that the imputed

mechanism functions with a high degree of precision to main-

tain body mass with an error of less than 1 %(3). Importantly,

FFM is the largest contributor to RMR, and RMR is normally

the largest component of total energy expenditure. It therefore

seems plausible that FFM, RMR or both should be related to

the amount of energy that is taken in. Such a relationship

could be demonstrated if daily EI and meal size could be

measured accurately alongside RMR and body composition.

Methods

In two separate projects funded by the Biological and Biotech-

nological Science Research Council (BB/G005524/1 and

BB51/B/05 079), we have developed and used an experimen-

tal platform to assess the relationship between variables of EE

and measures of appetite control(12). The methodology

includes systematic measurements of imposed physical

activity (five sessions per week) together with objectively

and accurately monitored self-determined meals and daily EI

measured in the research unit under standardised scientifically

controlled conditions at intervals through a 12-week period.

On specific probe days (at weeks 0, 4, 8 and 12 (study 1) or

0, 6 and 12 (study 2), body composition (air plethysmography,

Bodpod, Concord, CA, USA) and RMR (indirect calorimetry,

Vmax 29; Sensormedics, Yorba Linda, CA, USA) were also

measured. Consequently, at corresponding time points

before, during and following the 12-week intervention objec-

tive measures were made of anthropometric (body compo-

sition), physiological (RMR) and behavioural variables (meal

size and daily EI) with a similar degree of precision. These

procedures were carried out in overweight and obese individ-

uals (full details of these methods have been published else-

where(13,14)). In this methodology, EI was accurately and

quantitatively measured on four eating occasions across the

day. In study 1, four ad libitum meals were provided – break-

fast, lunch, dinner and evening snack. In study 2, food intake

was self-determined at three ad libitum meals; the lunch

meal was fixed (in order to provide an accurate measure of

postprandial satiety). Also, on the probe days in study 2, the

participants were exposed, on separate days, to high-fat or

low-fat foods in order to measure meal size and daily EI

under differing dietary conditions. The research was designed

to investigate the extent to which active regulation of body

weight (via EI and expenditure) occurs with a normal activity

level (baseline) and under the challenge of imposed and

supervised physical activity. The detailed measures allowed

us to assess the relationships among measures of body com-

position (FFM and FM), obligatory energy expenditure

(RMR), discretionary energy expenditure and self-determined

meal sizes and daily food intake.

Ethics

The present study was conducted according to the guidelines

laid down in the Declaration of Helsinki, and all procedures

were approved by the NHS Leeds (West) Research Ethics

Committee (no. 09/H1307/7). Written informed consent was

obtained from all subjects following approval from the sub-

ject’s own GP.

Table 1. Participant characteristics for both studies combined at weeks 0 and 12 and
the mean difference across the 12 weeks

(Mean values and standard deviations, n 92)

Week 0 Week 12 Change 0–12

Mean SD Mean SD Mean SD

BMI 31·6 4·3 30·8 4·2 21·15** 1·2
Body mass (kg) 89·7 13·4 87·4 13·5 22·31** 3·3
FM (kg) 37·2 9·9 34·3 10·0 22·90** 3·4
FFM (kg) 52·6 9·7 53·2 9·5 þ0·59** 1·7
Body fat (%) 41·2 7·9 38·9 8·3 22·3** 2·6
Waist circumference (cm) 101·8 12·0 97·5 11·7 24·3** 3·3
Age (years) 40·8 9·2

FM, fat mass; FFM, fat-free mass.
** Mean values were significantly different (P,0·001).
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Results and discussion

Table 1 shows anthropometric data for the ninety-two partici-

pants who followed the 12-week programme. Data in Fig. 1

show scatter plots for the relationship between body compo-

sition variables and self-determined daily EI compiled from

the four ad libitum meals consumed in study 1. Correlation

coefficients indicate significant associations between FFM

(but not FM or BMI) and daily EI. Table 2 shows a similar

outcome for study 2 and indicates that the capacity of FFM

to predict meal size occurs at baseline (week 0) and after

12 weeks of imposed physical activity. It should be noted

that the regression coefficient was significant for both high-

fat and low-fat dietary conditions separately, and for both

meal size and daily EI (data not shown). Importantly, neither

BMI nor FM showed any sizeable or significant association

with meal size or daily EI, suggesting that these phenotypic

descriptors are not the key variables influencing the amount

of energy consumed under these controlled scientific con-

ditions. In addition to the analyses using absolute values of

FFM and FM, we have also calculated the associations for

FFM and FM corrected for height, as recommended recently

(Dulloo et al.(15)). Importantly, when using FFM index and

FM index, although the correlation coefficients change slightly,

the significance levels do not change and the interpretation is

unaltered (additional analysis supplied separately). Moreover,

we have demonstrated that FFM is highly correlated

with RMR (R values ¼ 0·51–0·85, P,0·0001) (confirming that

the body composition measurements were valid), and RMR

in turn also predicts meal size and daily EI ( JE Blundell,

P Caudwell, C Gibbons, M Hopkins, E Näslund, N King and

G Finlayson, unpublished results). Thus, any orexigenic

drive arising from FFM could be mediated via EE reflected

by the RMR.

One plausible interpretation of these data showing the

specific association of FFM, but not fat mass (FM), with the

objectively measured food intake variables is that the energy

required to maintain the body’s lean tissue – thus preventing

wasting – determines a minimal level of EI at meals. It is

worth noting that we believe that the sensitivity to detect this
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Fig. 1. Scatter plots and standardised b-coefficients to illustrate the relationship between fat mass (FM), fat-free mass (FFM) and BMI (n 58) and objectively

measured total daily energy intake (total energy intake at four self-determined meals) at baseline (week 0, before exercise) and after 12 weeks of imposed exer-

cise. (a–c) Week 0 and (d–f) week 12. The relationships indicate significant correlations between total daily energy intake and FFM (but not FM or BMI). These

graphs indicate the presence of an outlier participant who consumed a large amount of food energy. Because it was possible that this outlier (beyond the 95th

percentile) could unduly influence the correlations, we recalculated the coefficients without the outlier. The association of FFM with daily energy intake is positive

and significant and does not change the interpretation.

Table 2. Regression coefficients for anthropometric variables and
objectively measured mean dinner meal energy intake (average of high-
fat and low-fat dietary exposure days)†

(Mean values with their standard errors)

Week 0‡ Week 12§

B B

Mean SE b Mean SE b

Constant 364·9 208·3 102·0 217·2
FM 2·8 3·8 0·12 1·1 3·8 0·04
FFM 9·2 3·4 0·43* 13·2 3·6 0·55**

*P,0·01, ** P,0·001.
FM, fat mass; FFM, fat-free mass.
† The relationships indicate significant correlations between average meal size and

FFM (but not FM).
‡ R 2 ¼ 0·22; F(2, 33) ¼ 4·4, P,0·05.
§ R 2 ¼ 0·56; F(2,33) ¼ 7·1, P,0·01.
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relationship is due to the highly controlled laboratory

conditions, which effectively prevented any possibility of over-

consumption or capricious consumption arising from

provocative stimuli normally present in the obesogenic

environment (although food intake was free to vary). We

propose that lean mass exerts an effect on EI primarily through

a control of satiation (meal size). However, this claim has to

be understood in the light of the fact that in our studies, meal

frequency was fixed and only meal size could vary. We

envisage that a learning mechanism (developing over time

and prominent in the control of eating habits) contributes to

the stability of this relationship. Indeed, the proposed relation-

ship between FFM and meal size could form the basis for

learned associations. This means that the possibility of reverse

causality operating (meal size driving lean mass) is unlikely.

The interpretation proposed earlier has a number of impli-

cations. First, those individuals with a high FFM should have a

proportionate orexigenic drive to maintain a greater minimal

meal intake (i.e. they should eat more) than people with

less lean tissue. This means that obese individuals (with a

greater lean mass in support of adipose tissue) and people

carrying a large muscle mass (field athletes, professional

rugby players, swimmers etc.) should have a stronger ten-

dency to consume large meals than smaller people. It follows

that such individuals should have a greater difficulty in toler-

ating a dietary restriction (because the more resistant lean

mass would sustain a drive for a minimal amount of food).

In addition, in elderly people subject to sarcopenia, a reduced

lean mass would result in diminished appetite. The role of

lean mass in determining food intake can also be interpreted

in the light of the landmark studies carried out on human star-

vation (Keys et al.(16)). The post-starvation recovery period

has been analysed in detail (Dulloo et al.(17)) and indicates a

key role for FFM. Although clearly complex (and beyond

the scope of the present study), an analysis of the relationship

between FFM in recovery from starvation and in near normal

energy balance conditions, reported in the present study,

would be valuable. In addition, it is worth noting that the

relationship between FFM and EI is consistent with the

amino-static hypothesis put forward more than 50 years ago

by Mellinkoff et al.(18), and with the more refined proposal

of a role for a protein-stat in EI described by Millward(19).

Our data also serve to direct attention away from fat stores

and onto other aspects of body composition as determinants

of appetite control. This is in keeping with a widening ergo-

static function of additional adipostatic hormones in energy

homeostasis as envisaged by Fruhbeck & Gomez-Ambrosi(20).

The idea of FFM creating an orexigenic or ergostatic drive

has also been proposed in other depictions of the regulatory

system(21). It can also be noted that hormones and factors

collectively called ‘adipokines’ exert effects not only on adipose

tissue but also on skeletal muscle(22), and that differential

expression of genes and pathways intrinsic to skeletal muscle

may also be involved(23), adding further possible mechanisms

to support a link between energy homeostasis and FFM.

The relationships between FFM and meal size reported

earlier have been disclosed in two separate projects carried

out under two separate Biotechnology and Biological Sciences

Research Council programmes in consecutive 3-year periods.

The relationships therefore are reproducible and seem

reliable. What is surprising to us is why these relationships

did not become apparent in earlier research studies. Perhaps,

it has been assumed that food intake is proportional to lean

mass, and the relationship did not have to be demonstrated.

On the other hand, the concept may have been dismissed in

favour of the widely held proposed role of adipose tissue in

appetite control and weight regulation as envisaged in the

lipostatic hypothesis. In our studies, body composition was

measured by air plethysmography rather than dual-energy

absorptiometry because of the need for multiple measure-

ments over time in our participants, but we can find no way

in which the use of a particular technique could have

accounted for the results demonstrated. Clearly, the associ-

ations reported in the present study should be confirmed in

other laboratories, but using objective measurements of phys-

iological and behavioural variables under similar closely con-

trolled scientific conditions. Importantly, food intake must be

measured quantitatively and objectively under controlled con-

ditions. Self-reports of food intake, by whatever method, are

not sufficiently accurate. A strong argument from these find-

ings suggests that for investigations carried out under these

experimental conditions, some signal associated with FFM

(effectively lean tissue) exerts a determining effect over the

amount of food that is freely consumed. A weaker argument

is that FFM and EI are merely correlated, but this is still inter-

esting. Our hypothesis is that lean mass sets a lower limit for

self-determined meal size and therefore maintains a minimal

level of EI. This finding has implications for the investigation

of the molecular control of food intake and body weight,

and suggests that more attention should be given to lean mass,

as well as to adipose tissue, in the management of obesity.
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