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Choosing Landmarks for Risky Planning

Liz Murphy1, Peter Corke1 and Paul Newman2

Abstract— This work examines the effect of landmark place-
ment on the efficiency and accuracy of risk-bounded searches
over probabilistic costmaps for mobile robot path planning.
In previous work, risk-bounded searches were shown to offer
in excess of 70% efficiency increases over normal heuristic
search methods. The technique relies on precomputing distance
estimates to landmarks which are then used to produce prob-
ability distributions over exact heuristics for use in heuristic
searches such as A* and D*. The location and number of
these landmarks therefore influence greatly the efficiency of
the search and the quality of the risk bounds. Here four
new methods of selecting landmarks for risk based search are
evaluated. Results are shown which demonstrate that landmark
selection needs to take into account the centrality of the
landmark, and that diminishing rewards are obtained from
using large numbers of landmarks.

I. INTRODUCTION

Through judicious use of a-priori available information
large performance gains in path planning for mobile robots
can be obtained. In previous work [1] it was shown how
probabilistic costmaps can be generated from overhead im-
agery; these costmaps can be used to precompute heuristics
for search algorithms such as A* and D*, wherein the
probabilistic nature of the heuristic can be exploited to
tradeoff the chance of the shortest path being returned against
the speed of the search [2]. This tradeoff is done in a
controlled fashion, the user specifies the risk they wish to
accept that the algorithm will not return the shortest path.

These heuristics are obtained using a probabilistic varia-
tion of A* search, Landmark and Triangle inequality (ALT)
technique [3], which precomputes distances between every
grid cell in the costmap to a select number of landmarks

scattered throughout the map. The precomputed distances
to the landmarks are used in conjunction with the triangle
inequality to provide tight lower bounds on the heuristic
estimate on the distance between any node and the goal node
during an A* search. The result is a probability distribution
over an exact heuristic suitable for use in the A*/D* family
of heuristic searches. The R∗

δ algorithm [4] operates within
the framework of A* search to transform this probability
distribution over the exact distance to a scalar value which
is used to determine the order of node expansion during the
search; this transformation takes into account the user spec-
ified risk governing the likelihood of returning the shortest
path. In this work we propose techniques to optimally site the
landmarks to best satisfy the separate but coupled demands of
limiting node expansions for individual searches (efficiency)
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and ensuring the probability distribution we calculate over
the exact heuristic is accurate (accuracy), in the domain of
probabilistic search.

In [2], we followed the recommendation of [3] and used
planar landmark selection to site landmarks for the ALT
search. As in [3], who were constrained by memory ca-
pabilities, we used 16 landmarks for all costmaps. This
naive technique places the landmarks at regular intervals
around the border of the map. Yet it works well in the
traditional case (when grid cell values are scalar), because
the reverse triangle inequality produces tighter lower bounds
when the landmark is located behind the goal (see Figure
??). However, in risky planning with probabilistic costmaps
we have an additional consideration that must be taken into
account — the variance of the precomputed path. Planar

landmark selection can give us a good approximation to the
mean of the probability distribution over the exact heuristic
but the probability guarantees of the R∗

δ search are only
as reliable as the probability density function we use to
model the exact distance and that must take into account the
variance. In previous work we found that planar landmark
selection lead to an overestimation of the variance, and thus
impaired the efficiency of the more risk-averse path planning
strategies we examined.

The contribution of this this work lies in a thorough
investigation into the effect of both landmark placement
and the number of landmarks used on the risk guarantees
and efficiency of risky planning with probabilistic costmaps.
We aim to extend the work in [2] where planar landmark
selection was shown to work well for planning traverses
between cells located in the outer 30% of a large-scale grid
map, so that heuristic estimates are accurate regardless of
where in the map the start and goal nodes for the search lie.
Here, four techniques of landmark selection are compared
with the baseline planar landmark selection technique. For
the first time, we challenge the assumption that using more
landmarks leads to superior performance. We also show that
good landmarks have a physical analog in overhead imagery,
thus choosing landmarks with the human eye could serve to
bypass expensive precomputation.

II. RELATED WORK

The most prominent path planning algorithms for mobile
robots [5] [6] [7] are built on the foundations of the A*
search [8]. A* is a heuristic search technique, for each node
it computes an estimate of the path length from start to goal
of the best path that passes through that node; this estimate
determines the order in which nodes of the graph being
searched are visited. This heuristic itself has two parts, one is



d(Node, Landmark) = N (µ(n,L),σ(n,L))

d(Goal, Landmark) = N (µ(g,L),σ(g,L))

d(Node,Goal) ≤ N (µ(n, L)− µ(g, L),σ(n, L) + σ(g, L))

Node

Landmark

Goal

Fig. 1: Landmarks located behind the Goal Node produce good estimates
of the mean of a probability distribution over the node-goal distance (dotted
line). Conversely, they tend to grossly overestimate the variance as under
the additive property of the Gaussian distribution the variances of two much
longer paths than that we desire are added together to produce the variance
estimate.

the cost of travelling from the start node to the current node
n under examination, usually denoted g(n). The second part,
denoted h(n) is a heuristic estimate of the distance from n to
the goal. The sum f(n) = g(n) + h(n) is used to order the
priority queue governing the expansion of the search. The
speed and accuracy of the search hinges on the accuracy of
the estimate h(n) provided to the algorithm. The straight-
line (Euclidean) distance estimate is commonly used as the
heuristic, but it fails to take into account the presence of
obstacles and dangerous terrain for the robot and is much
less efficient than using an exact heuristic over the same
search area.

Typically under the A* paradigm the heuristic must be
both consistent (monotonic) and admissible, meaning it never
overestimates the cost of reaching the goal. It is the admissi-
bility condition that guarantees that A* will find an optimal
solution path if it exists. Without setting the heuristic to
zero and degenerating to an inefficient Dijkstra shortest-path
search, it is impossible to postulate an admissible heuristic
for a continuous probability distribution.

An unfortunate by-product of an admissible heuristic
is that it can frequently cause the search to spend large
amounts of time deliberating between roughly equal solution
paths and does not give us the option of terminating the
search with an acceptable but not optimal solution path.
In Bandwidth Search [9] Harris showed that if the (scalar)
heuristic overestimation is bounded by ε then the resulting
cost cannot exceed (1+ ε)C∗, where C∗ is the optimal path
cost. The concept of ε-admissibility has more recently been
used in [10] to produce bounded suboptimal solutions which
produce increasingly better solutions to robotic path planning
problems in a given time window.

Pearl [4] extended this approach to probabilistic heuris-
tics; seeking to invoke likelihood considerations into the
admissibility guarantee and allowing the user to control the
risk of not obtaining the shortest path from the search. The
resulting R∗

δ algorithm is a variant of A* that relaxes Harris’
ε − admissibility condition even further, to allow the use
of a precise estimator that may occasionally overestimate the
exact heuristic distance h∗ by more than ε, such as is the case
when the arc costs of a graph are known to be drawn from
a probability distribution. This technique was demonstrated

on an instance of the Travelling Salesman Problem with
statistics generated from multiple previous searches.

In [2] we applied R∗
δ search to the problem of path

planning over probabilistic costmaps for mobile robots. We
showed that up to 70% efficiency increases over normal
heuristic search methods can be obtained. In order to pre-
compute the probabilistic heuristic required by R∗

δ we used
the ALT algorithm [3] [11]. It is one of many algorithms [12]
[13] [14] recently derived which focus on preprocessing the
map to obtain better heuristics and in so doing restrict the
point to point search to examining only relevant areas of the
input graph.

Potomias et al. [15] studied the problem of selecting
landmarks for approximate shortest path searches and proved
that the problem of optimal landmark selection is NP hard.
They validated experimentally that choosing landmarks with
high centrality [16] [17] best served the approximate shortest
path problem. In terms of the exact shortest path problem
(of which A* and D* are instances), in [18] the problem
of landmark selection is framed as case of the unconstrained
facility location problem. Here n landmarks are chosen from
a larger candidate set such that the aggregate cost of serving
search queries from a large set of start-goal pairs over the
map is minimized and solutions are obtained using a k-
median approach.

III. RISKY PLANNING
In this section we provide a brief recap of the Risky

Planning process used in [2]. We begin with a probabilis-
tic costmap, computed from a-priori information about the
environment we wish to plan over. We assume the cost
of traversing each grid cell is represented as a probability
distribution over cost, this relates directly to the uncertainty
in our knowledge of the underlying terrain represented in
the grid cell. If we take the grid cell values to be Gaussian
probability distributions, we can use the additivity property
of the Gaussian distribution together with the ALT technique
to precompute an estimate of an exact heuristic between any
cell-goal pair in the map. Briefly, the ALT method involves
choosing k landmarks throughout the map and precomputing,
using a Dijkstra search, the distance between each cell in the
map and those k landmarks. Then, when an A* search is run,
every time the heuristic is evaluated we invoke the reverse
triangle inequality to compute a lower bound on the distance
between that cell (n) and the goal (g).

|d(n, Lk)− d(g, Lk)| ≤ d(n, g) = ĥLk(n, g) (1)

To achieve the best lower bound possible (and thus the
fastest search), the maximum of the lower bounds proposed
by all k landmarks is chosen.

ĥALT (n) = max
k∈K

�
ĥLk(n, g)

�
(2)

In order to use this estimate in conjunction with R∗
δ search,

further steps need to be taken. This is because the heuristic
obtained through ALT is always an overestimate of the exact
distance, and for the risk guarantees of R∗

δ to apply we



require this heuristic to be an accurate probability distribution
over the exact distance. To better approximate this exact
distance, small scaling parameters for both the mean (τ ) and
the variance (ϕ) are used.

ĥ = N (µĥALT
− τ,ϕ(σ2

ĥALT
)) (3)

The values of these parameters are learnt by conducting
multiple searches and comparing the results to optimal
paths found by A* search using an admissible (Euclidean)
heuristic.

In the course of carrying out an A∗ search we observe
ĝ(n), which is the best known approximation to g(n) —
the minimum cost of navigating from the start s to node
n. Note that this is a scalar value. Knowledge of ĝ induces
a conditional density function on f†(n), the cost of a path
from the start to goal via node n.

This observation, coupled with Equation 3 leads to a
probability distribution over f†:

p(f† | ĝ, ĥ) = ĝ + p(h | ĥ) (4)

Once we have this probability distribution over f†, we
need to transform it to a scalar value for compatibility with
A* and its priority queue ordering mechanism. R∗

δ performs
this translation through the mechanism of risk functionals.
An R∗

δ search imposes the requirement that the underlying
A* search will continue until no node on the OPEN list has a
risk associated with it that is greater than some level δ. This
is called δ-risk admissibility, and guarantees that the search
always terminates at a cost C such that risk R(C) that the
node could lead to a better path than the terminating path
cost is less than δ for all nodes left on the OPEN priority
queue.

So instead of using f -values to order the OPEN list, under
R∗

δ we use a threshold cost function Cδ(n) which is given
by the solution to the equation

R(C) = δ. (5)

The Probability of Suboptimal Termination risk functional
is one method of mapping risk bounds and probability
distributions over f to the A* paradigm. Here, we choose δ to
be the probability of obtaining a suboptimal solution which
we are prepared to accept. For instance, if we were prepared
to risk obtaining a suboptimal solution 5 out of every 100
iterations of a particular problem instance we would set δ to
0.05.

For the purposes of this paper, where we are interested in
measuring the quality of the heuristic approximation offered
by different landmark selection techniques, it is convenient to
use the RST (C) risk functional together with the properties
of the Gaussian distribution and write δ as an expression of
the distance from the mean.

Cδ(n) =






µ δ = 0.5
µ− σ δ = 0.159
µ− 2 ∗ σ δ = 0.023

(6)

In effect, if we wish to have the search return the optimal
path 50% of the time, when mapping the probability distribu-
tion over f† to a scalar we would simply use the mean of the
distribution. If we wanted to return the optimal path 84.1%
of the time, we use the mean minus one standard deviation.
These three delta values in Equation 6 are sufficient to
provide a measure of the quality of our estimate of p(f† |
ĝ, ĥ).

IV. CHOOSING LANDMARKS
Four methods of choosing landmarks are proposed.

Potamias [15] proved choosing landmarks with high central-
ity to be the best technique for selecting landmarks for scalar
costmaps for the approximate shortest path problem [15].
We wish to evaluate whether choosing landmarks with high
centrality can lead to better results than planar selection for
our probabilistic costmaps; when used in conjunction with
exact shortest path techniques such as A* and D* prevalent in
robotics. In addition we postulate that unlike scalar costmaps,
landmarks are required throughout the centre of the map in
order to estimate the variance of the probability distribution
over the exact heuristic well. Furthermore, we wish to
investigate the effect the number of landmarks has on the
quality of the heuristic and the efficiency of the search.

The four methods we propose are:
• Betweenness Centrality on a Grid (BCGrid) The

centrality of grid cells in the map is measured using
Betweenness Centrality [16] [17]. The Betweenness
Centrality of a node in a graph is a measure of the
number of shortest paths that pass through the node,
aggregated over the all-pairs shortest-paths of the graph.
Concretely:

CB(v) =
�

s �=v �=t∈V

σst(v)

σst
(7)

where σst is the number of shortest paths between nodes
s and t, and σst is the number of those paths that pass
through v.
In the BCG method we divide the map up into a
regular grid and choose the landmark with the highest
betweenness centrality for that portion of the grid.

• Betweenness Centrality with K-Medoids (BCKMed)
In this selection method we frame the problem as an
instance of the unconstrained facility location problem.
The challenge is to site the landmarks so that we obtain
the lowest ‘cost’ to service all possible queries that
might originate from a given map. We view this as a
k-medoid problem and apply a variation of local search
to realise an approximate solution.
To begin, we start with a large candidate pool C of
landmarks, between 8 and 10 times the amount of
landmarks, k, we desire in the final set. This pool
contains the b nodes with the highest betweenness
centrality in each coarse grid cell. We have a large pool
of sample queries (1% of the number of cells in the
map) which are deemed to be representative of the types
of searches the landmarks will be required to ‘serve’ if



chosen. An arbitrary selection of k landmarks from C is
made as the initial landmark set. Then, i iterations of a
local search are carried out, whereby one landmark from
the set is swapped with a new landmark (the proposed
landmark) from the candidate pool.
To arbitrate between the landmark sets we introduce
a cost measure, which is evaluated over the set of
landmarks — not the landmarks themselves. For each
sample query, the lower bound given by the h = µ− σ
(ST1) heuristic is evaluated using each landmark in the
set. This risk functional is used as it encompasses the
need for the landmarks to estimate both the mean and
the variance of the exact distance well.
We find the optimal landmark, L∗

q , which offers the
tightest lower bound on the distance between the two
cells which form the query q.

L∗
q = argmax

L
ĥq. (8)

The cost of this optimal landmark is zero. To penalize
‘bad’ landmarks that overestimate the distance between
the nodes in the query, the log of the difference in
heuristic estimate between the optimal landmark esti-
mate and the ‘bad’ landmark estimate is used.

C(Lk, q) = log
�
ĥL∗

q
− ĥLk

�
(9)

The cost of the set of landmarks under evaluation is

Cset =
�

q∈Q

�

k

C(Lk, q). (10)

Once the swap is made, the cost of the previous set
is compared to the cost of the new set. If the cost
has decreased then the proposed landmark is kept,
otherwise it is discarded and the initial set retained. We
conduct several hundred iterations of the swapping step,
terminating once the cost of the sets has converged and
negligible improvements are noted between swaps.

• Simple Landmark selection with K-Medoids (SIMP-
KMed) The same K-Medoid approach to selecting the
set of landmarks is used, but the candidate pool of
landmarks are drawn from an ordered grid spacing over
the map rather than using the nodes with the highest
betweenness centrality.

• Simple Landmark selection on a Grid (SIMPGrid)
The most basic of the proposed methods, here we place
landmarks on the map in a regular grid.

The different landmark configurations obtained using these
techniques are shown on a sample overhead image in Fig 3.
Note how pixels (grid cells) with high betweenness centrality
correspond to roadways in the map. It is possible to pick
good values for the BCGrid heuristic using the human eye.

V. RESULTS

The performance of the four landmark selection techniques
were compared with the baseline technique of planar land-
mark selection (PlanarLM). In the absence of real world
probabilistic costmaps, we tested these methods on a ten

(a) Fractal Generated Terrain Map -
Mean
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Fig. 2: An example from the 10 member fractally generated costmap dataset.

costmap set of synthetic fractal terrain maps, where both the
mean and the variance of the map was generated using the
diamond-square algorithm [19] (see Figure 2). This was done
to ensure that there would be distinctive areas of high and
low variance in the map — rather than randomly scattered
throughout — and that this would reflect real world situations
where certain regions would be better known than others.

The performance of the landmark selection technique is
judged against two criteria — the efficiency of the results ob-
tained when compared with a basic A* search with euclidean
distance heuristic, measured in terms of the percentage
of nodes expanded compared with the Euclidean heuristic
search; and the accuracy in approximating the underlying
exact heuristic. The accuracy is measured using statistics
obtained from the h = µ, h = µ − σ and h = µ − 2σ
heuristic searches. We use the cumulative densities provided
by these results to construct a Gaussian distribution which
is scaled and offset from a N (0, 1) Gaussian representing
the ‘correct’ distribution we seek, and compare the two
using the Kullback-Leibler divergence. For brevity, we refer
to searches employing these heuristics as ST0, ST1 and
ST2 from here on, meaning that they use the suboptimal
termination risk functional with the mean minus 0, 1 and
2 standard deviations respectively. Results were generated
by running 50 separate start-goal searches, and for each
search generated 50 different samples from the probabilistic
costmap in order to test the probabilistic bounds.

In terms of efficiency, the results in Table I show that
the risk planning searches become more efficient (expanding
less nodes/grid cells) the larger the number of landmarks
used. Comparing across results for the ST0 - ST2 risk
functionals, we see that the SIMPGrid landmark selection
method consistently results in the most efficient risk based
searches. However, Table II shows the accuracy of heuristic
approximations given this method to be poor. The landmarks
are neither central enough or sufficiently close to the bor-
der of the map to produce good heuristic approximations.
PlanarLM and BCGrid exhibit roughly equal efficiency, and
significantly outperform both K-Medoids based selection
methods.

The results shown in Table II are less clear. We do not see
any obvious trend towards greater accuracy with increasing
number of landmarks. The performance of each selection
type has been ranked within the number of landmarks (ie



Method No. LMs EFF ST0 EFF ST1 EFF ST2
BCKMed 1 51.41 87.99 95.42

4 46.67 89.64 96.84
9 35.29 92.78 99.04

16 24.14 93.73 99.69
SIMPKMed 1 47.54 82.47 91.25

4 38.01 92.84 98.59
9 32.22 90.90 98.29

16 21.02 90.92 99.34
PlanarLM 1 48.24 93.65 98.97

4 15.97 85.76 97.70
9 11.79 92.95 99.79

16 11.45 93.27 99.75
32 10.40 93.33 99.85
64 9.23 81.43 88.43

BCGrid 1 50.72 89.26 96.23
4 49.66 88.54 95.49
9 47.00 86.37 94.10

16 12.79 95.34 99.68
36 9.57 96.63 99.97
64 9.23 94.75 99.32

SIMPGrid 1 62.69 96.44 99.41
4 18.98 74.29 90.49
9 11.56 66.30 84.65

16 9.57 58.03 80.41
36 7.30 50.35 73.23
64 6.30 50.71 74.25

TABLE I: Efficiency, measured in terms of nodes expanded during the
course of an A* search using ALT with landmarks selected using the various
landmark selection techniques as a percentage of those expanded using a
standard A* search with euclidean distance heuristic. The best result from
within each landmark selection technique is highlighted.

Method No. LMs ST0 ST1 ST2 KL Div Rank
BCKMed 1 48.71 63.25 81.52 0.3535 5

4 48.84 73.96 91.66 0.0462 2
9 55.70 79.63 97.35 0.0557 2

16 55.52 76.80 97.66 0.0979 3
SIMPKMed 1 44.09 59.79 79.71 0.3261 4

4 49.22 78.16 93.76 0.0141 1
9 48.00 70.30 86.59 0.0899 4

16 52.42 73.72 96.65 0.0968 4
PlanarLM 1 52.41 87.62 99.40 0.0037 1

4 43.37 61.40 81.87 0.2335 4
9 49.64 77.05 94.21 0.0230 1

16 57.21 79.35 98.17 0.0855 2
36 53.20 70.09 87.96 0.2234 2
64 56.50 71.14 89.12 0.3376 2

BCGrid 1 47.64 69.32 86.43 0.1033 2
4 49.28 74.21 87.39 0.0471 3
9 52.02 70.72 84.34 0.1614 5

16 51.96 78.91 99.00 0.0235 1
36 48.46 84.53 99.57 0.0014 1
64 44.99 70.23 89.10 0.0630 1

SIMPGrid 1 45.83 65.97 85.89 0.1485 3
4 39.02 39.25 66.95 NaN 5
9 35.37 31.59 61.03 0.0766 3

16 38.74 25.64 55.16 NaN 5
36 34.81 16.79 40.42 0.4312 3
64 31.85 17.75 42.62 0.3526 3

Optimal 50.00 84.2 97.8 0.0000 1
TABLE II: Optimality of the Approximations to the Exact Heuristic using
various landmark selection techniques and number of landmarks. Optimality
is measured using the percentage of the paths returned by the ST0, ST1 and
ST2 risk functionals which are equal to the optimal path that is returned
by an A* search with Euclidean distance heuristic. A perferct heuristic that
models a gaussian distribution over the exact heuristic distances between
nodes and goals in the A* search would return 50%, 84.2% and 97.8% of
solutions equal to the optimal solution for ST0, ST1 and ST2 respectively.
The KL divergence models the discrepancy between the results achieved
with the various landmark selection techniques and this optimal heuristic.
The best result from within each landmark selection technique is highlighted.

best performance with k=1 landmarks is PlanarLMBorder).
From this ranking we see that PlanarLM and BCGrid con-
sistently outperform the other 3 selection techniques. Of
these two, BCGrid exhibits significantly less variance in the
KL divergence of its results, leading to the conclusion that
spacing landmarks with high centrality regularly over the
grid does outperform the planar border selection technique
for probabilistic costmaps. The accuracy obtained on the ten
costmap data set using 36 landmarks in conjunction with
the BCGrid selection technique is almost ideal, and with 16
landmarks the performance is almost as good.

Also evident from Table I is that beyond 16 landmarks
the efficiency gains from adding more landmarks starts to
decrease rapidly. This challenges the notion that the size
of the landmark set should be the maximum that can be
supported in memory by the machine running the search [20].
The minor performance gains (measured in terms of nodes
scanned by an A* search) that are obtained by adding extra
landmarks starts to be outweighed by the large overhead of
needing to evaluate the lower bound over a larger landmark
set at every heuristic evaluation during the course of the
search. Table II shows that reasonable accuracy can be
obtained using only 1 landmark, and that notable efficiency
gains (of the order of 50%) are registered when using the ST0
heuristic and only 1 landmark. In short, risky planning does
not require extensive precomputation; these results show
intelligent placement of a few (≤ 16) landmarks with high
centrality spread evenly over the map performs comparably
to using 4 times as many landmarks.

VI. CONCLUSIONS AND FUTURE WORKS

In this work we sought to augment the risky planning
framework introduced in [2] with a landmark selection
technique that leads to both efficient searches and accurate
risk heuristics. It was found that the most robust way to place
landmarks on the map such that the demands of efficiency
and accuracy of the approximation are met, is to impose a
coarse grid over the map and choose the node(s) with highest
betweenness centrality in each broad cell as landmarks. We
note that betweenness centrality is often easy to sense with
the human eye, meaning that good results may be obtained
by choosing likely landmarks with the human eye and thus
avoiding costly precomputation. In addition, the results here
show that a small number of landmarks is sufficient to obtain
good results and therefore that landmark precomputation
need not test the limits of available memory space.

The betweenness centrality grid landmark selection
method we found to work best was also shown to produce
near perfect approximations to Gaussian distributions over
exact heuristics. This guarantees that the risk bounds of our
Risky Planning framework will hold regardless of where
the search lies in the map, and extends and improves upon
our prior work in which over 70% efficiency increases over
standard heuristic planning techniques were obtained. In
future we seek to validate this work on real world datasets
obtained from the construction of probabilistic costmaps
from fielded robotics platforms.



(a) Planar Landmark Selection: Border. The 16
landmarks are spaced at regular intervals around
the map border.

(b) Simple Grid. The 16 landmarks are spaced
on a regular grid, covering the map.

(c) Betweenness Centrality: Grid. The map is
divided into a rectangular grid and the cell with
the highest betweenness centrality is chosen as
the landmark for that cell.

(d) Simple K-Medoids. Yellow crosses denote members of the candi-
date set of landmarks passed to the K-Medoids function, the candidate
set contains both landmarks spaced around the border of the map and
a large number randomly scattered in the internal section of the map.

(e) Betweenness Centrality K-Medoids. Yellow crosses again denote
the candidate set, drawn from the n locations with the highest
betweenness centrality in each of the cells of a coarse grid imposed
on the map.

Fig. 3: The 5 different landmark selection techniques used in the paper demonstrated on an overhead image. A probabilistic costmap has been constructed
from the image following the framework introduced in [1], the landmarks have been precomputed using this costmap. Note how the landmarks for both
Betweenness Centrality methods are located roadways and intersections: these locations are obvious to the human eye. Potentially, the need to precompute
the Betweenness Centrality of grid cells could be bypassed in favour of choosing sparsely located landmarks corresponding to ‘good’ locations with the
human eye.
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