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An automatic approach for road lane markings extraction from high-resolution 

aerial images is proposed, which can automatically detect the road surfaces in 

rural areas based on the hierarchical image analysis, and the procedure is 

facilitated by the road centerlines obtained from the low-resolution images. The 

lane markings are further extracted on the generated road surfaces with 2D 

Gabor filters. The proposed approach is performed on the aerial images of the 

Bruce Highway around Gympie, Queensland. Evaluation of the generated road 

surfaces and lane markings using four representative test fields has validated the 

proposed method. 

 

1. Introduction 

Accurate and detailed road models are required in many applications, such as traffic 

monitoring, and advanced driver assistance systems, which are designed to achieve 

active safety purposes through lane departure warning, lateral collision prevention, 

and speed limit etc. The next generation car navigation systems tend to be cooperative 

navigation systems using vehicle to vehicle and vehicle to infrastructure 

communications, requiring the detailed road surfaces and roadside safety features, e.g. 

the number of lanes, the locations of lanes, symbol markings, various traffic and road 

signs. This paper focuses on the automatic extraction of road surfaces and lane details. 

The popular method for lane information acquirement is through vehicle-based 

Mobile Mapping System (MMS), where the road lane markings can be detected and 

reconstructed in the field using laser scanner or close range photogrammetric imagery. 

Although accurate lane features can be obtained through this method, it is costly and 

tedious to acquire the accurate road details especially over large rural areas.  

Another approach to acquire lane data is through feature extraction from remotely 

sensed images, which has been a long-standing research topic within photogrammetry 

and remote sensing community. However, due to the limitation of the ground 

resolution of images, the majority of existing approaches have only focused on the 

detection of road centerline rather than the lane details. Research efforts have been 

centralized in a number of institutions, resulting in various approaches to the problem, 

including multi-scale approaches (Baumgartner et al. 1999), knowledge-based 

extraction (Trinder and Wang 1998) and context cues (Hinz and Baumgartner 2000).  
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Only a few approaches involved the detection of lane markings in the road 

extraction. For instance, Steger et al. (1997) extracted the collinear road markings as 

bright objects in large scale photographs when the roadsides exhibit no visible edges. 

Hinz and Baumgartner (2003) utilized road marking features, detected as thin bright 

lines with symmetric contrast, as the evidence for the presence of a road. Another 

approach of road extraction with pavement markings detection was presented by 

Zhang (2004), where the road markings and zebra crossing are segmented based on 

coloristic and geometric characteristics. In a word, road pavement markings were only 

regarded as a clue to reconstruct the road network for most of the existing methods. 

Therefore, the quality requirements (Tournaire and Paparoditis 2009), such as 

robustness, quality, completeness, are far below the lane level applications. In a more 

recent work, Kim et al. (2006) built a system to extract pavement information relied 

on simple image processing algorithms. Tournaire and Paparoditis (2009) proposed a 

specific approach for dashed lines and zebra crossing reconstruction, which relied on 

external knowledge introduced in the detection and reconstruction process based on 

primitives that extracted in the images. With the event of rapid development of sensor 

technologies, the spatial resolution have being greatly increased, which makes it 

feasible to accurately detect the lane features from aerial images.  

In the reminder of this paper, the hierarchical image analysis combined with Gabor 

filtering is introduced into a new framework for road lane markings extraction from 

geo-referenced aerial imagery.  

2. Methodology 

In order to detect the road surfaces and lane markings appropriately, it is beneficial to 

understand the physical characteristics of road features, which can directly influence 

their visual characteristics.  

2.1 Road characteristics 

The properties of roads can basically be divided into two types: spectral and 

geometric (Gruen and Li 1995, Vosselman and Knecht 1995). The spectral properties 

of roads refer to different materials of road surfaces, e.g. asphalt or concrete, which 

appear as particular color signature on the images. The geometric properties refer to 

the constant widths, continuous curvature changes, and homogeneous local orientation 

distributions etc. 

The characteristics of road pavement markings as specified by (Queensland 

Department of Main Roads 2001) are: (i) their shapes and sizes are constrained by 

strict specifications; (ii) they constitute high contrasted objects. The geometric 

specifications of road pavement markings are given in figure 1. The color of 

pavement marking is generally white. Marking lines, which may be unbroken 

(continuous) or broken, are categorized as longitudinal, transverse and parking control. 

In this paper, only the extraction of longitudinal markings is concentrated on, as they 

comprise the overwhelming majority of road pavement markings. 

Figure 1.  Geometric specifications of the pavement markings in a rural arterial road 

environment (Queensland Department of Main Roads 2001). 

2.2 Hierarchical image analysis 

The hierarchical approach is developed on the facts that different characteristics of 

road features can be optimally detected in different scales. Indeed road lane details 

can only be detected in high-resolution images. The problem is that many local 



disturbances such as shadows or vehicle can also greatly degrade the results. On the 

other hand, the roads centerlines can be extracted in a stable manner from lower 

resolution images even in the presence of background objects such as trees or cars, 

where they are basically treated as homogeneous bands with different lengths and 

orientations. Therefore, it is beneficial to extract the desired road features from 

images of different resolutions and subsequently combine the individual results into a 

single refined output. 

2.3 Gabor filtering 

2D Gabor filter, which was extended from 1D Gabor by Daugman (1985), have been 

successfully applied to a variety of image processing and pattern recognition problems, 

such as image enhancement (Lindenbaum et al. 1994), image compression (Daugman 

1988), texture analysis (Bovik et al. 1990), object detection (Weber and Casasent 

2001), and image segmentation (Soares et al. 2006). 2D Gabor filter can be used to 

extract the road lane markings thanks to its following properties: (i) tuneable to 

specific orientations, (ii) adjustable orientation bandwidth, and (iii) robust to noise. 

Furthermore, it has optimal joint localization in both spatial and frequency domains. 

Therefore, Gabor filter can be considered as orientation and scale tunable edge and 

line (bar) detectors (Manjunath and Ma 1998), which makes it a superior tool to detect 

the geometrically restricted linear features, such as the road pavement markings. 

2.3.1 The Gabor functions. The general functionality of the 2D Gabor filter family 

can be represented as a Gaussian function modulated by a complex sinusoidal signal. 

Specifically, the 2D Gabor filter can be defined in both the spatial domain  (   ) and 

the frequency domain  (   ) . The 2D Gabor function in spatial domain can be 

formulated as (Cai and Liu 2000): 
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Its 2D Fourier transform is expressed as 
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where   √  ;    and    are the scaling parameters of the Gaussian envelope for the 

x- and y-axis, respectively; (     ) presents the spatial frequencies of the sinusoid 

carrier in Cartesian coordinates, which can also be expressed in polar coordinates as 

(   ), where   √       ,         (     ), and the subscript „r‟ stands for a 

rotation operation as follows: 

               

                

where   is the rotation angle of the Gaussian envelope.  

2.3.2 Determination of Gabor filter parameters. The correct determination of 

Gabor filter parameters is the central issue for the lane pavement markings extraction 

process. In order to effectively and accurately extract road lane markings with 

different sizes and thicknesses from aerial images using Gabor filters, we proposed an 

efficient method to determine the Gabor filter parameters. 

1) Determination of   

  stands for the orientation of the span-limited sinusoidal grating. The rough 

direction   (  ,   ))  of the road centreline is already obtained from the low 



resolution image, thus the orientation   (  ,   )) of Gaussian envelope is given as 

perpendicular to   by:  

  (     ) ( ) 

where   is the modulo operator. 

2) Determination of  f 

f is the frequency of the sinusoid, which determines the 2D spectral centroid 

positions of the Gabor filter. This parameter is derived with respect to the width of 

road lane markings. If f is set too large, the Gabor filter will produce two peaks at the 

edges of road markings. Therefore, in order to produce a single peak for the given line, 

the output of the Gabor filter must satisfy the following conditions: 

   (  )     (  ) 

where   is the line width, and            . From the above condition, the 

frequency can be obtained within the following bounding:  

         

where    is the width of the road marking in pixel. The details of the proofing 

process can be referred to (Liu et al. 2003). Other ground objects such as white 

vehicles may also be detected if the frequency is set too small. Thus, in order to only 

produce peaks on the road markings, the parameter f also should satisfy: 

       

where    is the width of other white features, and      . Therefore, the 

frequency f is given by: 

            

In our experiments, we set       , which will produce only a single peak in the 

output of the filter on road markings regardless of the values of    and   . 

3) Determination of    and    

The parameters    and    determine the spread of the Gabor filter in   and   

directions respectively. According to (Liu et al. 2003),    and    have the following 

parameter constraint: 

       

where k is a constant. As the road lane markings have strict orientation and enough 

distance between adjacent lanes, we set     to simplify the calculation. 

The relationship between the orientation bandwidth    and the frequency   within 

the frequency domain is illustrated in figure 2, which can be given by: 
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where    is the orientation bandwidth, and both h and l are radius. It gives 

      (    ) 

Figure 2. The uncertainty relation in frequency domains.      ,      ,    is the 

orientation bandwidth, and both h and l are radius (only the positive frequencies are 

shown). 



Applying the 3dB frequency bandwidth in V direction when       to equation 

(2), we have 
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It gives 
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As    ,    can be further given as 
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According to orientation bandwidths of cat cortical simple cells (Liu et al. 2003), 

the mean angle covers a range from     to    . After examining the line extraction 

results over the above range, we find it appropriate to set       . Then    and    

can be further obtained by: 

             

3. Road feature extraction scenario 

The workflow of our road lane markings extraction algorithm is given in figure 3. We 

can see that the algorithm can be basically divided into three stages: (i) image 

preprocessing, (ii) road centerline extraction in low resolution images, and (iii) road 

surfaces and lane markings detection in high resolution images. The preprocessing is 

designed to geometrically correct the raw aerial image and improve its quality. Road 

centerline extraction in the low resolution image can further provide the orientation 

and location of the road surfaces, and road markings are finally extracted on the road 

surfaces using Gabor filter. Besides, a shifting window process, which transfers the 

original large image into sub-images along the road centerline, is utilized to deal with 

large aerial images. 

Figure 3. Detailed flowchart of the proposed system for road markings extraction. 

The geometric correction, which can be accomplished with the commercial digital 

photogrammetric software, is employed to compensate for the distortions introduced 

by factors such as variations of the sensor platform, and relief displacement. After the 

image ortho-rectification, the geometric specification of the lane markings can be 

utilized in the road marking extraction. The hierarchical image analysis is then 

employed to detect the road centerlines and surfaces in low and high resolution 

images, respectively.  

3.1 Shifting window process 

A single frame of digital aerial image acquired by Vexcel UltraCam-D has a 

dimension of 11500 7500 pixels with three channels (Red, Green and Blue), which 

occupies 253 M bytes, and a mosaic image could be even larger. It is not practical to 

directly input such a large image into the road marking extraction process. Therefore, 

a “shifting widow” image process is proposed and implemented to optimize the road 

lane feature extraction from such large images. 



After the processing of low resolution images, the generated centerlines of the road 

surfaces are then mapped to the high resolution image, and a chain structure is 

required to present the road centerline, given by:  

∑   

   

   

 

where    is the ith pixel on the centerline with coordinates (xi, yi), and n is the total 

number of pixels. 

Based on the road centerline obtained from the low resolution image, the high 

resolution image can be transformed into sub-images along the road centerline. This 

sub-image with N N pixels is called a shifting window, where a new sub-image is 

introduced based on the location of the previous sub-image as well as the road 

centerline. The shifting window process is illustrated in figure 4, where the square 

boxes represent the shifting windows, the dashed line is the road centerline, and the 

two solid lines indicate the road sides.  

Figure 4. The illustration of the shifting window process. 

To optimally locate the shifting windows within the high resolution image, the 

adjacent shifting windows must not overlap, and they also must cover the whole road 

surface without omission. To deal with this problem, an automatic sub-image 

generation method, which is developed from the bisection theorem, is developed in 

this paper.  

The original bisection method is a root-finding algorithm which repeatedly bisects 

an interval and then selects a subinterval in which a root must lie for further 

processing. Here, we are intended to find the centers of the shifting windows by 

repeatedly bisecting an interval and then selecting a subinterval in which the optimal 

center pixels must lie. 

The steps to find the optimal center pixel of the shifting window are: 

(1) Select the first pixel    (     )  on the road centerline ∑   
   
   , and set 

                    , where        is the minimum x coordinate of the 

shifting window,      is the maximum x coordinate of the shifting window, 

and   is the width of the shifting window. 

(2) Calculate the maximum y coordinate      and the minimum y coordinate      

within the range ,           -; and then compare the value of           with 

   (height of the shifting window):  

(a) if            , then save (               ) to the center pixel list 

 , where         (           )  , and         (         )  . Go 

to step 5.  

(b) if            , then set       (           )  , where       

is the temporary variable in the calculation procedure.  

(3) Calculate the maximum y coordinate      and the minimum y coordinate      

within the range [            ]; and then compare the value of           

with    again: 

if            , then set       (          )  . 

if            , then set           , and       (            )  . 

(4) Continue step 3 until |          |   , where   is the threshold to stop the 

finding loop.   is defined as 1 pixel to accurate locate the shifting window in 



this paper. Then set           , and save (               )  to the center 

pixel list  , where 

(a)         (         )  ; 

(b) The value of         is as followings: 

(i)             if       ; 

(ii)                   if        or           , where 

  is the width of the high resolution image;  

(iii)               if           ; End the finding loop. 

(5) Set          ,              , where    is the last pixel within the former 

shifting window, then go to step 2. 

After applying the above steps, we obtained the center pixel set   ∑   
   
    of all 

shifting windows, where    is the location of window center for the     shifting, and k 

is the total number of shifting windows. A shifting window is determined by its center 

pixel as well as its width and height.  

3.2 Road centerline detection in low-resolution image 

The original image is firstly decomposed to the desired resolution using the 2D 

discrete wavelet transform (DWT). In the image decomposition via wavelet transform, 

properly choosing wavelet is an important issue. The Bior(9-7) filter bank is utilized 

for the image decomposition, as it has almost the best performance in maintaining 

good visible quality within over 4300 candidate filter banks tested in (Villlasenor et al. 

1995). The road can then be detected in the obtained low resolution image with fewer 

disturbances such as shadows or vehicle.  

To ensure that only necessary features would involve in the separation of road 

class, color space transform is employed to select the appropriate image chromatic 

information. Features that contribute little to the image classification should be 

discarded. Therefore, the principal component analysis (PCA) is utilized to reduce the 

dimension while preserve the essential information.  

The road surfaces appear relatively white compared with other features, which 

means it has relatively low saturation values. The saturation is given by: 

    
   (     )
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where R, G, and B indicate the Red, Green and Blue band value, and I is the intensity, 

defined as   
     

 
 

As the vegetation areas have relatively low value of blue component in RGB, the 

Cb component in YCrCb color space (a color space used as the color pipeline in video 

and digital photography systems) is selected to distinguish the road surfaces from 

these vegetation features. Cb is given by: 

                                                        (4) 

The 1
st
 PCA component, the saturation band, and the Cb component are stretched 

by histogram equalization, and they are further fused using 1
st 

PCA component as R 

band, saturation component as G band, and Cb component as B band.  

After the data preparation, the image segmentation approach is used to classify the 

road surfaces from other ground objects. The ISODATA method is used in this work 

to segment the aerial image due to the fact that an unsupervised clustering method is 

usually superior to a supervised clustering approach as no training set is needed. 

The connected component analysis is utilized to remove small noises that are 

misclassified into road class. A modified Wang-Zhang thinning algorithm 



(Krishnapuram and Chen 1993) is further chosen to extract the road skeletons thanks 

to its property of structure-preserving. 

Significant variations in road surfaces reflectance and shadows may disconnect the 

extracted road segments. In (Amini et al. 2002), a perceptual grouping algorithm was 

used to restore the longer straight road sides segments from the fragmented line 

segments. Mainly based on the geometric properties, a similar approach is used to link 

the disconnected road centerline segments here. Basically, two segments are linked if 

the following constraints are fulfilled: 

1) Two centerline segments are adjacent and their endpoints are within 10 pixels. 

2) Two centerlines are approximately collinear, which means that the difference 

of their orientations    and the lateral distance    are less than a given 

threshold, here       and      pixels.  

3) The overlapped part of the two adjacent centerlines is less than 10% of the 

length of either segment. 

The road centerlines should have homogeneous local orientation distributions. 

However, the generated road centerline is actually zigzag due to the disturbances from 

shadows or variation of road width. The linear regression is an appropriate method to 

fit a linear relation between the extracted road centerline points.  

3.3 Road surfaces detection in high-resolution image 

The road centreline has been obtained from the low-resolution image in the previous 

step. Meanwhile, the orientation and the rough position of the road surfaces within 

high-resolution image also can be easily acquired. The orientation   is calculated 

using the two endpoints    (     )  and   (     )  of the centreline segment (See 

figure 5), which can be derived by 

        (
     
     

) 

To indicate the rough position of the road surfaces in high-resolution images, a 

buffer is constructed using the acquired information. The generated road centreline 

may not be exactly located in the centre of the road surfaces, thus the buffer width 

should be large enough to contain the whole road surfaces. In our experiment, the 

buffer width    is defined to be the average width of the road surfaces, which can be 

easily calculated by (Liu et al. 2003): 

   
    

        
 

where     is the total sum of pixels on the extracted road surfaces, and      is the 

sum of pixels for the road surfaces after deleting its edge points. 

The buffer zone is as shown in figure 5 between the two dashed lines in parallel 

with the solid black line. The road surfaces should be within the buffer zone, and thus 

the majority of other features outside the buffer can be removed, which will greatly 

reduce the complexity of image classification. As the vegetation regions have 

relatively low value of Cb component, only the Cb band is utilized to extract the road 

surfaces in high resolution image.  

Figure 5. The representation of orientation   and the buffer zone, w is the average 

width of road surface,    and    are the two endpoints of road centreline. 



As one of the widely used techniques for monochrome image segmentation, 

histogram thresholding is utilized here to segment the aerial image. The threshold is 

then automatically determined by the Otsu‟s algorithm (Otsu 1979), which finds the 

optimal threshold T by maximizing 
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( ̅ ( )   ( ))
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where  ( )  ∑   
 
   ,  ( )  ∑   

   
     ,  ̅  ∑    

   
   , and    is the probability of 

pixels with grey level i in the image. Segments are selected as road features if the 

following two criteria are satisfied: (i) the segment is in the buffer zone, (ii) the length 

to width ratio   is larger than a preset threshold, here    . Besides, the connected 

component analysis is utilized here to remove small noises that are misclassified into 

the road class.  

The road sides should have homogeneous local orientation distributions. Thus, the 

linear regression is an appropriate method to fit a linear relation between the extracted 

road edge points.  

3.4 Lane marking extraction 

To reduce the computational load, only the 1
st
 PCA component of the original color 

image is selected. The parameters of Gabor filter are determined as given in section 

2.3.2.  

After the implementation of Gabor filtering, the Otsu thresholding algorithm is 

employed to segment the road markings, and the binary morphological opening and 

closing along the road direction is further utilized to smooth the generated road 

markings and remove other misclassified objects. The morphological opening and 

closing operators are presented as   and  , which are given by (Zhu et al. 2005): 

    (   )   

    (   )   

where A is a binary image, B is the binary element structure,   and   are 

morphological dilation and erosion operators, which are represented as: 

    *           + 
    *           + 

Connected component analysis (CCA) is also applied on the filtered image to 

remove smaller noise. CCA groups the pixels into connected components based on 

pixel connectivity and calculate the area for each component, while small regions 

whose area is under 50 pixels are deleted. 

The lane segments may be corrupted by many facts: occlusion, e.g. trees above the 

road surfaces; worn-out painting of lane lines; dirty markings on the road surfaces. 

For instance, even if road markings are painted with strict specifications, they are 

often partially eroded due to weather and traffic conditions. Besides, cars often 

occlude the road markings, which may lead to the marking detection failure. 

The vehicle can be eliminated from the road markings by utilizing the following 

indicators: (i) elongation – the ratio of the major axis to the minor axis of the polygon, 

and (ii) lengths of the major and minor axis. The elongation measure of vehicle is 

smaller than the road lane markings, and the length of the major and minor axis of 

vehicle are within certain ranges. In our experiment, the major axis length of the 

vehicle is set to be within 2 to 10 m, while minor axis is set to be between 1.5 and 3 m. 

In the filtered image, the pavement markings have much higher brightness values 

than the road pavement surfaces. The geometric properties and spatial relationships 

are further utilized to select the lane marking candidates. 



1) The geometric properties of the lane markings were calculated: the lengths, 

widths, and the areas are examined by the road construction manuals 

(Queensland Department of Main Roads 2001). Only regions satisfying the 

rules specified in the manual were selected as suitable candidates. 

2) The distance and orientation differences between neighboring lane marking 

candidates are calculated and analyzed. Only the candidates with similar 

orientation and particular distances would be preserved. The orientation 

differences must be no more than   , and the distances between parallel 

markings should be approximate 3.5 m. 

After the road surfaces and pavement markings detection in sub-images, the 

generated results are further spliced to obtain the final road model. As the road sides 

are mostly acquired by linear regression or parallel line approximation, the road sides 

in adjacent shifting window images may not match very well, as the example shown 

in figure 6(a). Therefore, the relevant endpoints of road sides in adjacent sub-images 

are replaced by their mean, and the road sides are further determined by their new 

endpoints (figure 6(b)). 

Figure 6. Endpoints matching of road edges, (a) Two adjacent sub-images, (b) 

Endpoints-matched road edges. 

3.5 Result evaluation 

Quantitative evaluation of the experimental results is of great importance for the 

practical applications of the road features extraction algorithms. However, so far only 

a few approaches on assessment of road axes extraction can be found in the literatures. 

Heipke et al. (1997) and Wiedemann et al. (1998) compared the generated road 

centerline with a buffer around the reference data, and computed the quality measures 

principally include completeness, correctness and quality. This evaluation method 

using vector-based buffer analysis may be used to assess the quality of road marking 

extraction, but it is not suitable for the evaluation of road surfaces extraction. 

To define an error, the „reference data‟ or „more accurate data‟ is commonly used 

as the „true‟ value in an experimental study (Shi et al. 2003). The basis is to compare 

the automated (derived) results against a manually compiled, high quality reference 

model. The evaluation of the detected road surfaces is given in figure 7. The detection 

errors primarily consist of commission and omission errors. The commission error is 

the area of the falsely detected road surfaces, while omission error is the area of the 

omitted road surfaces.  

Figure 7. Evaluation of the extracted road surfaces: solid area is the referenced road 

surface; dashed region indicates the detected road surface.  

Following the concept of error matrix, the evaluation matrices for the accuracy 

assessment of road surfaces detection can be defined at the pixel level as follows: 

1) Detection rate 

  
  

     
 

2) False alarm rate 

  
  

     
 



In the above equation, TP (true positive) is the number of road surface pixels correctly 

identified, FN (false negative) is the number of road surface pixels identified as other 

objects, FP (false positive) is the number of non-road pixels identified as road 

surfaces.  

The detection rate indicates how well pixels of road surfaces that have been 

correctly classified; the false alarm rate denotes the probabilities of pixels been 

uncorrected classified into actual category of road surfaces. 

The road marking accuracy evaluation is carried out by comparing the extracted 

pavement markings with manually plotted road markings used as reference data as 

presented in (Wiedemann et al. 1998), and both data sets are given in vector 

representation. The buffer width is predefined to be the average width of the road 

markings, and we set it to be 15 cm in our experiment. Then the accuracy measures 

are carried out by detection rate, false alarm rate and RMS (root mean square) 

difference, given as: 

1) Detection rate 

  
                           

                   
 

2) False alarm rate 

  
                              

                    
 

3) RMS difference 

    √
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where n is the number of pieces of matched extraction,  (    ) indicate the shortest 

distance between the ith piece of the matched extraction and the reference network. 

4. Experiment and discussion 

The experiments were carried out on the aerial images from the Bruce Highway 

Gympie part, Queensland. The objective of the experiment was to determine the 

performance of the proposed road feature extraction approach quantitatively over the 

study area.  

4.1 Data set 

Thanks to Queensland Department of Transport and Main Roads, a set of high-

resolution aerial panchromatic images taken on 28 November of 2008 using the 

UltraCam-D digital camera is made available for this study. The camera was mounted 

on a Cessna Conquest 441 aircraft flying at an altitude of 1100 m. The image scale is 

1:11081, and pixel size is 9    (about 10 cm GSD). The test sites are parts of the 

Bruce highway, located in Gympie, Queensland. The width of traffic lane is 3.5 m on 

average. The original scale of the photogrammetric images is 7500 11500 pixels, 

with three color bands (Red, Green, and Blue). To test the efficiency of large image 

process, image mosaic is utilized to expand the image scale. 

4.2 Experiment and analysis 

The properly determination the size of the shifting window is of great importance for 

the road features detection in large images. A smaller window may not cover the 



whole road surfaces; on the other hand, a larger window may not guarantee the local 

homogeneous direction, which is required by linear regression and Gabor filter, and it 

would also increase the computing complexity. The average width of the road 

surfaces is about 15 m (including the road shoulders), which is 150 pixels in line with 

the 10 cm GSD of the testing image dataset. Thus the window size is defined to be 

        pixels based on our experiments. 

The parameters of Gabor filter are determined as given in section 2.3.2. The 

orientation of the markings is obtained by the detected centerline from the low 

resolution image. The average width of road markings is 4 pixels, thus the frequency f 

is set to be 0.25, while the axis scaling parameters    and    of the Gaussian function 

is set to be 2.32.  

The road feature extraction result for the first experiment is shown in figure 8. The 

test aerial mosaic image has a size of 16384 8192 pixels, where the road in the image 

is relatively straight, and with less obstructions from shadows and vehicles. It can be 

seen that the road surfaces are almost perfectly extracted and the lane markings are 

also well detected thanks to our strategy, and only very few false alarms exists caused 

by vehicles.  

To assess the extraction results quantitatively, the manual plotted road surface and 

lane markings are employed as the true data, and the reference lane markings are 

illustrated in figure 9. The buffer width is set to be 2 pixels – half the average width of 

pavement markings. As it is reviewed in section 1 that within all the road feature 

extraction methods as we know, only two strategies, which are proposed by Kim et al. 

(2006) as well as Tournaire and Paparoditis (2009), are specially designed to 

extraction lane information from remotely sensed images. Kim‟s lane marking 

extraction method is chosen here for the comparison because Tournaire‟s method 

focuses on only particular dashed markings. We apply Kim‟s method in each shifting 

window image to extract lane markings and further filter out misclassified objects 

using the extracted road surface. 

Figure 8. The road surface and lane marking extraction result in test aerial mosaic 

image I: (a) original aerial image; (b) extracted road surface and lane markings; (c) 

region A in a larger scale; (d) region B in a larger scale. 

Figure 9. The manual plotted lane marking used as reference in test site I. 

The accuracies evaluation for our strategy and Kim‟s method upon image I is given 

in table 1. The overall detection rates of lane markings for both methods are over 99%, 

and the false alarm rates are below 3%, which indicates that both strategies are 

capable of dealing with images with less effect of noise on the road surface. 

Table 1. Result evaluation for road feature extraction in test image I. 

The results for test image II and III are given in figure 10 and figure 12, 

respectively. The manual plotted lane marking are illustrated in figure 11 and figure 

13. The difference between test image II and III is that the road in test image II has 

big sinuous curves while the road in test image III has several traffic islands on its 

surface. And there are several vehicles and shadow on the road surfaces for both test 

scenes. 

Figure 10. The road surface and lane marking extraction result in test aerial mosaic 

image II: (a) original aerial image; (b) extracted road surface and lane markings; (c) 

region A in a larger scale; (d) region B in a larger scale. 



Figure 11. The manual plotted lane marking used as reference in test site II. 

Figure 12. The road surface and lane marking extraction result in test aerial mosaic 

image III: (a) original aerial image; (b) extracted road surface and lane markings; (c) 

region A in a larger scale; (d) region B in a larger scale. 

Figure 13. The manual plotted lane marking used as reference in test site III. 

Table 2 and table 3 present the quantitative assessment of the results for both 

approaches. The results for both test images have detection rate of about 96% and 

false alarm rate below 6.5%. Kim‟s method has a larger completeness rate 

(approximate 1%), but at the meantime, its misclassification is significant higher than 

our algorithm (about 4%). The RMS differences of both methods are about 3 cm. 

Table 2. Result evaluation for road feature extraction in test image II. 

Table 3. Result evaluation for road feature extraction in test image III. 

In test image IV (as shown in figure 14), the road surfaces are greatly obstructed by 

the shadows casted by trees, which increase the difficulty of road marking extraction. 

The extraction of lane segments may be corrupted by many facts, such as occlusions, 

worn-out painting of lane lines, and dirty marks on the road surface. An example is 

given in figure 14 (image A), the bottom lane marking is partly worn-out and has less 

contrast with the road surface, is not entirely detected. 

Figure 14. The road surface and lane marking extraction result in test aerial mosaic 

image IV: (a) original aerial image; (b) extracted road surface and lane markings; (c) 

region A in a larger scale; (d) region B in a larger scale. 

Figure 15. The manual plotted lane marking used as reference in test site IV. 

In heavily shadowed regions, Gabor filter will leave out lane segments that are 

completely obstructed by shadows due to their poor contrast with road surfaces, and 

enhance the lane markings in non-shadow and partly-shadowed areas. Top-hat based 

strategy can remove the affection from shadow to some extent, it also enhance many 

other ground objects in the meantime. The statistics in table 4 has confirmed the 

above conclusion. 

Table 4. Result evaluation for road feature extraction in test image IV. 

Both road lane feature extraction approaches based on top-hat and Gabor filtering 

achieves satisfactory results in non-shadowed regions as it is shown in table 1, 2 and 3. 

Similar conclusions can be drawn from the visual analysis of figure 16, which is an 

example of road marking extraction in a non-shadowed area. All the three long lane 

markings are correctly extracted using both methods, while the Gabor filter is superior 

to top-hat on enhancing the lane features as well as minimizing the affections from 

other ground objects, e.g. trees. 

Figure 16. An example of road lane marking extraction in non-shadowed region: (a) 

the original aerial image; (b) and (c) are the top-hat filtered result and the extracted 

lane marking; (d) and (e) are the Gabor filtered image and the generated pavement 

markings, respectively. 

Gabor filter has a relatively low detection rate but with low false alarm rate 

compared with top-hat based method. An example is as given in figure 17 that several 

shadow features on the road surface are misclassified into lane marking when using 

Kim‟s method. In contract, although some lane segments in the shadow regions are 



not correctly detected using our proposed approach, there is no misclassification 

within the generated lane segments. 

Figure 17. An example of road lane marking extraction on shadowed road surface: (a) 

the original aerial image; (b) and (c) are the top-hat filtered result and the extracted 

lane marking; (d) and (e) are the Gabor filtered image and the generated pavement 

markings, respectively. 

5. Concluding remarks 

In this paper, we have presented a new approach to detect road surfaces and pavement 

markings in high resolution aerial images over rural areas, based on hierarchical 

image analysis and Gabor filtering. The experimental results on four aerial mosaic 

images have indicated that over 95% of road surfaces and near 95% of the pavement 

markings had been correctly extracted, preliminarily proving that the presented 

strategy is promising. The omission of road surfaces and road markings resulted from 

occlusions, the poor condition of pavement markings, and partial shadows over the 

markings.  

Overall, the findings of this research can be summarized as follows:  

1) Road surfaces and pavement markings can be simultaneously extracted from 

high resolution remote sensed images. This will significantly facilitate the 

generation of highly accurate digital road maps. 

2) Uses of Gabor filter can enhance the pavement marking as well as constraint 

the affections from other ground objects, which greatly reduces the difficulty of 

pavement markings extraction. 

3) Shifting window process is an efficient method to deal with large images, by 

splitting the original images into sub-images along the road centerline detected 

from a low resolution image. 

As part of the future research, the proposed framework will be further improved so 

that more seriously obstructed road scenes can be dealt. For instance, an automatic 

vehicle detection approach may be introduced to reduce the effects of vehicles. GPS 

Real-time kinematic positioning solutions from a probe vehicle could be a good 

choice to recover the lane markings in areas where there are large obstructions, for 

example, large numbers of skyscrapers or trees would greatly deteriorate the 

extraction result in urban or forest areas.   
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FIGURES 

 
Figure 1. Geometric specifications of the pavement markings in a rural arterial road 

environment (Queensland Department of Main Roads 2001). 

 
Figure 2. The uncertainty relation in frequency domains.      ,      ,    is the 

orientation bandwidth, and both h and l are radius (only the positive frequencies are 

shown). 

 
Figure 3. Detailed flowchart of the proposed system for road marking extraction. 
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Figure 4. The illustration of the shifting window process. 

 
Figure 5. The representation of orientation   and the buffer zone, w is the average 

half width of road surface,    and    are the two endpoints of road centreline. 

 
Figure 6. Endpoints matching of road edges, (a) Two adjacent sub-images, (b) 

Endpoints-matched road edges. 

 
Figure 7. Evaluation of the extracted road surface: solid area is the referenced road 

surface; dashed region indicates the detected road surface.  
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Figure 8. The road surface and lane marking extraction result in test aerial mosaic 

image I: (a) original aerial image; (b) extracted road surface and lane markings; (c) 

region A in a larger scale; (d) region B in a larger scale. 

 

Figure 9. The manual plotted lane marking used as reference in test image I. 
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Figure 10. The road surface and lane marking extraction result in test aerial mosaic 

image II: (a) original aerial image; (b) extracted road surface and lane markings; (c) 

region A in a larger scale; (d) region B in a larger scale. 

 

Figure 11. The manual plotted lane marking used as reference in test image II. 
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Figure 12. The road surface and lane marking extraction result in test aerial mosaic 

image III: (a) original aerial image; (b) extracted road surface and lane markings; (c) 

region A in a larger scale; (d) region B in a larger scale. 

 

Figure 13. The manual plotted lane marking used as reference in test site III. 
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Figure 14. The road surface and lane marking extraction result in test aerial mosaic 

image IV: (a) original aerial image; (b) extracted road surface and lane markings; (c) 

region A in a larger scale; (d) region B in a larger scale. 

 

Figure 15. The manual plotted lane marking used as reference in test site IV. 
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Figure 16. An example of road lane marking extraction in non-shadowed region: (a) 

the original aerial image; (b) and (c) are the top-hat filtered result and the extracted 

lane marking; (d) and (e) are the Gabor filtered image and the generated pavement 

markings, respectively. 

 

Figure 17. An example of road lane marking extraction on shadowed road surface: (a) 

the original aerial image; (b) and (c) are the top-hat filtered result and the extracted 
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lane marking; (d) and (e) are the Gabor filtered image and the generated pavement 

markings, respectively. 

 

 

 



TABLES 

Table 1. Result evaluation for road feature extraction in test image I. 

 Road surface extraction Lane marking detection 

 Detection rate 

(%) 

False alarm 

rate (%) 
Detection rate 

(%) 
False alarm 

rate (%) 
RMS difference 

(cm) 

Our 

approach 
99.8 2.9 99.3 0.6 2.4 

Kim‟s 

method 
\ \ 99.5 2.5 2.2 

Table 2. Result evaluation for road feature extraction in test image II. 

 Road surface extraction Lane marking detection 

 Detection rate 

(%) 

False alarm 

rate (%) 
Detection rate 

(%) 
False alarm 

rate (%) 
RMS difference 

(cm) 

Our 

approach 
98.2 3.2 94.5 2.7 2.7 

Kim‟s 

method 
\ \ 95.3 5.8 2.8 

Table 3. Result evaluation for road feature extraction in test image III. 

 Road surface extraction Lane marking detection 

 Detection rate 

(%) 

False alarm 

rate (%) 
Detection rate 

(%) 
False alarm 

rate (%) 
RMS difference 

(cm) 

Our 

approach 
99.2 3.2 94.7 2.0 3.2 

Kim‟s 

method 
\ \ 96.2 6.5 3.6 

Table 4. Result evaluation for road feature extraction in test image IV. 

 Road surface extraction Lane marking detection 

 Detection rate 

(%) 

False alarm 

rate (%) 
Detection rate 

(%) 
False alarm 

rate (%) 
RMS difference 

(cm) 

Our 

approach 
95.8 2.2 82.5 1.0 3.8 

Kim‟s 

method 
\ \ 86.9 13.5 3.5 

 


