
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Lakemond, Ruan, Fookes, Clinton B., & Sridharan, Sridha (2011) Nega-
tive determinant of Hessian features. In International Conference on Dig-
ital Image Computing : Techniques and Applications (DICTA 2011), 6-8
December 2011, Sheraton Noosa Resort & Spa, Noosa, QLD. (In Press)

This file was downloaded from: http://eprints.qut.edu.au/46993/

c© Copyright 2011 [please consult the author]

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10908007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Lakemond,_Ruan.html
http://eprints.qut.edu.au/view/person/Fookes,_Clinton.html
http://eprints.qut.edu.au/view/person/Sridharan,_Sridha.html
http://eprints.qut.edu.au/46993/
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Abstract—Local image feature extractors that select local
maxima of the determinant of Hessian function have been shown
to perform well and are widely used. This paper introduces the
negative local minima of the determinant of Hessian function for
local feature extraction. The properties and scale-space behaviour
of these features are examined and found to be desirable for
feature extraction. It is shown how this new feature type can be
implemented along with the existing local maxima approach at
negligible extra processing cost.

Applications to affine covariant feature extraction and sub-
pixel precise corner extraction are demonstrated. Experimental
results indicate that the new corner detector is more robust to
image blur and noise than existing methods. It is also accurate
for a broader range of corner geometries.

An affine covariant feature extractor is implemented by
combining the minima of the determinant of Hessian with existing
scale and shape adaptation methods. This extractor can be
implemented along side the existing Hessian maxima extractor
simply by finding both minima and maxima during the initial
extraction stage. The minima features increase the number of
correspondences by two to four fold. The additional minima
features are very distinct from the maxima features in descriptor
space and do not make the matching process more ambiguous.

I. INTRODUCTION

Local image features are patterns in an image that are
defined in limited image areas and are distinguishable from
the surrounding image in some way. Such features may be
extracted from each view of a scene independently and then
matched to find sets of correspondences between views. The
correspondences are commonly used for a large variety of
tasks, including automatic camera calibration [1], [2], 3D
reconstruction [3], [4], mosaicing [5], object recognition and
classification [6] and arranging image databases [7]. A com-
prehensive review of local image feature extractors may be
found in [8].

Feature extractors based on the determinant of Hessian
function [9] have been shown to perform well [10], [11] and
are widely used. The determinant of Hessian function is used
to compute a saliency map, which yields a strong response
in image regions of high curvature. Features are extracted by
finding the local maxima in the saliency map.

This paper demonstrates that the negative minima of the
determinant of Hessian function are reliable local features.
They can be extracted in parallel to the maxima with negligible
additional image processing cost. In some cases the minima
features perform significantly better than the maxima features.
In all test cases, combining both methods produced more than
double the correspondences of using Hessian maxima alone
while slightly improving repeatability and matching scores.

The minima features are shown to be very effective for corner
detection. A method is demonstrated that can extract corner
and junction vertex locations to sub-pixel accuracy, even when
corners are blurred or rounded.

II. BACKGROUND

Saliency map-based local image feature extractors compute
a saliency map from an image using a function of local
gradients (for example [9], [12]) or local information content
[13]. The local maxima of the saliency map are used to localise
potential features. A positive threshold is typically applied to
suppress maxima generated by noise.

This paper focuses on the determinant of Hessian function
as saliency operator. The Hessian of an image is defined as
the matrix of second order partial derivatives of the image
intensity with respect to coordinates,

∂2I (x)
∂x∂x� =

[
∂2

∂x2
∂2

∂xy
∂2

∂xy
∂2

∂y2

]
I (x) . (1)

The determinant of this matrix gives large positive values
where its eigenvalues are large and have the same sign. This
occurs in the presence of strong edges at multiple orientations,
such as corners. Its response is strongest in the presence of
opposing edges and it is therefore a good blob detector.

The saliency map approach gives the locations of features
in an image, but is not robust to changes in viewpoint or
scale. Where features need to be robust to changes in scale,
a multi-scale approach is used to select an appropriate scale
for each feature [14]–[16]. Affine adaptation [16]–[18] can be
used to estimate the local shape of features and make them
more robust to changes in viewpoint.

III. NEGATIVE MINIMA OF THE DETERMINANT OF

HESSIAN FUNCTION

The determinant of Hessian yields a negative response when
its eigenvalues are of opposite sign, as in the case of a saddle
point. A strong negative response indicates the presence of
multiple edges, just like a strong positive response. It therefore
stands to reason that the local minima of the determinant of
Hessian may yield good features just like the maxima. This
section examines the characteristics of these features.

The top row of Figure 1 shows examples of multi-scale
determinant of Hessian features (both maxima and minima)
generated by simple structures. Determinant of Hessian min-
ima have been observed to have the following properties:



  maxima minima

Fig. 1. Example corner structures and resulting determinant of Hessian features. The first row shows multi-scale minimal (+) and maximal (×) features.
The lines joining features indicate the scale space locus. Row two and three show the corner locations estimated by fitting lines to the multi-scale minimal
and maximal feature loci. The lines extending from the corner centres indicate the directions of the lines fit to the multi-scale loci. In the third row the images
were blurred by Gaussian convolution to show the effect of image blur on the corner estimates.

1) Location: The minima occur at saddle points, which
occur at the intersection of edges in the image.

2) Scale Behaviour: Minima features drift linearly away
from corners as scale increases. The drift direction and speed
depends on the corner geometry (see Figure 1) – obtuse angles
result in a drift towards the outside of the corner; acute angles
result in a divergence and drift on either side of the corner;
right angles and opposing corners result in the minimum
remaining stationary over a large range of scales. Minima
features can diverge as scale increases, but cannot converge.
This behaviour is the opposite of the maxima features.

3) Characteristic Scale: A characteristic scale is typically
not well defined. The Laplacian is typically of small magnitude
and unstable, while the determinant of Hessian function does
not yield a stable and repeatable minimum over scales. Neither
of these functions provide a reliable method for scale selection.

4) Characteristic Shape: The local shape of structures
detected by the minima can be ambiguous. All the structures
in Figure 1, for example, can be normalised such that their
edges are perpendicular, but there remains a relative scaling
ambiguity along the direction of each edge.

While the minima of the determinant of Hessian are not

ideal features, they do have the potential to be useful in
practice. Two potential applications were investigated. In Sec-
tion IV a corner detector based on Hessian minima is presented
and tested using a calibration experiment. In Section V,
Hessian minima features are used to construct affine covariant
features using the same methods used for maxima. The affine
features are evaluated against a standard database.

IV. CORNER DETECTION

From Figure 1 it can be seen that the minima of the
determinant of Hessian function are potentially more suitable
for finding the vertices of corners than the maxima. For some
corners the minima features are located exactly on the corner
vertex over a range of scales, but for others they diverge
linearly away from the vertex over increasing scale. A method
is proposed here that attempts to find the true corner vertex
from a multi-scale analysis of determinant of Hessian features.

Determinant of Hessian features (and most other gradient-
based features) move away from a corner’s vertex as scale
increases. The corner vertex position can be recovered by
fitting a straight line to the feature locus in scale space
coordinates and finding the point where this line intersects the



scale zero plane. Row two and three of Figure 1 shows the
corner positions estimated using this process on the images
and features, as well as on blurred images. Multiple corner
estimates are produced where the feature locus is not straight
and multiple line segments are fitted (as with heavily blurred
images) or where the features diverge in multiple directions
(as with minimal features in the presence of sharp corners).

In the sharp, high resolution images, the both feature types
give highly accurate estimates of the corner vertex position.
Where the images are blurred, the corner estimates produced
by the maxima features are significantly biased towards the
inside of the corner, while the minima features produce some
accurate and some outlying estimates. The line fit to maxima
features gives a good estimate of the corner bisector line in all
cases. A better estimate of the corner position may be found
by taking the average position of the estimates produced by the
minimal features that are in close proximity to the bisector line
produced by maximal features. This approach rejects outlier
corner estimates produced by minima features and corrects for
the drift of maxima corner estimates.

A. Evaluation

The proposed corner extractor is compared by means of a
calibration experiment to the popular Harris corner extractor
and to the iterative corner refinement algorithm implemented
in OpenCV cv::cornerSubPix [19]. The test data consists of
images of two calibration patterns acquired by six different
cameras. One pattern is a checkerboard printed on paper.
The second pattern is a grid of squares pattern designed for
simultaneous visible and thermal image calibration. It consists
of a white thermally insulating mask with square holes placed
over a black heated object. This pattern makes the same
corners visible in both visible and thermal domain.

Cameras 1 and 2 feature a small aperture and automatic
focus adjustment, resulting in consistently sharp image se-
quences. Cameras 3 and 4 have a narrow depth of field and
fixed focus. Parts of the calibration patterns were significantly
blurred in some frames. Camera 5 features a wide angle lens
with significant distortion, fixed focal distance and could only
be used under poor lighting conditions. The sixth camera
is a thermal infra-red camera. This camera has severe lens
distortion and a particularly shallow depth of field, resulting
in severe blurring in much of the image sequence.

The calibration algorithm tracks the calibration pattern
through a video sequence. A set of 100 frames are uniformly
sampled from each sequence. Corners are detected in each
frame using one of the test detectors and the tracking infor-
mation is used to register the corners to the calibration pattern.
The camera is then calibrated using [19] and the reprojection
error of the corners is computed.

Table I reports the test results of the squares mask pattern in
the form of the mean squared reprojection error and detector
miss rate. Table II lists the results for the checkerboard pattern.
Miss rates are not reported for the OpenCV method, since it
requires reasonably accurate initialisation and does not serve
as a raw corner detector itself.

Cam Harris OpenCV Hessian
MSE miss rate MSE MSE miss rate

1 7.952 0.94% 0.453 0.504 0.35%
2 8.882 1.29% 3.612 7.448 7.43%
3 12.997 3.51% 1.603 0.715 1.85%
4 11.037 0.81% 0.906 0.697 0.08%
5 8.671 11.40% 247.177 3.154 6.70%
6 119.460 27.13% 1.304 0.491 16.77%

TABLE I
MEAN SQUARED REPROJECTION ERROR (MSE, IN PIXELS SQUARED) AND

DETECTOR MISS RATE FOR CALIBRATION EXPERIMENTS USING THE

SQUARES MASK PATTERN. NOTE THAT MISS RATE IS NOT RELEVANT TO

THE OPENCV METHOD.

Cam Harris OpenCV Hessian
MSE miss rate MSE MSE miss rate

1 0.184 0.00% 0.082 0.093 0.00%
2 1.763 0.56% 4.162 1.289 2.02%
3 0.238 0.00% 0.223 0.225 0.02%
4 0.371 0.00% 0.133 0.152 0.00%

TABLE II
MEAN SQUARED REPROJECTION ERROR (MSE, IN PIXELS SQUARED) AND

DETECTOR MISS RATE FOR CALIBRATION EXPERIMENTS USING THE

CHECKER BOARD PATTERN. NOTE THAT MISS RATE IS NOT RELEVANT TO

THE OPENCV METHOD.

As expected, the Harris detector consistently performs the
worst when using the Squares pattern, due to corner drift. The
Hessian-based detector consistently achieves superior results
in the more difficult cases (cameras 3 - 6) and only performs
marginally worse than the OpenCV method with the clearer
image sequences (cameras 1 and 2). The OpenCV method fails
in the case of camera 5 due to the interference of shadows cast
by the square mask in bad lighting. The Harris detector fails
in the case of the thermal camera (camera 6) due to heavy
blurring. The Hessian-based detector produces good results
in both these difficult cases. There is very little difference
between the methods when using a checkerboard pattern, since
the Harris and OpenCV methods were specifically designed for
this task.

V. AFFINE COVARIANT FEATURES

A. Method

An affine covariant feature extractor can be constructed
from Hessian minima features in the same way as for Hessian
maxima. An experiment was set up using the evaluation system
of [10] to evaluate whether this is effective. Both determinant
of Hessian minima and maxima were extracted from each
image. The scale selection method of [14], [15] and the affine
adaptation method of [18] were used to find affine covariant
features. The Hessian minima features are compared against
Hessian maxima, and to a combination of both.

The evaluation dataset of [10] consists of image sequences,
each featuring a change in viewpoint throughout the sequence.
The bark and boat sequences involve a change in scale
(zoom or distance to subject) and rotation. The graf and
wall sequences involve a change in view angle relative to a
planar object. The bikes and trees sequences involve increasing
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Fig. 2. Evaluation results for bark sequence.
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Fig. 3. Evaluation results for boat sequence.
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Fig. 4. Evaluation results for graf sequence.

image blur or defocusing. Lastly, the UBC sequence features
JPEG compression and the Leuven sequence features lighting
variation or camera exposure variation.

Ground truth homographies are provided that map each
image to a reference image. The evaluation measures the
following metrics: Correspondence count – the number of
features that overlap corresponding image regions with suf-
ficiently low error. Repeatability – the proportion of features
in the common image area that overlap corresponding image
regions with sufficiently low error. Correct match count – the
number of matches made using the feature descriptors that
are correct. Matching score – the proportion of matches in the
common image area that are correct.

B. Results

Figures 2 - 4 show detailed results for selected interesting
data sets (bark, boat and graf ). The remaining datasets yielded
trends consistent with the results presented in detail and are
omitted for brevity. The graf and wall sequences produced
very similar results.

The minima features produce a larger number of correspon-
dences than the maxima features, ranging from a relatively
small increase, to up to three times more. Combining the
two simply yields the sum of both sets of correspondences.
The test results show that the combined set of features has
more correspondences than the sum of the two. This is due
to a shortcoming in the testing procedure, refer to [10] for a
discussion on the effects of feature density.

The repeatability of the minima features is significantly
higher than the maxima features for the viewpoint change tests
(graf and wall) and slightly lower for the scale change tests
(bark and boat). The increase in repeatability is correlated with
the increase in correspondences, indicating that it may be a
side effect of the testing procedure and more correspondences,
rather than improved performance. Combining both feature
types results in a repeatability slightly higher than either alone.
Again this is likely related to the increase in correspondences.
Overall it appears that the repeatability of the minima features
is at least on par with the maxima features.

In most cases the number of correctly matched features is
approximately the same for both minima and maxima features.
The combined set of features yielded a number of correct
matches that is the sum of matches from both sets. This
indicates that combining the feature sets does not result in
interference between the sets when matching. Combining the
minima and maxima features into one set does not result in
matches becoming more ambiguous and it is therefore not
necessary to match each set separately.

Matching scores are lower for the minima features than for
the maxima features. The difference in matching score appears
to be heavily dependent on the scene contents. For example,
the bark and boat sequences both involve scale change,
but the matching score performance of minima features is
considerably worse in the boat sequence. Combining both sets
yields a matching score that is a weighted average of the two,



indicating again that there is little interference between feature
types.

VI. CONCLUSION

This paper explores the properties of a novel feature, the
minima of the determinant of Hessian operator. Two applica-
tions of this new feature are explored – corner extraction and
affine feature extraction.

A corner detector is proposed that makes use of both
maxima and minima of the determinant of Hessian function
to accurately locate corners despite significant image blur
and noise. Fitting line segments to the scale space loci of
Hessian minima provides good corner estimates, while fitting
line segments to the loci of Hessian maxima gives a good
estimate of the corner bisector angle and assists in removing
outlier minima corner estimates. A calibration experiment
showed that this corner detector is superior to commonly used
methods, especially when applied to heavily blurred and noisy
images. The Hessian-based corner detector allows the use of
new calibration patterns suitable for multi-spectral calibration.

It is shown that the minima of the determinant of Hessian
function can easily be integrated into the well established de-
terminant of Hessian (maxima) affine feature extractor to yield
additional affine covariant features. The additional features can
easily be extracted in parallel with the Hessian maxima and
can be made scale and affine covariant using existing methods.
An evaluation shows that the Hessian minima provides many
additional correspondences. Matching experiments show that
the new features do not confound the matching process and
contributes additional matches without resulting in increased
ambiguity for the existing maxima features. Minima and
maxima features can therefore be managed as a single set of
features and do not have to be matched separately.
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