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Abstract—This paper discusses practical issues related to the
use of the division model for lens distortion in multi-view ge-
ometry computation. A data normalisation strategy is presented,
which has been absent from previous discussions on the topic. The
convergence properties of the Rectangular Quadric Eigenvalue
Problem solution for computing division model distortion are
examined. It is shown that the existing method can require
more than 1000 iterations when dealing with severe distortion. A
method is presented for accelerating convergence to less than 10
iterations for any amount of distortion. The new method is shown
to produce equivalent or better results than the existing method
with up to two orders of magnitude reduction in iterations.
Through detailed simulation it is found that the number of
data points used to compute geometry and lens distortion has a
strong influence on convergence speed and solution accuracy. It is
recommended that more than the minimal number of data points
be used when computing geometry using a robust estimator such
as RANSAC. Adding two to four extra samples improves the
convergence rate and accuracy sufficiently to compensate for the
increased number of samples required by the RANSAC process.

I. INTRODUCTION

A method for simultaneously computing two-view geometry
and lens distortion model using point correspondences was
introduced in [1]. This method makes use of a single parameter
lens distortion model and solves for the geometry and lens
in a linear framework. It is useful in solving multi-view
geometry problems, such as structure from motion, when it
is not possible to properly calibrate the camera and where the
images are distorted by significant non-linear lens distortion.

While the solution given in [1] is suitable for minimal
solutions (five corresponding points for homographies and nine
for epipolar geometry), it does not generalise well to overcon-
strained problems. An overconstrained solution is presented
in [2]. This method involves an iterative process for refining
the geometry and distortion coefficient estimates. It is claimed
that the solution presented in [2] converges quickly, efficiently
and globally and that it is therefore a better solution than
alternatives such as Levenberg-Marquardt minimisation on
the reprojection error or bundle adjustment. The experimental
evidence presented in [2] does not show convincingly that the
algorithm indeed possesses these properties over a wide range
of conditions.

It is known that the Direct Linear Transform (DLT) ap-
proach used to solve two-view geometry problems requires

data normalisation [3]. The issue of normalisation in the con-
text of the current problem has not been adequately addressed
in the literature. The first contribution of this paper is a suitable
normalisation strategy that yields good results and provides a
model that is simple to use in practice.

This paper examines the convergence characteristics of the
method presented in [2] in Section IV and shows that it can
take many iterations to converge for heavily distorted images.
In Section V a method is proposed that can reduce the number
of iterations to less than 10 in most cases, even in heavily
distorted images and with tight convergence constraints. It is
shown experimentally in Section VI that this method can be
several orders of magnitude faster than that of [2] while yield-
ing superior accuracy. The detailed simulation experiments
highlight the sensitivity of these algorithms to noise and to
the number of correspondences used in the computation.

The majority of papers on this topic focus on the computa-
tion of the fundamental matrix and briefly show how results
are applicable to computing a homography. For the sake of
variety, this paper will instead focus on the homography.

II. BACKGROUND

The division model for lens distortion with one parameter
is defined as,

p = x + λr2 (x) z,

where x =
[
x y w

]�
are the distorted homogenous coordi-

nates with the centre of distortion (COD) at the origin, p are
the undistorted coordinates, r2 (x) = w−1

(
x2 + y2

)
is the

distance to the COD squared and z =
[
0 0 1

]�
. In [1] this

model is included in the point correspondence relations for a
fundamental matrix and for a homography. The homography
case is briefly summarised here. Using the discrete linear
transform (DLT) method, the homography and lens parameter
may be found by solving,

[p2]× Hp1 = 0,

where [p2]× is the 3 × 3 cross product matrix of p. After
simplifying so that w = 1, expanding the equation and
collecting terms, each corresponding point pair yields two
equations in the form,(

D1 + λD2 + λ2D3

)
h = 0,



where the design matrices are of the form,

D1=
[

0 0 0−x1 −y1 −1 x1y2 y1y2 y2

x1 y1 1 0 0 0 −x1x2 −x2y1 −x2

]
,

D2=
[

0 0 0 −r2
2x1 −r2

2y1 −r2
1 − r2

2 0 0 r2
1y2

r2
2x1 r2

2y1 r2
1 + r2

2 0 0 0 0 0−r2
1x2

]
,

D3=
[

0 0 0 0 0−r2
1r

2
2 0 0 0

0 0 r2
1r

2
2 0 0 0 0 0 0

]
,

and h is the parameters of the homography, H, in vector
form. After combining 9 equations (9 correspondences for the
fundamental matrix and 5 for the homography), the design
matrices are square and the problem is in the form of a Quadric
Eigenvalue Problem (QEP). It is shown that there are at most 6
real solutions to this problem. In the over determined case, the
approximate normal equations, D�

1

(
D1 + λD2 + λ2D3

)
h =

D�
1 Dλh = 0 are solved instead. This method is a poor

approximation of the proper normal equations, D�
λ Dλh = 0

(which cannot be determined without knowing λ) and lead to
a biased result.

In [2] the overconstrained case is solved by formulating the
problem as a rectangular QEP and linearising the problem
through a change of variables. The variable u = λh is
introduced, yielding the following linear equations:

D1h + λ (D2h + D3u) = 0,
u − λf = 0.

Writing in matrix form gives,
([

D1 0
0 I

]
− λ

[ −D2 −D3

I 0

])[
h
u

]
= 0,

(A − λB)v = 0.

The solution is found by iteratively solving for v in II using
singular value decomposition and updating λ by finding the
smallest magnitude1 root of the scalar quadric equation,

v� (
B� + λA�)

(A − λB)v = 0. (1)

It is claimed that this procedure typically converges in less
than 20 iterations. This claim is not well supported by the
experimental evaluation, since only one synthetic and one real
scenario are tested. The convergence rate of this algorithm
depends on the amount of distortion and on the data normalisa-
tion strategy used, as will be shown in Sections III and IV. One
of the contributions of this paper is to explore the convergence
properties of this algorithm.

III. DATA NORMALISATION

Data normalisation is a critical step in ensuring good results
from the DLT method, however a clear method for normalising
data for the simultaneous geometry and lens computation

1 In [2] it is stated that the positive root of equation 1 is to be used. This is
an error, since λ may be negative. Equation 1 typically yields one root with
magnitude larger than one and one root with magnitude smaller than one. The
magnitude of λ is typically much smaller than 1.

process is not found in the literature. A commonly used
approach [3], is to apply a translation,

T (tx, ty) =

⎡
⎣ 1 0 tx

0 1 ty
0 0 1

⎤
⎦ ,

and scaling,

K (k) =

⎡
⎣ k 0 0

0 k 0
0 0 1

⎤
⎦ ,

to each set of points so that the normalised points (x′) are
centred at the origin and have mean distance from the origin
of

√
2:

x′
1 = K1T1x1,

x′
2 = K2T2x2.

The normalised geometry, H′ or F′, is computed from the
normalised correspondences and denormalised according to,

H = T−1
2 K−1

2 H′K1T1,
F = T�

2 K�
2 F′K1T1.

The above method is not well suited to including a division
lens parameter in the computation, since it complicates the
computation of the radius to the COD and does not account
for the scaling of the distortion coefficient. More importantly,
the scaling must be the same for both images, since it affects
the normalised distortion parameter and both images must have
the same distortion. Furthermore, the scale of the normalised
distortion has a significant impact on the accuracy of the
process. A relatively large distortion value results in slow
convergence and reduced stability; a relatively small distortion
value results in reduced resolution, depending on machine
precision and the thresholds set for determining convergence.

The proposed normalisation consists of a translation to the
COD, T (−xc,−yc), and a scaling K (k). This translation
keeps the computation of the r2 term simple, while still nearly
centring the data. The scale factor, k, set so that the mean
(over both images) distance of the normalised coordinates to
the centroid is 1. With this choice of normalisation scale, a
severely distorted image will have λ′ ∈ (1.0, 0.01), i.e. large
from a numerical perspective, but still small enough to be
correctly determined using equation 1. If it is known that
the image is weakly distorted, it is advisable to use a larger
value for k in order to increase λ′, thereby increasing the
precision with which it can be computed. The distorted points
are normalisation as,

x′
1 = K (k)T (−xc,−yc)x1 = Kxo1,

x′
2 = K (k)T (−xc,−yc)x2 = Kxo2.

The homography and lens model are computed with the
COD at the origin, according to,

p′
2 = H′p′

1,
x′

2 − λ′r2 (x′
2) z = H′ (x′

1 − λ′r2 (x′
1) z

)
.

The denormalisation procedure is found by substituting x′ =
Kxo and collecting terms,

Kxo2 − λ′r2 (Kxo2) z = H′Kxo1 − λ′r2 (Kxo1)H′z,
xo2 − k2λ′r2 (xo2) z = K−1

(
H′Kxo1 − k2λ′r2 (xo1)h′

3

)
,
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Fig. 1. Response plot or convergence path of the iterative λ and homography
update function applied to 1000 normalised correspondences. (a) Noiseless
case. (b) 1% Zero mean Gaussian noise added.

where h′
3 is the third column of H′. This gives the denormal-

isation by inspection as,

H = K−1H′K,
λ = k2λ′.

The counter-translation is not included in the denormalisation
since it is redundant for most applications.

Similarly, the denormalisation procedure for the fundamen-
tal matrix can be derived as,

F = K�F′K,
λ = k2λ′.

IV. CONVERGENCE OF THE λ UPDATE PROCESS

In [2] it is stated that the iterative procedure for computing
the geometry and lens distortion coefficient (see Section II)
converges in less than 20 iterations. The convergence proper-
ties are not studied in detail and only one geometric scenario
is tested. This section presents a detailed study on the charac-
teristics of the method of [2].

Figure 1 plots an example convergence path of the algorithm
(output λ plotted against input λ) for a case where 1000
point correspondences are used. Several characteristics of this
convergence path are of interest. Firstly, λo > λi for λi < λc

and λo < λi for λi > λc, where λi is the input value, λo is the
output value and λc is the convergence point where λo = λi.
This indicates that the process converges monotonically to the

point on the graph where the path crosses the y = x line.
Secondly, the slope of the line is very close to 1, indicating
slow convergence. Ideally the slope would be close to 0, so
that any starting value of λ would generate a value close to
the final value, but this is unfortunately not the case. Thirdly,
where the data is corrupted by noise, the convergence point is
shifted away from the true distortion value (the sensitivity to
noise depends on the number of correspondences). Lastly, the
line is almost exactly straight with slope less than 1. These
conditions apply over a large range of input λ values and data
conditions and only changes under severe noise or extreme λ
values.

The number of iterations required by the iterative update
process is therefore approximately linearly dependant on the
magnitude of the distortion and may be quite large. Fortunately
it is possible to exploit the approximately linear convergence
path to predict the convergence point in only a few iterations.

V. AN ACCELERATED λ UPDATE ALGORITHM

At iteration i the current distortion coefficient estimate,
λ(i), is used to update the geometry according to equation II
and to get an updated distortion estimate, λu(i), according to
equation 1. The objective is to estimate λ(i+1) that yields
s(i+1) = λu(i+1) − λ(i+1) = 0. This can be done by
approximating the update as a linear function,

λu − λ = aλ − b.

The parameters of this linear fit can be extracted from the
distortion estimates from the last two iterations,

s(i−1) = λu(i−1) − λ(i−1) = aλ(i−1) − b,
s(i) = λu(i) − λ(i) = aλ(i) − b,

a = s(i−1)−s(i)

λ(i−1)−λ(i)
,

b = si − aλ(i).

The next distortion value is estimated as the point where the
update function equals zero,

aλ(i+1) + b = 0,
λ(i+1) = −b

a .

The procedure is initialised with λ(0) = 0 (or any available
initial estimate) and λ(1) = λu(0). The procedure concludes
when s(i) < ε. Implementations used for this paper used ε =
10−8, which was found to give good precision in combination
with the normalisation method defined in Section III, while
converging in under 10 iterations in most cases (See Section VI
for a detailed evaluation).

The above method will diverge and fail where the slope of
the update path is greater than one. To prevent failure in this
case, the method reverts to using λ(i+1) = λu(i) whenever

s(i)

s(i−1)
> 0.999.

VI. EXPERIMENTAL EVALUATION

A simulation was implemented to examine the performance
of the algorithm in [2] and the proposed modification presented
in Section V. The objective is to compare the two algorithms
and to make recommendations on the use of these types of
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Fig. 2. Histograms of the iteration counts required to complete the Homog-
raphy and distortion computation process. The lens distortion parameter was
set to -0.01 and random noise with a standard deviation of 0.1% of the image
width was added.

algorithms in general. The simulation used 100 sets of 1000
randomly generated points with coordinates in the interval
(−1, 1). Each point set was mapped to a second image
using 100 random homographies and the points were distorted
using 7 different distortion coefficients. Zero mean Gaussian
noise was added to the distorted points with 10 different
variance levels. The geometry and distortion is then recovered
using a subsets of the point correspondences ranging from 5
correspondences to all 1000 correspondences. Both algorithms
used the normalisation strategy described in Section III. The
distortion parameter is initialised to zero at the start of all
test trials. A maximum of 1000 iterations are allowed for the
geometry computation process and a convergence threshold
of 10−8 was used. Statistics of the resulting geometry and
distortion parameter estimates were collected over the 100
homographies and 100 point sets for each noise, distortion and
correspondence count setting. Important results are discussed
and summarised in the figures presented in this section.

A. Iteration Count

Figure 2 shows histograms of the number of iterations
executed by the geometry computation process in a few
example scenarios. The original method of [2] requires a
large number of iterations, especially when using small sets of
correspondences. This is a result of the relatively small update
at each iteration (see Section IV). In contrast, the method
proposed in Section V requires several orders of magnitude
fewer iterations in most cases. The proposed method typically
only requires more than 10 iterations when the update process
is not sufficiently stable to predict the convergence point. In
these cases, the method of [2] is used until the process begins
to converge. Where enough data is available, the proposed

method usually completes in fewer than five iteration.
The effect of the number of data points is very clearly

shown. Using the minimum of five points does not give a
good solution in more than half of the trials for the method of
[2]. The proposed method makes a significant improvement,
but still fails in 10% of trials. When large numbers of
correspondences are available the solution process is much
more stable.

Increased noise in the correspondence data typically leads
to more iterations. The proposed method completes in less
than 10 iterations in most cases, even with severe noise. A
distortion value with larger magnitude leads to a linear increase
in the number of iterations required by [2]. The severety of the
distortion has little effect on the number of iterations required
by the proposed method.

B. Noise Sensitivity

Figure 3 plots the 10%, 50% and 90% quantiles of the
distortion estimates over a range of noise levels. These quantile
plots are used rather than mean and variance plots because the
process is prone to outlier results. This result in large variance,
which does not give useful information. Geometry estima-
tion algorithms are typically employed in robust estimation
algorithms designed to reject outlier data and solutions. The
quantile plots give a better indication as to where the majority
of solutions lie and are more useful in practice.

The lens distortion estimate is seen to be very sensitive
to noise, as previously shown in [1] and [2]. Here it can be
seen that the method of [2] yields a slightly biased median
result from noisy data. The proposed method shows a similar
bias for small distortion values, but yields a much less biased
result for large distortion values. Overall, while the distribution
of results quickly becomes very large as noise increases, the
median result remains reasonably accurate.

C. Number of Corresponding Points

Figure 4 plots the 10%, median and 90% quantiles of the
distortion estimates over the number of points used to compute
the geometry. Figure 2 shows the iteration counts for two
different numbers of correspondences. The number of corre-
spondences clearly has a significant effect on the stability of
the geometry computation process. When 100 points or more
are used, the convergence is always stable and the proposed
method can estimate the convergence point accurately and
quickly. With fewer correspondences, the update process is
less stable and the incremental update method must sometimes
be used. Additionally, the incremental method takes longer to
reach convergence or a stable part of the path. Both [2] and
the proposed method are affected similarly.

Robust solvers, such as the commonly used Random Sample
Consensus (RANSAC) [4], are typically implemented with a
kernel that uses the minimal amount of data to estimate trial
solutions in order to reduce the number of trials needed to
find the best solution. Based on the observations highlighted
in Figures 4 and 2, it is recommended that the kernel sample
size be increased. Even though this will result in the need for
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Fig. 3. Plot of the 90%, median and 10% quantiles of distortion coefficients
computed using 100 correspondences, plotted over increasing noise.
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Fig. 4. Plot of the 90%, median and 10% quantiles of distortion coefficients
computed using different numbers of correspondences. Both graphs show the
same data, each at a different scale.

more trials to be run, the increase in stability and decrease in
iteration count will increase the likelihood of finding a good
solution in reasonable time.

VII. REAL DATA

One application of simultaneously computing homographies
and lens distortion is in automatically undistorting images
taken by a rotating camera. Figure 5 shows some examples.
The undistorted images were computed using the following
process. Local features were extracted from a sequence of
images taken by a rotating camera. The Maximally Stable
Extremal Regions extractor [5] and the Scale Invariant Feature
Transform descriptor [6] were used to extract features. Fea-
tures were matched between consecutive frames using nearest
neighbour ratio matching [7]. The feature alignment and dense
feature extraction method of [8] is then used to get a large
set of highly accurate correspondences. A homography and
lens model is then computed using RANSAC for each pair of
consecutive images using the proposed method. The RANSAC
process uses 8 data points to generate solutions instead of the
minimum of 5. Though this increases the number of trials
required, it greatly increases the stability of solutions. The
median lens distortion value from all the estimates is used to
undistort the images.

It can be seen from Figure 5 that the distortion can be
recovered accurately without any prior knowledge of the
lens or camera. The single parameter model yields visually
satisfactory results, even for severely distorted images.



Fig. 5. Images distorted by real wide angle camera lenses (left) and automatically undistorted images (right).

VIII. CONCLUSION

This paper presents a detailed analysis of the performance of
algorithms that simultaneously compute multi-view geometry
and radial lens distortion using the division model for distor-
tion. Novel additions are made to the existing algorithms to
increase computational efficiency and accuracy. A new data
normalisation method is presented that is suitable for the
problem at hand and allows simple implementation.

It was found that the existing method for overconstrained
problems presented in [2] can be slow to converge and can take
an impractical number of iterations to reach a good solution
if the images are severely distorted. A method is proposed for
accelerating the convergence of the algorithm by predicting the
convergence point. Due to the linear nature of the convergence
path, this method is highly successful and reduces the required
number of iterations by as much as two orders of magnitude,
depending on the difficulty of the problem.

Detailed simulations show that the slow convergence of
the method of [2] leads to poor estimates of the distortion
parameter. The method for accelerating convergence proposed
in this paper not only reduces computation time, but also
improves the estimation accuracy and reduces sensitivity to
noise.

Simulation results demonstrate that the accuracy and conver-
gence speed improves dramatically as more correspondences
are included in the computation. It is recommended that
more than the minimal number of samples be used when
implementing this type of algorithm inside a robust estimation
system such as RANSAC.

An example application demonstrates how images taken

using a rotating camera can automatically be undistorted. The
results are visually pleasing and very accurate. These results
reaffirm that the single parameter division lens model can be a
sufficiently accurate model even when the distortion is severe.
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