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This paper formulates a node-based smoothed conforming point interpolation method (NS-CPIM) 
for solid mechanics. In the proposed NS-CPIM, the higher order conforming PIM shape functions 
(CPIM) have been constructed to produce a continuous and piecewise quadratic displacement field 
over the whole problem domain, whereby the smoothed strain field was obtained through smoothing 
operation over each smoothing domain associated with domain nodes. The smoothed Galerkin weak 
form was then developed to create the discretized system equations. Numerical studies have 
demonstrated the following good properties: NS-CPIM (1) can pass both standard and quadratic 
patch test; (2) provides an upper bound of strain energy; (3) avoid the volumetric locking; (4) 
provides the higher accuracy than those in the node-based smoothed schemes of the original PIMs. 
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1. Introduction 

Point interpolation method [Gu 2005; Liu and Gu 2001; Liu and Gu (2005); Liu (2009a)] 
is one of the meshfree methods [Belytschko et al. (1994); Liu (1995); Atluri and Zhu 
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(1998)], which numerical operations such as interpolation and integration are conducted 
based on nodes. The PIM possesses the following features: (1) shape functions using 
polynomial basis functions has at least linear terms and ensure that the PIM shape 
functions possess at least linearly consistency; (2) local supporting nodes selection based 
on triangular cells can overcome the singular moment matrix issue; (3) the shape 
functions are of the Delta function property, which facilitates easy implementation of 
essential boundary conditions; and (4) this set of shape functions are linearly independent 
and hence forms a basis for displacement field construction [Liu (2009a)].  

However, original higher order PIM shape functions are not compatible, and produce 
discontinuous displacement field when the support domain updated its nodes. In order to 
obtain a high accuracy solution using PIM, smoothed point interpolation methods 
(S-PIM) [Liu (2008); Liu (2009b)] that was generalized from the strain smoothing 
technique [Chen (2001)] are proposed in a framework of weakened weak (W2) 
formulation [Liu (2010a), Liu (2010b)]. S-PIM can guarantee the convergence and 
stability, and have been used in many fields of sciences and engineering.  

On the other hand, Xu and Liu et al. (2010) proposed a novel conforming point 
interpolation method (CPIM) for generating higher order PIM shape functions without 
using the strain smoothing techniques. A technique was developed to install the 
conformability by reconstructing the shape functions using the original PIM shape 
functions. A solution with very high accuracy and convergent rate has been obtained 
using the CPIM [Xu and Liu et al. (2010)].    

In this paper, by combining the W2 formulation and CPIM, we develop a node-based 
smoothing conforming PIM (NS-CPIM). It is the higher order models in the family of the 
S-PIM models. Intensive numerical examples will be presented to demonstrate the 
superior effectiveness of the NS-CPIM. 

2. CPIM shape functions 

In the original PIM, T-schemes are usually used for node selection [Liu and Zhang 
(2008)]. In the CPIM, problem domain is first discretized by a set of background 
triangular cells denoted as ( 1,2,..., )i i mΩ = , and the midpoints of the cell-edge are 

denoted as ( 1,2,..., )jq j I=  as shown in Fig. 1.  

The overall procedures of shape function construction in the CPIM are as follows: 
(1) The displacement at any point in a triangular cell is first approximated via the original 
PIM using T6/3-scheme. This obtained displacement is not continuous along the cell 
edge between two adjacent cells [Liu (2009a)]. (2) The displacements at the midpoints of 
cell-edges are assumed to be the simple average of that at midpoints on the interface edge 
connecting these two adjacent cells:  
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(3) Following the standard FEM procedure for the construction of the quadratic triangular 
elements [Zienkiewicz and Taylor (2000)], a quadratic displacement field in each of cell 
is reconstructed using three vertexes of a cell (as the true nodes) and the three midpoints 
of cell-edge (as the virtual nodes).  
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Fig. 1. Influence domain of an interested point in a background cell. 

Note that three vertexes of a triangular cell and midpoints of interface edge are 
respectively same in two adjacent cells. Therefore, when the quadratic interpolation is 
used, the displacement along interface edge becomes continuous in between two adjacent 
cells. Hence, we can always obtain a conforming and piecewise quadratic displacement 
field over the whole problem domain.  

The differences between in quadratic FEM and CPIM are: In a quadratic FEM, there 
are three real nodes at the midpoints of the element edges, and the interpolation operation 
is performed within each triangular element. In the CPIM, each midpoint on the 
cell-edges is only a virtual node, and the displacement in a cell is a linear combination of 
those six sets of the quadratic PIM shape functions involving real nodes beyond the cell 
in the middle as shown in Fig. 1. As a result, the CPIM selects a total of 12 support nodes 
for an internal cell shown in Fig. 1 for interpolation [Xu et al. (2010)].  

Using the CPIM shape functions, the displacement field can be approximated as 
follows. 
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is the matrix of the CPIM shape functions for node i .  
Because the CPIM shape functions are continuous over the problem domain, the 

compatible strain field can be obtained using  

 d
ˆ ˆˆ

e e

i i i i
i n i n∈ ∈

= ≡  ∑ ∑ε(x) L Φ (x) d B d  (6) 

3 Node-based smoothed CPIM (NS-CPIM) 

The present NS-CPIM uses the W2 formulation with node-based smoothing 
domains. A node-based smoothed strain is employed in place of compatible strain to 
construct the system equations. The smoothed strain associated with edge i is obtained 
using the following generalized smoothing operation 
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where ˆ( ) ( )= dε x L u xɶ  is the compatible strain, iΩ  represents the node-based 

smoothing domain, A  is the area of smoothing domain iΩ .  

The node-based smoothing domains are constructed by sequentially connecting the 
centroids with the mid-edge-points of the surrounding triangles of a node, as illustrated in 
Fig. 2.  
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Fig. 2. Triangular background cells and the node-based smoothed domains. 

Using the smoothed strain, the “smoothed” energy functional can now be defined as 12]:  
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which has exactly the same “form” as the standard Galerkin weak form. Thus, the 
formulation procedure is quite similar as that in the standard FEM and all we need to do 
is to use the node-based smoothed strain ε  in place of the compatible strain εɶ .  

The overall procedure of the presented methods is as follows. First, the 
displacement field is constructed by using the CPIM with T6/3 schemes. Then, the 



smoothed strains ε  are obtained using the method detailed in Section 2 and Section 3. 
Fnally, by substituting the assumed displacements and the smoothed strains into the 
generalized Galerkin weak form using functional defined in Eq. (8), a set of discretized 
algebraic system equations can be obtained in the matrix form 

 ˆˆ ˆKd = f , (9) 

Where 
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and K̂  is the stiffness matrix  
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It has been proven [Liu (2009a)] that the stiffness matrix K̂ obtained from CPIM is 
strictly symmetric positive definite, when the node-based smoothing domains are used. 

It is clear from this section that more nodes are participated in construction of shape 
functions in the present NS-CPIM. Such a “spread” interpolation, together with the 
softening effects of the smoothing operations, we shall be able to overcome the    
“overly-stiff” phenomenon of the standard FEM. The effectiveness of these operations 
will be examined in the following sections. 

4. Numerical examples 

In this section, a number of numerical examples will be presented to examine the 
NS-CPIM. To investigate quantitatively the numerical results, the error indicators in 
displacement norms is defined as follows, 
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where the superscript ref denotes the reference or analytical solution, num denotes a 
numerical solution obtained using a numerical method, iu denotes the nodal displacement 
solution, numU  is the total strain energy solution, and refU  is the reference or 
analytical  solution of the strain energy.  

4.1. Path test 

For a numerical method working for solid mechanics problems, the sufficient 
requirement for convergence is to pass the path test [Zienkiewicz and Taylor (2000)]. 
Therefore, the first example is the standard and quadratic path test using the present 
NS-CPIM. The following two cases are examined. Case 1 is the standard linear patch 
test, and case 2 is quadratic patch test. 



Case 1: A rectangular patch of 50× 10 is considered shown in Fig.3. The 
displacements are prescribed on all outside boundaries by the following linear function.  
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Fig. 3. Node distributions for the standard patch test. 

Case 2: A high-order patch of 3×6 (shown in Fig. 4) is considered for patch test. A 
linearly variable normal stress is applied on the right end. The exact solution for this 
problem should be 

 2 22 / 3, ( / 4) / 3x yu xy u x y= = − +  (14) 

It can be computed that the error dE  obtained using quadratic CPIM are less than 
141.0 10−×  in case 1 and less than 121.0 10−×  in Case 2, which verifies numerically that 

the NS-CPIM can pass the standard path test and quadratic patch test.  
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Fig.4 Nodal arrangement for high-order patch test 

4.2. Cantilever 2D beam 
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Fig. 5. A 2D cantilever solid subjected to a parabolic traction on the right edge 



A 2D cantilever beam with length 50mL =  and height 10mD =  is now studied. The 

solid is subjected to a parabolic traction at the right end as shown in Fig.5. Analytical 

solutions can be found in [Timoshenko and Goodier (1970)].   

Figure 6 show the convergence status of the strain energies against the increase of 
DOF for different numerical methods. The exact solution of the strain energy is 
calculated using the analytical solutions. It can be clearly observed the strain energies of 
FEM and CPIM always smaller than the exact solution; on the contrary, the strain 
energies of NS-PIM (T3) and NS-CPIM modes are larger than the exact solution. 
Furthermore, the NS-CPIM produces an upper bound solution with a higher accuracy 
than that in NS-PIM (T3). This example shows the very important fact that we now can 
bound tightly the exact solution from both sides using the NS-CPIM and CPIM.  
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Fig. 6 Solution bounds in energy norm for 2D beam; NS-CPIM produces a “tight” upper bound solution. 

4.3. Infinite 2D solid with a circular hole 

A benchmark problem of an infinite 2D solid with a central circular hole and subjected to 
a unidirectional tensile is studied (see Fig. 7).    
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Fig.7. Infinite 2D solid with a hole subjected to a tensile force and its quarter model. 

In a similar way to Section 4.2, the strain energies for different methods are 
computed and plotted in Figure 8. It is clear that NS-CPIM produces a very tight upper 



bound solution in strain energy, which indicates that NS-CPIM and CPIM can bound 
tightly the exact solution from both sides.  
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Fig. 8 Strain energy for 2D solid with a circular hole; NS-CPIM produces a “tight” upper bound solution. 

Now we consider the problem of nearly incompressible (Poisson's ratio approaching 
0.5) in plane strain case using this example. Fig. 9 shows the displacement error norm vs. 
different Poisson’s ratios for the FEM, NS-PIM (T3), CPIM and NS-CPIM. The results 
show that the FEM, and CPIM are clearly suffered from the volumetric locking. Both 
NS-PIM (T3) and NS-CPIM can obviously avoid the volumetric locking naturally; while 
NS-CPIM has the higher accuracy which is recommended for the problem of nearly 
incompressible by this paper. 
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Fig.9. Displacement error norm vs. different Poisson’s ratios 

4.4. An L-shaped Component 

An elastic L-shaped component subjected to a pressure load is shown in Fig.10.  Plane 
stress condition is assumed and the reference solution of strain energy is obtained using 
FEM with a very fine mesh. In a similar way to above Sections, the strain energies for 
different methods are computed and plotted in Figure 11. It is clear that NS-CPIM 



produces a very tight upper bound solution in strain energy, which indicates that 
NS-CPIM and CPIM can bound tightly the exact solution from both sides.  
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Fig.10. L-shaped plate 

0 150 300 450 600 750 900

5.00

5.10

5.20

5.30

5.40

5.50

S
tr

ai
n 

E
ne

rg
y

DOF

 NS-PIM (T3)  
 NS-CPIM 
 Ref.
 CPIM
 FEM (T3)

10-4

 
Fig. 11 Convergence in energy norm for L-shaped plate 

5. Conclusions 

In this work, we proposed a node-based smoothed CPIM (NS-CPIM) by the CPIM shape 
functions and a W2 formulation. A continuous displacement field in whole problem 
domain is constructed first; the node-based smoothed strain is then obtained using the 
strain smoothing technique. By substituting the assumed displacements and the smoothed 
strains into the generalized smoothed Galerkin weak form, a set of discretized system 
equations are achieved. The conforming displacement fields and the node-based 
smoothing operations guarantee the stability and convergence, while ensuring the 
softening-effect to the system. Theoretical analysis and intensive numerical studies lead 
to the following conclusions: (1) CPIM can pass both the standard patch test and 
quadratic patch test; (2) NS-CPIM provides a upper bound of strain energy with very 
high accuracy for any practical model with a reasonable number of nodes; (3) NS-CPIM 



can generally avoid the volumetric locking with a high accuracy, and is recommended for 
the nearly incompressible problems; (4) NS-CPIM is one of the higher order W2 model, 
which produces the solutions with high accuracy. 
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