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This paper formulates a node-based smoothed coimfgrpoint interpolation method (NS-CPIM)
for solid mechanics. In the proposed NS-CPIM, tlghér order conforming PIM shape functions
(CPIM) have been constructed to produce a contisiamd piecewise quadratic displacement field
over the whole problem domain, whereby the smoottiein field was obtained through smoothing
operation over each smoothing domain associatdddeinain nodes. The smoothed Galerkin weak
form was then developed to create the discretizedesy equations. Numerical studies have
demonstrated the following good properties: NS-CRIN can pass both standard and quadratic
patch test; (2) provides an upper bound of straiergy; (3) avoid the volumetric locking; (4)
provides the higher accuracy than those in the+baded smoothed schemes of the original PIMs.
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1. Introduction

Point interpolation method [Gu 2005; Liu and Gu 200iu and Gu (2005); Liu (2009a)]
is one of the meshfree methods [Belytsclgk@l. (1994); Liu (1995); Atluri and Zhu
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(1998)], which numerical operations such as intefjgan and integration are conducted
based on nodes. The PIM possesses the followirtgrésa (1) shape functions using

polynomial basis functions has at least linear tefand ensure that the PIM shape
functions possess at least linearly consistengytogal supporting nodes selection based
on triangular cells can overcome the singular mdmmeatrix issue; (3) the shape

functions are of the Delta function property, whittilitates easy implementation of

essential boundary conditions; and (4) this sethafpe functions are linearly independent
and hence forms a basis for displacement fieldtoaction [Liu (2009a)].

However, original higher order PIM shape functi@ans not compatible, and produce
discontinuous displacement field when the suppomain updated its nodes. In order to
obtain a high accuracy solution using PIM, smoothpmint interpolation methods
(S-PIM) [Liu (2008); Liu (2009b)] that was generdd from the strain smoothing
technique [Chen (2001)] are proposed in a framewofkweakened weak (%)
formulation [Liu (2010a), Liu (2010b)]. S-PIM caruarantee the convergence and
stability, and have been used in many fields afrspés and engineering.

On the other hand, Xu and Lit al. (2010) proposed a novel conforming point
interpolation method (CPIM) for generating higheder PIM shape functions without
using the strain smoothing techniques. A technigques developed to install the
conformability by reconstructing the shape funcsiomsing the original PIM shape
functions. A solution with very high accuracy andneergent rate has been obtained
using the CPIM [Xu and Liet al. (2010)].

In this paper, by combining the 3brmulation and CPIM, we develop a node-based
smoothing conforming PIM (NS-CPIM). It is the higherder models in the family of the
S-PIM models. Intensive numerical examples will ppesented to demonstrate the
superior effectiveness of the NS-CPIM.

2. CPIM shapefunctions

In the original PIM, T-schemes are usually used rfiode selection [Liu and Zhang
(2008)]. In the CPIM, problem domain is first distized by a set of background
triangular cells denoted a®; (i =1,2,...m), and the midpoints of the cell-edge are

denoted asq; (j =1,2,...] ) as shown in Fig. 1.

The overall procedures of shape function constucin the CPIM are as follows:
(1) The displacement at any point in a trianguklt is first approximated via the original
PIM using T6/3-scheme. This obtained displacemenat continuous along the cell
edge between two adjacent cells [Liu (2009a)].T(@¢ displacements at the midpoints of
cell-edges are assumed to be the simple averatatoit midpoints on the interface edge
connecting these two adjacent cells:
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(3) Following the standard FEM procedure for thastouction of the quadratic triangular
elements [Zienkiewicz and Taylor (2000)], a quaidrdisplacement field in each of cell
is reconstructed using three vertexes of a celti{@grue nodes) and the three midpoints
of cell-edge (as the virtual nodes).

B Interested point4 Support points for T3-scheme
A @ Support points for T6/3-scheme
A= ¢ Support points in the CPIM

Fig. 1. Influence domain of an interested poira inackground cell.

Note that three vertexes of a triangular cell andpamints of interface edge are
respectively same in two adjacent cells. Therefadeen the quadratic interpolation is
used, the displacement along interface edge becoomuous in between two adjacent
cells. Hence, we can always obtain a conforming pirdewise quadratic displacement
field over the whole problem domain.

The differences between in quadratic FEM and CPi&/4 b a quadratic FEM, there
are three real nodes at the midpoints of the el¢edges, and the interpolation operation
is performed within each triangular element. In {G8IM, each midpoint on the
cell-edges is only a virtual node, and the disptamet in a cell is a linear combination of
those six sets of the quadratic PIM shape functiowslving real nodes beyond the cell
in the middle as shown in Fig. 1. As a result, @M selects a total of 12 support nodes
for an internal cell shown in Fig. 1 for interpadat [Xu et al. (2010)].

Using the CPIM shape functions, the displacemesit fcan be approximated as
follows.

0 = Y, @;(d, (@)
i0n,
where n,is the set of nodes in the support domain contgirnin ai is the vector of
nodal displacements and
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is the matrix of the CPIM shape functions for node
Because the CPIM shape functions are continuoustbgeroblem domain, the
compatible strain field can be obtained using

39 =Y Ly[®,(]d =Y B, (6)

i0ng idn,

3 Node-based smoothed CPIM (NS-CPIM)

The present NS-CPIM uses the?Vformulation with node-based smoothing
domains. A node-based smoothed strain is employeplace of compatible strain to
construct the system equations. The smoothed sissiaciated with edgeis obtained
using the following generalized smoothing operation

T= %\ j o, EAE (7

where &(x) =L40(x) is the compatible strain,Q; represents the node-based
smoothing domain,A is the area of smoothing domai; .

The node-based smoothing domains are constructesg:dpyentially connecting the
centroids with the mid-edge-points of the surrongdriangles of a node, as illustrated in
Fig. 2.

% Node-based smoothed domains

Fig. 2. Triangular background cells and the nodeedamoothed domains.
Using the smoothed strain, the “smoothed” energgtional can now be defined as 12]:

ﬁ(v):ZN:[%J.QETDEdQ—IQVTb olQ—jr VTTdF} (8)
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which has exactly the same “form” as the standasede®in weak form. Thus, the
formulation procedure is quite similar as thathe standard FEM and all we need to do
is to use the node-based smoothed strairin place of the compatible straié.

The overall procedure of the presented methods sisfalows. First, the
displacement field is constructed by using the CRildh T6/3 schemes. Then, the



smoothed strainse are obtained using the method detailed in Se@iand Section 3.
Fnally, by substituting the assumed displacements the smoothed strains into the
generalized Galerkin weak form using functionalinkd in Eq. (8), a set of discretized
algebraic system equations can be obtained in #igxiorm

Kd=f, 9)
Where
f=- , ®'bda+ [ _o'Td, (10)
and K is the stiffness matrix
Kj =D ki = Zjﬁ B/ DB,dQ, (11)
Qe Qe

It has been proven [Liu (2009a)] that the stiffn@satrix K obtained from CPIM is
strictly symmetric positive definite, when the node-basedathing domains are used.

It is clear from this section that more nodes asigipated in construction of shape
functions in the present NS-CPIM. Such a “spreatterpolation, together with the
softening effects of the smoothing operations, vmallsbe able to overcome the
“overly-stiff’ phenomenon of the standard FEM. Téiectiveness of these operations
will be examined in the following sections.

4. Numerical examples

In this section, a number of numerical exampled W# presented to examine the
NS-CPIM. To investigate quantitatively the numekricasults, the error indicators in
displacement norms is defined as follows,

Zinzl(uiref —ui”:m)z
2w

where the superscripef denotes the reference or analytical solutioumn denotes a
numerical solution obtained using a numerical methpdenotes the nodal displacement
solution, U, is the total strain energy solution, ard,y is the reference or
analytical solution of the strain energy.

12)
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4.1. Path test

For a numerical method working for solid mechanigoblems, the sufficient
requirement for convergence is to pass the path[Zé&snkiewicz and Taylor (2000)].
Therefore, the first example is the standard anadratic path test using the present
NS-CPIM. The following two cases are examined. Chde the standard linear patch
test, and case 2 is quadratic patch test.



Case 1: A rectangular patch of 80 is considered shown in Fig.3. The
displacements are prescribed on all outside boigglhy the following linear function.

u, =0.6x
0.6 (13)
u, =0.
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Fig. 3. Node distributions for the standard patt.t

Case 2: A high-order patch of 3x6 (shown in Figis4onsidered for patch test. A
linearly variable normal stress is applied on igatrend. The exact solution for this
problem should be

U, =2xy/3,u, =~ +y? /4)/3 (14)

It can be computed that the errd; obtained using quadratic CPIM are less than
1.0x10* in case 1 and less thah0x 10%? in Case 2, which verifies numerically that
the NS-CPIM can pass the standard path test ardtafi@patch test.

Fig.4 Nodal arrangement for high-order patch test

4.2. Cantilever 2D beam
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o

Fig. 5. A 2D cantilever solid subjected to a pattoaction on the right edge



A 2D cantilever beam with length=50m and height D =10m is now studied. The
solid is subjected to a parabolic traction at ightrend as shown in Fig.5. Analytical
solutions can be found in [Timoshenko and Goodié()].

Figure 6 show the convergence status of the stmérgies against the increase of
DOF for different numerical methods. The exact 8otu of the strain energy is
calculated using the analytical solutions. It canclearly observed the strain energies of
FEM and CPIM always smaller than the exact solytion the contrary, the strain
energies of NS-PIM (T3) and NS-CPIM modes are lard@n the exact solution.
Furthermore, the NS-CPIM produces an upper boumdatisp with a higher accuracy
than that in NS-PIM (T3). This example shows theyvienportant fact that we now can
boundtightly the exact solution from both sides using the NSMC&énd CPIM.
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Fig. 6 Solution bounds in energy norm for 2D be&i8:CPIM produces a “tight” upper bound solution.

4.3. Infinite 2D solid with a circular hole

A benchmark problem of an infinite 2D solid witltentral circular hole and subjected to
a unidirectional tensile is studied (see Fig. 7).
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Fig.7. Infinite 2D solid with a hole subjected tteasile force and its quarter model.

In a similar way to Section 4.2, the strain enesgfer different methods are
computed and plotted in Figure 8. It is clear tR&CPIM produces a very tight upper



bound solution in strain energy, which indicateattNS-CPIM and CPIM can bound
tightly the exact solution from both sides.
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Fig. 8 Strain energy for 2D solid with a circulailés NS-CPIM produces a “tight” upper bound solntio

Now we consider the problem of nearly incompress{Ploisson's ratio approaching
0.5) in plane strain case using this example. &ighows the displacement error norm vs.
different Poisson’s ratios for the FEM, NS-PIM (T®PIM and NS-CPIM. The results
show that the FEM, and CPIM are clearly sufferemhfrthe volumetric locking. Both
NS-PIM (T3) and NS-CPIM can obviously avoid theumktric locking naturally; while
NS-CPIM has the higher accuracy which is recommeénide the problem of nearly
incompressible by this paper.
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Fig.9. Displacement error norm vs. different Pamssaatios

4.4. An L-shaped Component

An elastic L-shaped component subjected to a predead is shown in Fig.10. Plane
stress condition is assumed and the referencei@olof strain energy is obtained using
FEM with a very fine mesh. In a similar way to abdSections, the strain energies for
different methods are computed and plotted in FEgut. It is clear that NS-CPIM



produces a very tight upper bound solution in stranergy, which indicates that
NS-CPIM and CPIM can bourtthhtly the exact solution from both sides.
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Fig.10. L-shaped plate
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Fig. 11 Convergence in energy norm for L-shapetepla

5. Conclusions

In this work, we proposed a node-based smootheMGRB-CPIM) by the CPIM shape
functions and a W2 formulation. A continuous disglaent field in whole problem
domain is constructed first; the node-based smdostiin is then obtained using the
strain smoothing technique. By substituting theuas=d displacements and the smoothed
strains into the generalized smoothed Galerkin weain, a set of discretized system
equations are achieved. The conforming displacenfesdls and the node-based
smoothing operations guarantee the stability andvexence, while ensuring the
softening-effect to the system. Theoretical analgsid intensive numerical studies lead
to the following conclusions: (1) CPIM can passhbdhe standard patch test and
quadratic patch test; (2) NS-CPIM provides a uppaund of strain energy with very
high accuracy for any practical model with a reatde@ number of nodes; (3) NS-CPIM



can generally avoid the volumetric locking withigthaccuracy, and is recommended for
the nearly incompressible problems; (4) NS-CPIMng of the higher order W2 model,
which produces the solutions with high accuracy.
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