
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Fitz-Walter, Zachary, Jones, Samuel, & Tjondronegoro, Dian W. (2008)
Detecting gesture force peaks for intuitive interaction. In IE ’08 Pro-
ceedings of the 5th Australasian Conference on Interactive Entertainment,
ACM, Brisbane, Australia.

This file was downloaded from: http://eprints.qut.edu.au/46733/

c© Copyright 2008 ACM

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10907811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Fitz-Walter,_Zachary.html
http://eprints.qut.edu.au/view/person/Jones,_Samuel.html
http://eprints.qut.edu.au/view/person/Tjondronegoro,_Dian.html
http://eprints.qut.edu.au/46733/

Detecting Gesture Force Peaks for Intuitive Interaction

Zachary Fitz-Walter
Queensland University of Technology

z.fitzwalter@gmail.com

Samuel Jones
Queensland University of Technology

sam@visualeyes.net.au

Dian Tjondronegoro

Queensland University of Technology
dian@qut.edu.au

ABSTRACT
With the release of the Nintendo Wii in 2006, the use of haptic
force gestures has become a very popular form of input for
interactive entertainment. However, current gesture recognition
techniques utilised in Nintendo Wii games fall prey to a lack of
control when it comes to recognising simple gestures. This paper
presents a simple gesture recognition technique called Peak
Testing which gives greater control over gesture interaction. This
recognition technique locates force peaks in continuous force data
(provided by a gesture device such as the Wiimote) and then
cancels any peaks which are not meant for input. Peak Testing is
therefore technically able to identify movements in any direction.
This paper applies this recognition technique to control virtual
instruments and investigates how users respond to this interaction.
The technique is then explored as the basis for a robust way to
navigate menus with a simple flick of the wrist. We propose that
this flick-form of interaction could be a very intuitive way to
navigate Nintendo Wii menus instead of the current pointer
techniques implemented.

General Terms
Algorithms, Measurement, Performance, Design, Human Factors

Keywords
Gestures, Gesture Recognition, Games, Interaction, Nintendo,
Wii, Wiimote, Accelerometer, Navigation

1. INTRODUCTION
Gesture interaction for games has taken off with the release of the
Nintendo Wii video game console in 2006 [11]. The Nintendo Wii
supports gestures as a form of input through the inclusion of an
accelerometer in each Nintendo Wii game controller, or Wiimote.
As opposed to a button press, the Wii’s gestural controller allows
specific physical movements to directly correspond to a control.
For example, holding and swinging the controller like a sword
triggers the game character to swing his sword. Holding the
controller horizontally and turning it like a steering wheel can turn
the wheels of a virtual car. The controller can also be used as an
extension of the body, where users hold the controller in their
hand and run in the game by simply running on the spot in real
life. These new controls open a whole new world whereby
physical actions that players make can be emulated more
intuitively and naturally in the game. When the gesture

recognition is executed effectively, gesture input could make for a
very realistic experience for the player.

Current gesture recognition techniques used in Wii Games involve
the use of raw force data from a gesture device to calculate tilt,
rotation and amplitude of the controller as triggers for input.
These techniques are mostly non-directional with an inability to
discern between any intended and unintended peaks of force made
by the player. When a force gesture is made, such as a swinging
the Wiimote like a tennis racket there is a peak of force in a
direction intended by the user to trigger an action, we call this an
intended peak of force. However when this gesture comes to a
stop there is peak of force in the opposite direction caused by the
deceleration of the Wiimote, we call this a rebound peak. Most
games on the Wii cannot determine which of these force peaks are
meant as input, so rebound peaks can trigger actions in any games
that utlise this type of recognition. This occurs in games such as
the very popular Zelda Twilight Princess and Wii Sports, both
released by Nintendo in 2006.
This paper presents a new gesture recognition technique which
adds a level of recognition to force gestures made in order to
locate when the peaks in the force occur. Once these peaks have
been recognised they can be used to calculate intended peaks of
force and cancel the effects of rebound force peaks.
This technique was discovered when we explored a simple way to
play virtual instruments using force triggers instead of advanced
gesture recognition. Without peak recognition, using only force
amplitude would repeatedly play the instrument sounds until the
force fell below the trigger force. However, we recognised when
the peaks in force occurred and this allowed us to set up triggers
for each gesture so we could emulate a guitar strum or drum hit to
play a sound. However, using this technique meant that only one
direction on each axis could be utilised as input. A gesture in the
opposite direction would create the rebound peak that would
trigger the sound meant for the original gesture. To fix this issue
we devised a recognition technique that allowed us to utilise any
direction of the axes as input. This is explored in detail later in the
paper.
We then investigated this technique and discovered it could
provide the grounding as a robust and intuitive way to interact
with menus. We focused on using peak recognition in determining
directional flicks of the Wiimote to navigate simple generic 2D
menu grids commonly used for main menus, text input and option
selection in video games. Based on a user evaluation, we found
that the current pointer technique employed on the Nintendo Wii
can be slow and has usability issues that encompass namely
speed, accuracy and screen real estate. Gesture flicks for
navigation have the potential to overcome a number of these
issues through careful implementation and interface design. With

a focus on the key design principles of simplicity and intuition
this paper will explore the potential of utilising simple gestures
instead of pointer devices such as the IR camera on Wiimote.

2. GESTURE RECOGNITION
2.1 Overview and Brief Background
Biologists broadly define the term "gesture" as all kinds of
instances where an individual engages in movements whose
communicative intent is paramount, manifested, and openly
acknowledged [10]. According to a case study of gestures by
Mitra and Acharya [8] gestures are expressive movements with
the intent of conveying meaningful information and interacting
with the environment. A system that can recognise these gestures
and process them as input is a gesture recognition system.
Popular gestures for physical human computer interaction include
body, head and facial and hand and arm gestures [7].

2.2 Recognition Techniques
A number of different techniques are available to measure
accelerometer based force input received from a handheld gesture
device such as the Nintendo Wiimote.
The Wiimote is a cost effective gesture handheld device which
extends the body to measure hand and arm gestures. An
accelerometer inside the Wiimote measures force values acting on
the different axes and in turn, these values provide the basis for
computer gesture input and recognition.

Figure 1. Wiimote displaying different axes and rotations of

the accelerometer [15].
According to Mäntyjärvi et al [7] gesture recognition techniques
can be separated into three types: 1) Measure and Control, 2)
Discrete Gesture Command, and 3) Continuous Gesture
Command. Measure and Control is a simple recognition technique
which has the lowest complexity. It uses direct measurement of
tilting, rotation or amplitude of a gesture device as input. Discrete
and continuous gesture command techniques are executed based
on the hand movement recognised by the machine and allow for
complex gestures to be recognised. With discrete gesture
command the start and stop of a gesture needs to be defined,
usually with the press and hold of a button while the gesture is
carried out. Continuous gesture recognition is instead carried out
on a continuous flow of hand force input in real time and is the
most complex of the three.
It seems that Mäntyjärvi et al [7] have not considered direct
measurement and control systems as gesture recognition systems

because generally the operating principle of this technique is to
map directly to the control the measurement of tilt, rotation or
amplitude. However we hypothesise that this is not entirely true,
as the act of defining limits reached by a force amplitude trigger
input constitutes basic recognition in itself. For example, when
playing Wii Tennis a force two times greater than gravity needs to
be recognised to swing your tennis racket in the game. This
concept of recognising force peaks as triggers is the basis of our
peak recognition technique.

3. RELATED WORK
There seems to be a current trend to use the measure and control
of gestures as input over complex recognition techniques. Not
only do games on the Nintendo Wii console use simple gestures
for interaction but other research has explored the use of simple
gestures to control games on mobile devices [6].
This trend could be due to a number of facts. First, measure and
control recognition is the simplest recognition type to implement.
Advanced recognition techniques require the use of a statistical
model or an AI system to recognise gestures, whereas simple
gestures using measure and control simply require force triggers.
Secondly, advanced gesture recognition requires each gesture to
be trained [4] and needs to be calibrated to the users’ individual
gesture variations. Even after all the gestures are trained, there is
still the issue of accuracy which all gesture recognition systems
face [14].
Previous research into gesture recognition has generally focused
more on technical aspects: improving the accuracy and speed of
advanced recognition techniques. Advanced gesture recognition
has been explored using the Wiimote, with research focusing on
the application of an advanced gesture recognition system for the
device [14]. However, there has been little study into the
usefulness of recognising simple measure and control gestures.
Linjama and Kaaresoja [6] have explored the use of simple
gestures to control games on mobile devices. Their research
entails the use of an accelerometer in a mobile phone where they
focused on exploring simple, haptic interaction suitable for mobile
devices. While the focus of their research is on the use simplistic
gestures in a mobile context, our research instead looks at the use
of simple gestures in home interactive entertainment, such as the
Wii.

4. PEAK RECOGNITION
4.1 Limitations of Measure and Control
Simple gestures have provided just enough control that most basic
video game interaction need. The tilt on the Wiimote has been
used to control the steering in Mario Kart Wii released by
Nintendo in 2008. The rotation of the Wiimote has been used to
emulate a key turn in Zack and Wiki released by Capcom in 2007
and force amplitude was used to imitate hitting a tennis ball with a
racket in Wii Sports.
However there are limitations with this interaction, one in
particular is the inability to discern between intended and
unintended force peaks. We refer to a force peak as a spike in the
amplitude of a gesture device caused when force is applied to one
or more of the devices’ axes. A gesture such as imitating a tennis
swing can cause such a force peak. Currently force amplitude is
utilised in many games as control input where the user has to
apply a certain amount of force in a certain direction to trigger an
action. As an example, the Wii game Zelda: Twilight Princess,
requires the player to apply a certain force on the Z axis of the

controller in order to activate the character’s shield. When this
gesture is performed a spike in force on the Z axis is recorded
with a peak in the force appearing when the gesture is made. This
is the intended peak, as it is made by the gesture intended to
trigger an action.
 However when a peak like this is made there is always a rebound
peak in the opposite direction when the user stops making the
gesture. This is the rebound or unintended peak.

Figure 2. Force input from an accelerometer showing six

peaks of force on the Z axis, each intended peak has a
rebound peak in the opposite direction (G Force vs. Time).

This means that in Zelda the shield can be triggered by the
rebound peak if the player performs a gesture in the opposite
direction. The action will trigger if the rebound peak has a force
that is greater or equal to the force required to trigger this action,
which is usually the case as shown in figure 2.
This not only breaks the realistic experience of using gestures but
one of the biggest drawbacks is the inability to utilise the opposite
force direction as input. Both rebound peaks would trigger
opposite actions. This means that the use of simple gestures is
limited when compared to advanced gesture recognition, that is,
unless some basic recognition is applied to it. Our research has led
to the development of a simple recognition algorithm that locates
the force peaks as they occur and then identifies if they are
intended or rebound peaks.

4.2 Peak Testing
Peak testing is at its simplest, an extension of the measure and
control interface type. It adds basic recognition to calculate the
amplitude force fluctuations that are evident in a continuous
stream of accelerometer data from a gesture device.
When designing input we identify different peak fluctuations to
coincide with a user’s intention to commit an action. For each axis
of an accelerometer, X, Y and Z, we can determine whether the
user moved the Wiimote in a positive or negative direction.
Therefore we can recognise a left, right, up or down movement by
measuring the range of data for positive and negative peaks.
This process records and samples numeric force amplitude data
and evaluates when the minimum and maximum values, or peaks,
have occurred. This technique is based on interpreting a peak in
force values by comparing force values to an average resting
position of the handheld gesture device. Normally, a value of zero
on all axes would be assumed as the resting value of a gesture

device that the user is holding in an idle or non-active position.
However, one or more of the axes will always be affected by
gravity. Therefore, the average resting force is calculated from the
continuous force data streaming from the Wiimote in order to
obtain an average resting value at any given point of time. In this
way gravity is always taken into account when calculating force
peaks.

Figure 3. Force acting upon Wiimote at rest with the Z-Axis

being affected by gravity (G Force vs. Time).
With this information the average resting position of the Wiimote
is calculated and then the start and end of a motion is determined
by the rise or fall of values from the average resting position.
Continuous data can then be segmented when the force passes a
trigger value and then returns once again to the average resting
position. This segmented data provides peaks that can be used to
set off actions which can be customised by defining the amount of
force required to trigger it.
This simple process can be applied to the Wiimote, or any other
device that utilises an accelerometer, to give us the ability to
recognise hand flicks made with the controller in any direction.
This makes this process the perfect way to interact with a number
of different applications.

4.3 Implementing Gesture Instruments
Peak testing was first implemented in an application that allows
users to play sounds using Wiimote peak gestures. In this way
virtual instruments could be created that are controlled by realistic
gestures rather than button presses.
The virtual guitar and drum demonstration we created, named Wii
Jam, allows for the composition of rock style music to be made
with realistic gestures such as strumming and drumming. Many
popular music games such as the Guitar Hero series released by
Activision and the Rock Band series released by MTV Games,
constrict the player to following pre-recorded songs using realistic
physical controllers. There are games such as Jam Sessions
released by Ubisoft in 2007 on the handheld console, the
Nintendo DS, which allow for music composition however there
are few mainstream games that let you compose your own music
using realistic actions. This mainstream composition was the
driving force behind the development of the Wii Jam application.
Peak gestures provided an intuitive way for virtual instruments to
be controlled. In the first version, Wii Jam supported two
instruments – the Guitar and the Drum. The guitar was controlled
by strumming the Wiimote in a way which emulated the
strumming of a real guitar. When a strum produced a force peak

over the trigger force value a guitar chord was played. The drums
utilised two Wiimotes and when held like drumsticks and swung
to produce force peaks, drum sounds played.

Figure 4. Wii Jam - virtual instruments using force gestures

To trigger a predetermined sound we simply defined a gesture
which translates to a specific axis force peak. For example, the
drums used peak testing to recognise when a negative force on the
X axis occurred, as this provided a similar gesture to that of
hitting a snare drum.

4.4 Peak Gestures in Menu Interaction
After implementing Wii Jam successfully using peak testing, we
discovered that this same technique could lead to a novel way to
navigate basic menus. We believe that current pointer techniques
employed using the Wiimote infrared camera tend to be slow and
subject to usability issues which include slow item selection speed
and lack of screen real estate.
The alphabet selection screen in particular on the Nintendo Wii
Internet Browser requires precise pointing and a stable hand to
select the individual letters for input. From experience, pointing
with the Wiimote can become tiresome when long input is
required, such as the entering of web addresses.

Figure 5. Character input screen for Opera browser on the

Nintendo Wii [11].
Recognising hand flicks on a two dimensional plane could
provide an alternative to using the pointer technology. When
combined with an efficient keyboard layout this technique could
provide an experience that is not only more comfortable and
accurate, but also quicker. We discovered that wrist flick
recognition could be implemented using peak testing where
navigating a two dimensional grid menu would require a flick
from the Wiimote in either an up, down, left or right direction.
The benefits of using gesture flicks over pointers encompass a

greater use of screen real estate, accuracy and speed. Interaction is
the same wherever the menu is placed on the screen, accuracy is
the same for whatever sized menu items are used and menu access
is reduced from a two step point and click to a one step flick.
With pointing devices, speed and accuracy depends on a number
of factors that include button size, distance and placement. Fitts’
law provides an excellent can be applied to computer interface
design as it predicts human movement and motion based on time
and distance [1]. Fitts’ law still applies to gesture flicks but in a
slightly varied way. The distance and size of menu items does not
affect the accuracy or speed of the gesture flicks like it does
pointing devices. Instead, speed is based on the user’s reaction
time while accuracy depends on how precisely the gesture is
executed and recognised.
Therefore, to outperform current pointer techniques, the focus of
gesture flicks is to correctly interpret what gesture the user intends
to make, as well as designing an intuitive interface that
encourages quick user response.
The QWERTY keyboard layout illustrated in figure 5 is not a
feasible layout for gesture flicks, as to get from letter Q to letter M
would take at least 9 flicks. Instead gesture flicks could work
better on a circular menu made for a movement in any direction
on a two-dimensional plane. For example a modified T9 layout
that is employed for mobile phone users [13] with predictive text
could work successfully. Using a layout like this, a quick flick in
the desired direction with the Wiimote is all that is needed to
select a letter rather than pointing at the character and then
pressing a button to select it.

Figure 6. A proposed layout for quick text input using gesture

flicks. Inspired by the T9 predictive text layout for mobile
phones [13].

Figure 7. Flicking the Wiimote to the right would choose the

“mno” selection.
The third axis could even be utilised for players to push and pull
through three dimensional menus. As force flicks could
theoretically be detected in any direction this opens up a world of
possibilities for interaction.

5. DETECTING GESTURE PEAKS
5.1 Calculating peaks
To make use of the Wiimote’s internal accelerometer in
application interfaces we must analyse and calculate the
significance of fluctuations evident in a continuous stream of
accelerometer data.
The peaks of these fluctuations coincide with a user’s intention to
commit an action. For each axis of an accelerometer, X, Y and Z,
we can determine if the user moved the Wiimote in a positive or
negative direction. This can then be interpreted as a left, right, up
or down movement by measuring the range of data for positive
and negative peaks. The programmatic steps for calculating
positive and negative peaks are shown in figure 8.

Figure 8. Peak Testing Pseudo Code

To measure the range of data for positive and negative peaks we
must first record sets of historical data. Each set of data must be
short enough to be parsed immediately in order to provide real
time input of each gesture performed. Therefore, we must decide
when the user started and stopped their motion for each axis.
To evaluate when the user has started and stopped a motion we
need to find the resting position of the gesture device held by the
user. When we consider the data ascertained from the Wiimote we
find that each value in the dataset lies between a certain force
range which can be positive or negative depending on the axis.
Therefore, a value that resides in the middle of the range could be

a marked as a suitable resting position of the Wiimote. Normally a
value of zero would then be assumed to be a point where the user
is in an idle or non-active position. This is true only when the axis
being analysed is not lying parallel to the Earth’s surface and the
user’s velocity in that direction was at zero to begin with.
With this information we can calculate the average resting
position of the Wiimote. We can then determine the start and end
of a motion by the rise or fall of force values from the average
resting position. After establishing how to segment this
continuous data earlier, we can see that determining peak values is
a very simple process.

5.2 Cancelling Rebound Peaks
By using peak testing we can discern between intended and
unintended force gestures made by the user. This gives us a robust
recognition system that can identify in which direction the
Wiimote is being moved by cancelling any unintended peaks that
would trigger input. One of these unintended peaks would be a
rebound force peak made by a gesture on the opposite axis.
To cancel the rebound peak the recognition system simply infers
that a rebound peak will arrive in an expected time after an
intended peak is made. In this way it ignores the next peak in this
given time slot. If this rebound peak doesn’t arrive within the time
it is assumed that a rebound peak did not occur and therefore it is
not necessary to cancel the next peak.

5.3 Defining Peak Testing
In a publication on gesture interaction, Mäntyjärvi et al [7] define
a table of gesture recognition types. In a way, Peak Recognition is
an extension of Measure & Control and could be inserted into the
table in the following way.

Table 1. Gesture recognition properties of movement sensor
based user interfaces, updated to include Peak Testing

Interface
type

Operating
principle

Customisation Complexity

1. Measure &
control

Direct
measurement of

tilting, rotation, or
amplitude

- Very low

2. Peak
Testing

Peak recognition
of amplitude
with rebound

peak
cancellation

Limited
Customisation

Low

2. Discrete
gesture

command

Gesture
recognition

Machine learning,
freely

customisable

High

3. Continuous
gesture

command

Continuous
gesture

recognition

Machine learning,
freely

customisable

Very high

Peak Testing can be seen as providing a stronger link between the
basic measure and control technique and the more advanced
gesture recognition techniques. It provides more customisation
than measure and control in than the way that it can discern
between intended and rebound force gestures. Also, the
complexity of this technique is kept relatively simple thanks to its
straightforward algorithm.

add current force to history
if current force is equal to or very close to the
avg resting value (we’re resting or movement has
ended)
 attempt to find peaks
 clear history
else
 reset peaks (movement in progress, no valid
peaks)
if history length is long enough
 calculate average resting position

6. EVALUATION
To evaluate the possibilities of this technique, two simple tests
were developed that explored the feasibility, usability and
technical aspects involved with implementing this recognition
technique. The first test used Wii Jam to explore how users
responded to interacting with peak testing and to see if it provided
an engaging system of control. The second test explored the
advantages and disadvantages of using peak testing to navigate a
basic menu and to see how it could be compared to the current
pointing techniques used on the Nintendo Wii.

6.1 General Respondent Information
The Nintendo Wii is marketed towards an expanded audience
with the official web site stating that the Wii “gives parents and
grandparents a chance to play games with their children” and “it
gives gamers and traditional non-gamers a chance to share the
same experiences in this new generation of gaming” [12]. In this
way the sample of twelve users who participated in both tests had
ages that ranged between 14 and 86 years. Of the twelve only one
had never used a Nintendo Wiimote before and only three of the
twelve actually owned a Nintendo Wii console. More than half of
those who didn’t own a Wii spent at least one to five hours
playing video games every week.
The participants’ favourite games were noted to include Mario
Kart Wii, Zelda Twilight Princess, Guitar Hero III and Super
Smash Bros Brawl. All of these games, except for one, utilise
simple force amplitude measurement as a form of input for
control.

6.2 Wii Jam Test
6.2.1 Outline
In this first test participants experimented with the two virtual
instruments implemented in Wii Jam using peak testing. The first
instrument, a virtual guitar, required a two stage process of
playing a sound. First the users picked a chord using the joystick
and then made a strumming gesture with the controller to trigger
the sound. The drums on the other hand were simply triggered
with a drum-hitting gesture. The aim of this test was to introduce
the users to peak testing and record their initial response to the
interaction method. The secondary purpose was to record a
response comparing the one step gesture required to trigger the
drum to the two step gesture required for the guitar.

6.2.2 Results
After testing the virtual guitar and drums participants were asked
to scale both instruments against three factors for a basic
response. These included whether the virtual instruments were
easy to use, whether the interaction was engaging and realistic and
if interaction was enjoyable. All but one respondent strongly
agreed or agreed that both the guitar and drums were easy to use,
engaging and fun.

Figure 9. Comparison of guitar usability results.

Figure 10. Comparison of drum usability results.

When the two instruments were compared to each other, the
drums rated higher than the guitar in each area. Based on
observations, we are led to believe that this occurred because the
drum interaction was simpler to that required by the guitar.

6.3 Menu Test
6.3.1 Outline
The second test utilised peak testing with some rebound peak
cancellation to investigate accuracy and speed of navigating a
basic two item menu with gesture flicks and a pointing device.
The purpose of this test was to investigate if initial results seemed
positive for further investigation into providing a better alternative
to the current pointer implementation found on the Nintendo Wii.
This test’s design draws from a web based test of Fitts’ law [5]
that presents two different coloured menu items to the user and
requires them to click on one of them. Each time the size and
distance of the items changes in order to see how these aspects
affect the accuracy and speed of the user. In a similar way our test
employed two different coloured menu items that changed in size
and distance after each correct selection. As the method for
cancelling rebound peaks was still being developed, the menu was
limited to two items which required either a left or right flick to be
activated with gestures.

Figure 11. Gesture flick user test instructions.

The pointer part of the test was completed using the Wiimote’s
inbuilt infrared camera as a pointer, like in current Wii games.
For both gesture flicks and pointing, a total of ten menu selections
had to be completed by each participant with the best of three
attempts by each participant recorded. With each correct selection,
the menu layout would change with the menu items scaling and
moving away from each other. The participant’s overall selection
time and accuracy was recorded.

6.3.2 Results
It was found that generally participants completed the menu test a
little faster with gesture flicks than with pointing.

Figure 12. Comparison of test completion time in seconds.

On average with the two item menu, selection speed with gesture
flicks was 2.48 seconds faster than pointing selection. Gesture
flick accuracy was slightly higher than pointing accuracy where
participants missed on average 0.75 menu items out of ten items
with gesture flicks. With pointing an average of 0.92 menu items
were missed. This gave gesture flicks an accuracy of 92.50%
while pointing had only a marginally lower accuracy of 90.08%.
When asked after the experiment which interaction was the
preferred, mostly participants chose gestures over pointing to
navigate the menu items. All but one participant said they would
prefer gestures over pointing if it could be made more accurate.

Overall we found that gesture flicks performed well in all areas
for basic menu navigation. We believe these results are a positive
start and provide encouragement to further explore the use of
directional gesture flicks for interacting with menus.

7. CONCLUSION
Gesture input on the Nintendo Wii has provided a very different
approach in the way games can be controlled. Our exploration
into using force gestures to emulate instruments can be seen as
having positive results from the test participants, with most
agreeing that they were easy to use, realistic and enjoyable.
The peak testing method shows promise in providing an intuitive
recognition technique that allows for greater customisation of
input from gesture devices. The greatest advantage of our
proposed technique is the ability to pick up intended force input in
any direction and cancel rebound peaks. This technique is simple
and we urge its application in future games to make for a more
realistic experience where unintended rebound peaks have no
affect on the interaction.
We found that our proposed technique also lends itself to
becoming a very robust and intuitive way to navigate selection
menus as shown in the tests.

7.1 Future Work
Future work would look to refine the recognition technique and
test the boundaries of gesture flicks, looking to determine the
optimal number of menu items that could be accessed in a circular
menu. Wii Jam could also be explored further, with ambitions to
port it across to the Wii itself now that Nintendo have opened a
small developer’s channel.

8. ACKNOWLEDGEMENTS
We would like to acknowledge the other fantastic Wii Jam group
members; Peter Riesz and Craig Stewart as well as Dr. Margot
Brereton for her support and input to the project.

9. REFERENCES
[1] Amento, B., Brooks, P., Harley, H., & McGee, M. (1996)

Fitts’ Law. Available from:
http://ei.cs.vt.edu/~cs5724/g1/#summary. Accessed 1 July,
2008.

[2] CBS News (2005) Gesture Glove Not Science Fiction.
Available from
http://www.cbsnews.com/stories/2005/08/23/eveningnews/m
ain792311.shtml. Accessed 1 July, 2008

[3] Cohen, C. (1999) A Brief Overview of Gesture Recognition.
Available from:
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIE
S/COHEN/gesture_overview.html. Accessed 1 July, 2008.

[4] Eickeler, S., Kosmala, A., & Rigoll, G. (1998) Hidden
markov model based continuous online gesture recognition.
In Proceedings of the 14th International Conference on
Pattern Recognition. (pp. 1206-1208). Washington, DC,
USA: IEEE Computer Society.

[5] Goldberg, K. (2008) A Web-based Test of Fitts’ Law.
Available from http://www.tele-actor.net/fitts/index.html.
Accessed 1 July, 2008.

[6] Linjama, J., & Kaaresoja, T. (2004) Novel, minimalist haptic
gesture interaction for mobile devices. In Proceedings of the

Third Nordic Conference on Human-Computer Interaction.
(pp. 457-456). New York, NY, USA: ACM.

[7] Mäntyjärvi, J., Kela, J., Panu, K., & Sanna, K. (2004)
Enabling fast and effortless customization in accelerometer
based gesture interaction. In Proceedings of the 3rd
International Conference on Mobile and Ubiquitous
Multimedia. (pp. 25-31). New York, NY, USA: ACM.

[8] Mitra, S., & Acharya, T. (2007) Gesture recognition: a
survey. Systems, man, and cybernetics, Part C: Applications
and Reviews, IEE, 37(3), 311-324.

[9] Myers, B (1998) A brief history of human computer
interaction technology.ACM interactions, 5(2), 44-54.

[10] Nespoulous, J., Perron, P., and Lecours, A. The Biological
Foundations of Gestures: Motor and Semiotic Aspects.
Lawrence Erlbaum Associates, Hillsdale, MJ, 1986.

[11] Nintendo. (2006) The Nintendo Wii. Available from
http://www.wii.com. Accessed 1 July, 2008.

[12] Nintendo. (2006) Wii Experience. Available from
http://wiiportal.nintendo-europe.com/14.html. Accessed 1
July, 2008.

[13] Nuance Communications. (2007) T9 Text Input. Available
from http://www.t9.com/. Accessed 1 July, 2008.

[14] Schlömer, T., Poppinga, B., Henze, N., & Boll, S. (2008)
Gesture recognition with a wii controller. Proceedings of the
Second International Conference on Tangible and Embedded
Interaction. (pp. 11-14). Bonn, Germany: ACM.

[15] Troillard, C. (2008) Osculator FAQ. Available from
http://www. osculator.net/wiki/Main/FAQ. Accessed 1 July,
2008.

