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An analytical solution for diffusion and1

nonlinear uptake of oxygen in a spherical cell2

Matthew J Simpson ∗ and Adam J Ellery3

Mathematical Sciences, Queensland University of Technology.4

GPO Box 2434, Brisbane, Queensland 4001, Australia.5

Abstract6

We develop a new analytical solution for a reactive transport model that describes7

the steady-state distribution of oxygen subject to diffusive transport and nonlinear8

uptake in a sphere. This model was originally reported by Lin (Journal of Theoret-9

ical Biology, 1976 v60, pp449–457) to represent the distribution of oxygen inside a10

cell and has since been studied extensively by both the numerical analysis and formal11

analysis communities. Here we extend these previous studies by deriving an ana-12

lytical solution to a generalized reaction-diffusion equation that encompasses Lin’s13

model as a particular case. We evaluate the solution for the parameter combinations14

presented by Lin and show that the new solutions are identical to a grid-independent15

numerical approximation.16

Key words: Oxygen diffusion, Michaelis-Menten, Maclaurin series.17

1 Introduction and background18

A model of oxygen diffusion and nonlinear uptake in a sphere was originally19

proposed and solved by Lin [14]. The same model was then re-examined and20

re-solved by McElwain [15]. The complete dimensional governing equation can21

be found in the original manuscripts of Lin and McElwain [14,15]. Here we22

present and analyze the corresponding nondimensional governing equation and23

boundary conditions which can be written as,24

0 =
d2C

dR2
+

2

R

dC

dR
− αC

K + C
, (1)
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subject to25

dC

dR
= 0 at R = 0, (2)

and26

dC

dR
= H(1 − C) at R = 1. (3)

The governing equation is a steady-state reaction-diffusion equation represent-27

ing oxygen transport by linear diffusion in a sphere with spherical symmetry.28

The oxygen uptake is described by the nonlinear Michaelis-Menten model [18]29

with a maximum reaction rate α and the half-saturation concentration K. The30

boundary condition at R = 0 ensures that the oxygen distribution is symmet-31

ric at the center of the sphere, and the boundary condition at R = 1 specifies32

a flux of oxygen at the cell membrane. This flux is proportional to the differ-33

ence in oxygen concentration across the cell membrane. The proportionality34

coefficient, H , represents the membrane permeability [14,15].35

The solution of this boundary value problem has been studied extensively,36

beginning with the work of Lin [14] who presented numerical solutions of37

the governing equation. This first study was re-examined by McElwain [15]38

who presented new numerical solutions of the governing equation and showed39

that Lin’s [14] previous results were in error. Since this initial controversy,40

this problem has been studied by many researchers from two different points41

of view. Firstly, approximate solutions of the governing equation have been42

studied using a variety of techniques including shooting methods [13], spline43

approximations [4,17], high-order finite difference methods [16] and regular44

perturbation methods [15]. Secondly, this problem has also been analyzed45

formally leading to expressions for upper and lower bounds of the solution46

[2] as well as proving the uniqueness and existence of the solution [7]. We47

will build on these previous studies and, for the first time, derive an analytical48

solution of the model. Our approach [6] is related to the decomposition method49

[1] and the homotopy analysis method [12,22,24] since our solution takes the50

form of a convergent series.51

Our solution approach is very flexible and we will demonstrate this by studying52

a generalization of Eqs (1–3) which we write as53

0 =
d2C

dR2
+

a

R

dC

dR
− f(C), (4)

subject to54

dC

dR
= 0 at R = 0, (5)

and55

dC

dR
= H(1 − C) at R = 1. (6)

Comparing Eqs (1–3) and Eqs (4–6), we see that two generalizations have56

been made:57

2



  

(1) Equation (4) is written in terms of a constant a which can be chosen58

to reflect Cartesian (a = 0), cylindrical (a = 1) or spherical (a = 2)59

geometry;60

(2) Equation (4) is relevant for any uptake model f(C).61

By setting a = 2 and f(C) = αC/(C + K), we recover the original nondi-62

mensional model considered by Lin [14] and McElwain [15]. Our aim is now63

to solve the general problem.64

2 General Solution65

Our strategy is to find the solution of Eqs (4–6) and we begin by assuming66

that the solution can be written in terms of a series expansion. We note that67

other researchers are also using series solutions to find analytical solutions68

to mathematical models that are used to represent various biological and bio-69

chemical processes. For example, our previous research has shown that certain70

steady-state reactive transport problems that arise in the chemical engineering71

literature can be solved by using series expansions [6]. In this previous work we72

showed that certain known closed-form solutions correspond to Taylor series73

solutions when the closed form solution is expanded in a series. Furthermore,74

we showed that some reactive-transport processes do not appear to have a75

closed-form solution, however we were able to express and evaluate the solu-76

tion in a series without any difficulty. Other applications of series solutions77

include studying susceptible-recovered-infected models of epidemic dynamics78

[9,23] as well as finding the solution of differential equation models that arise79

in age-structured models [11].80

We assume that the solution of Eqs (4–6) is sufficiently smooth so that it can81

be expanded in a Maclaurin series given by82

C(R) =
∞∑
i=0

Ri

i!

diC

dRi

∣∣∣∣∣
R=0

= C(0)+R
dC

dR

∣∣∣∣∣
R=0

+
R2

2!

d2C

dR2

∣∣∣∣∣
R=0

+
R3

3!

d3C

dR3

∣∣∣∣∣
R=0

+. . .

(7)
To determine the values of the derivatives at R = 0 we rewrite Eq (4) as83

d2C

dR2
= − a

R

dC

dR
+ f(C). (8)

Assuming that f(C) is sufficiently differentiable, we evaluate derivatives of84
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C(R) by recursively differentiating Eq (8) to give,85

d2C

dR2
= − a

R

dC

dR
+ f(C),

d3C

dR3
=

a

R2

dC

dR
− a

R

d2C

dR2
+

df(C)

dC

dC

dR
,

d4C

dR4
= − 2a

R3

dC

dR
+

2a

R2

d2C

dR2
− a

R

d3C

dR3
+

d2f(C)

dC2

(
dC

dR

)2

+
df(C)

dC

d2C

dR2
,

... (9)

We now evaluate the derivative expressions in Eq (9) at the origin by substi-86

tuting R = 0 into Eq (9) and impose the boundary condition that dC
dR

= 0 at87

R = 0. By imposing these two conditions simultaneously, we see that many88

terms in Eq (9) must be evaluated using L’Hopital’s rule [3] in the limit that89

R → 0+, which gives:90

dC

dR

∣∣∣∣∣
R=0

= 0,

d2C

dR2

∣∣∣∣∣
R=0

=
f(C0)

1 + a
,

d3C

dR3

∣∣∣∣∣
R=0

= 0,

d4C

dR4

∣∣∣∣∣
R=0

=

d2C
dR2

∣∣∣
R=0

df
dC

∣∣∣
C=C0

1 + a
3

,

d5C

dR5

∣∣∣∣∣
R=0

= 0,

d6C

dR6

∣∣∣∣∣
R=0

=
3 d2C

dR2

∣∣∣
R=0

d2f
dC2

∣∣∣
C=C0

+ d4C
dR4

∣∣∣
R=0

df
dC

∣∣∣
C=C0

1 + a
5

,

... (10)

where C0 = C(0). These derivative terms evaluated at R = 0 allow us to91

express the Maclaurin series solution (Eq 7) as92

C(R) = C0 +
R2

2!

[
f(C0)

1 + a

]
+

R4

4!

⎡
⎢⎣

d2C
dR2

∣∣∣
R=0

df
dC

∣∣∣
C=C0

1 + a
3

⎤
⎥⎦

+
R6

6!

⎡
⎢⎣3 d2C

dR2

∣∣∣
R=0

d2f
dC2

∣∣∣
C=C0

+ d4C
dR4

∣∣∣
R=0

df
dC

∣∣∣
C=C0

1 + a
5

⎤
⎥⎦+ O(R8).

(11)
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2.1 Convergence and Limitations93

The ith term in the Maclaurin series is94

Ri

i!

(
∂i−2

∂Ri−2

[
− a

R

dC

dR
+ f(C)

])∣∣∣∣∣
R=0

, i ≥ 2. (12)

The derivative expressions in Eq (12) can be evaluated at R = 0 by apply-95

ing L’Hopital’s rule as we previously demonstrated. The resulting derivative96

expressions are combinations of derivatives of the functions C(R) and f(C)97

evaluated at R = 0 and C = C(0), respectively. Since we have assumed that98

C(R) and f(C) are everywhere sufficiently differentiable, applying the ratio99

test to this series shows that the radius of convergence is infinite [3]. This100

means that the series will converge for all values of R and this will be true for101

all standard forms of the uptake function f(C) (e.g. polynomial functions and102

certain rational functions such as the Michaelis-Menten model). Therefore the103

Maclaurin series is an exact solution that always converges for all practical104

choices of f(C), furthermore we can implement the series solution by trun-105

cating the series after a finite number of terms [6,19]. The question of how to106

determine the level of truncation will be addressed in Section 2.2.107

2.2 Boundary Condition at R = 1108

To implement the series solution for a particular problem we must determine109

C0 by applying the remaining boundary condition at R = 1, given by dC
dR

=110

H(1 − C). To satisfy this condition, we differentiate the general series with111

respect to R to obtain dC
dR

. After truncating the series expressions for C(R)112

and dC
dR

, we substitute these truncated series into the boundary condition at113

R = 1 to obtain an algebraic relationship that determines the value of C0.114

This algebraic relationship can be solved to find C0 using any standard root115

finding technique (e.g. the bisection algorithm, or a standard in-built routine116

such fsolve in Maple). This process gives an approximate value of C0. However,117

since the series solution is convergent we can arbitrarily increase the accuracy118

of this approximation by simply retaining more terms in the truncated series119

and examine the convergence behavior of C0 as further terms are retained120

in the series. Examining the convergence behavior of C0 as more terms are121

retained in the truncated series is particularly straightforward provided that122

the solution is implemented using a symbolic software platform.123
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Table 1
Four different sets of parameters, used by Lin [14] and McElwain [15], are given to
define solutions labeled (b), (c), (d) and (e). The value of C0 obtained from the series
solutions truncated after the R6 term and the corresponding value of C0 obtained
from the fine-mesh numerical simulations are given.

Solution α K H C0 (Numerical) C0 (Series)

(b) 0.38065 0.03119 5.0 0.91404 0.91404

(c) 0.38065 0.03119 0.5 0.69583 0.69583

(d) 0.76129 0.03119 5.0 0.82848 0.82848

(e) 0.38065 0.31187 5.0 0.93311 0.93311

3 Case Study: Spherical geometry and Michaelis-Menten uptake124

By substituting a = 2 and f(C) = αC/(K + C), we obtain the solution cor-125

responding to the previous work of Lin [14] and McElwain [15]. This solution,126

truncated after the R6 term, can be written as127

C(R) = C0 +
αC0R

2

3!(C0 + K)
+

α2C0KR4

5!(C0 + K)3
− α3C0K(10C0 − 3K)R6

7![3(C0 + K)5]
+ O(R8).

(13)
Although we have truncated the solution after the R6 term, it is straightfor-128

ward to extend this solution to include any higher order terms if necessary. To129

apply the boundary condition at R = 1, we differentiate Eq (13) with respect130

to R to obtain an expression for dC
dR

. To find C0 we substitute these truncated131

series into the boundary condition dC
dR

= H(1 − C) at R = 1 and solve the132

resulting algebraic expression for C0 using the fsolve command in Maple. We133

now apply the solution to study four different parameter combinations given134

by Lin [14] and McElwain [15]. The parameter combinations are summarised135

in Table 1 and the corresponding solution profiles are given in Figure 1.136

To demonstrate the accuracy of the Maclaurin series solution, we generated137

numerical solutions of Eqs (4–6) and compare these with the Maclaurin series138

solutions in Figure 1. To generate the numerical solutions, spatial derivatives139

in Eqs (4–6) were replaced with a standard centered in space finite differ-140

ence approximation on a uniform grid with spacing δx [5,20,21]. This gives a141

tridiagonal system of nonlinear algebraic equations. The nonlinear algebraic142

system was linearised using Picard iteration [25], and the resulting systems of143

linear equations were solved using the Thomas algorithm [5]. Iterations were144

performed until the maximum change in the value of the dependent variable145

between iterations fell below a small tolerance, ε1. For all results presented here146

we used a fine grid and a strict convergence tolerance by setting δx = 1×10−5
147

and ε1 = 1×10−8. The values of C0 obtained from the truncated series solution148

and the fine-mesh numerical solutions are given in Table 1 and show that the149

6



  

R0 1
0.5

1

C

(b)

(c)

(d)

(e)

Fig. 1. Comparison of the Maclaurin series solutions (solid red) and the fine-mesh
numerical solutions (dotted green) of Eqs (1–3). Four different solutions labelled
(b), (c), (d) and (e) are presented with the corresponding parameter values in Ta-
ble 1. These parameter values corresponded to various experimentally-motivated
conditions described in Lin [14] and McElwain [15].

analytical solution agrees with the numerical solution correct to five decimal150

places. Furthermore, the numerical profiles are superimposed on the series so-151

lutions in Figure 1 showing that, in all cases considered, the series solutions152

and the numerical solutions are visually indistinguishable at this scale.153

We also generated equivalent numerical results using a finer grid and an even154

stricter convergence tolerance which, for all problems considered in this work,155

gave results that were visually indistinguishable from the numerical results156

on the original fine grid. This grid refinement procedure ensured that our157

numerical results are grid independent.158

4 Conclusion159

We have derived an analytical solution of a general reaction-diffusion model in160

an arbitrary geometry (Cartesian, cylindrical or spherical) with an arbitrary161

(linear or nonlinear) uptake term. This general solution can be used to rep-162

resent a number of biological processes including the transport and uptake of163

oxygen in a spherical cell. This particular problem has received a great deal of164

interest both from the analysis and numerical communities however we believe165

that this is the first time that a general solution has been presented.166

Our solution is a Maclaurin series and we obtain expressions for the general167

term in the Maclaurin series and show that the series is convergent. Numerical168

simulations of the previous problems considered by Lin [14] and McElwain [15]169

are reproduced and we show that the series solution is identical to fine-mesh170

numerical solutions.171

7



  

The Maclaurin series solution presented here could be further generalised and172

applied to other spherical reactive-transport problems from the mathematical173

biology literature. A classical application of spherical reactive-transport mod-174

els is to consider the growth of a solid tumour [8]. Solid tumour growth models175

can replicate key experimental observations which include the formation of an176

oxygen-depleted necrotic core, a quiescent zone and an oxygen-rich prolifer-177

ation zone [8,10]. These solid tumor growth models are an extension of the178

type of model considered in this work since they are an example of a multi-179

species reactive-transport model [10,20,21] since they involve two (or more)180

reactive-transport equations for each relevant component and these equations181

can be coupled. For the solid tumour growth models the relevant components182

are usually the concentration of tumour cells and the concentration of cer-183

tain growth factors or nutrients such as oxygen and glucose [10]. As far as we184

are aware the Maclaurin series solution technique has not yet been applied to185

these kinds of multi-species reactive transport problems and this remains an186

open question to be explored in the future.187
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[11] Koççak H, Yildirim A (2011) An efficient algorithm for solving nonlinear age-220

structured population models by combining homotopy perturbation and Padé221
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