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Abstract—Compressive Sensing (CS) is a popular signal pro-
cessing technique, that can exactly reconstruct a signal given
a small number of random projections of the original signal,
provided that the signal is sufficiently sparse. We demonstrate
the applicability of CS in the field of gait recognition as a very ef-
fective dimensionality reduction technique, using the gait energy
image (GEI) as the feature extraction process. We compare the
CS based approach to the principal component analysis (PCA)
and show that the proposed method outperforms this baseline,
particularly under situations where there are appearance changes
in the subject. Applying CS to the gait features also avoids
the need to train the models, by using a generalised random
projection.

I. INTRODUCTION

Compared to other biometrics, gait has attracted significant
attention in recent years because of its unique advantages,
which other biometrics may not offer. Mainly, it can be used
with low-resolution video feeds, and be acquired at a distance
without alerting the subject.

There are a number of methods being investigated to ex-
tract gait features, generally classified as appearance-based or
model-based. Model-based techniques gather gait dynamics
directly by modelling the underlying kinematics of human
motion, where as appearance based methods try to establish
correspondence between successive frames based upon the
implicit notion of what is being observed [1]. Both approaches
attempt to address the main challenges in gait recognition such
as invariance to changes in view, surface, clothes etc.

Many appearance based techniques, such as gait energy
images (GEI) [2], uses an image as its features and thus
are of a high dimensionality. Principal component analysis
(PCA), linear discriminant analysis (LDA) and independent
component analysis (ICA) are commonly used to reduce the
dimensionality in gait recognition algorithms. These tech-
niques learn from a training set and therefore suffer from
limited generalisation.

In this paper, we evaluate compressive sensing (CS) to
replace the traditional dimensionality reduction techniques
used in gait recognition approaches, using GEI as the base
feature extraction technique.

Compressive sensing [3], [4] is an emerging field of infor-
mation theory. In the last decade, compressive sensing theory
has been widely explored by the image processing research
community and has been used in many applications such as

human face recognition [5], [6], facial expression recognition
[7], [8] and human action recognition [9]. Our proposed
method is motivated by one of the pioneering face recognition
works reported in [5].

The reason for choosing compressive sensing is twofold.
First, we believe in the hypothesis that random features can
be as good as sophisticated features provided the number of
random features is sufficiently large ([5] shows that com-
pressive sensing can be efficiently used to recognize face
image using random features). Second, the compressive sens-
ing based recognition approach does not require any training
process, which makes it compelling in the domain of biometric
identification.

In our paper, we use the gait energy image, introduced by
Han and Bhanu [2] for extracting gait features. Gait energy
image based feature extraction is a popular appearance based
method, since GEI represents gait using single image without
loosing temporal information. By averaging frames in the
gait sequence, segmentation noise in individual frames can
be overcome. Many extensions to the initial GEI technique
have been proposed, including the enhanced gait energy image
(EGE]) [10] and the shifted energy image (SEI) [11]. However,
most of them try to address specific limitations such as changes
in clothing style etc, and performance of these algorithms
does not significantly improve upon GEI. Therefore, we have
chosen GEI to evaluate the proposed method.

In our proposed approach, first a dictionary is formed using
the gallery of GEIs of different subjects from different classes
(normal walking, with a bag, etc.). Intuitively, a test GEI
belonging to one of the classes of the dictionary can be
sparsely represented as a linear combination of GEIs of that
particular class. If a test GEI does not belong to any of
the classes in the dictionary, it will be represented as linear
combination of multiple class subjects, i.e. the representations
will not be sparse. Sparse representation of a test image in
terms of a dictionary is non-trivial. We employ compressive
sensing to compute this sparse representation.

Generally speaking, compressive sensing allows us to re-
duce the dimension of a signal by taking a small number of
projections and reconstructing the higher dimensional signal
from the lower dimensional projections. Reduction of dimen-
sion is necessary for non-exhaustive processing. To maximize
the dimension reduction, the signal under consideration needs



to be sparse or compressible. A signal f € R™ is called K-
sparse if it has only K nonzero elements [3]. On the other hand
a signal with a small number of significant (large magnitude)
coefficients and a large number of insignificant coefficients
(very small magnitude close to zero) is called a compressible
signal.

The GEIs in their original form are not sufficiently com-
pressible. Therefore, we also seek to find an appropriate
sparsifying basis that can sparsely represent a GEI. We then
construct the dictionary using the sparse GEI and follow the
prior mentioned process for recognition.

To this end we summarise our main contributions as follows:

1) We propose a novel compressive sensing approach for
accurate person recognition using GEIs. To the best of
our knowledge we are the first to propose compressive
sensing for gait recognition using GEIL

2) Through evaluation, we demonstrate that our proposed
method out performs the existing PCA at the same
feature dimensionality without any training.

The paper is organised as follows. In the next section
(Section II) we describe the compressive sensing framework
for GEI based person recognition. Section III outlines the
feature extraction using GEI. In Section IV, we summarise
the experimental results and we conclude the paper in Section
V.

II. UNIFIED COMPRESSIVE SENSING AND SPARSE CODING
FOR GAIT BASED PERSON IDENTIFICATION

In this section, we describe the mechanics of the compres-
sive sensing approach for gait recognition using GEI features.
Let us consider that we have ¢ = 1,2, .., C classes of GEIs,
and there are N GEIs which are represented by N vectors
V1, .., Uy € R™. Let us construct a dictionary by packing the
vectors ¥, V;=1,. n in the column of a matrix £ € RMXN,
Intuitively, a test sample 7 € R™ of class ¢ can be represented
in terms of the dictionary as follows,

7 = &a, 6]

where & = [0,0, i1, .., mik, 0,0]7, 7;; are scalars and k is the
number of GEIs per class. Clearly, solving (1) (i.e. @) would
recognize the test image class, however, we have to identify a
method to compute a.

A general method to find the sparse solution of (1) is to
solve the following optimization problem:

argmin& = ||@||o, s.t.5 = £&a, 2)

where ||.]|o denotes the ¢y norm, which returns the nonzero
elements of «. Note that if n > N, the system is over-
determined. In this case, (2) can be solved in polynomial time.
Typically the feature size (n) is quite high, therefore it is not
practical to solve (2). For this reason, the dimensionality of n
is reduced to d << n (by multiplying a random projection
matrix ® € R¥*™ with ¢), which transforms (2) into an
under-determined problem. Finding a sparse solution to an
under-determined system using (2) is NP-hard. Encouragingly,
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Fig. 1. Representation of GEI in different sparsifying basis. A GEI is divided
into bins of size 1024. For each bin transformed coefficients are computed
and approximation error for retaining different numbers of coefficients are
computed. The average result for all the bins are shown in this plot.

compressive sensing shows that if @ is sufficiently sparse, this
under-determined system can be solved using the following
{1 norm minimisation problem, which will produce a similar
solution to solving the ¢y norm.

argmin& = ||d]|1, s.t.¥=¢&a 3)

However, a sparse & cannot always guarantee a unique solution
to (3). Compressive sensing theory shows that if © = ®¢
obeys the restricted isometry property (RIP) [12], the under-
determined system of (1) can be solved by solving (3). More
encouragingly, compressive sensing also suggests a ® that can
achieve the RIP. As such, we use a ® which is populated
by sampling from a normal distribution with zero mean and
variance é. Compressive sensing has shown that & ~ A(0, é)
obeys RIP when d >= K log %, where K is the measure of
sparsity. Clearly, when K is small, higher reductions in the
dimensionality can be be achieved.

The GEI in its original form is not sufficiently sparse i.e., K
is not a small quantity. In order to make K small we sparsify
the GEIs using a sparsifying basis such as wavelets, discrete
cosine transform (DCT) or Fourier bases. In Figure 1, we show
the approximation error for the sparse GEI under different
bases. We observe that the DCT and Fourier bases have the
quick decays (with DCT being slightly faster), implying that
they can provide the most accurate sparse representation of
GEIs.

Note that a sparsifying basis cannot be chosen only based on
the guarantee of maximum sparse representation. Compressive
sensing provides guidelines to choose an appropriate sparsi-
fying basis. The sparsifying basis needs to be incoherent with
the projection basis. Coherence is the measure of the highest
correlation between any two elements of the projection matrix
and sparsifying basis. Coherence (p) is given by the following



formula [13]:
p(®, ) = Vi max ({6, 1,) g

<o,q<n

~

Let us denote ¥ as our sparsifying basis. Generally speak-
ing, if ® and ¥ have many correlated elements, coherence is
high, otherwise it is low. Compressive sensing requires a ¥
that has low coherence with ® and the value, p, within [1, \/n].
After analysing the p for different sparsifying basis, we
observe that DCT has the lowest coherence with our projection
matrix, which is sampled from A(0, 1). In particular, DCT
and HAAR wavelets both have similar coherence with our ®,
but since DCT offers a sparser representation of GEI, we use
DCT in our experiments.

Using the selected basis, we transform each of the GEIs
U;Vi=1.n to a sparse domain, using J; = W\v;. We then
construct the dictionary § = [d;W2d,] by packing the vectors
w; in columns. Then, we solve the following optimization
problem to compute f3:

argmin 3 = ||G[1, s.t.7=¢€8 (5)

As described earlier, the solution to (5) will provide 5 =
[0,0, 71, .., Tk, 0,0]%, where 7; will represent the class the
test GEI belongs to.

ITI. GAIT FEATURE EXTRACTION

To evaluate our algorithm, we use the GEI based gait feature
extraction algorithm proposed by Han and Bhanu [2]. GEI
represents the gait features in a silhouette sequence of a person
over a gait cycle as a single image.

To extract out silhouettes, we use a graph cut based seg-
mentation algorithm similar to that by Chen et al. [14], except
that background subtraction is used to generate the foreground
and background probabilities instead of a motion detection
algorithm.

Gait cycles are first segmented by detecting the peaks in the
width of the lower 20% of the silhouette. The silhouettes are
normalised and aligned. The GEI of the k%" gait cycle is then
computed as follows,

t=N
GEI(k)= > I, (6)
t=1

where, I, is the pre-processed silhouette of the ¢ frame and
N is the number of frames in the k" gait cycle. Computed
GEI images are shown in Figure 2.

Walking gait is mostly represented by the lower part of
body (legs). In addition, the lower half is less susceptible to
appearance changes due to situations such as the carrying of
goods and hand movements. As a result, only the lower 40%
of the GEI will be used as part of this paper.

IV. EXPERIMENTAL RESULTS

The CASIA Dataset B [15] is used to evaluate all the
experiments presented in this paper. The database consists
of 124 subjects under three test classes captured from 11
cameras simultaneously. Three classes are normal walk (nw),
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Fig. 2. Extracted silhouettes of different classes (top to bottom: nw,cl and
bg) and computed GEIs (right most ones).

Fig. 3. Example images from CASIA dataset B. The left image shows the
nw class, middle image is ¢l and the right image is bg.

walking with bag (bg), and walking with coat (cl). There are
6 sequences for nw and 2 sequences for both cl and bg. We
use the side (90 deg) view to generate the GEI for all subjects
and test cases. Each sequence covers at least one to two gait
cycles, though only one is extracted, resulting in a total of 10
cycles for each subject. Figure 3 shows example images from
the database.

Both intra and inter-class test cases are considered and
receiver operating curves (ROC) are used to compare the
results. In the intra-class case, we split the number of cycles
in half, with the gait cycles in the first half used as the gallery
and the second half used as the probe. We only consider nw
for intra-class tests as there is insufficient data for the other
classes.

The choice of dimensionality for the sparse GEI is important
since it will effect the approximation error as shown in
Figure 1. We evaluate this by investigating the recognition
performance using a different number of components. Figure
4 plots the recognition results of intra-class tests by taking a
different number of sparse components from the given 1024
components. It can be seen the optimum improvement in the
results can be obtained in the range of 200 — 300 and there
is no significant improvement after that. This shows that the
approximation error is effective for choosing the number of
dimension to consider.

Figures 5 and 6 compare the results of the proposed method
with PCA based GEI using the same number of dimensions
(here we have chosen the first 300 components). It can be
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Fig. 4. Intra-class test ROC curves of proposed method using different
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Fig. 5. ROC curve for intra-class test on the CASIA database.

seen that for intra-class tests within nw, the proposed method’s
recognition rate is 100% at a false alarm rate of 10%, 5%
higher than PCA (see Figure 5). Figure 6 compares the inter-
class performance between PCA and the proposed method,
and it can be seen that the proposed approach improves the
recognition performance significantly, and outperforms PCA
by an average of more than 15% at FAR 10%. This suggests
that CS is able to better tolerate the appearance variations that
exist between classes.

V. CONCLUSION

We have demonstrated that a Compressive Sensing based di-
mensionality reduction technique works well for gait recogni-
tion while removing the training requirement through random
generalisation basis. We have evaluated our proposed method
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in the popular GEI based feature extraction algorithm, however
other techniques could be applied using the same framework.
In future, the performance of the proposed method can also
be improved by learning an optimal sparsifying basis rather
than using a predefined basis. This will be evaluated as it has
shown promise in other fields. The effect of combining the
proposed with existing approaches such as linear discriminant
analysis (LDA) will also be examined.
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