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Abstract

Gait recognition approaches continue to struggle with
challenges including view-invariance, low-resolution data,
robustness to unconstrained environments, and fluctuating
gait patterns due to subjects carrying goods or wearing dif-
ferent clothes. Although computationally expensive, model
based techniques offer promise over appearance based
techniques for these challenges as they gather gait features
and interpret gait dynamics in skeleton form. In this pa-
per, we propose a fast 3D ellipsoidal-based gait recognition
algorithm using a 3D voxel model derived from multi-view
silhouette images. This approach directly solves the lim-
itations of view dependency and self-occlusion in existing
ellipse fitting model-based approaches. Voxel models are
segmented into four components (left and right legs, above
and below the knee), and ellipsoids are fitted to each region
using eigenvalue decomposition. Features derived from the
ellipsoid parameters are modeled using a Fourier represen-
tation to retain the temporal dynamic pattern for classifi-
cation. We demonstrate the proposed approach using the
CMU MoBo database and show that an improvement of 15-
20% can be achieved over a 2D ellipse fitting baseline.

1. Introduction

Recognising people is a challenging task in computer vi-
sion. A number of biometrics such as gait, fingerprint, iris
and face are used for this purpose. Gait has a unique advan-
tage over other biometrics in that it can be recognised from
a distance without alerting the subject. Unlike other biomet-
rics, gait also has the potential to be used in a surveillance
environment with low-resolution video [6].

Gait can be defined as a coordinated, cyclic combination
of movements that results in human locomotion [3]. The
movements are coordinated in the sense that they must oc-
cur with a specific temporal pattern for the gait to occur. The
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Figure 1. The Gait Cycle1.

walking gait cycle of a particular leg describes the move-
ments that takes place during the walk, from the time of one
heel touching the ground until the same heel retouches the
ground as illustrated in the Figure 1.

There are two major approaches to gait recognition; ap-
pearance based (model free) and model based [14]. The
majority of early approaches were appearance based, using
features such as the silhouette. These approaches are gener-
ally less complex, allowing faster processing. However, as
they do not gather gait dynamics directly, they are more sen-
sitive to background noise and are view dependent. Model
based approaches are less sensitive to the above-mentioned
conditions, but are generally much more complex and com-
putationally demanding.

Current state of the art gait recognition techniques can
achieve upwards of a 90% recognition rate under controlled
conditions with a small number of subjects. However, un-
der unconstrained environments with changes in illumina-
tion and in outdoor settings the recognition rate falls off
rapidly. Since appearance based techniques cannot handle
these variation effectively, recent research on gait recogni-
tion has focused predominantly on model-based approaches
and inroads have been made in this direction. However,
there is significant room for further improvement as robust-
ness to all variations has not been achieved.

To address some of the challenges of unconstrained gait
recognition, we propose a multi-view gait recognition tech-
nique based on a novel 3D ellipsoid fitting algorithm, which

1Reproduced from
http://www.laboratorium.dist.unige.it/ piero/Teaching/Gait



uses ellipsoidal parameters as gait features. This approach
extends the work of Lee and Grimson [13], who proposed
an approach to fit ellipses to silhouettes. This and other
recent extensions [10], however, all operate within the 2D
domain, are limited to orthogonal views only, and thus are
heavily view dependent.

In this paper, we enable these ellipsoidal techniques to
operate in the 3D domain to directly overcome both limi-
tations of view dependency and also self-occlusion. In our
proposed approach, a voxel model is constructed from the
visual hull created by silhouettes from multiple views. The
lower limbs are segmented and ellipsoids are fitted to these
regions. The ellipsoid parameters for each limb segment are
extracted and form the features used in the gait recognition
process. The use of this 3D model approach is superior as it
allows individual gait cycles of the left and right strides to
be detected, segmented and modelled. The approach also
significantly improves performance when there is a class
mismatch between the gallery and probe sequences. Fi-
nally, Fourier harmonics of gait features are computed to
compare subjects. Similarity values for classification are
calculated from Euclidean distance between the complex
harmonic values.

The proposed algorithm presented in this paper, ad-
dresses the limitations in the model based and appearance
based techniques by combining the strengths of each ap-
proach. The fitting of ellipsoids to a voxel model per-
forms much faster than full pose estimation systems, yet
still provides a direct estimate to the underlying kinematic
features (joint angles). The move to 3D space solves the is-
sue of view dependency and problems with self occlusions,
though our method does constrain its applications to situ-
ations where a multi-camera setup is in existance. While
we demonstrate the proposed ellipsoid fitting approach to
perform gait recognition, it should be noted that the model
could also be used in other applications such as gesture
recognition.

The remainder of this paper is organised as follows. In
Section 2, we outline existing gait recognition techniques.
3D human model reconstruction and segmentation is de-
scribed in Section 3. Section 4 describes the gait feature
extraction process and gait period detection. Gait recogni-
tion and classification and experimental results are followed
in Section 5 and Section 6. Section 7 concludes the paper.

2. Related Work
In this section we provide a brief overview of the two

main approaches to gait recognition: appearance based and
model based. A variety of appearance based approaches
have been proposed, many of which use silhouette images
as the feature. Kale et al. [12] used a Hidden Markov Model
(HMM) to model gait features and defined the concept of
Frame to Exemplar Distance (FED). BenAbdelkader et al.

(a) (b)

Figure 2. Ellipse fitting to silhouettes.

[1] proposed the Self Similarity Plot (SSP) to encode the
projection of gait dynamics. The feature vectors that were
used for classification consisted of units of self-similarity
of size one period, and probe sequences are scaled to a con-
stant length to compensate for period differences.

Recent appearance based approaches have used the Gait
Energy Image (GEI) [9]. The GEI is the average silhouette
taken over a single gait period, enabling the temporal infor-
mation of gait to be encoded in a single frame. As such, it is
less sensitive to silhouette noise in individual frames and is
less affected by varying gait periods. Various modifications
to GEI have been proposed [17, 18], however these, as well
as all other appearance based techniques, suffer from view
dependency.

Model based techniques are based on structural and dy-
namic parameters of human gait. These techniques aim to
represent the human body parts - the head, torso, hip, thigh,
knee and ankle - with primitive shapes (cylinders, cones,
and blobs) and measurements of length, width and posi-
tion. Motion models can also be incorporated to describe
the kinematics of the motion of each body part, enabling
more accurate estimation of the pose to be obtained.

Cunado et al. [4] proposed a motion-based model to
analyse the angular motion of the hip and thigh by means
of a Fourier series. Wagg and Nixon [16] proposed bulk
motion and shape estimation guided by biomechanical anal-
ysis and used mean gait data to create the motion models.
Guoying et al. [8] used skeleton models to extract the joint
angles and static parameters. They defined the model with
a finite number of degrees of freedom that can be extracted
from multi-view 2D images. Junxia et al. [11] extracted the
complete pose of a person in 3D for action and gait recog-
nition using grid based segmentation and adaptive particle
filters.



Lee and Grimson [13] proposed fitting ellipses to the sil-
houette pixels and extracted moment based region features.
Rather than taking the entire silhouettes, they divided the
silhouette into regions and fitted ellipses based on the statis-
tics of the region. Major and minor axes of the ellipses
were defined using eigenvectors and eigenvalues based on
the covariance matrix of each region. Division of regions
and the ellipse fitting is illustrated in Figure 2. Gait recog-
nition is performed using the centroid, angle and axis length
ratios of the ellipses. It is shown that these simple features
are enough to discriminate between subjects based on their
gait; however, the algorithm can only be applied to the or-
thogonal view. Junhong et al. [10] extended this approach
by separating the temporal sequence based on overlapping
and non-overlapping legs by analysing the gait key frames.
While ellipse fitting is improved compared to [13], the al-
gorithm is still view dependent and requires the orthogonal
view.

We expand upon the work of Lee and Grimson [13] by
enabling ellipsoidal approaches to operate in the 3D do-
main to directly overcome limitations of view dependency
and self-occlusion. We achieve this by fitting ellipsoids to a
3D voxel model and extracting features from this model to
perform gait recognition. This new approach is outlined in
Section 3.

3. Volume Reconstruction and Segmentation
The algorithm presented here requires the use of multiple

calibrated cameras from widely different viewpoints. Sil-
houettes are extracted from the video through motion seg-
mentation (in our approach we use [5]). Projecting these sil-
houettes, a visual hull is formed from which a rough voxel
model of the subject can be constructed. For the purpose
of this paper, the z-axis is defined to be in the vertical di-
rection, while the x-axis is defined to be in the direction of
motion.

To construct the 3D human silhouette, a 3D binary vol-
ume that encapsulates the entire walking environment is
built. Each point in the volume is projected in to each view
to check the corresponding 2D binary silhouette at the pro-
jected point. The availability of projected points defines the
3D coordinate in the voxel volume. An example of a 3D
human silhouette, created in this manner is shown in Figure
3.

For the proposed gait recognition algorithm, only fea-
tures from the lower body will be considered. Similar to the
approach adopted by Lee and Grimson [13], the centroid is
used to separate the upper and lower body as it provides a
sufficient approximation of the hip/waist. To differentiate
between the thigh and lower leg, the knee is approximated
to be half way between the centroid and the bottom of the
model.

In the 2D case presented in [13], the left and right leg

(a) (b)

Figure 3. Reconstructed 3D voxel model from multi-view images.

(a) Grid based segmentation algo-
rithm.

(b) Proposed segmentation algo-
rithm.

Figure 4. Segmentation of voxel model.

cannot be differentiated when they occlude each other. With
a 3D voxel volume presented here, this is now possible.
However, within a gait cycle, the legs are not constrained
to move along a single plane and can pass in front (and be-
hind) each other (as seen in Figure 3(a)). As a result, the
left and right limbs cannot be separated simply along the xz
plane.

In the proposed algorithm, the left/right differentiation
of the upper and lower leg is performed separately. The
algorithm described in Section 4.1 is used to find the major
axis of the upper and lower volume distribution. We choose
our segmentation plane to be orthogonal to the projection of
this major axis onto the xy plane (Figure 4).

4. Gait Feature Extraction and Gait cycle seg-
mentation

4.1. Ellipsoidal Parameter Model

Following the segmentation (see Section 3), we have
four segmented regions comprising of the upper and lower
legs. Extracting ellipsoidal parameters for each region in-
volves computing the mean and covariance of the voxel dis-
tribution in that region. If x, y and z denotes the coordinates



of the voxels, and the mean of the region is (x, y, z), then
the covariance matrix, Σ, is given by,

Σ =
1

N
.
∑
x,y,z

I(x, y, z)

×

[
(x− x)2 (x− x)(y − y) (x− x)(z − z)

(y − y)(x− x) (y − y)2 (y − y)(z − z)
(z − z)(x− x) (z − z)(y − y) (z − z)2

]
,

(1)

where I is the voxel model and N is the volume of the re-
gion bounding box.

The axis orientation and lengths of the fitted ellipsoid
are determined from the eigenvalues (d1, d2, d3) and the
eigenvectors (v1, v2, v3) of the covariance matrix,

Σ
[
v1 v2 v3

]
=
[
v1 v2 v3

]  d1 0 0
0 d2 0
0 0 d3

 .
(2)

The eigenvalues correspond to the length of each of the 3
axes, while the eigenvector is its directional vector.

The orientation of the major axis and the ratios of the
axis lengths are used as the features in the classification.
The axis ratios are determined by,

r1 = d2/d1, r2 = d3/d1, (3)

while the angles used are calculated using,

αx = arctan
v1[ 0 1 0 ]

|v1|
,

αy = arctan
v1[ 0 0 1 ]

|v1|
,

αz = arctan
v1[ 1 0 0 ]

|v1|
, (4)

assuming d1 and v1 are the eigenvalue and eigenvector cor-
responding to the major axis. From this we have five fea-
tures for each region, for a total of 20 extracted features for
each frame.

4.2. Gait Cycle Segmentation

Since the left and right legs are segmented separately in
our proposed approach, it is easy to distinguish the left and
right strides and separate each gait cycle. We define the
beginning of a gait cycle as when the legs are at greatest
separation and the right leg is in front. The stride length
is used to segment the gait cycles as it forms a reasonably
clean, cyclic signal, with peaks corresponding to the ex-
treme strike points of each leg. This signal is smoothed us-
ing a median filter and peaks are identified using the nearest
neighbour extreme minimum computation algorithm used
by Sarkar et al. [15].
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Figure 5. Gait cycle segmentation.

The y-axis angles of the upper legs are used to determine
the location of the left and right legs. A logical mask is cre-
ated by comparing these angles, with a smoothing window
applied to remove any noise. The final mask is then used
to separate the peaks as belonging to the left or right legs
(Figure 5).

5. Gait Recognition and Classification
The extracted ellipsoid parameters vary throughout the

gait cycle and form a signal. To obtain our final feature vec-
tor, we extract harmonic components from these signals.
For each ellipsoid parameter, we apply a Discrete Fourier
Transform over a single gait cycle. We take the first 3 com-
ponents, leaving them as complex pairs, as the final features
used in the classification. With 20 parameters, the resultant
feature vector for each gait cycle is of length 60.

Before extracting the Fourier harmonics, the features are
scaled such that they range between 0 and 1 in the gallery
set. This scaling is then similarly applied to incoming probe
sequences.

The distance, dij , between ith probe cycle jth gallery
cycle is determined by computing the Euclidean distance
between the gait cycles’ feature vectors (F ),

dij =
√∑

|Fi − Fj |2, (5)

remembering that the feature values are complex.
To determine the distance between two sequences, each

of which is composed of multiple gait cycles, we use the



Experiment Gallery Type Probe Type

Exp.2a Slow Walk (SW) Ball (B)
Exp.2b Slow Walk (SW) Fast Walk (FW)
Exp.2c Ball (B) Fast Walk (FW)

Table 1. Experiment 2 (Inter-class test cases).

algorithm proposed by Boulgouris et al. [2]. From this, the
distance to the closest gallery cycle from each probe cycle
dmin

P
i , and the distance to the closest probe cycle from each

gallery cycle dmin
G
j is found,

dmin
P
i = min

j
(dij) , dmin

G
j (dij) . (6)

The final distance, D, between the probe and gallery se-
quence is,

D =
1

2

(
median

(
dmin

P
)

+ median
(
dmin

G
))

. (7)

6. Experiments and Results
The performance of our algorithm is evaluated using the

CMU MoBo database [7]. It includes 25 subjects captured
from 6 camera views with more than 8 gait cycles per sub-
ject in four types of walking conditions; slow walk, fast
walk, walking while carrying a ball, and walking on an in-
clined surface. We test both intra-class classification using
slow walk, fast walk, and walking while carrying a ball (la-
belled Exp.1a-1c); and inter-class classification as outlined
in Table 1 (labelled Exp.2a-2c).

In intra-class tests, the number of gait cycles for each
subject is split in two, the first half is used for the gallery
and the second half for the probe. Similarity distance val-
ues are computed as explained in Section 5 between each
probe and gallery subject and performances is evaluated us-
ing ROC (Receiver Operating Characteristics) curves. For
our baseline, we use an algorithm similar to Lee and Grim-
son [13] applied to one of the side views. Ellipses are fitted
to the silhouette for the seven segmented regions as in [13],
however only the angle and axis ratio of each ellipse are
used. Classification is identical to that of Section 5 with
harmonics extracted from each of the 14 parameters. Re-
sults are shown in Figure 6.

As expected, intra-class tests resulted in high classifica-
tion rates for both approaches. However, the proposed al-
gorithm outperformed the baseline, achieving a 100% ver-
ification rate at a false alarm rate of 10% for all cases (see
Table 2 and Figure 6(a) - 6(b).

For the inter-class test cases, the proposed algorithm
significantly outperforms the baseline. From Figure 6(d)
- 6(f), it can be seen that the proposed algorithm outper-
forms the baseline at all operating points. At an operating

Experiment Proposed
Method

Baseline
Method

Exp.1a (SW) 100 93.8
Exp.1a (B) 100 91.0
Exp.1a (FW) 100 99.5
Exp.2a 70.5 50.5
Exp.2b 78.6 63.3
Exp.2c 61.0 42.4

Table 2. Verification rate at FAR of 10%.

point of 10% FAR, between 15-20% improvement in veri-
fication rate is achieved. This improvement can be directly
attributed to the algorithm’s ability to bypass the problem
of self-occlusion, which hampers the original 2D method’s
ability to accurately model the gait dynamics.

7. Conclusions and Future Work
In this paper, we have presented a novel gait recogni-

tion algorithm using a 3D voxel model, derived from sil-
houettes from multiple views, to extract gait features based
on ellipsoid parameterisation of the voxel model. The use
of 3D information allows left and right legs to be easily seg-
mented, and gate cycles to be detected. The proposed ap-
proach achieves a significant performance increase over its
2D counterpart, particularly when there is a class mismatch
between the gallery and probe sequences.

Future work will focus on improving the segmentation
to ensure that parts of the upper body, such as hands, do
not interfere with the extracted regions, and extracting ad-
ditional information such as the feet. Further evaluations
will also be carried out on more challenging data (such as
surveillance footage) to further illustrate the validity of the
proposed approach.
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