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Abstract—Computational Intelligence Systems (CIS) is one of 
advanced softwares. CIS has been important position for solving 
single-objective / reverse / inverse and multi-objective design 
problems in engineering. The paper hybridise a CIS for 
optimisation with the concept of Nash-Equilibrium as an 
optimisation pre-conditioner to accelerate the optimisation 
process. The hybridised CIS (Hybrid Intelligence System) 
coupled to the Finite Element Analysis (FEA) tool and one type of 
Computer Aided Design (CAD) system; GiD is applied to solve an 
inverse engineering design problem; reconstruction of High Lift 
Systems (HLS). Numerical results obtained by the hybridised CIS 
are compared to the results obtained by the original CIS. The 
benefits of using the concept of Nash-Equilibrium are clearly 
demonstrated in terms of solution accuracy and optimisation 
efficiency. 

Keywords-component; Computational Intelligence System, 
Reverse Engineering, Reconstruction/Inverse Design, Evolutionary 
Optimisation, Game-Strategies, Nash-Equilibrium. 

I.  INTRODUCTION 
Computational Intelligence Systems (CIS) have been 

developed for solving single-objective/reverse/inverse and 
multi-objective design problems in engineering. CIS are 
intrinsically capable of dealing with imprecise context 
problems and producing a set of feasible solutions [1 -3]. 
However, due to the increment of design problem complexity 
in engineering, innovation of CIS is crucial for both solution 
accuracy and computational efficiency [4, 5] so it can be more 
reliable and flexible. One of alternative methods to make such 
improvement is Game Strategies which can save CPU usage 
while producing accurate solutions due to their efficiency in 
design optimisation [6 -8].  

The paper investigates the application of an advanced CIS 
based on Genetic Algorithms (GA) coupled to Game strategies 
for the efficient reconstruction/inverse of aerodynamic shapes. 
For CIS, an optimisation tool; RMOP developed in CIMNE is 
considered. RMOP has two different CI engines; Genetic 
Algorithm (GA) and Particle Swarm Optimisation (PSO). In 
this paper, GA of RMOP is used and denoted as RMOGA. In 
addition, the concept of Hybrid-Game (Pareto and Nash-Game) 
[9] is applied to RMOGA to accelerate CIS process. 

Lee et al. [9, 10] studied the concept of Hybrid-Game 
(Global/Pareto and Nash) coupled to advanced CIS software to 
solve complex engineering multi-objective and 
multidisciplinary design problems. Their research clearly 
shows that the Hybrid-Game improves the performance of 
current CIS. 

Two CI systems are implemented and coupled to two 
different game strategies; the first approach RMOGA uses a 
standard Genetic Algorithm based on Global-Game and Pareto 
tournament [11, 12]. The second method uses RMOGA 
coupled to Nash-Game [8, 13, 14] approaches (denoted 
Hybrid-Game, HRMOGA). Hybrid-Game consists of one 
Global-Player and several Nash-players; Nash-players provide 
dynamic elite information (Nash-Equilibrium) to the Global 
algorithm and hence it can have faster convergence while 
producing high accurate solution simultaneously. It is shown in 
this paper how the Hybrid-Game can accelerate optimisation 
process to capture a desired design model using Nash-Game 
which acts as a pre-conditioner of the Global algorithm. Both 
CI systems are coupled to a Partial Differential Equations 
(PDEs) based FEA tool and a Computer Aided Design system; 
GiD and they are implemented to solve reconstruction of High 
Lift Systems (HLS) which requires high computational cost.  

The rest of paper is organized as followed; Section II 
describes the CIS; RMOP and Hybrid-Game on RMOP. 
Mathematical benchmarks are considered in Section III. 
Section IV presents brief description of aerodynamic analysis 
tool and pre/post processor. Section V conducts real world 
design applications. Conclusions are presented in Section VI. 

II. METHOLOGY 

A. Robust Multi-objective Optimisation Platform (RMOP) 
RMOP is a computational intelligence framework which is 

a collection of population based algorithms including Genetic 
Algorithm (GA) and Particle Swarm Optimisation (PSO) [15]. 
As shown in Figure 1, RMOP consists of seven modules;  

� EVAU is a module for evaluation and collecting results 
from analysis tools. It can handle Python script, pre-
compiled analyser. 
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� IOPU is a module for handling input, output data and also 
plotting convergence history, initial population 
(with/without buffer population), total populations, Pareto 
optimal front.  

� IRPU is an initial random population module.  

� MEAU is a module for allocating/dis-allocating memory 
for population. It also provide high performance 
computation environment.  

� NDOU is a module for computing Pareto-tournament, 
non-dominated sorting solutions from population.  

� RANU is a module for generating pseudo random number 
module.  

� SSOU is a searching module; selection, mutation, 
crossover for GA and also it produces velocity, 
positioning module for PSO.  

In this paper, RMOP uses GA searching method and also 
A module; ELIU is developed and added to hybridise 
RMOGA with a non-cooperative Game Strategy; Nash-Game. 
ELIU produces elite information from Nash-Game and seeds 
Nash elite design information to Global-Game population. 

 

Figure 1. RMOP . 

B. Non-cooperative Game Strategy: Nash-Game 
In the Game strategies, each Nash player is in charge of one 

objective by using its own strategy set; a subset of design space. 
During the game, each player looks for the best strategy in its 
search space in order to improve its own objective while the set 
of design variables from other players are fixed. In other words, 
Nash-Game will decompose a problem into several simpler 
problems corresponding to the number of Nash-Players. The 
Nash-equilibrium is reached after a series of strategies tried by 
players in a rational set until no players can improve its 
objective by changing its own best strategy.  

For instance, if the problem considers the objective function 
f = min(xy) as illustrated in Figure 2. The design variable x 
corresponds to the Nash Player 1 (P1) and y to the Nash Player 
2 (P2). The P1 is assigned for the optimization of x and the 
optimization of y to P2. P1 optimizes f = min(xy*) by modifying 
x, while the elite design y* is fixed by P2. Symmetrically, P2 
optimizes f = min(x*y) by modifying y while the elite design x* 
is fixed by P1. The Nash-equilibrium will be reached when 

both players P1 and P2 cannot improve their objective functions 
f = min(xy*) and f = min(x*y) respectively i.e. f = min(x*y*) � f 
= min(x*y) and f = min(x*y). It can be seen that the Nash-Game 
decomposes a problem (f = min(xy)) into two simpler problems, 
in this case two Nash-Players; P1 (f  = min(x*y)) and P2 (f  = 
min(xy*)) to create a competitive design environment for Nash-
Game.  

In this paper, Nash-Game is used to decompose complex 
design problems and also to be performed as a dynamic pre-
conditioner incorporated to Global-Game. 

 
Figure 2. Nash-Game. 

C. Hybrid RMOGA (HRMOGA) Algorithm 
Traditionally, Global and Nash games are considered 

independently when solving a design problem. In this research, 
a Hybrid Nash –Global approach is considered and developed.  

For example, if a problem considers f = min(xy) where 
design variables are x and y. A Hybrid-Game will consist of 
one Global Player and two Nash Players. The Global-Player 
will consider both design variables x and y to minimize f while 
Nash Player1 will only use x to minimize f and having design 
variable y* fixed by Nash-Player2. Nash-Player2 will only use 
y to minimize f using x* fixed by Nash-Player1. At every 
generation or at every predefined function evaluation, the best 
elite design variables (x*, y*) obtained by the Nash Players will 
be seeded to the population of Global Player. Thereby the 
Global Player can accelerate its searching speed to capture a 
global solution.  

III. MATHEMATICAL BENCHMARK 
In this section, one mathematical design problem is 

considered to compare optimisation efficiency of RMOGA and 
Hybridised RMOGA (HRMOGA) for single-objective design. 
The fitness function is shown (1). Two test cases are conducted 
with different number of design variables (n = 20, n = 30). The 
same random initial population is used for both RMOGA and 
HRMOGA. HRMOGA employs three players; one Global-
Player (GlobalP) minimising (1) and two Nash-Players 
(NashP1, NashP2) misimising (2) and (3). The elite design 
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obtained by Nash-Game will be seeded to the population of 
Global-Player at every generation. Table I describes crossover 
and mutation probabilities for RMOGA and HMOGA. The 
stopping criterion for RMOGA and HRMOGA is when the 
fitness value reaches lower than 1.0 � 10-6 i.e. fRMOGA and 
fHRMOGA � 1.0 � 10-6.  
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where nGlobal = [20,30], nNashP1 = [10,15], nNashP2 = [10,15]. 
          xi* is an elite design obtained by the Nash-Player 1 and 
          Nash-Player 2. 

TABLE I. CROSSOVER AND MUTATION PROBABILITY FOR RMOGA 
AND HRMOGA 

Optimiser RMOGA HRMOGA 
GlobalP NashP1 NashP2 

CP, MP 0.9, 1/n 0.9, 1/n 1, 0.9, 1/nNP1 1, 0.9, 1/nNP2 
Note: CP and MP represent crossover and mutation probability. GlobalP, NashP are Global-Player, 
Nash-Player. n is the total number of design variables and nNPi is the number of design variables for 

Nash-Player. 

Figures 3 and 4 compare the convergence history obtained 
by RMOGA and HRMOGA. It can be seen that HRMOGA has 
converged (f � 1.0 � 10-6) faster than RMOGA.  

In design test case 1 (nGlobal = 20), HRMOGA converged 
after 8 seconds (11,000 function evaluation) while the 
convergence of RMOGA occurs after 30 seconds (29,000 
function evaluations). In design test case 2 (nGlobal = 30), 
HRMOGA converged after 30 seconds (22,500 function 
evaluation) while the convergence of RMOGA occurs after 130 
seconds (57,500 function evaluations). In other words, 
HRMOGA only needs to run 39% of RMOGA function 
evaluation with 25% of RMOGA computational cost for both 
test cases. 

IV. AERODYNAMIC ANALYSIS TOOL AND PRE-POST 
PROCESSOR 

In this paper, the GiD and PUMI are utilized as a pre/post 
CAD processor and an unstructured finite Euler solver [5, 6] 
respectively. They are developed in International Center for 
Numerical Methods for Engineering (CIMNE). GiD can 
generate a mesh for finite element, finite volume or finite 
difference analysis and write the information for a numerical 
simulation program in its desired format. PUMI uses finite 
element approach with Galerkin approximation method. The 
validation of PUMI can be found in Reference [15]. GiD 
generates unstructured mesh/grid for candidate’s model based 
on the design parameters obtained by the RMOGA and 
HRMOGA, and PUMI evaluates an unstructured model and 
generates aerodynamic outputs in the format for GiD for post 
process. 

 

Figure 3. Convergence history obtained by RMOGA and HRMOGA for 
Test1 (nGlobal = 20). 

 

Figure 4. Convergence history obtained by RMOGA and HRMOGA for 
Test2 (nGlobal = 30).  

V. REAL WORLD DESIGN PROBLEMS 
The reconstruction of pressure distribution on a High Lift 

Aircraft System using RMOGA and HRMOGA is considered. 
The results obtained by RMOGA and HRMOGA are compared 
in terms of computational cost and solutions quality.  

A. Parameterisation of High Lift Systems 
The High Lift Systems (HLS) consist of multi-element 

airfoil; slat, main, flap as shown in Figure 5. The size of the slat 
and flap considered in this test are 25% and 28% of the chord 
of multi-element aerofoil. 

The deployment of slat and flap can be defined by six 
design parameters; dSx, dSy, dSA, dFx, dFy, dFA.  

 

Figure 5. Slat and flap deployment parameters. 
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B. Fomulation of Design Problem 
The baseline deployed configuration at take-off has the slat 

deployment of 22.5% and 10% of the chord in the x and y 
direction and deflects 22.5 degrees (dSx = 22.5%c, dSy = 
10.0%c, dSA = 22.5
) while the flap moves 20% and 2.5% of 
the chord in the x and y direction and 30 degrees deflection 
(dFx = 20.0%c, dFy = 2.5%c, dFA = 30.0
). Figure 6 shows the 
computational mesh of 16,788 vertexes and 32,039 triangles. 
The mesh is generated by using GiD and the model is evaluated 
by PUMI. The coefficient of pressure (Cp) distribution 
obtained by the baseline design is shown in Figure 7.  

 

Figure 6. Mesh conditions for High Lift Systems obtained by GiD. 

 

Figure 7. Pressure coefficient (Cp) obtained by the baseline design.  

The upper and lower design bounds are shown in Table II. 
This design bounds will be considered for the both 
reconstructions of High Lift Systems at take-off conditions 
using RMOGA and HRMOGA.  

TABLE II. DESIGN BOUNDS FOR RECONSTRUCTION OF HIGH LIFT 
SYSTEMS. 

DVs dSx dSy dSA dFx dFy dFA

BD 22.5 10.0 22.5
 20.0 2.5 30
 
Lower 15.0 5.0 15
 15.0 0.0 25
 
Upper 25.0 15.0 25
 25.0 5.0 35
 

Note: DVs and BD represent design variables and the baseline design. dSx, dSy, dFx, dFy are in the 
baseline chord length (%c) at cruise [0:1]. 

C. Reconstruction of High Lift System using RMOGA 
1) Problem Definition 

This test case considers the application of the method for 
single-objective reconstruction of high lift systems operating at 
M� = 0.2 and � = 15
. This reconstruction problem deals with 
minimising pressure error; the difference between a candidate 
pressures and the pressure distribution obtained by the baseline 

design deployed configuration shown in Figure 7. The fitness 
function is shown (4) and the optimisation is stopped after 50 
hours. 

� � �min Errorf P� � ����
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, 

          PT and PC represent target and candidate pressure           
distribution; SSP, SMP and SFP represent target pressure area for 
slat, main and flap; n, m and l represent the number of chord-
wise pressure points on each aerofoil (n, m, l = 200). 

2) Numerical Results 
The RMOGA was allowed to run 1,532 function evolutions 

for 50 hours using two 4 � 2.5 GHz processors. The 
convergence history (fitness vs. function evaluation) is plotted 
in Figure 8. The optimal design produces a pressure error of 
3.1 % when compared to the baseline design. It can be seen that 
there is good position agreement between the target deployed 
configuration and the optimal solution. 

 

Figure 8. Convergence history obtained by RMOGA 

 

Figure 9. Cp distributions obtained by the baseline design (target) and the 
optimal solution. 
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Figure 9 compares the pressure coefficient (Cp) distribution 
obtained by the baseline design and the optimal solution. It can 
be seen that there is good Cp agreement between the target and 
the optimal solution. 

D. Reconstruction of High Lift Systems usingHRMOGA 
1) Problem Definition 

This reconstruction problem deals with minimising the 
pressure error between computed pressures and pre-computed 
pressure (Figure 7) distributions using HRMOGA. HRMOGA 
employs three players (Global-Player and two Nash-Players); 
Global-Player optimises both slat and flap deployment (dSx, dSy, 
dSA, dFx, dFy, dFA). Nash-Player1 only optimises the slat 
deployment (dSx, dSy, dSA) with the elite design for flap 
deployment (dFx*, dFy*, dFA*) obtained by the Nash-Player2 
while Nash-Player2 only optimises the flap deployment (dFx, 
dFy, dFA) with the elite design for slat deployment (dSx*, dSy*, 
dSA*) obtained by the Nash-Player1. The fitness functions for 
Global and Nash players are shown (5) –(7) and the 
optimisation is stopped after 50 hours.

� � �minGlobal Player Errorf P� � � ���

� � �1 min   *, *, *Nash Player Error x y Af P with dF dF dF� � � ����

� � �2 min   *, *, *Nash Player Error x y Af P with dS dS dS� � � ����

where � � � �
1 1
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3 ij ij

i
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i jP

P abs P P dx
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� �
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          dS*, dF* represent the elite designs obtained by Nash- 
          Player 1 and Nash-Player 2, 
          PT and PC represent target and candidate pressure  
          distribution, 
          SP represents target pressure error,  
          n and m represent the number of aerofoils (n = 3) and  
          chord-wise pressure points on each aerofoil (m = 200). 

2) Numerical Results 
The HRMOGA was allowed to run 547 function evolutions 

for 50 hours using two 4 � 2.5 GHz processors. The 
convergence history (fitness vs. function evaluation) is plotted 
in Figure 10. The optimal design produces a pressure error of 
2.3 % when compared to the baseline design. It can be seen that 
there is good agreement between the target deployed 
configuration and the optimal solution. 

Figure 11 compares convergence history obtained by 
RMOGA and HRMOGA. HRMOGA converged to PError of 
2.29% which RMOGA cannot capture after 50 hours. To 
compare computational cost, two similar PError are selected; 
RMOGA - PError of 3.1% after 18.3 hours (564 function 
evaluations) and HRMOGA - PError of 3.0% after 7.4 hours (81 
function evaluations), HRMOGA has capabilities to capture 
better design with only 37% computational cost of RMOGA. 

Figure 12 compares pressure coefficient (Cp) distribution. 
It can be seen that there is good Cp agreement between the 
target and the optimal solution. The Cp contours obtained by 

the baseline design, the optimal solution from Section V.C and 
the current optimal solution are shown in Figures 13 -15. 

 

Figure 10. Convergence history obtained by HRMOGA. 

 

Figure 11. Comparison of convergence history obtained by RMOGA and 
HRMOGA. 

 

Figure 12. Cp distributions obtained by the baseline design (target) and the 
optimal solution. 

 

304304304303



 

Figure 13. Cp contour obtained by the baseline design. 

 

Figure 14. Cp contour obtained by the optimal solution of RMOGA. 

 

Figure 15. Cp contour obtained by the optimal solution of HRMOGA.  

VI. CONCLUSION 
Two Computational Intelligence Systems; RMOGA and 

HRMOGA are demonstrated and implemented to solve 
reconstruction of High Lift System design problems. 
Numerical results obtained by RMOGA and HRMOGA 
optimisation approaches are compared in terms of efficiency 
and model quality. The paper clearly shows the benefits of 
using Hybrid-Game in CIS which produces more accurate 
solution while reducing computational cost when compared to 
the original CIS. Current research focus on direct design 
problems and multi-objective design problems using 
HRMOGA and other conflicting game strategies such as 
hierarchical game, Stackelberg for distributed virtual or real 
games are presently under investigation. 
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