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Abstract. Agents make up an important part of game worlds, ranging from the 

characters and monsters that live in the world to the armies that the player con-

trols. Despite their importance, agents in current games rarely display an aware-

ness of their environment or react appropriately, which severely detracts from 

the believability of the game. Some games have included agents with a basic 

awareness of other agents, but they are still unaware of important game events 

or environmental conditions. This paper presents an agent design we have de-

veloped, which combines cellular automata for environmental modeling with 

influence maps for agent decision-making. The agents were implemented into a 

3D game environment we have developed, the EmerGEnT system, and tuned 

through three experiments. The result is simple, flexible game agents that are 

able to respond to natural phenomena (e.g. rain or fire), while pursuing a goal.  

1   Introduction 

Agents are an important part of game environments as they give the game life, story 

and atmosphere. Agents serve many different purposes and hold many different posi-

tions in games, which contributes to making the game world rich, interesting and com-

plex. For example, strategy games include units (e.g. marines) that the player controls 

and role-playing games include agents that fill a wide range of different roles in soci-

ety, from kings to cobolds. Game-players expect agents to behave intelligently by 

being cunning, flexible, unpredictable, challenging to play against and able to adapt 

and vary their strategies and responses [5]. However, players often find that agents in 

games are unintelligent and predictable [5]. Furthermore, players believe that agents’ 

actions and reactions in games should demonstrate an awareness of events in their 

immediate surroundings [1]. However, many games are proliferated with agents that 

do not demonstrate even a basic awareness of the situation around them. These agents 

often occupy the landscape as glorified pieces of scenery and behave in exactly the 

same way in any number of situations, ranging from rain to open gun fire.  

The question that arises is how can game agents be made to appear intelligent to the 

player by reacting sensibly to the game environment? First, we review various tech-

niques that can be used for agents in games and identify influence maps as a potential 

solution. Then we describe a study in which we designed, implemented and tested 



reactive agents in the Emergent Games Engine Technology (EmerGEnT) system, a 

system we have developed that is based on cellular automata. Three structured ex-

periments were conducted with the reactive agents in the EmerGEnT system to deter-

mine the design that would achieve the most appropriate agent behaviour, as indicated 

by criteria for efficiency, effectiveness and visible behaviour. The aim of the study 

was to assess the extent to which agents based on influence maps and cellular auto-

mata can exhibit behaviour that is appropriate, intelligent and realistic.  

2   Reactive Agents in Current Games 

The agents in most games are hard-coded, relying heavily on the prior knowledge of 

their designers and little on their current situation. Furthermore, many agents in cur-

rent games simply do not react to the environment in any way. There are some games, 

however, in which the agents demonstrate situational awareness by actively sensing 

and reacting to other agents in their environment. For example, the agents in Half-Life 

and Thief: The Dark Project have sight and hearing and periodically “look” at and 

“listen” to the world [2]. However, the agents in these games are still hard-coded, as 

they periodically run through a list of rules to determine whether they sense an oppo-

nent. Also, as these agents must actively check to determine whether they can sense 

something periodically (real vision and hearing arrive at the senses continuously [2]), 

it is likely that events and actions will be missed.  

Another game that requires the agents to sense and react to information in the envi-

ronment is The Sims. Unlike Half-Life and Thief, the agents in The Sims constantly 

receive information from the environment. In The Sims, the AI is embedded in the 

objects in the environment, known as “Smart Terrain”. Each agent has various motiva-

tions and needs and each object in the terrain broadcasts how it can satisfy those needs 

[7]. The agents in The Sims are not hard-coded like the agents in Half-Life and Thief. 

Instead, their behaviour is autonomous and emergent, based on their current needs and 

their environment. 

Although the agents in each of these games are able to sense entities in the envi-

ronment in some way, they are still unable to sense the state of the environment itself. 

The agents in Thief and Half-Life are limited to sensing other agents in the environ-

ment and the agents in The Sims are limited to sensing other agents and objects in the 

environment. These agents would still be unable to react to events and states of the 

environment such as rain, fire, gunfire and so on. Another approach that is more ap-

plicable to the problem of agents reacting to the game environment is a technique used 

in many strategy games, influence maps.  

3   Influence Maps 

Influence maps divide the game map into a grid of cells, with multiple layers of cells 

that each contain different information about the game world (see [3,6]). The values 

for each cell in each layer are first calculated based on the current state of the game 



and then the values are propagated to nearby cells, spreading the influence of each 

cell. Currently, influence maps are used in games for strategic, high-level decision-

making. However, it would also be possible to use them for tactical, low-level deci-

sion-making, such as individual agents or units reacting to the environment.  

The advantage of influence maps over methods that are currently used in games, 

such as Smart Terrain in The Sims, is that the agent is presented with a single value 

(calculated using the weighted sum to combine all the factors) instead of numerous 

messages being sent to the agent about the environment. Also, this approach has fur-

ther advantages over the method used in games such as Half-Life and Thief as the 

agent is continuously adapting its behaviour to the environment (rather than probing at 

given time intervals) and its behaviour is a function of its environment (rather than 

following a prescribed set of rules). Finally, the influence map structure fits nicely 

with the cellular automata that are already being used to model the environment in the 

EmerGEnT system (see Sect. 4). Both use the same data structure and the raw values 

for the influence map are supplied by the calculations of the cellular automata. There-

fore, the approach of using an influence map for tactical decision-making is investi-

gated in this study as it accommodates passive sensing of a continuous environment 

(as opposed to discrete entities), allows the agents’ situational awareness to evolve as 

a function of the environment, gives rise to reactive and emergent behaviour and com-

bines well with the cellular automata model of the environment in the EmerGEnT 

system. 

4   The EmerGEnT System 

The Emergent Games Engine Technology (EmerGEnT) system is a 3D game world 

we have developed that models natural phenomena, such as fluid flow, heat, fire, pres-

sure and explosions. The system is based on cellular automata, which divide the game 

world into a grid of cells and contain rules for how the cells interact. Each cell has a 

set of variables, including height, heat, pressure, fluid and terrain. The rules of the 

cellular automata are loosely based on thermodynamics and physics and use the prop-

erties of each cell to determine how the cells will exchange heat, pressure and fluid, 

which gives rise to explosions, fire and floods. The EmerGEnT world also includes 

game objects (e.g. buildings) and game agents (e.g. villagers) that have similar proper-

ties to the cells of the environment, which determine how the objects and agents act 

and interact in the game world. 

5   Agent Design 

For a game agent to react sensibly to the environment it must have two things: a way 

to sense the environment and a way to choose a suitable reaction, based on what it has 

sensed. An agent’s understanding of its situation in the EmerGEnT system is repre-

sented as a weighted sum of the factors affecting each cell on the map. Based on the 

utility value of each cell, the agent chooses a cell to move to and reacts at a level that 



reflects its current situation (e.g. if the agent’s current cell is on fire then it panics). 

After the agent chooses a destination, its task is simply to move towards it. This sec-

tion discusses the “comfort” function that determines the utility of each cell, the 

agent’s level of reaction and the agent’s choice of destination cell. 

The utility function for the agents in the EmerGEnT system determines how com-

fortable each cell is for the agents and is therefore called a comfort function. The 

comfort function is a weighted sum of the factors that affect the agents’ comfort in 

each cell and includes fire, heat, pressure and wetness. Each of these factors is 

weighted according to how distressing it is for the agent. Fire is the most distressing, 

followed by temperature, pressure and wetness. The weights (W1, W2, W3, W4) can be 

tuned to reflect different priorities of different agents. For example, an alien might 

find water far more dangerous than heat. The comfort function returns a real value 

between zero and one, with a lower value representing a more comfortable cell. 

Comfort = Min ((fire*W1) + (heat*W2) + (pressure*W3) + (wetness*W4), 1) 

The comfort function provides an efficient alternative to the environment sending 

the agent multiple messages about its state, such as “it’s hot” or “it’s raining”. Instead, 

the relevant factors are weighted and combined into a single value that gives the agent 

an estimate of the safety and comfort of its current location. The purpose of the com-

fort value is twofold. First, it provides a means for the agents to determine how com-

fortable they are in the current cell and to react accordingly. Second, it provides a 

means for the agents to assess surrounding cells and find a suitable destination. These 

two tasks are discussed in this section. 

The comfort function returns a real value which allows the agent to react with vary-

ing degrees of distress, providing for diverse and interesting behaviour (see Table 1). 

The agent’s level of reaction is denoted by its speed of movement, as well as its ani-

mation and sound. Scaling the agents’ reactions allows the agents to react in varying 

ways to different situations, while greatly simplifying the process of determining how 

the agents will react. Instead of the agents considering each element in the environ-

ment individually, the comfort function determines the agents’ level of discomfort and 

the agents respond accordingly by choosing the reaction level that corresponds to their 

comfort value. 

Table 1. Agent reaction levels. Agents react with varying degrees of distress to provide more 

diverse behaviour 

Value Level Reaction 

< 0.1 comfortable no reaction 

0.1 - 0.3 uncomfortable calmly moves to more comfortable cell 

0.3 - 0.6 distressing runs from the cell 

> 0.6 painful panics and runs quickly from cell 

 

If the agents are not comfortable in their current cell then they must locate and 

move to a more comfortable cell. Each agent reassesses its situation each timestep, by 

calculating the comfort value for the cell it is standing in or passing through and find-

ing a destination cell based on the comfort of its neighbour cells. As long as the agent 



is not comfortable, it will keep reassessing its situation and finding a new destination, 

which means that agents can change destination while they are moving towards their 

current destination, if they find a better destination. Also, as the state of the environ-

ment is continuously changing, the destination the agent found last cycle may no 

longer be a comfortable cell. In choosing a destination, the agents evaluate the com-

fort values of the cells in a neighbourhood of a given size and choose the cell with the 

lowest comfort value.  

6   Agent Experiments 

Three experiments were conducted to investigate and tune the behaviour of the agents 

in the EmerGEnT system, in terms of efficiency, effectiveness and observable behav-

iour. Several conditions were investigated in each experiment and ten trials with ten 

agents were run in each condition. The criteria that were used to evaluate the perform-

ance of the agents included whether or not the agents converged on a solution (i.e. 

agents located and reached comfortable cells), the number of cycles the EmerGEnT 

system ran before the agents converged, how efficiently the agents found a solution, 

what (if any) strategies or patterns agents exhibited and the number of local optima 

(comfortable cells) on which the agents converged. The initial state of each trial was 

randomly generated, including the position of the agents, the position of rain and the 

number and position of explosions (see Fig. 1). See [4] for detailed experiments. 

 

 

Fig. 1. The initial state of each trial was randomly generated, including position of agents, rain 

and explosions. 

The aim of the first experiment was to determine the optimal neighbourhood size 

that agents should evaluate when choosing a destination (i.e. where to move to maxi-

mise comfort). Three conditions were tested, in which the agents evaluated neighbour-

hoods with a radius or one, two or three. Agents with each of these neighbourhood 

sizes demonstrated various advantages and drawbacks. The agents with a neighbour-

hood size of one performed the best at avoiding immediate danger. However, their 



short sight meant that they often ran towards more dangerous situations or became 

stuck in larger hazards as they were unable to find a way out. With a neighbourhood 

size of two, the agents were better at choosing safe destinations and appeared more 

organised, but still expressed the problems associated with short sight. The agents 

with a neighbourhood size of three were exceptional at picking particularly desirable 

cells and appeared organized, as many agents moved to similar locations. However, 

the problems for these agents were almost the opposite of the previous agents, as they 

performed the best at choosing a destination but were unable to avoid immediate haz-

ards in getting to their destination. They would often put themselves in great danger 

(e.g. run through fire) to get to a safe destination cell.   

From the first experiment, it was concluded that it would be desirable to combine 

the ability to find local optima of the longer-sighted agents with the ability to avoid 

immediate threats of the short-sighted agents. Consequently, the second experiment 

investigated whether a combination of immediate area (reactive) evaluation and 

greater area (goal) evaluation is more effective than either approach individually. The 

aim of the second experiment was to determine what combination of reactive 

(neighbourhood size = 1) and goal (neighbourhood size = 3) evaluation gave rise to 

the best agent behaviour. Three conditions were tested: evenly-weighted, goal-directed 

and reactive. 

The agents in the second experiment displayed definite advantages over the agents 

in the first experiment. The agents in the evenly weighted and goal-directed conditions 

appeared far more intelligent, as they moved towards a goal rather than running back 

and forth randomly. Also, these agents appeared more realistic, as they moved around 

hazards on the way to their goal rather than simply running in a straight line, which 

made the agents in the previous experiment appear very flat and synthetic. Also, the 

agents in the evenly weighted condition displayed more depth as they did not always 

react in the same way, sometimes they would appear organised and at other times they 

would appear more independent, with their behaviour being heavily dependent on the 

current situation. The agents in the evenly weighted condition took the least amount of 

time to converge on safe cells. The agents in the goal-directed condition behaved in a 

similar way to the agents in the evenly weighted condition, but became stuck more 

often and still ran through hazards. The agents in the reactive condition had the least 

desirable behaviour as they often appeared to move randomly, did not appear organ-

ised and often became stuck. Therefore, it was concluded from the second experiment 

that the most suitable combination of reactive and goal-directed behaviour for the 

agents in the EmerGEnT system is approximately equal, where it is more desirable to 

err on the side of goal-directed than on reactive behaviour. 

The first and second experiments gave rise to agents that efficiently, intelligently 

and realistically react to the environment by moving from danger to safety. However, 

in a computer game situation, it is also likely that agents will have greater goals or 

desires that they need to fulfil, apart from simply surviving and reacting sensibly to the 

environment. For example, marines in a strategy game might be on a mission to kill 

the enemy in a particular cell or a villager in a role-playing game might want to stay 

near its house or shop. Drawing on the notion of “desirability” values from influence 

maps, goal areas could be given high desirability values for the agents. Additionally, 

desirability values could then be propagated out to surrounding areas to indicate that 



these areas are more desirable as they are near the goal. Therefore, the aim of the third 

experiment was to combine the desire to reach a greater goal with the agents’ current 

behaviour of reacting to the environment and avoiding hazards. The third experiment 

combined an influence map to propagate the desirability of the cells with the cellular 

automata to determine the comfort of the cells. The three conditions that were investi-

gated in the third experiment were designed to test different influences of comfort and 

desirability on the agent’s choice. The three conditions were evenly weighted, goal-

oriented, and self-preserving. 

The third experiment demonstrated that an equal weighting of desirability and com-

fort gave the agents the most acceptable observable behaviour, in terms of organisa-

tion, avoiding hazards and navigating the environment realistically and intelligently. 

When the weighting was tipped towards either comfort or desirability, the agents’ 

behaviour appeared random, less organised and less intelligent. Only about half the 

equal-weighting agents found the goal as they opted for comfort over the goal. It is 

difficult to judge this as a success or a failure without a context for the agents. For 

example, it would be reasonable for villagers to prioritise their safety over achieving a 

specific goal, but marines would be expected to carry out the player’s orders. It was 

concluded that the success of the agents must be judged with respect to the game 

situation, as different game types and scenarios have different requirements for suc-

cessful agent behaviour. In general, agents should be able to reach their goal, while 

displaying appropriate behaviour (e.g. avoiding danger), but the relative importance of 

each of these aspects would be determined by the game situation. The third experi-

ment produced an agent model that successfully integrates goal-directed behaviour 

(based on agent desires) with situation awareness (based on comfort), which enabled 

the agents to both react to the environment in an intelligent, realistic and organised 

way while simultaneously satisfying their desire to reach a goal. 

7   Discussion and Conclusions 

The outcome of the first two experiments was a model for agents that dynamically 

respond to the environment in an intelligent and realistic way, based on concepts from 

cellular automata and influence maps. The outcome of the third experiment was an 

extension of this model that also integrates goal-directed behaviour to enable the 

agents to respond to the environment while pursuing a goal. An advantage of the 

model developed through these experiments is extensibility, in that it can be extended 

to incorporate any aspects in the game world that are relevant to the agents’ behaviour 

(e.g. other agents, terrain, events). It would also be possible to incorporate other mod-

els for agent behaviour, such as flocking, so that the agents also take into considera-

tion the movement of other agents around them. The simplicity and flexibility of this 

model means that it can be used to govern the behaviour of almost any agent in any 

circumstance. The contribution of this research is a design that allows agents to dy-

namically react to the changing situation of their environment, as well as an intelligent 

pathfinding algorithm that allows agents to find a safe path to a goal, based on aspects 

of their environment. The agent parameters were tuned through the experiments dis-



cussed, but future work will be required to optimise their behaviour for specific game 

situations. 

In conclusion, this research provides a possible solution for incorporating agents 

that appear intelligent to the player, by reacting sensibly to the game environment, into 

game worlds. First, reactive agents can be incorporated into game worlds by giving 

the agents a measure of comfort in their current situation (via cellular automata or 

other means), as well as a map for deciding where they might move to maximise their 

comfort. As this design closely resembles an influence map, it is also possible to inte-

grate goal-directed behaviour and potentially personality, group movement and vari-

ous other behaviours into the agent model. Whereas current agents in games do not 

demonstrate an awareness of their situation or react appropriately to events in their 

immediate surroundings, the reactive agents presented in this paper maintain a model 

of the comfort of their environment and react according to the changing state of their 

situation. The reactive agent model developed in this study allows agents to dynami-

cally react to the changing situation of their environment and to intelligently find a 

path to a goal, increasing their visible level of intelligent, realistic and responsive 

behaviour. 
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