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Abstract

In recent years, development of Unmanned Aerial Vehicles (UAV) has become a significant

growing segment of the global aviation industry. These vehicles are developed with the

intention of operating in regions where the presence of onboard human pilots is either

too risky or unnecessary. Their popularity with both the military and civilian sectors

have seen the use of UAVs in a diverse range of applications, from reconnaissance and

surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks.

Efficient energy utilisation on an UAV is essential to its functioning, often to achieve

the operational goals of range, endurance and other specific mission requirements. Due

to the limitations of the space available and the mass budget on the UAV, it is often

a delicate balance between the onboard energy available (i.e. fuel) and achieving the

operational goals.

This thesis presents an investigation of methods for increasing the energy efficiency on

UAVs. One method is via the development of a Mission Waypoint Optimisation (MWO)

procedure for a small fixed-wing UAV, focusing on improving the onboard fuel economy.

MWO deals with a pre-specified set of waypoints by modifying the given waypoints within

certain limits to achieve its optimisation objectives of minimising/maximising specific

parameters. A simulation model of a UAV was developed in the MATLAB Simulink

environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and

its parameters. This simulation model was separately integrated with a multi-objective

Evolutionary Algorithm (MOEA) optimiser and a Sequential Quadratic Programming

(SQP) solver to perform single-objective and multi-objective optimisation procedures of

a set of real-world waypoints in order to minimise the onboard fuel consumption. The

results of both procedures show potential in reducing fuel consumption on a UAV in a

flight mission.
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Additionally, a parallel Hybrid-Electric Propulsion System (HEPS) on a small fixed-

wing UAV incorporating an Ideal Operating Line (IOL) control strategy was developed.

An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e.

provides greatest torque output at the least fuel consumption) points of operation for this

engine was determined. Simulation models of the components in a HEPS were designed

and constructed in the MATLAB Simulink environment. It was demonstrated through

simulation that an UAV with the current HEPS configuration was capable of achieving

a fuel saving of 6.5%, compared to the ICE-only configuration. These components form

the basis for the development of a complete simulation model of a Hybrid-Electric UAV

(HEUAV).
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Chapter 1

Introduction

1.1 Background and Motivation

An Unmanned Aerial Vehicle (UAV) is a “remotely piloted or self-piloted aircraft that can

carry cameras, sensors, communications equipment or other payloads” [2] and is often used

synonymously with the term Unmanned Aircraft System (UAS), which in fact refers to the

entire system of unmanned aircraft, payload, and all direct support equipment (ground-

based operators and support crews, etc.) [3]. UAVs have emerged as a viable platform

to operate in regions where the presence of onboard human pilots is either too risky or

unnecessary, in a diverse range of applications, from reconnaissance and surveillance tasks

for the military, to civilian uses such as aid relief and monitoring tasks [4]. Their lower

operation costs (as compared to manned aircraft and satellites) and availability in a great

variety of sizes and capabilities have contributed towards the surging interest in UAVs

from both the military and civilian sectors. In recent years, the development of UAVs

has become a significant growing segment of the global aviation industry, with a total

worldwide UAV expenditures forecast of USD$80 billion from year 2010 to 2019 [5].

The focus of UAV applications has hitherto been predominantly in the military do-

main, but there has been increasing global interest in civilian and commercial UAV

applications over the last decade, especially the use of small UAVs. Examples of these

smaller and less sophisticated cousins of the military UAVs, e.g. MQ-1 Predator or RQ-4

Global Hawk, include the Shadow, the Aerosonde, the Global Observer, the Bell Eagle

Eye, the SkySeer, the ARCAA Flamingo UAV and the KillerBee 4 UAVs. The lower-cost

1
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factor of these small UAVs, much of which is due to the increase in the availability and

quality of commercially off-the-shelf (COTS) components, and rapid increases in their

capabilities as a result of technological advances, together present attractive incentives

[6] for non-military and amateur UAV operators and developers, who are generally under

more strict cost budgets when compared to their military counterparts.

Trade-offs between payload capability and aircraft endurance is always a problem that

needs to be solved in the development and construction of UAVs, regardless of their size.

As with all aircraft, there are mass and space limitations onboard UAVs for all onboard

systems, including electronics, powerplant(s), fuel storage and payloads. However, these

limitations are stricter for a small UAV due to their already smaller sizes.

The miniaturisation of avionics equipment and an increase in their capabilities have

seen significant reductions in size, weight and power usage for small UAV components [7].

On the other hand, the use of COTS aeromodelling powerplants onboard a large propor-

tion of emergent propeller-driven UAV platforms can be significantly disadvantageous in

operational utility and energy efficiency compared to traditional aircraft powerplants [8].

While some UAV developers have successfully modified COTS aeromodel powerplants to

achieve excellent efficiency, the utilisation of COTS components that are not sized ideally

for the UAVs is still a common practice amongst civilian UAV developers, mostly due to

cost issues. Consequently, the associated weight and space penalties contribute to limits

on onboard fuel and/or energy resources (fuel, battery, etc.). This in turn brings about

the problem of how to efficiently utilise the available energy resources onboard a small

UAV.

Research in the area of efficient energy usage onboard a small UAV has mainly been

conducted in two directions. One approach is by developing and implementing alternative

energy technology for use onboard the UAV. Examples of these include fuel cells, solar

cells and hybrid propulsion systems. The other approach focuses on adapting the UAV’s

flight path in order to optimise the energy efficiency of the aircraft, either by minimising

energy usage or taking advantage of atmospheric energy resources such as wind (energy

harvesting), as well as other mission goals. This thesis explores two possible methods of

achieving energy efficiency onboard the UAV, and these are:

• optimisation of mission waypoints (§1.1.1); and



1.1. BACKGROUND AND MOTIVATION 3

• utilisation of a Hybrid-Electric Propulsion System onboard the UAV (§1.1.2).

and they are described in the respective sections.

1.1.1 Mission Waypoint Optimisation

An UAV is deployed to carry out specific mission objectives, which can be time- and

space-related (i.e. to arrive at a certain location within a specified time duration), or

task-related (i.e. to obtain an image of a specified phenomenon). An integral part of

achieving this is a flight path (or mission plan) [9], which consists of a series of waypoints

which the UAV is required to fly through in a safe and efficient manner. This is to be

executed while conforming to the rules of the air as with all civilian applications (as an

essential requirement to integrate UAVs within the National Airspace System (NAS) [10])

and without exceeding the performance limitations of the aircraft.

With the necessity to take into account the flight time, distance, energy efficiency and

conformance with aviation regulations [11], the optimisation of a specified mission plan is

a multi-objective problem. Contrasting with the global path planning of Mission Flight

Planning (MFP) [12] (pre- or in-flight design of a flight path to direct the UAV from

a specified starting point to a specified destination point) and the local path planning

method of trajectory optimisation [13] (the generation of smooth trajectory through a

set of mission waypoints, typically generated by a global planner), waypoint optimisation

in this case is the evaluation and modification of a given series of waypoints which the

UAV has to fly through. However, these waypoints are not definite in the sense that they

may be adjusted within set bounds in order to be optimised. This waypoint optimisation

technique has the potential be integrated with MFP and trajectory optimisation, both of

which are performed online (in-flight) onboard the UAV, by generating an off-line flight

plan which can be further refined by these two techniques to assist in the operation of

UAVs in uncertain and dynamic environments.

1.1.2 Hybrid-Electric Propulsion System

Traditionally, small civilian UAVs are mostly powered by Internal Combustion Engines

(ICEs), but as they have a thermal efficiency of at most 40% [14] and, despite the high



4 CHAPTER 1. INTRODUCTION

energy density of the liquid hydrocarbon fuels used by ICEs, with energy preservation

issues on the rise, more efficient powerplant configurations have been sought.

The most popular alternative powerplant is the Electric Motor (EM), which are

capable of operating with an efficiency of close to 100% [15]. However, EM’s high efficiency

is negated by the necessary use of a power storage system which drives the EM in order to

power the UAV. This power storage system, in most cases a battery, is often the largest

component by weight in an UAV, representing a large weight penalty, as well as having

a limited operating duration and relatively long period of time required to replenish its

charge, resulting in a relatively short operating range and the need to charge frequently.

Despite recent advances in power storage technology which have reduced the impact these

drawbacks have had on the use of EM in civilian UAVs in the past, the sizes and relative

inefficiencies of power storage systems still hold back the development of purely electrically

powered UAV.

A way of overcoming the shortcomings of both powerplants is to integrate an ICE with

an EM to form a Hybrid-Electric Propulsion System (HEPS), which can be designed and

implemented in two main powertrain configurations - series and parallel - with numerous

control strategies for each [16].

In the series powertrain configuration, shown in Figure 1.1, the EM is the only means of

providing power to the mechanical drive train. This means the ICE is able to operate in an

optimum torque and speed range, regardless of the driving conditions, in the execution of

its role as an auxiliary power unit to drive the EM to propel the aircraft, or the Generator

to provide power to the energy storage system, or the Battery. The series configuration

performs best for low-speed, high-torque applications such as in buses and other urbn

work vehicles.

However, because the mechanical energy from the ICE is firstly converted to electrical

energy in the Battery, then passed on to the EM, and lastly converted once again into

mechanical energy to power the propeller, there exist large energy conversion losses

between the mechanical and electrical systems. Thus the overall system efficiency is

reduced [17]. Also, in the series configuration, although the ICE is typically smaller

because it only has to meet average power demands, the EM and the Battery generally

need to be sized larger to accommodate the peak power demands. This, combined with



1.1. BACKGROUND AND MOTIVATION 5

Figure 1.1: Series configuration of an HEPS.

the Generator required in this configuration, results in a significant weight penalty, which

is expensive onboard a UAV. Harmon [18] estimated that a series configuration for a small

UAV can result in a 8%, or 2.5 lb (1.13kg), weight penalty for a 30-lb (13.61kg) UAV.

The parallel configuration, shown in Figure 7.1, enables the powering of the UAV using

the ICE alone, the EM alone, or both depending on the operating conditions, as well as

benefitting from redundancy, which is important in both civilian and military applications.

Realisation of this configuration can be seen in various commercially available ground

vehicles such as the Honda Insight, Civic and Accord hybrids [19].

Figure 1.2: Parallel configuration of an HEPS.

Although this configuration can potentially suffer from an inability to operate the ICE

in its most efficient region (it is directly coupled to the wheels through a transmission, thus

limiting the energy efficiency), integrating a Continuously Variable Transmission (CVT)

between the ICE and the wheels will help to mitigate this potential problem. However,

this introduces additional difficulty into the control strategy to schedule the torque from

the individual or combined power sources for maximum efficiency [16, 20].
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The control strategy of HEPS is an integral component for a Hybrid-Electric UAV

(HEUAV). Cho [21] reviewed the five categories of algorithms for a supervisory HEPS

controller and opted for the use of predictive control methods, while Harmon [18] devel-

oped a neural network controller. Francisco [16] and Frank [22], on the other hand, both

implemented an Ideal Operating Line (IOL) control strategy, which was made possible

with the use of a CVT in their systems. Due to the proven nature of this strategy, this

approach was adopted in the course of this research.

1.2 Research Objectives

The aim of this research is to explore and develop two strategies to increase the energy

efficiency of a small fixed-wing UAV. Firstly, a Mission Waypoint Optimisation (MWO)

strategy was developed for a small fixed-wing UAV, focusing on the fuel economy ben-

efit. Secondly, a simulation model of a parallel HEPS onboard a small fixed-wing UAV

incorporating an IOL control strategy was developed and implemented.

The main objectives are as follows:

Objective 1 To investigate the use of optimisation techniques and algorithms that are

currently available for the purpose of increasing energy efficiency on a small fixed-

wing UAV;

Objective 2 To construct a simulation environment, including a model of an ICE-

powered UAV and a baseline mission scenario;

Objective 3 To implement a MWO procedure with the main focus on maximising fuel

economy;

Objective 4 To demonstrate the fuel economy benefit of a MWO strategy through

coupling with the UAV simulation model and performing computer simulations;

Objective 5 To investigate and perform an IOL analysis of an ICE;

Objective 6 To develop and implement simulation models of HEPS components in a

HEUAV; and

Objective 7 To demonstrate the fuel economy benefit of the HEPS through coupling

the HEUAV simulation model and performing computer simulations.
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1.3 Research Contribution

The main outcome, and one of the novel contributions, of this research is a framework

for the implementation and simulation of an UAV – ICE or hybrid-electric powered – in

the Simulink environment. Due to the modular nature of the simulation model and the

incorporation of aircraft-specific configuration and parameters, simulation of any small

fixed-wing UAV can be achieved using this framework.

This research also sees the application of the HAPMOEA optimiser in the area of

MWO, which is a novel area of application. Previous employment of HAPMOEA had

been mainly in the design and optimisation of aircraft and airfoils. The coupling of

the HAPMOEA optimiser with MATLAB and Simulink also had not been attempted

previously. Due to the popularity of the MATLAB and Simulink environment among

academia and industry alike, this may very well enable the HAPMOEA optimiser to be

used in a wider range of applications.

1.4 Research Methodology

The investigation of methods for increasing the energy efficiency on UAVs was conducted

using the following methodology:

1. Conducting a literature review on simulation optimisation to determine the essen-

tial requirements and elements in carrying out a simulation optimisation, during

which a list of optimisation methods that are commonly associated with simulation

optimisation were also investigated – see §2;

2. Designing, implementing and improving a 6-DOF simulation model of an UAV by

adding modules to enable unmanned operations – see §3;

3. Formulating the optimisation problem – for both single- and multi-objective optimi-

sation – in a manner that can be solved using the coupling of the simulation model

with the respective optimisers – see §4 for single-objective optimisation and §5 for

multi-objective optimisation; and

4. Designing and implementing the HEPS components, as well as the integration of

these components into the existing UAV simulation model to set up hybrid-electric
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operations – see §7; this includes the IOL analysis of the Aerosonde ICE – see §6.

This research methodology was then followed and the results and outcomes are pre-

sented as outlined in §1.5.

1.5 Outline of Thesis

This thesis consists of 8 chapters.

Chapter 2 presents a literature review on Simulation Optimisation and the optimisa-

tion methods that have been coupled with computer simulations in Simulation Optimisa-

tion, which are essential components in the MWO strategy. An overview of the theoretical

aspects of the Multi-Objective Evolutionary Algorithm (MOEA) based optimiser and the

Sequential Quadratic Programming based solver used in Chapter 4 are also given.

Chapter 3 introduces the simulation environment, including the baseline UAV model

and two mission scenarios - Mission Scenario 1 and Mission Scenario 2.

Chapter 4 describes the Single-Objective MWO strategy and its components. The

MWO procedure was performed for each of the mission scenarios, using the EA-based

optimiser and the SQP-based optimiser respectively for comparison purposes. The results

and analysis of both procedures are then presented.

Chapter 5 presents the Multi-Objective MWO process. A similar approach to the

Single-Objective MWO as described in Chapter 4 was used, in which the optimisation

was performed for the two mission scenarios, using both the EA-based and SQP-based

optimisers. The resulting Pareto plots and optimised waypoints for each mission scenario

are then presented and analysed.

Chapter 6 describes the process of an IOL analysis using data from an Aerosonde ICE

as an example.

Chapter 7 presents the modelling of the HEPS components, namely an Electric Motor,

a Generator, a Battery, a Controller and its components based on the IOL determined

in Chapter 6, and the dynamics of a Continuously Variable Transmission. The resulting

models were then integrated to form a HEPS block that is compatible with the AeroSim

Aerosonde simulation model. In conjunction with Chapter 6, the hybridisation of the
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UAV is presented.

Chapter 8 presents conclusions of the work conducted and areas for future research.
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Chapter 2

Review of Simulation Optimisation

Techniques

2.1 Introduction to Optimisation

The Oxford English Dictionary defines the term optimisation as the act of “mak[ing]

the best or most effective use of a situation or resource” [23]. In the case of MWO,

the optimisation process attempts to find the set of mission waypoints that, when the

entire mission is executed, results in the minimisation/maximisation of the specified

objective function(s). If fuel efficiency/consumption is the only parameter to be optimised

(maximised if efficiency, minimised if consumption), a single-objective MWO problem is

formed. On the other hand, if other parameters - flight time, endurance, distance travelled,

for example - also need to be optimised, a multi-objective MWO will need to be performed.

Mathematically, the basic optimisation problem can be represented as:

min
x

y = f(x)

subject to gi(x) = 0, i = 1, . . . , ne

hj(x) ≥ 0, j = 1, . . . , ni (2.1)

where x = (x1, x2, . . . , xn) ∈ Rn is the set of decision variables and y : Rn → R is the

set of objective functions given a particular set of decision variable values. There are two

11
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types of constraint functions associated with optimisation: equality constraint functions,

g(x) : Rn → R, and inequality constraint functions, h(x) : Rn → R, which are evaluated

at x. The solution of the optimisation problem is a member of the feasible set (or solution

space), represented by D = {x ∈ Rn | gi(x) = 0, hj(x) ≥ 0}. y, g(x) and h(x) are scalar

functions of x, i.e. each element of these vectors is of a scalar value.

An important component of any optimisation process is a model of the system that is

to be optimised. Since the optimisation process works solely with the model’s responses

to any given inputs, the results of the optimisation will be the results expected from

the system only if the model is a valid representation of the system performance.

Traditionally, the system is portrayed as a mathematical or analytical model, consisting

of an objective function and a set of constraints in the form of Equation 2.1. These can

then be used in conjunction with an appropriate optimisation method to determine the

values of the decision variables which will optimise the desired parameters. However, the

complexities of most real-world problems make the evaluation of performance measures

and finding optimal decision variables analytically very difficult, if not impossible.

With the advances in computer technology, simulation is becoming widely accepted

as a decision-making tool [24]. Instead of representing a system’s performance as a

mathematical model, using computer simulations of real-world events enables a complex

problem to be examined and analysed in an efficient, safe and cost-effective manner.

They are also useful in the optimisation of a situation where experiments on the real-

world system are difficult or not possible, to be conducted. Consequently, simulation

optimisation has received considerable attention from both simulation researchers and

practitioners [25] and has undoubtedly been stimulated by the availability of optimisation

tools in commercial software packages [26].

MWO is one application which could greatly benefit from the utilisation of simulation

optimisation. The system to be modelled in the MWO problem is a small fixed-wing

UAV and given a set of candidate waypoints, the MWO needs to determine the values of

the desired output parameter(s) (e.g. fuel consumption). However, its multidisciplinary

nature, e.g. aerodynamics, aircraft inertia, atmostphere, etc., renders a purely analytical

representation of the relationship between a set of waypoints and the desired output

parameter(s) impossible. Since commercially-available simulation software are widely



2.2. SIMULATION OPTIMISATION 13

available today (e.g. MATLAB Simulink), constructing a simulation model of the UAV

system and then using it in MWO is an attractive and viable method.

This chapter will firstly give an overview of the concept of simulation optimisation

(§2.2). The four major classes of methods for simulation optimisation will be presented

and some popular techniques from each class will be discussed (§2.3–§2.7), although this

does not claim to be an exhaustive literature survey on simulation optimisation techniques.

Then §2.8 presents a summary of findings to conclude the chapter.

2.2 Simulation Optimisation

Discrete-event computer simulation is a powerful and useful tool in evaluating real-world

systems from a wide range of areas such as manufacturing, supply chain management,

financial management and aircraft systems, that are often too complex to be modelled

analytically [27, 28]. Given a set of values for the decision variables of the system, certain

performance measures are obtained in order for the system to be evaluated. However, a

more practical procedure is to seek optimum values for these decision variables so that

one or more given responses are maximised or minimised. This calls for the process of

optimisation to be applied to a system modelled using computer simulations, and gives

rise to the method of simulation optimisation.

Simulation optimisation is an optimisation method where the objective function (or ob-

jective functions, in the case of a multi-objective problem) and/or some constraints are re-

sponses evaluated by a simulation model [29]. A general simulation model, shown in Figure

2.1, consists of n input variables (x1, x2, · · · , xn) and m output variables (y1, y2, · · · , ym).

Due to the complexity of the systems, the simulation models are often highly nonlinear

in nature [30]. Simulation optimisation is therefore a nonlinear constrained optimisation

problem with the general form as described in Equation 2.1.

In the context of simulation optimisation, a simulation model can be considered as a

“mechanism that turns input parameters into output performance measures” [31], or a

function, whose explicit form is unknown, that evaluates the merit of a set of specifications.

This is essentially viewing the simulation model as a black-box function evaluator [32].

In the simulation optimisation process, the output of the simulation model is used in
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Figure 2.1: A general simulation model.

an optimisation strategy, which generates new candidate solutions that are fed into the

simulation model for another evaluation. This iterative process is continues until a specific

stopping rule is reached. Figure 2.2 illustrates this process.

Figure 2.2: The simulation optimisation process.

Various simulation optimisation techniques have been developed [33], and four major

classes of approaches can be distinguished [29, 34, 35]:

• Gradient-based search methods;

• Stochastic approximation methods;

• Response surface methodology; and

• Heuristic methods.

each proposing a strategy to explore the solution space D with a limited number of

simulations. These strategies can be divided into two types. The first type begins

with collecting a sample of interesting points and then utilising these points in a second

step (e.g. using a response surface). The other type requires a connection between the

optimisation algorithm and the simulation model in order to search iteratively in D.
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Due to the black-box nature of the simulation model, and thus its objective function

[36], optimisation of the decision variables is carried out without the knowledge of how

the value of the objective function is determined within the simulation model itself [37].

Consequently, the gradient-based search methods which use a direct gradient estimator to

estimate the true gradient in each iteration and therefore requires some additional analysis

of the underlying mechanics of the simulation model [38], will be unsuitable for this

purpose. On the other hand, such knowledge is not required when implementing gradient-

based methods which use an indirect gradient estimator (e.g. finite differences and

simultaneous perturbations) [38], response surface methods, and metaheuristic1 methods

(e.g. Simulated Annealing and Evolutionary Algorithms) since they use only function

evaluations to make decisions regarding the selection of the next candidate solution [41].

In simulation optimisation, obtaining the objective function requires the execution of

simulation runs that are often computationally espensive and time-consuming. Therefore

it is imperative that the chosen optimisation algorithm is capable of finding optimal or

near-optimal solutions in the early stages of the optimisation process. The algorithm

should also be able to effectively balance exploration and exploitation of the solution

space in search of the global optimal solution [42].

The main difficulty in using simulation optimisation is the trade-off between allo-

cating computational resources for searching the solution space for candidate solutions

and conducting additional simulation replication for better estimating the performance

of current promising solutions, both of which can involve algorithmic and simulation

computations [43]. If too much computational effort is spent on long simulation runs, the

algorithm may evaluate only a few solutions in the time available and fail to identify an

optimal, or even a good, solution. On the other hand, if variability cannot be controlled

in the simulation model, the search can be misled or fail to recognise good solutions

[28]. As computer simulation programs are relatively expensive to run, efficiency of the

optimisation algorithms used is crucial.

1Metaheuristics represent a family of “solution methods that orchestrate an interaction between
local improvement procedures and higher level strategies to create a process capable of escaping from
local optima and performing a robust search of a solution space” [39]. These approximate optimisation
techniques “provide acceptable solutions in a reasonable time for solving hard and complex problems.
Unlike exact optimisation algorithms, metaheuristics do not guarantee the optimality of the obtained
solutions” [40].
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Another complexity in simulation optimisation is the simulation/programming lan-

guages that are used to code each, which is often different. This results in challenges to

be overcome when interfacing simulation models with optimisation algorithms, especially

when newer higher-level user-friendly simulation languages are used [27].

In the following sections, a brief review of several popular simulation optimisation

techniques and their applications, with special focus on those that are related to UAVs

and/or mission/path/trajectory optimisation, will be presented. These techniques are as

follows:

• Sequential Quadratic Programming (SQP) (gradient-based search method) (§2.3);

• Stochastic Approximation (SA) Methods (§2.4);

• Response Surface Methodology (RSM) (§2.5);

• Simulated Annealing (heuristic method) (§2.6); and

• Evolutionary Algorithms (heuristic method) (§2.7).

2.3 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) methods are very powerful techniques for

solving small-, medium-sized and certain classes of large-scale nonlinear programming

(NLP), or nonlinear constrained optimisation, problems [44, 45]. Based on the work of

Biggs [46], Han [47] and Powell [48, 49], and popularised in the 1970s, SQP methods are a

family of specific algorithms sharing the same conceptual method [50]. These methods are

commonly included in commercially-available software packages, such as in the MATLAB

Optimization Toolbox [51], and are used to solve a range of important practical problems

in science, engineering, industry and management.

SQP is an iterative method which finds the solution to a given NLP problem via

successive quadratic approximations of the objective function [52]. Essentially, SQP

models an NLP problem at a given approximate solution, xk, by a Quadratic Programming

(QP) subproblem based on the quadratic approximation of the Lagrangian function:

L(x, γ, β) = f(x) +
ne∑
i=1

γ gi(x) +

ni∑
j=1

β hj(x) (2.2)
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where γ and β are the Lagrangian multipliers associated with the equality and inequality

constraint functions, g(x) and h(x) respectively. The QP subproblem is formulated as

follows:

min
d∈Rn

1
2
dTHkd +∇f(xk)Td

subjected to ∇gi(xk)Td + gi(xk) = 0, i = 1, . . . , ne

∇hj(xk)Td + hj(xk) ≤ 0, j = 1, . . . , ni (2.3)

where d is the solution of the QP subproblem, and Hk is a positive definite approximation

of the Hessian matrix of the Lagrangian function in Equation 2.2.

The solution to the QP subproblem, d, is then used in the computation of a new

iterate, xk+1, of the overall NLP problem:

xk+1 = xk + αk dk (2.4)

where αk is the step length of a value in the interval [0, 1] and is determined by an

appropriate line search procedure so that a sufficient decrease in a merit function, φ(x),

is obtained. After each iteration, the matrix Hk can be updated using any of the quasi-

Newton methods, with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) approximation a

popular algorithm for this purpose [45, 52].

This process is iterated to created a sequence of approximations that, hopefully,

will converge to a solution of the NLP problem, x∗. Because SQP can be viewed as

an extension of the Newton and quasi-Newton methods to the problem of nonlinear

constrained optimisation, with an appropriate choice of the QP subproblem it provides

rapid convergence to a local solution when a good estimate is available [44]. However,

when the iterates are far from a solution, SQP may exhibit possible erratic behaviour

which will need to be carefully controlled [50] and a substantial number of QP iterations

may be required, which may result in poor reliability of the optimisation process [53].

Furthermore, if the problem behaves poorly, the Hessian matrix Hk will require updating,

which in turn requires an extra n+ 1 function evaluations per iteration [52].
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A great strength of SQP is its ability to solve problems with nonlinear constraints.

However, like most gradient-based optimisation algorithms, SQP requires the determina-

tion of the first- and/or second-order gradient information for the objective and constraint

functions with respect to the design variables [52]. In most simulation optimisation

problems, this gradient information is not analytically available and in order to obtain

an approximation to this information, expensive simulations need to be run to determine

the values of objective and constraint functions.

As mentioned earlier, SQP is used extensively in commercial optimisation software

packages. Examples of these include NPSOL [54], SNOPT [55, 56] and, also mentioned

previously, MATLAB Optimization Toolbox [51].

The Fortran-based NPSOL is utilised in the Nonlinear Trajectory Generation (NTG)

software package developed at Caltech by Milan et al. [57]. NTG solves optimal control

problems in real-time by parameterising system dynamics into B-Splines, coefficients for

which are solved using NPSOL to minimise the desired cost function subject to the linear

and nonlinear constraints of the problem. Applications of NTG include trajectory genera-

tion to minimise the probability of detection of UAVs by opponent radar detection systems

by Inanc et al. [58], for low observability flight path planning of UAVs in the presence

of radar detection systems by Misovec et al. [59], for Cooperative Path Planning (CPP)

in a multi-vehicle system by Lian and Murray [60], and the reconfiguration manoeuvring

of a spacecraft fleet by Garcia [61]. In each case, the performance of the optimser was

satisfactory with fast convergence to the solution, however an initial estimate far from

the solution can still lead to a large number of iterations to be computed [62].

On the other hand, the fmincon function in the MATLAB Optimization Toolbox,

mentioned previously, is commonly used in applications where nonlinear constrained

optimisation needs to be solved. A brief overview of this function, referred to as MATLAB

SQP Solver, is described in §2.3.1. Bradley et al. [63] used this solver in their investigation

of the effects of flight path optimisation on fuel cell powered and ICE-powered aircraft.

Although fmincon is generally very robust against not reaching a global optimum, a design

space exploration was performed to ensure local optima were found. fmincon was also

used by Vanek et al. [64] to implement a nonlinear Model Prediction Control (MPC)

approach to track the trajectory of UAV formations in a strategy similar to the NTG
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software package described above. It was found that the fmincon solver was able to

handle the nonlinear constraints of the problem at hand and, because the initial estimate

was well placed, convergence to the reference trajectory was rapid. Geiger et al. [65] also

utilised the fmincon function in their development of a trajectory generation algorithm

using direct collocation with nonlinear programming (DCNLP) in order to maximise the

time a target is in the view of multiple cameras on different UAVs. Simulation results in

MATLAB showed that suitable trajectories were generated which satisfied the problem

constraints. However, in the latter two applications, it was found that the computational

costs associated with executing the fmincon solver in each optimisation cycle are a concern

and this makes real-time trajectory generation difficult.

SQP methods, like Newton’s method to which they closely mimic, are only guaranteed

to find a local solution to the NLP problem [50]. This could be problematic if the initial

estimate of the solution is located close to a local optimum. One approach to maximise

the ability of the optimisation technique to find a global minimum is by combining global

and local optimisation techniques [66] and a prominent combination is to use genetic

algorithms (GA) with SQP methods. This hybrid strategy was adopted by Okuda et

al. [67] to optimise the trajectory of a winged rocket after reaching the apogee toward

the landing point, and also in the analysis of missile evasion using aircraft trajectory

optimisation methods by Ranta [68]. Initially, GA searches through the feasible set for

a solution, which is then used as an initial estimate by the SQP method. This strategy

utilises GA’s capability to search through a wide range of candidate solutions to avoid

being trapped in a local optimum, while exploiting SQP’s properties of computational

efficiency and rapid convergence to a solution given a good initial estimate.

2.3.1 MATLAB SQP Solver

The SQP solver is an in-built medium-scale constrained solver in MATLAB the utilises a

sequential quadratic programming (SQP) method [46–49].

This solver finds a minimum of a constrained nonlinear multivariable function as

defined by:
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Find min
x
f(x) subject to: c(x) ≤ 0

ceq(x) = 0

A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub

where x is the vector input to the function f(x), b and beq are the vector bounds for linear

equalities, lb and ub are upper and lower bounds for the design variables x, A and Aeq

are coefficient matrices, c(x) and ceq(x) are functions that return vectors, and f(x) is a

function that returns a scalar. f(x), c(x) and ceq(x) can be nonlinear functions.

The optimisation process requires the specification of an initial estimate vector, x0,

and a set of constraints for the variables to be optimised. The constraints can be any or

a combination of the following:

1. Linear equalities (A · x ≤ b and Aeq · x = beq)

2. Lower and upper bounds (lb ≤ x ≤ ub)

3. Nonlinear inequalities (c(x) ≤ 0 or ceq(x) = 0)

2.4 Stochastic Approximation Methods

Consider a nonlinear black-box system which, for inputs x, gives as its output “noisy”

measurements of the objective function, f(x)+ε, where ε is a zero mean random variable

representing noise. Such a system cannot be optimised using deterministic methods such

as an SQP method (see §2.3) since they do not take into consideration the stochastic

nature of the noise and its effects on the system outputs. Rather, stochastic optimisation

methods that provide a means of coping with inherent system noise are required, and one

such method is stochastic approximation (SA).

Introduced by Robbins and Monro in 1951 [69], the SA algorithm is a general op-

timisation method when only noisy measurements of the underlying objective function
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is available. The algorithm is comparable to the steepest descent (SD) gradient search

method in deterministic nonlinear optimisation, but assumes no direct knowledge of the

gradient of the objective function, g(x) [70]. This makes SA a good candidate for the

optimisation of a simulation model that, due to its complexity, has no analytical expression

for the objective function, and therefore has no analytical gradient [25]. Below is a brief

overview of the SA method. For detailed descriptions, see [38, 70–73].

The basic SA algorithm, as proposed by Robbins and Monro [69], is of the following

iterative form:

xk+1 = xk − αk g̃(xk) (2.5)

where xk is the current solution for the decision variables, g̃(xk) a noisy estimate of the

gradient function, and αk a sequence that satisfies

αk > 0 (2.6)∑
k≥1

αk = ∞ (2.7)∑
k≥1

α2
k < ∞ (2.8)

If the direct measurement for g̃(xk) is available, Equation 2.5 is referred to as the

Robbins-Monro (RM) algorithm. However, these direct measurements are not always

obtainable, therefore gradient approximation, or the computation of g̃(xk), is an essential

part of SA.

The traditional means of forming the gradient approximation is the finite difference

stochastic approximation (FDSA) method. FDSA computes an estimator for the gradient

by looking at some small perturbation ck in each of the decision variables in xk by either

an one-sided formulation, in which the ith component of g̃(xk) is given by:

g̃i(xk) =
f̃(xk + ck ei)− f̃(xk)

ck
, i = 1, . . . , n (2.9)
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or a two-sided formulation, also known as the Kiefer-Wolfowitz (KW) algorithm [74]:

g̃i(xk) =
f̃(xk + ck ei)− f̃(xk − ck ei)

2ck
, i = 1, . . . , n (2.10)

where f̃(xk) is a noisy measurement of the objective function f at the current iteration

of x, ei the unit vector along the ith axis and n the dimensionality of the system, or

the number of decision variables. The one-sided estimate requires n + 1 measurements

of the objective function for each iteration of xk computations, while the KW algorithm

requires 2n such measurements [25, 71]. As the dimension n increases, as is the case with

simulation models of complex systems, the number of measurement required, and thus

the computational effort, may become prohibitive [70].

Extended approaches have been developed which dramatically improve the compu-

tational efficiency of FDSA, including the random direction stochastic approximation

(RDSA) and the simultaneous perturbation stochastic approximation (SPSA) methods.

The RDSA algorithm, first introduced by Kushner and Clark [75], uses the following

estimator:

g̃(xk) =

[
f̃(xk + ck ξk)− f̃(xk − ck ξk)

2ck

]
ξk (2.11)

where ξ ∈ Rn is a direction vector normalised so that |ξ|2 = n. ξ can be chosen from

several choices of random distributions, including the axis distribution (ξ = ±√p ei

with coordinate i chosen at random from 1, . . . , n), the normal distribution (takes each

component ξi to be distributed as N(0, 1)), and the Bernoulli distribution (takes each

component ξi at random from {−1, 1}) [76]. Note that both the perturbations to xk and

the estimated gradient are in the same direction, ξ.

On the other hand, the SPSA algorithm [77] is a special case of RDSA that employs

two different directions, ξ and ζ, in its general form:

g̃(xk) =

[
f̃(xk + ck ξk)− f̃(xk − ck ξk)

2ck

]
ζk (2.12)

where ξ is chosen from a distribution that has to satisfy some particular constraints, and



2.4. STOCHASTIC APPROXIMATION METHODS 23

the components of ζ are given by

ζi =
1

ξi
(2.13)

Both the RDSA and SPSA methods require only two measurements of the objective

function per iteration, regardless of the dimension of the system, to form a gradient

approximation, thus providing the potential for large savings in the overall cost of the

optimisation process [42].

The SA algorithm has been a cornerstone in scientific computation since its inception

in 1951, mainly because of the following advantages [73]:

• Its ability to handle noisy situations – In practice, the noise may not originate only

from measurement errors or approximations, but may also be added deliberately as

a probing device or a randomised action;

• It is incremental – The algorithm typically exhibit more graceful behaviour, although

this is at the expense of speed; and

• Its computational efficiency – The number of computations per iterate is generally

low for typical applications, especially when SPSA is utilised. This can result in

easy implementation of the algorithm.

However, the SA algorithm and its different forms – including FDSA, RDSA and SPSA

algorithms – are prone to several drawbacks. One of these drawbacks is the algorithm’s

slow speed of convergence to an optimal solution [71], which mainly results from the use

of small increments in the computation of the algorithm, as mentioned previously. It is for

this reason that many efforts to accelerate the SA algorithm, such as the Kesten algorithm

[78, 79], have been focused on the choice of the step size, αk. Another disadvantage is

that, in general, the SA algorithm converges only to a local optimum, although this can

be counteracted by the appropriate injection of “noise” into the algorithm [38].

SA has developed into an important area in the control and optimisation of stochastic

systems [72]. Its strengths make it ideal for applications where the keyword is ‘adap-

tive’, such as adaptive signal processing, adaptive control, and certain subdisciplines of

soft computing/artificial intelligence (e.g. neural networks, reinforcement learning; see
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Bertsekas and Tsitsiklis [80] and Haykin [81, 82]).

In recent years, much attention has been focused on the application of SPSA to

the optimisation of, to name a few, queuing systems, aircraft design, process control,

fault detection, vehicle traffic management, human-machine interaction and simulation

optimisation [70].

Hutchison and Spall investigated the use of SPSA in a simulation optimisation pro-

cedure to determine the control measures required for air traffic delay control [83], which

was shown to be feasible in earlier studies [84, 85]. The SIMMOD simulation [86] was used

to model the flow of 84 flights (departures and arrivals) on a network of four airports.

A number of Monte Carlo trials were run, and the results indicated that the SPSA-

based optimisation process reduced the total weighted delay by 13.3%, with a significant

reduction of 31.8% in the expensive component of air delay.

Burnett [87] conducted a comparison of three optimisation methods – Blind Random

Search (BRS), SPSA and simulated annealing – for the optimisation of vessel traffic

management in a high vessel density environment. It was found that BRS and SPSA

performed relatively well on this problem with SPSA producing the lowest values of the

objective function (distance of the main vessel to surrounding vessels) and its standard

deviation. However, in order for convergence of the SPSA algorithm to occur, the objective

function was required to be three-times continuously differentiable, which could very likely

be problematic for most simulation models.

The SPSA algorithm is also employed in the work of Xing and Damodaran [88] in

optimising the design of aerodynamic shapes using computational fluid dynamics (CFD),

which involves time-consuming numerical computation of the flowfield characteristics [89].

Comparisons were made against a simulated annealing method and it was shown that the

SPSA method required fewer function evaluations to reach the target design than that

required by the simulated annealing method. Xing and Damodaran [90] also investigated

the possibility of using SPSA as a global optimisation method and combining it with a

local method, in this case the gradient-based BFGS method was used. This hybrid method

was shown to improve the design accuracy, as well as reducing the computational cost

significantly, provided an appropriate switchover point (from SPSA to BFGS) was chosen.

They also explored the feasibility of parallelising an SPSA method in the inverse design
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of a transonic airfoil shape [91], and the comparisons to the parallel simulated annealing

method developed by Wang and Damodaran [92] showed that the parallel SPSA method

is more computationally efficient when eight or more processors were used.

Another application of SPSA is parameter tuning for models and algorithms. Kothan-

daraman and Rotea [93] utilised SPSA to determine the set of parameters for a nonlinear

dynamic parachute model that would minimise the prediction error by comparing the

model output with experimental test data, or otherwise known as the prediction error

method (PEM). The algorithm was implemented using MATLAB commands and results

showed that this SPSA-based method of parameter tuning has considerably reduced both

the mean and the standard deviation values of the objective function, which indicated

that the method was successful.

Optimisation of Guidance and Control (G&C) algorithms is another example of pa-

rameter tuning using the SPSA algorithm. Work by Palumbo et al. [94] and Reardon et

al. [95] both focused on the integration of G&C functions in a missile system, the model

of which is highly nonlinear with complex, noisy outputs, and both teams deemed the

SPSA algorithm to be suitable for this task. Simulation results attested to the capability

of the SPSA algorithm to substantially reduce the objective function – approximately a

20% reduction with a 10% improvement in the performance measure of mean distance for

the work by Reardon et al., and an improvement of 40-50% in mean distance and 40-70%

in miss standand deviation for the work by Palumbo et al. It was suggested by Reardon

et al. [95] that a hybrid algorithm, consisting of a global optimisation method (i.e. GA

or simulated annealing) and SPSA for local convergence, maybe be able to explore the

search space more efficiently and thoroughly.

In an application that is relevant to aircraft path/mission planning, SA methods has

been considered by many as useful in solving general adaptive optimal tracking problems,

also known as Partially Observed Markov Decision Processes (POMDP) [96]. Singh et

al. [97] extended previous work on this application and the optimisation of an observer

trajectory planning (OTP) problem for a bearings-only tracking (BOT) application using

the SPSA algorithm was investigated. This problem involves tracking a manoeuvring

target based on noise-corrupted measurements of the target’s state that are received by a
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moving observer, and the optimisation goal is to improve the quality of the target state ob-

servations by appropriately positioning the observer relative to the target during tracking.

An SA algorithm using an adaptive control variates method for gradient estimation was

introduced and implementation results showed that convergence of the observer trajectory

to the optimised solution was rapid and that the variance of the objective function was

reduced by two orders of magnitude.

It can be seen that SA methods, in particularly the SPSA algorithm, are suitable for

the optimisation of noisy complex nonlinear systems in, but not limited to, the above-

mentioned applications and the significant improvements can be observed in the objective

functions. However, the suggestion by many of the possibility of combining SA methods

with another optimisation method in order to explore the search space more efficiently

and thoroughly indicated that the underlying weaknesses of SA methods, namely its slow

rate of convergence and possible convergence to a local optimum, are still of concern.

2.5 Response Surface Methodology

Introduced by Box and Wilson [98] in the early 1950s, Response Surface Methodology

(RSM) is a collection of mathematical and statistical techniques that is widely used

for the approximation and optimisation of stochastic functions [99]. These techniques

constitute a well-known approach for constructing approximation models – known as

empirical models, metamodels or response surfaces – based on either physical experiments,

computer simulations [100, 101] and experimented observations. The objective function

is sampled at designated points close to the current iterate, and regression analysis is

performed to fit a polynomial of appropriate degree to the response of the system of

interest [102].

The application of RSM to simulation optimisation falls into two main categories

- metamodels and sequential procedures, with the latter being the commonly adopted

approach in the context of optimisation and provide a general methodology for simulation

optimisation[103]. This approach treats the simulation model as a black box, where no

gradient information is available [104]. Instead of exploring the entire solution space,

RSM explores a sequence of small sub-regions which are selected for their potential
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improvement to the optimisation process. Through a two-phase process, RSM uses

first-order polynomial response surface to find an optimal region (Phase 1), where a

“final” (usually second-order) polynomial is fitted and the optimum determined using

deterministic means (Phase 2). Each of these phases are briefly described below and

summarised in Figure 2.3; for a detailed overview, see Gonda Neddermeijer et al. [105].

Figure 2.3: A summary of the RSM process when applied to simulation optimisation.

In Phase 1, the simulation model is evaluated a number of times at a specific arrange-

ment of points within a sub-region and using these responses, the response surface, y, of

this sub-region is approximated using linear regression as a first-order polynomial of the

form

y = β0 +
n∑
i=1

βi xi + ε (2.14)

where x1, . . . , xn denote the set of decision variables at each of these evaluation points
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and β0, . . . , βn denote the regression coefficients. The residual error, ε, is assumed to be

normally, identically and independently distributed (NIID) with zero mean (µε = 0) and

constant variance σ2
ε .

This linear model is put though an analysis of variance (ANOVA) to test if it ade-

quately describes the behaviour of the response in the current sub-region. If the model

is deemed adequate, then a steepest descent (SD) direction is estimated from this model,

and a new sub-region is chosen to be explored via

xk+1 = xk − αk∇J(xk) (2.15)

where xk is the representative point (usually the centre point) of the kth explored sub-

region, αk is a step size determined by a line search or some other means, and ∇J(xk)

is the estimated (from the fitted linear model) gradient direction at xk. This process

is repeated until the first-order polynomial approximation becomes inadequate, which

is indicated when the gradient of the approximated response surface is “approximately”

zero, implying that the sub-region encompasses the optimal point and a polynomial of a

higher order is required for appropriate fitness [42]. Then RSM moves to Phase 2.

Phase 2 involves approximating the response surface at the most recent iterate from

Phase 1 using a second-order polynomial in the form of

y = β0 +
n∑
i=1

βi xi +
n∑
i=1

n∑
j=1

βi,j xi xj + ε (2.16)

Once fitted, this approximate model is again tested for adequacy. Unlike in Phase 1,

where a polynomial of a higher order is used if the linear model is found to be inadequate

in describing the response surface, it is not customary to use a polynomial that is of a

higher order than a second-order [106]. Therefore regression is to be carried out again,

but using a smaller sub-region [107] or a larger simulation size. If the quadratic model

is found to be adequate, canonical analysis is performed to determine the location and

the nature of the stationary point of this model. In the case that the stationary point

is a maximum or a saddle point, a new nearby stationary point that is a minimum is

determined via ridge analysis.
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Once a minimum is found, it is first compared to some stopping criterion (i.e. no

significant improvement in the estimated optimal simulation response value, the sub-

region becomes too small, or a fixed maximum number of evaluations reached) for the

entire optimisation process. If the stopping criterion has not been reached, this minimum

acts as the representative point of this current sub-region, and Equation 2.15 is employed

to find the next sub-region, and the process returns to Phase 1.

RSM is well-established and simple to implement. It is broadly applicable in the

sense that its integration into both stochastic and deterministic simulations can be easily

accomplished, since RSM does not necessarily exploit the stochastic structure of the

simulated model. For this reason, its generality and flexibility are its biggest advantages

[103, 108]. It is expected that RSM would perform better when optimising low-order

nonlinear objective functions, therefore it is best suited for small scale applications, i.e.

with less than 10 decision variables [109].

However, RSM suffers from the disadvantage of being computationally expensive,

particularly when the number of decision variables is large [42, 102]. In order to obtain a

better approximation of the objective function, replications with a smaller sub-region is

required to provide more accurate information, or by using higher order polynomials, both

of which lead to significant increases in computational time [42, 109]. Therefore, RSM

is often coupled with other techniques or analyses, such as efficient gradient estimation

techniques, based on the nature of simulation model, which may improve the efficiency of

RSM [103]. Additionally, because RSM is similar to gradient-based approaches, it may not

necessarily find a global optimum [108]. Also, the use of a SD line search technique in the

optimisation process introduces two well-known problems – that SD is scale dependent and

that the step size αk along the SD path is selected intuitively [110], therefore application

of RSM requires careful planning and design.

Applications of RSM in the area of path planning are, to the best of the author’s

knowledge, limited. Kewlani et al. employed a stochastic RSM (SRSM) method in

conjunction with a rapidly exploring random tree (RRT) algorithm in the generation of

paths on uncertain and uneven terrains. Their simulation results of this method showed

significantly better computational efficiency than a Monte Carlo implementation of the

same problem.
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2.6 Simulated Annealing

Simulated Annealing is a gradient search method that attempts to find a global optimum

by emulating the process of annealing [111]. During the annealing process, a crystalline

solid is firstly heated to melting point and then cooled, enabling the material to form into

the preferable structure by controlling the temperature change as it cooled [112].

As discussed by Kirkpatrick et al. [113], the simulated annealing algorithm starts with

a randomly-chosen initial solution and moves from one solution to the next, attempting

to converge on the global optimum. simulated annealing avoids being trapped in a locally

optimum region by accepting inferior solutions with a probability that corresponds to

the degradation of the performance measure. A generic simulated annealing algorithm is

shown in Figure 2.4 [1]:

Figure 2.4: A generic Simulated Annealing algorithm [1].

When the simulated annealing algorithm is executed, the temperature is decreased in

stages, and at each stage the temperature is kept constant until thermal quasi-equilibrium

is reached. This is controlled by the cooling schedule, or the set of parameters that

determine the temperature reduction (i.e. initial temperature, stop criterion, temperature

decrement between successive stages, number of transitions for each temperature value),

which is critical to the success of the optimisation [1] and must be determined a priori

[24].

Discussions of simulated annealing by Van Laarhoven and Arts [114] and Arts ahd
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Korst [115] present experimental evidence that the algorithm is capable of finding near

optimal results for both linear and non-linear problems. Alrefaei and Andradóttir [116]

developed a method for simulation optimisation which approximates the objective func-

tion of a simulation model and uses simulated annealing to solve the objective function.

However, their underlining assumption is that the system can be modelled as a stochastic

function or a Markov chain, whereas one of the major reasons for developing simulation

models is the inability to model the system by other techniques.

Simulated annealing methods have the capability to optimise multi-objective problems.

Alrefaei and Diabat [117] developed an simulated annealing-based method with constant

temperature for multi-objective optimisation (MOO) and applied it on a multi-objective

(s, S) inventory model. Their results show significant speed in converging to the optimum

than the variable-temperature SA algorithms that were used as comparison.

Computational costs are a major concern when it comes to implementing simulated

annealing algorithms [118]. Haddock and Mitenthal [119] demonstrated with their ap-

proach that simulated annealing can solve simulation problems with integer variables,

using a flexible manufacturing system design problem as a case study. But the CPU time

for large problems can be extremely long. A modified simulated annealing algorithm that

can converge to the global optimum with a finite number of iterations was developed

by Alkhamis et al. [120]. However, this number can be extremely large and is not

feasible for many simulation problems. For more detailed simulation models, the required

computational time to determine an improved solution will be a major problem.

Application of simulated annealing algorithms in the area of path planning has been

extensively investigated. Miao and Tian [121] employed simulated annealing as the core

algorithm in their research in path planning for robots in a dynamic environment. This

was extended by Miao [122] into a multi-operator based simulated annealing technique,

which was demonstrated through case studies to be effective and efficient in both off-

line and on-line processing of robot dynamic path planning. A similar situation for an

aircraft was tackled by Kastella [123] using an adaptive simulated annealing method.

The adaptive cooling technique based on equilibration and relaxation times was found

to reduce the sensitivity of the algorithm and increase the computational speed by a

factor of approximately 10 with no loss in quality. Meng and Xin [124] developed a
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genetic simulated annealing algorithm for UAV route planning and, through simulations,

showed that the genetic simulated annealing algorithm was more computationally efficient

compared to the normal GA.

2.7 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a family of population-based metaheuristic optimisa-

tion algorithms that use biology-inspired mechanisms (e.g. mutation, crossover, natural

selection and survival of the fittest) in order to refine a set of solution candidates iteratively

[125, 126]. As opposed to a single solution used in traditional methods, EAs work on a

population of solutions in such a way that poor solutions become extinct, and good

solutions evolve to reach for the optimum.

The five members of the EA family and their differences, mainly in the representation

of a candidate solution, are as follows [118, 127]:

1. Genetic Algorithms (GAs): The most popular member of the EA family, GAs

were developed by John Holland [128] and works with candidate solutions in the

form of bit (binary, 0 or 1) strings; focuses on optimizing general combinatorial

problems;

2. Evolution Strategies (ES): Approaches that use vectors of real numbers as can-

didate solutions and focuses on optimising continuous functions with recombination;

3. Genetic Programming (GP): An approach that includes all EAs that grow

programs, algorithms, etc., and those that evolve tree-shaped individuals;

4. Learning Classifier Systems (LCS): Online learning approaches that use a GA

to find new rules of mapping to assign output values to given input values; and

5. Evolutionary Programming (EP): An approach that treats instances of the

genome, or the search space, as different species instead of as individuals; focuses

on optimising continuous functions without recombination; one that has more or

less merged into GP and other EAs over the decades.

An EA-based optimisation process begins with the generation of a set of individuals

(potential solutions) called the population. This population is then put through the



2.7. EVOLUTIONARY ALGORITHMS 33

reproduction-evaluation cycle which evolves the initial population towards a population

that is expected to contain the optimal solution. For each generation (iteration) of the

cycle, individuals from the current population are selected to form the mating pool. This

selection of individuals is based on their fitness (computed from the objective function

that is to be optimised) with respect to the current population such that the stronger

individuals will have a higher probability of being in the mating pool. Individuals in

the mating pool are submitted into the process of reproduction, during which these

individuals are subjected to mutation (introduction of innovation into the population) and

recombination (mixing of parental information to pass to their descendants, or offspring).

These operations allow different regions of the search space to be explored, preventing

the process from getting trapped at a local optimum. This cycle is iterated, evolving the

population toward better and better regions of the search space, until a stopping condition

has been met. A summary of the EA cycle is shown in Figure 2.5.

Figure 2.5: A basic cycle of EAs.

Because EAs are stochastic and often there are no guarantees that an optimum will

be reached, stopping conditions are often required to stop the EA from continuing for a

long time. Common stopping conditions are [129]:

• Maximum allowed computational time has elapsed;

• The total number of fitness evaluations has reached a given limit;

• The fitness improvement has remained under a threshold value for a given period

of time; and
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• The population diversity has dropped under a given threshold.

In recent years, there has been an increasing interest in using EAs in simulation

optimisation because they require no restrictive assumptions or prior knowledge about

the shape of the response surface [24]. Most of this attention has been focused on GAs,

especially in optimisation problems arising from complex manufacturing and distribution

systems [112]. A GA-based simulation optimisation method was developed by Kochel and

Nielander [130] to optimise problems related to Kanban manufacturing systems. However,

this uses steady-state simulation to compute measurements and such a state is hard

to reach for most manufacturing environments. McWilliams et al. developed a GA-

based simulation approach to solve a distribution centre scheduling problem which showed

improvements to the solutions [131]. The main concern is that the population needs to be

evaluated by simulation every single generation, which is computationally very expensive

for large-scale simulation models.

An example of using an ES-based simulation optimisation method was developed by

Hall et al. [132] to solve the kanban sizing problem for a manufacturing system with

39 decision variables. Insights were gathered on the effects of the number of decision

variables on the population size and the fitness of the solutions.

The use of EAs in simulation optimisation will require the linking of an EA to the

simulation model and this can be challenging since the two components are rarely coded

in the same language. Once they are connected, the role of the EA is to generate

individuals for the simulation model to evaluate, and the model will return the fitness

of each individual to the EA to continue on with the reproduction-evaluation cycle.

Since multiple individuals are selected in each generation, several simulation runs will be

required to evaluate these individuals. If the simulation model is complex and requires a

long runtime for each evaluation, or if many replications are necessary, the computational

costs of carrying out this process can be expensive. Combining this with the notoriety

of EAs being very slow, parallelising approaches such as distributed EAs (DEAs) have

been developed [29], in which several processors are used to carry out several simulations

simultaneously. This can drastically reduce the computing time, as shown by the ES-

based simulation optimisation method Periaux et al. have developed for airfoil design

[133] and the GP-based simulation optimisation method developed by Núñez et al. [134].
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EAs are well-known for their ability to tackle multi-objective optimisation. Unlike

traditional optimisation methods that generate only one solution at the end of the op-

timisation process, EA-based optimisers generate many Pareto-optimal solutions, each

with a different trade-off among the multiple objective functions [135]. Eskandari et

al. [136] presented a GA-based multi-objective simulation optimisation method, and the

previously-mentioned ES-based optimiser by Periaux et al. tackled the multi-objective op-

timisation problem of airfoil design successfully [133] with the design and implementation

of the HAPMOEA optimiser, which is described in §2.7.1.

There has been extensive research in the application of EA-based algorithms in the area

of path planning. Previously, because of the indeterministic nature of EAs, applications

in path or trajectory planning have been focused on off-line optimisation; see Nikolos et

al. [137], Nikolos et al. [138], Sanders and Ray [139], Pohl and Lamont [140], Mittal and

Deb [135] and Rathbun et al. [141]. Lately, EAs are gradually being employed in on-line

path planning of UAVs, usually to refine a flight path that had been generated off-line;

see Kostaras et al. [142], Jia and Vagners [143], Pongpunwattana and Rysdyk [144] and

Basada-Portas et al. [145].

2.7.1 HAPMOEA Optimiser

The Hierarchical Asynchronous Parallel Multi-Objective Evolutionary Algorithm (HAP-

MOEA) optimiser is an optimisation tool developed by Gonzalez et al. [146] which uses

the following concepts for the solutions:

• A modified canonical evolution strategy;

• MOO using a Pareto tournament selection;

• A hierarchical/multi-fidelity approach to the solution; and

• Parallel computation using a modified asynchronous approach.

Canonical Evolution Strategy

In a canonical evolution strategy, a pseudocode of which is illustrated in Figure 2.6,

a population µ0 is fistly initialised and evaluated. Then while a stopping condition

– maximum number of function evaluations, target fitness value, maximum amount of
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computational time, for example – is not met, the algorithm executed for a number

of generations g, during which offsprings λg+1 go recursively through the process of

recombination, mutation, evaluation and selection.

Figure 2.6: A canonical evolution strategy.

Multi-Objective EAs (MOEAs)

Most real world problems involve conflicting objectives, to which there exists no unique

optimum, but a set of compromised individuals known as Pareto optimal solutions, or

non-dominated individuals. A solution to a multi-objective problem is considered Pareto

optimal if there is no other solutions that satisfy better all the objectives simultaneously.

The Pareto optimality of a problem with two conflicting objectives is shown in Figure

2.7. The Pareto set is the set of Pareto optimal solutions that trade off the information

among the conflicting objectives.

EAs are capable of finding a number of solutions in a Pareto set, since they evaluate

multiple populations of points. Pareto selection ranks the population and selects the non-

dominated individuals for the Pareto front. The HAPMOEA algorithm has been proven,

through various multi-objective test cases, to be robust and efficient to find the optimal

Pareto front [147].
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Figure 2.7: Pareto optimality.

Hierarchical Topology

The HAPMOEA algorithm is designed to handle multiple fidelity models for the solution

[148], a representation of this formulation is shown in Figure 2.8. The bottom layer can be

entirely devoted to exploration of the search space, the intermediate layer is a compromise

between exploration and exploitation, while the top layer focuses on refining the solutions.

This is achieved through the use of a very precise model in the top layer, resulting in a

time-consuming solution. And since the purpose of the sub-populations of the bottom

layer is to explore the search space, simple models with fast numerical solvers that do not

yield precise results can be utilised.

Figure 2.8: Hierarchical topology.
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Parallel Computing and Asynchronous Evaluation

Parallelised computing of EAs can be achieved by sending individuals to remove machines

to be evaluated, and then incorporated back into the optimisation process [149–151]. A

network of computers can be used to parallelise the optimisation, using the Parallel Virtual

Machine (PVM) [152] as the message-passing model within the network. As the canoni-

cal ES usually evaluates entire populations simultaneously, this parallel implementation

requires modifications to the canonical ES [153, 154].

An asynchronous method distinctively differs from traditional EAs by generating only

one candidate solution at any one time and only re-incorporates one individual at any

one time [155], therefore solutions can be generated and returned out of order. This is

solved with the implementation of an asynchronous fitness evaluation, which is illustrated

in Figure 2.9.

Figure 2.9: Parallel computing and asynchronous evaluation.

The HAPMOEA Optimiser is used in the MWO, details of which are in §4 and §5.

2.8 Summary

The aim of this literature review was to determine the most appropriate method of

implementing the task of Mission Waypoint Optimisation for a small fixed-wing UAV.

In order for any optimisation process to be carried out, a good representation of the

system to be optimised, in this case a UAV, is vital. Therefore constructing a valid

representation of a small fixed-wing UAV is required. However, because the performance
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of an aircraft, regardless of its size, is dependent and affected by a myriad of factors,

most of which are interrelated, this multidisciplinary nature makes it impossible for an

analytical model of an UAV to be constructed. As a result, the UAV will be represented

by a simulation model. Additionally, the optimisation of a set of mission waypoints is a

multi-objective problem. Consequently, the use of a MOO method that is able to work

with a simulation model is required. One suitable method is the method of simulation

optimisation.

The investigation of simulation optimisation and the five common optimisation meth-

ods - SQP (§2.3), SA (§2.4), RSM (§2.5), simulated annealing (§2.6) and EA (§2.7) -

showed that SA is not suitable for MWO, because the MWO problem is associated with

many constraints, but incorporating constraints into the SA process adds much difficulty.

As a gradient-based method, SQP is potentially less computationally expensive than the

other methods, which is definitely an advantage. Even thought RSM, simulated annealing

and EA have demonstrated that they work well with a simulation model and all can be

used for MOO problems, their common drawback of high computational costs can be

problematic. However for EAs, this can be commonly overcome with the use of distributed

EAs.

In completing this review, Research Objective 1, specified in §1.2, was fulfilled.

To summarise, the development of a MWO procedure for a small fixed-wing UAV,

with the focus on increasing the onboard energy efficiency, would require the completion

of the following tasks:

1. Construction of a simulation environment of a small fixed-wing UAV (§3); and

2. Coupling of the constructed UAV simulation model with a SQP solver (§2.3.1)

and a Multi-Objective EA (MOEA) optimiser (§2.7.1) to form a MOEA simulation

optimisation method for MWO.

The details of each of these tasks are described in the chapters and sections as

indicated.
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Chapter 3

UAV Simulation Environment

3.1 Introduction

As mentioned in Chapter 1, the purpose of this research was to investigate methods of

increasing energy efficiency onboard a small fixed-wing UAV. One way of achieving this is

to develop a MWO procedure for a small fixed-wing UAV, with the focus on increasing the

onboard energy efficiency. In Chapter 2, it was established that two tasks are required:

1. Construction of a simulation environment of a small fixed-wing UAV; and

2. Coupling of the constructed UAV simulation model with a SQP solver and a Multi-

Objective EA (MOEA) optimiser to form a MOEA simulation optimisation method

for MWO.

This chapter presents the development and implementation of a UAV simulation

model. The simulation environment is presented in §3.2 and detailed descriptions of

essential components inside the simulation model are given in §3.3. Two mission scenarios

have also been designed in §3.4, so that the simulation of an UAV in flight can be

conducted.

3.2 Simulation Software

Computer simulations are commonly used nowadays as actual flight tests are often ex-

tremely time-consuming as well as cost-prohibitive. A UAV Simulation Model (UAVSM)

41
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was developed to simulate the operation of a fixed-wing UAV in flight.

The MATLAB Simulink environment was chosen for the UAVSM to be implemented

in, due to previous MATLAB experience and the ease of simulating using Simulink’s

graphical block approach.

The AeroSim Blockset [156] is used to develop the UAVSM. A commonly used aircraft

simulation and analysis package in the aerospace industry [157], the AeroSim Blockset

provides a comprehensive set of tools for development of non-linear 6-degrees-of-freedom

(6DOF) aircraft models. The AeroSim Blockset also offers a detailed set of parameters

on the Aerosonde (see Appendix A), a small real-world fixed-wing UAV, which can be

incorporated into the aircraft model to simulate an Aerosonde in flight. The Aerosonde

UAV block is shown in Figure 3.1.

Figure 3.1: The Aerosonde UAV block, modified from the AeroSim 6DOF aircraft model.

Inside the Aerosonde UAV block is a detailed model of the inner workings of an

Aerosonde UAV, which consists of Aerodynamic, Propulsion, Atmosphere, Aircraft In-

ertia, Acceleration and Moments, Equations of Motion and Earth models, as shown in

Figure 3.2. The inputs into the Aerosonde UAV block, on the far left in Figure 3.2, are the

aircraft control inputs (control surfaces, throttle, mixture, ignition), and wind velocities.

The outputs of the block, on the far right, are the aircraft states in various coordinate

systems and aircraft coefficients. Many of these output values are used in the calculations

of other blocks in the UAVSM (see §3.3), while some are displayed for reference purposes,

passed to FlightGear for visualisation through the FlightGear 0.9.8 Interface (this option
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was not utilised in this research), or passed to MATLAB for further computations.

3.3 UAV Simulation Model

The complete UAVSM, as shown in Figure 3.3, is constructed around the Aerosonde

UAV block as described in §3.2. The Aircraft Control Module (ACM) (§3.3.2) and Flight

Planner Module (FPM) (§3.3.1) were developed and added to the Aerosonde UAV block

to simulate unmanned operations. These two blocks are circled in red in Figure 3.3.

3.3.1 Flight Planner Module

The Simulink model of the FPM is presented in Figure 3.4.

The main component inside the FPM is a MATLAB function, NavigateWaypoints

(Appendix B), which carries out the task of waypoint navigation. Given a set of way-

points in their GPS coordinates (latitudes, longitudes and altitudes), NavigateWaypoints

calculates the necessary bearing/yaw adjustment the aircraft is required to make in order

for it to fly from its current position to the next waypoint.

The NavigateWaypoints function uses a basic navigational algorithm based on the

great-circle navigation method [158], which calculates the great circle track, or the shortest

distance following the curvature of the Earth, and the bearing between the two points, as

shown in Figure 3.5. Thus, the aircraft flies through the series of waypoints by flying

a sequence of direct, curved paths from one waypoint to the next. Using spherical

trigonometry, the range D and bearing BT to the target are given by [158]:

D = RG cos−1 (sinφ sinφt + cosφ cosφt cos(λ− λt)) (3.1)

BT = sin−1

 cosφt

sin
(
D
RG

) sin(λ− λt)

 (3.2)

RG =
√
RM ·RP (3.3)

where RG is the Gaussian radius of curvature at the current location, RM and RP are
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Figure 3.5: Illustrative definition of a great circle track.

the meridian and prime radii, respectively, at the current location, (φ, λ) are the latitude

and longitude at the currently location, and (φt, λt) are the latitude and longitude at the

target point. This calculated distance to target is in fact the distance-to-go to the target,

since the aircraft position is constantly changing.

Another factor that needs to be considered for the aircraft to follow the flight path set

by the series of waypoints is the cross track error, or XTE, which is calculated by [159]:

XTE = DTR · sin(θTE) (3.4)

where DTR is the track distance, or the distance from the current location to the next

waypoint, and θTE is the angle of track error. This relationship is illustrated in Figure 3.6.

Incorporating XTE in the waypoint navigation algorithm enables the aircraft position to

be constantly adjusted.

The UAV heading command, φcmd, is calculated as follows:

φcmd = φT − θWc −BT + kθTE (3.5)

where φT is the aircraft’s true heading, θWc is the wind correction angle, BT is the true

bearing to the target, and θTE is the angle of track error, multiplied by a constant k. In

the case of NavigateWaypoints function, the value of k is 1.
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Figure 3.6: Geometric relationship between DTR, θTE and XTE.

The bearing/yaw adjustment, along with other parameters calculated by Navigate-

Waypoints are passed to the ACM.

3.3.2 Aircraft Control Module

The ACM, whose details are shown in Figure 3.7, is essentially a collection of displacement

autopilots which are used to control the angular orientation of the aircraft [160]. This

allows the UAV to “fly”, i.e. adjust the flight controls (control surface deflections and

throttle) so that the desired conditions are met, without human intervention, thus enabling

unmanned operations onboard the UAV.

A roll attitude autopilot is implemented in the ACM with two Proportional-Integral

(PI) controllers. This autopilot takes as inputs the current roll angle and the desired

bearing/yaw adjustment as calculated by FPM, and the PI controllers use the difference

between these measurements to determine the amount of deflection required for the rudder

and the ailerons. The gain values for the PI controllers were obtained through empirical

means and are presented in Table 3.1. The outputs of these PI controllers are the rudder

deflection and the aileron deflection in radians, which are passed to the Aerosonde UAV

Block as two of its control inputs.

A Proportional-Integral-Derivative (PID) controller is used in an airspeed hold con-

troller to maintain the UAV at a constant airspeed of 20m/s (72km/h) when the aircraft

is climbing or in cruise, or 30m/s (108km/h) when the aircraft is descending. This change

in airspeed command is to ensure that the aircraft would descend at a fast enough rate.

The difference between the inputs, current airspeed and target airspeed, are used by the
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Control Surface Controller Type Gain Value

Bank-to-Ailerons Proportional 0.5π
180

Integral 0.05π
180

Bank-to-Rudder Proportional 0.3π
180

Integral 0.03π
180

Airspeed-to-elevator Proportional 0.08

Integral 0.01

Derivative 0.3

Altitude-to-throttle Proportional 0.15

Integral 0.000001

Derivative 0.01

Table 3.1: Gain values for the PI and PID controllers in ACM.

PID controller to determine the elevator deflection in radians, which is the output of the

controller. Also obtained using empirical means, the gain values for the PID controller

are listed in Table 3.1.

The altitude hold control system also uses a PID controller to maintain the UAV

at the desired altitude according to the pre-specified list of waypoints. The inputs to this

controller are the current altitude and target altitude. The difference between the inputs

are passed to the PID controller to determine a corresponding value for the engine throttle

output, ranged between 0.01 (1%) and 1 (100%). The PID controller gains are obtained

empirically and listed in Table 3.1.

Some physical constraints are imposed on the outputs of ACM in the form of saturation

blocks near the output blocks of each PID or PI controller and these are listed in Table

3.2.

Control Constraints

Engine throttle 0.01 ≤ TC ≤ 1

Rudder deflection −20◦ ≤ θr ≤ 20◦

Aileron deflection −10◦ ≤ θa ≤ 10◦

Elevator deflection −20◦ ≤ θe ≤ 20◦

Table 3.2: Physical constraints on ACM outputs.
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3.3.3 Test Scenario and Results

To validate the UAVSM, a test scenario was constructed with the series of waypoints as

shown in Table 3.3. In this flight path, Waypoint 1 is the starting point and Waypoints

2 to 9 constitute the “mission”.

Waypoint Coordinates

Waypoint Latitude Longitude Altitude

(DD:MM:SS) (DD:MM:SS) (m)

WP1 26◦34’51”S 151◦50’28”S 800

(Kingaroy Airport)

WP2 26◦33’58”S 151◦51’10”E 900

WP3 26◦34’08”S 151◦51’25”E 900

WP4 26◦34’16”S 151◦53’13”E 750

WP5 26◦34’08”S 151◦53’18”E 750

WP6 26◦33’59”S 151◦53’13”E 750

WP7 26◦34’08”S 151◦51’25”E 900

WP8 26◦34’14”S 151◦51’17”E 900

WP9 26◦34’51”S 151◦40’28”S 800

(Kingaroy Airport)

Table 3.3: Waypoints in the test scenario.

This series of waypoints is entered into the UAVSM in the form of a Waypoint Table

as shown in Figure 3.8. Each row of this WPTTable denotes a waypoint, comprising of

its latitude, longitude, target altitude and target airspeed. Note that Waypoint 1 is not

part of the WPTTable, because it is set as an initial condition of the UAVSM. Each of the

latitudes and longitudes, excluding Waypoints 1 and 9 (which are the same point), were

kept in the format of DD:MM.MMMM in order to retain as much precision as possible

and the conversion into radians was computed when MATLAB inputs the values of this

WPTTable variable.
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Figure 3.8: Waypoint Table in MATLAB code.

Two views of the resulting flight are shown in Figures 3.9 and 3.10. Note that the

starting point, Waypoint 1, is located at (0, 0).

Figure 3.9: Test scenario - top view of flight path.

From both views of the flight path, it can be seen that the UAVSM is able to follow the

specified sequence of waypoints in the flight mission quite well. The aircraft was able to

“capture” a waypoint, or reach the coordinates (latitude and longitude) of the waypoint,

before adjusting its heading towards the next waypoint, thus creating a smooth turn. This

is good evidence that the model has no great problems. It can also be observed from the
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Figure 3.10: Test scenario - side view of flight path.

plots that the UAVSM can track waypoints both horizontally and vertically throughout

the mission

3.4 Mission Scenario

As an integral part of the UAV simulation process, two baseline mission scenarios were

constructed, one of which is based on the mission used in the test scenario in §3.3.3, which

the other on a similar mission to the test scenario. Each of these mission scenarios not

only provides a “flight plan”(or a series of waypoints) to run the UAV simulations, it

also acts as a reference scenario to which the optimised mission can be compared. Basic

UAV operations such as Climb, Cruise, Descent and Loiter were included in the mission

scenario and its flight profile is shown in Figure 3.11.

The first baseline mission scenario, Mission Scenario 1 (MS1), is a realistic mission

scenario comprising of 100 loops of the test mission, which has a distance of approximately

15km, and for each loop, Waypoint 9 becomes Waypoint 1 of the next loop. It uses GPS

waypoints located in central Queensland, Australia, each loop is as listed in Table 3.3 and
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Figure 3.11: Flight profile of Mission Scenario 1 (not to scale).

illustrated in sequence in Figure 3.12.

Figure 3.12: Mission Scenario 1 with GPS Waypoints in central QLD, Australia (image
generated using Google Earth).

It needs to be noted that the in each loop, the leg from Waypoints 4 to 6 in the mission

scenario is the loiter phase, as shown in Figure 3.11. During this leg, some special mission

requirement is carried out – i.e. electric-only flight, video recording, etc. – therefore these

waypoints need to remain as specified and not be involved in the optimisation process.

Mission Scenario 2 (MS2) also consists of 100 loops of a base circuit, which is similar

to the test mission that forms the basis of MS1. The waypoints of MS2 are listed in Table

3.4 and one loop of MS2 is shown in Figure 3.13.
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Waypoint Coordinates

Waypoint Latitude Longitude Altitude

(DD:MM:SS) (DD:MM:SS) (m)

WP1 26◦34’51”S 151◦50’28”E 800

(Kingaroy Airport)

WP2 26◦33’46”S 151◦51’10”E 900

WP3 26◦33’58”S 151◦51’31”E 900

WP4 26◦35’02”S 151◦53’37”E 750

WP5 26◦34’48”S 151◦53’46”E 750

WP6 26◦34’34”S 151◦53’37”E 750

WP7 26◦33’58”S 151◦53’31”E 900

WP8 26◦34’13”S 151◦51’25”E 900

WP9 26◦34’51”S 151◦50’28”3 800

(Kingaroy Airport)

Table 3.4: Waypoints in the Mission Scenario 2 loop.

Figure 3.13: Mission Scenario 2 with GPS Waypoints in central QLD, Australia (image
generated using Google Earth).

3.5 Conclusions

The aim of this study was to develop a simulation model to provide a good representation

of a small fixed-wing UAV, as well as to construct a mission scenario so that the simulation



56 CHAPTER 3. UAV SIMULATION ENVIRONMENT

of an UAV in flight can be carried out. This is to enable the implementation of a MOEA

simulation optimisation method for MWO in Chapters 4 and 5.

The UAVSM was developed in the MATLAB Simulink environment, utilising the

Aerosonde UAV block from the AeroSim Blockset, both were relatively easy to use. Both

MATLAB Simulink and AeroSim Blockset are software packages that are commonly used

in the aerospace industry, therefore unexpected problems inherent in the software are

unlikely to arise.

The validity of the UAVSM was examined by the test scenario carried out in this

study. The results of this showed that in normal mission operations, the UAVSM was

able to function as an UAV would in reality, producing a smooth flight profile. The

implementation of the two additional modules enabled a flight path to be navigated

without human assistance, thus enabling unmanned operations. The current formulation

of the UAVSM does not take into consideration the effects of wind on the UAV when in

flight. This will be considered and included in future research.

The work achieved in this chapter satisfied Research Objective 2 as specified in §1.2.

The UAVSM and the constructed mission scenario will be used in the Single- and

Multi-Objective MWO processes, which will be described in Chapters 4 and 5 respectively.



Chapter 4

Single-Objective Mission Waypoint

Optimisation

4.1 Introduction

It was established in Chapter 2 that the following two tasks are required in order to

develop a MWO procedure for a small fixed-wing UAV, focusing on improving the fuel

economy on the UAV:

1. Construction of a simulation environment of a small fixed-wing UAV; and

2. Coupling of the constructed UAV simulation model with a SQP solver and a Multi-

Objective EA (MOEA) optimiser to form a MOEA simulation optimisation method

for MWO.

Chapter 3 saw the implementation of UAVSM, a simulation model to represent an

Aerosonde UAV that is capable of navigating through a given flight mission. Additionally,

a mission scenario was constructed to be utilised in the MWO process.

This chaper begins with a detailed description of the SOMWO problem, presented

in §4.2 to §4.8. The aim of optimising onboard fuel efficiency was performed using two

optimisation methods - one a MOEA optimiser as stated in §2.7.1, and the other a SQP

solver as described in §2.3.1, the setup of which are described in §4.8. The SOMWO

results are shown and analysed in §4.9 and concluding remarks are given in §4.10.

57
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4.2 Optimisation Problem Definition

As stated in §1.1.1, the SOMWO problem considers the optimisation of a given series of

waypoints that forms a flight mission, with the objective of minimising the onboard fuel

consumption. Both mission scenarios MS1 and MS2, as defined in Tables 3.3 and 3.4, are

used as baseline flight missions in the SOMWO process. However, the waypoints which

the UAV has to fly through are not definite and may be adapted within a set of bounds

in order to achieve the optimisation objective, namely the minimising of onboard fuel

consumption. This is mainly because in most UAV flight missions, the main responsibility

of the UAV is to achieve some operation goals such as taking images and/or videos of a

certain region, or taking measurements of some specific elements over a particular area,

but the path via which the UAV arrives and departs from this region is often not specified.

Figure 4.1 shows an example of a possible flight mission after the MWO process has been

carried out.

Note that Waypoints 1 and 9 (which are the start and end points, and are the same

location), and 4 to 6 are not involved in the SOMWO process, as explained in §3.4.

Figure 4.1: Example comparison of an optimised set of waypoints (green) to the baseline

flight mission (red) (not to scale).
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4.3 Design Variables

The design variables for SOMWO are the coordinates - latitude and longitude - of

the waypoints. In the SOMWO process, the optimisation method would generate the

candidate coordinates, which are passed to the UAVSM to be evaluated.

As per usual convention, the latitudes and longitudes are measured in radians. Also,

North latitudes and East longitudes are taken as positive values, while South and West

are negative. Since the location in which the mission scenarios are based in is in Australia,

which is positioned south of the Equator and east of the prime meridian, this means the

waypoints as listed in Tables 3.3 and 3.4 have negative latitudes and positive longitudes.

4.4 Fitness Function

A fitness function is a function or procedure that assigns a quality measure to a candidate

[129]. A candidate solution that optimises the fitness function is called an optimal solution.

For SOMWO, in order to optimise the energy efficiency on a UAV, the fitness function,

f , is defined as the UAV’s fuel consumption, FC, over 100 laps of the flight mission of

candidate waypoints and the SOMWO is then defined as:

min(f) : f = FC (4.1)

In each function evaluation, i.e. a simulation run in the case of this research, the UAV

executes five laps of the flight mission and the fuel consumption over these two laps,

FC5laps, is recorded. The total fuel consumption over the 100 laps is estimated by:

FC = 20FC5laps (4.2)

The reason for conducting the optimisation in this manner is to reduce the com-

putational efforts required for executing the simulation model. As described in §2.2,

simulations runs are generally computationally expensive, therefore any savings in this

area is desired.
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For the optimisation of MS1, an initial fuel mass of 2kg was used in the UAVSM. On

the other hand, taking into account the longer distances in MS2, an initial fuel mass of

5kg was used for the optimisation of MS2.

4.5 Upper and Lower Bounds of a Waypoint

The upper and lower bounds of a waypoint define a set of values from which a candidate

waypoint is selected. The generation of a set of candidate waypoints is a key component of

the optimisation process, and is performed by the optimiser used. These upper and lower

bounds of each coordinate (latitude and longitude) are defined taking into consideration

the mission requirements as well as airspace and class restrictions. The chosen set of

waypoints is then passed to the UAVSM to determine the fitness function of this particular

set of waypoints.

The waypoint bounds used in the two mission scenarios are different, and they are

presented in §4.5.1 and §4.5.2 respectively.

4.5.1 Waypoint Bounds for Mission Scenario 1

Defining the upper and lower bounds for latitude, φ, and longitude, λ, of a waypoint

requires the calculation of the great circle track (instead of a straight-line path) because

the UAV is travelling over the surface of the Earth. The computation of the upper and

lower bounds for the latitude and longitude of a waypoint is based on 10% of the distance

between a waypoint and the preceding waypoint. A rearranged form of the Haversine

Formula [161] is used to calculate the distance between two waypoints (φ1, λ1) and (φ2, λ2)

by the following:

d = 2 arcsin

{√
sin2

(
φ1 − φ2

2

)
+ cos(φ1) cos(φ2) sin2

(
λ1 − λ2

2

)}
(4.3)

where d is the great circle distance in radians. Then the distance margin, ∆d, is calculated

by:

∆d = 0.1d (4.4)
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Also, the course from waypoint 1 to waypoint 2 is calculated by:

course = mod

[
arctan

{
sin(λ1 − λ2) cos(φ2)

cos(φ1) sin(φ2)− sin(φ1) cos(φ2) cos(λ1 − λ2)

}
, 2π

]
(4.5)

And lastly, given a course course and a distance d from waypoint 1, a point (φ, λ) can

be determined by:

φ = arcsin [sin(φ1) cos(d) + cos(φ1) sin(d) cos(course)] (4.6)

∆lon = arctan

[
sin(course) sin(d) cos(φ1)

cos(d)− sin2(φ1)

]
(4.7)

λ = mod (λ1 −∆lon+ π, 2π)− π (4.8)

Using Equations 4.3 to 4.8, the following steps were used to compute the upper and

lower bounds for the latitude and longitude of waypoint i:

1. Compute the distance between waypoint i and waypoint (i− 1) using Equation 4.3.

2. Find the point that lies ∆d1 distance away from waypoint i in the direction of

waypoint (i − 1). Equations 4.5 to 4.8 are used for this computation, and the

resulting latitude and longitude values, latB1 and lonB1 respectively, constitute two

of the bounds. However, whether these are upper and/or lower bounds will be

determined in later steps.

3. Compute the distance between waypoint i and waypoint (i+ 1) as in Step 1.

4. Find the point that lies ∆d2 distance away from waypoint i in the direction of

waypoint i+ 1 as in Step 2. The resulting coordinates is used as follows:

• If the waypoints (i−1), i and (i+1) are not in a straight line (see Figure

4.2), then the resulting longitude, lonB2, is an upper/lower bound. Proceed to

Step 5 to determine latB2.

• If these three waypoints are in a straight line (see Figure 4.3), then the

resulting latitude and longitude values, latB2 and lonB2 respectively, are the

remaining two upper/lower bounds. Proceed to Step 7.
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5. Compute the distance from (latB1, loni) to (lati, loni), denoted by dlat. latB2 is

obtained by finding the point dlat distance away from Waypoint i in the direction

from (latB1, loni) to (lati, loni).

6. Compare latB1 to labB2 to determine latUB and latLB, also compare lonB1 to lonB2

for lonUB and lonLB.

Figure 4.2: aypoints (i − 1), i and (i + 1)
are not in a straight line.

Figure 4.3: Waypoints (i− 1), i and (i+ 1)
are in a straight line.

Using the above steps, the upper and lower bounds of the waypoint coordinates are

calculated, adjusted to meet optimisation requirements, and presented in Table 4.1.

Figure 4.4 illustrates these bounds in relation to the entire mission. In the case of

Waypoints 3 and 7, where the bounds are quite similar, an enlarged plot is given in

Figure 4.5.

Waypoint # Coordinate Lower Bound Upper Bound

2 Latitude 0.463642241 0.463693195

Longitude 2.650312648 2.650340341

3 Latitude 0.463700000 0.463720000

Longitude 2.650397006 2.650456443

7 Latitude 0.463700000 0.463720000

Longitude 2.650400061 2.650456445

8 Latitude 0.463741362 0.463762205

Longitude 2.650340137 2.650367830

Table 4.1: Waypoint bounds for Mission Scenario 1.
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Figure 4.4: Illustration of the waypoint bounds for Mission Scenario 1.

Figure 4.5: Enlarged view of the waypoint bounds for Waypoints 3 & 7 in Mission

Scenario 1.
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4.5.2 Waypoint Bounds for Mission Scenario 2

For MS2, a set of waypoint bounds encompassing a greater search space was designed.

In contrast to the waypoint bounds for MS1, described in §4.5.1, which are determined

according to the respective distances between the waypoints and are different for each

waypoint to be optimised, the waypoint bounds for MS2 form a “common area” of

approximately 1.5km × 2.5km, from which the candidate waypoints for all the waypoints

to be optimised are chosen. This area is illustrated in Figure 5.1, with the bounds listed

in Table 4.2.

Figure 4.6: Illustration of the waypoint bounds for Mission Scenario 2.

Coordinate Lower Bound Upper Bound

Latitude 0.46359639 0.46383268

Longitude 2.65031243 2.65075036

Table 4.2: Waypoint bounds for Mission Scenario 2.
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4.6 Physical Constraints

Several physical constraints – limits for engine throttle, rudder deflection, aileron deflec-

tion and elevator deflection – were incorporated into the UAVSM with the intention of

making the model more realistic. These constraints were implemented as part of the ACM

of the simulation model using saturation blocks and they are reiterated in Table 4.3.

Control Constraints

Engine throttle 0.01 ≤ TC ≤ 1

Rudder deflection −20◦ ≤ θr ≤ 20◦

Aileron deflection −10◦ ≤ θa ≤ 10◦

Elevator deflection −20◦ ≤ θe ≤ 20◦

Table 4.3: Physical constraints on ACM outputs.

An additional constraint is:

• The airspeed is controlled at 20m/s when the aircraft is at level flight or climbing,

and increased to 30m/s when descending.

and this was incorporated into the simulation process as part of the Waypoint Table that

is called upon by the NavigateWaypoints function (see Appendix B) inside the FPM.

4.7 Mathematical Formulation of SOMWO Problem

The mathematical formulation of the SOMWO is as follows:

min
x

y = f(x)

subject to lb < x < ub (4.9)

where x = (lat1, lon1, lat2, lon2, . . . , latn, lonn)T is the set of coordinates (latitude and

longitude) of n waypoints that is to be optimised, y = FC is the objective function

of fuel consumption, lb = (latLB1, lonLB1, latLB2, lonLB2, . . . , latLBn, lonLBn)T and

ub = (latUB1, lonUB1, latUB2, lonUB2, . . . , latUBn, lonUBn)T are the lower and upper

bound vectors, respectively, for the optimised waypoints.
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4.8 Optimiser Setup

In the implementation of SOMWO, two optimisers were used:

1. The HAPMOEA optimiser (EA-based) (§2.7.1); and

2. The MATLAB SQP solver (SQP-based) (§2.3.1).

The MATLAB-based UAVSM, configured to output the fuel mass and shown in Figure

4.7, was used with both optimisers in the SOMWO process and the fundamental sample

time, ∆t, set at 0.1 seconds.

4.8.1 HAPMOEA Optimiser Setup

The HAPMOEA optimisation rationale is displayed in Figure 4.8.

For the SOMWO problem, the HAPMOEA optimiser was set up with only one

layer and contains the following settings, entailed in the optimisation.parameters file (see

Appendix C) as part of the output files generated by the HAPMOEA optimiser.

• Population size = 10

• Parents in recombination = 2

• Buffer length = 12

• Tournament-in-buffer ratio = 2.0

The HAPMOEA optimisation process begins with setting up the problem to be opti-

mised. This includes defining the decision variables (see §4.3), parameters and constraints

(see §4.5 to §4.6), then continue to define the number of subpopulations (nodes), hierar-

chical levels and integrated analysis. Once these are defined, the optimiser obtains enough

individuals to fill the population size.

After the population has been initialised, the optimiser begins the actual optimisation.

This is achieved by the optimiser updating the solver with a candidate waypoint and the

solver evaluating this candidate waypoint using MATLAB and UAVSM to obtain the

fitness value(s), which are then sent back to the optimiser. This process is continued until
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Figure 4.8: The optimisation rationale flow diagram for the HAPMOEA optimiser.

some migration criteria have been met, after which migration starts. Or the process may

be stopped by the stopping condition specified, usually a maximum number of function

evaluations, maximum run time, or a certain precision has been met.

HAPMOEA takes into account the lower and upper bound constraints (see §4.5) and

generates candidate waypoints with their latitude and longitude coordinates as the design

variables. The waypoint table constructed using these candidate waypoints are passed to

UAVSM to be evaluated. The output of the UAVSM is the fuel consumption over the

mission and this is the objective which is to be minimised by HAPMOEA.

Note that an initial estimates vector is not required for HAPMOEA.

4.8.2 MATLAB SQP Solver Setup

The setup of the SQP solver for the SOMWO problem consists of the definition of the

initial estimates vector, x0, and the lower and upper bounds vectors, lb and ub respectively.

The initial estimates vector, x0, is defined as a column vector as follows:
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x0 =



lat1

lon1

...

latn

lonn


(4.10)

where lati and loni are the latitude and longitude coordinates of the i-th waypoint

respectively, in a mission with n waypoints. The values of the waypoint coordinates

are obtained from the baseline mission waypoints as defined in Table 3.3.

The lower and upper bounds vectors, lb and ub respectively, are calculated using

equations described in §4.5. These are used by the SQP solver to generate candidate

waypoint coordinates as a column vector which are then passed to the fminconOpti

function (refer to Appendix D) to be minimised. This function constructs a waypoint

table, an n × 3 matrix, from the candidate waypoint coordinates. The function then

calls the UAVSM, which accepts this waypoint table of candidate waypoints and executes

the candidate mission. The output of the simulation is the fuel consumption during the

mission, which is the objective to be minimised by the SQP solver. Figure 4.9 shows

MATLAB at work performing the SQP-based optimisation.

Figure 4.9: MATLAB function call for the SQP-solver.

4.9 Optimisation Results and Analysis

The optimisation procedure for each optimiser used different stopping conditions:
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• HAPMOEA optimiser: a time limit of 3 hours on one machine only

• SQP solver: Default stopping condition (terminates if the magnitude of the di-

rectional directive in the search direction is less than 2 × 10−6 and the maximum

constraint violation is less than 1 × 10−6) in addition to the maximum iteration

count of 20 iterations.

4.9.1 Mission Scenario 1

Figures 4.10 to 4.17 illustrate the fitness-vs-function-evaluations graphs for both optimis-

ers, with the number of waypoints being optimised ranging from one waypoint (Waypoint

2) to four waypoints (Waypoints 2, 3, 7 and 8).

Figure 4.10: Fuel consumption vs function evaluations for MS1 (1 waypoint -

HAPMOEA).
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Figure 4.11: Fuel consumption vs function evaluations for MS1 (1 waypoint - SQP).

Figure 4.12: Fuel consumption vs function evaluations for MS1 (2 waypoints -

HAPMOEA).
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Figure 4.13: Fuel consumption vs function evaluations for MS1 (2 waypoints - SQP).

Figure 4.14: Fuel consumption vs function evaluations for MS1 (3 waypoints -

HAPMOEA).
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Figure 4.15: Fuel consumption vs function evaluations for MS1 (3 waypoints - SQP).

Figure 4.16: Fuel consumption vs function evaluations for MS1 (4 waypoints -

HAPMOEA).
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Figure 4.17: Fuel consumption vs function evaluations for MS1 (4 waypoints - SQP).

Table 4.4 compares the optimisation parameters, the run time statistics and the fitness

values when using the two optimisers. The fitness values were also compared to that of

the baseline mission, which is listed in the first entry.

# Waypoints /

Design Function Fuel

Variables Optimisation Evaluations Time Consumption

Optimised Method Performed Taken (kg)

- Baseline - 11min 48s 1.713496854

1 (2 DV) HAPMOEA 115 3hrs 1.68314748

SQP 6 51min 46s 1.68186140

2 (4 DV) HAPMOEA 116 3hrs 1.67932596

SQP 27 5hrs 12min 1.67627787

3 (6 DV) HAPMOEA 116 3hrs 1.67413965

SQP 14 2hrs 4min 1.67263123

4 (8 DV) HAPMOEA 115 3hrs 1.6776534

SQP 27 3hrs 49min 1.6663055

Table 4.4: Table of statistics for SOMWO (MS1).

It can been from Table 4.4 that both the HAPMOEA and SQP optimisers have
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improved the fuel consumption, with little differences between the outcomes of the two

methods. It can be noted that as the number of waypoints to be optimised increases, the

bigger the improvements resulted from the optimisation processes.

However, the SQP optimiser was able to produce the set of optimised waypoints that

“uses” less fuel than that from the HAPMOEA optimiser. A possible reason for this large

difference between the effectiveness of the two methods is that the search region, i.e. the

region within the upper/lower bounds for the latitude and longitude coordinates, for each

optimised waypoint is relatively small. In this case, a global optimisation method such as

an EA would be expected to be less effective than a gradient-based method, which works

very well in a localised search region.

It can also be observed that a plateau in the fuel consumption value appears in each

of Figures 4.10, 4.14 and 4.16, the optimised results from the HAPMOEA optimiser.

In the EA/GA process, the introduction of randomness into a population to form the

next generation enables the exploration of the search region in directions not necessarily

corresponding to the current minimum fitness, therefore avoiding convergence to a local

optimum and increase the possibility of finding the global optimum. However, depending

on the initial population that was generated, early convergence to a local optimum may

result, and this is most often the cause of the plateaus in the fitness value, or fuel

consumption value, as seen in Figures 4.10, 4.14 and 4.16. In each of these cases, it can

be seen that after a number of function evaluations, during which many generations of

populations were formed, new optima were found. Ideally, the set of optimised waypoints

can be determined if time and computational resources are in abundance. However, this

is not possible in real-world applications. Therefore, the EA/GA optimisation process

is terminated when a termination condition has been reached. Common termination

conditions are listed in §2.7.

The improvements in fuel consumption ranges from 0.03034937kg for HAPMOEA 1-

waypoint optimisation to 0.04719135 for SQP 4-waypoint optimisation. Given that the

simulation execution time for two laps of the Baseline mission consumes 0.034031kg,

it means with these savings from the optimisation, the UAV could potentially execute

an extra two laps of the flight mission. This may result in two more opportunities at

accomplishing the mission goal as extra insurance in case one or more previous attempts
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failed, or to collect more data.

It can be seen in the comparison that the run time for the SQP solver varied quite

significantly across the number of decision variables being optimised. This can be prob-

lematic when a large number of function evaluations is required for one SQP optimisation

run. On the other hand, the HAPMOEA optimiser is able to be stopped when a maximum

amount of time has been reached.

It must be noted that the SQP solver requires multiple simulation runs, n + 1 runs

was observed in this case (n denotes the number of waypoints to be optimised), in order

to complete one iteration, before moving to the next potential set of candidate waypoints.

This is due to the fact that the gradient at one iterate needs to be determined before the

process can determine the “location” of the next iterate. This can be a problem when the

number of variables becomes large. On the other hand, the HAPMOEA optimiser finds

a new set of candidate waypoints after each evaluation, therefore it is much more capable

at tackling optimisation problems with a large number of variables.

The optimised waypoints - in their latitude and longitude coordinates - are displayed

in Table 4.5 and illustrated in Figures 4.18 to 4.21.
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# Waypoints / Optimised Optimised

Design Optimisation Latitude Longitude

Variables Method WPT # (rad) (rad)

1 (2 DV) HAPMOEA 2 0.463692003 2.65032962

SQP 2 0.463693195 2.650340341

2 (4 DV) HAPMOEA 2 0.463692361 2.65033336

3 0.46370348 2.65042352

SQP 2 0.463693195 2.650340341

3 0.463700020 2.650445568

3 (6 DV) HAPMOEA 2 0.463691097 2.65033806

3 0.463709128 2.65045171

7 0.463713306 2.65045368

SQP 2 0.463693195 2.650340341

3 0.463700000 2.650456443

7 0.463720000 2.650456445

4 (8 DV) HAPMOEA 2 0.463686392 2.65033528

3 0.463706622 2.6504452

7 0.463716449 2.65042714

8 0.463757052 2.650366

SQP 2 0.463693195 2.650340341

3 0.463700000 2.650456443

7 0.463720000 2.650456445

8 0.463762205 2.650367830

Table 4.5: Table of optimised waypoints for SOMWO (MS1).
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Figure 4.18: Comparison of optimised waypoints for MS1 (1 waypoint optimised).

Figure 4.19: Comparison of optimised waypoints for MS1 (2 waypoints optimised).
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Figure 4.20: Comparison of optimised waypoints for MS1 (3 waypoints optimised).

Figure 4.21: Comparison of optimised waypoints for MS1 (4 waypoints optimised).
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4.9.2 Mission Scenario 2

Figures 4.22 to 4.29 illustrate the fitness-vs-function-evaluations graphs for both optimis-

ers, with the number of waypoints being optimised ranging from one waypoint (Waypoint

2) to four waypoints (Waypoints 2, 3, 7 and 8).

Figure 4.22: Fuel consumption vs function evaluations for MS2 (1 waypoint -

HAPMOEA).

Figure 4.23: Fuel consumption vs function evaluations for MS2 (1 waypoint - SQP).
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Figure 4.24: Fuel consumption vs function evaluations for MS2 (2 waypoints -

HAPMOEA).

Figure 4.25: Fuel consumption vs function evaluations for MS2 (2 waypoints - SQP).
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Figure 4.26: Fuel consumption vs function evaluations for MS2 (3 waypoints -

HAPMOEA).

Figure 4.27: Fuel consumption vs function evaluations for MS2 (3 waypoints - SQP).
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Figure 4.28: Fuel consumption vs function evaluations for MS2 (4 waypoints -

HAPMOEA).

Figure 4.29: Fuel consumption vs function evaluations for MS2 (4 waypoints - SQP).
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Table 4.6 compares the optimisation parameters, the run time statistics and the fitness

values when using the two optimisers. The fitness values were also compared to that of

the baseline mission, which is listed in the first entry.

# Waypoints /

Design Function Fuel

Variables Optimisation Evaluations Time Consumption

Optimised Method Performed Taken (kg)

- Baseline - 8min 4sec 2.33982

1 (2 DV) HAPMOEA 243 3hrs 2.05463

SQP 25 1hr 9min 2.24454

2 (4 DV) HAPMOEA 281 3hrs 1.96680

SQP 26 57min 2.07742

3 (6 DV) HAPMOEA 320 3hrs 1.90489

SQP 110 3hrs 21min 1.98364

4 (8 DV) HAPMOEA 362 3hrs 1.88818

SQP 66 2hrs 10min 1.94054

Table 4.6: Table of statistics for SOMWO (MS2).

It can been from Table 4.6 that both the HAPMOEA and SQP optimisers have im-

proved the fuel consumption, with the HAPMOEA results showing greater improvements

over those of SQP in this case. A likely explanation for this is the larger search region

encompassed by the waypoint bounds in MS2 as compared to MS1, which would favour

the HAPMOEA optimiser.

The optimised waypoints - in their latitude and longitude coordinates - are displayed

in Table 4.7 and illustrated in Figures 4.30 to 4.33.



4.9. OPTIMISATION RESULTS AND ANALYSIS 85

# Waypoints / Optimised Optimised

Design Optimisation Latitude Longitude

Variables Method WPT # (rad) (rad)

1 (2 DV) HAPMOEA 2 0.463665641 2.650366495

SQP 2 0.463686297 2.650368469

2 (4 DV) HAPMOEA 2 0.463762844 2.650438574

3 0.463751545 2.650503195

SQP 2 0.463832681 2.650477333

3 0.463832681 2.650544524

3 (6 DV) HAPMOEA 2 0.463750116 2.650448115

3 0.463747647 2.650556192

7 0.463751847 2.650472011

SQP 2 0.463832681 2.650464771

3 0.463832681 2.650517603

7 0.463744975 2.650502581

4 (8 DV) HAPMOEA 2 0.463767637 2.650455658

3 0.463764437 2.650554251

7 0.463727209 2.650518072

8 0.463755385 2.650404785

SQP 2 0.463832681 2.650474837

3 0.463832681 2.650527535

7 0.463832681 2.650518644

8 0.463832681 2.650465382

Table 4.7: Table of optimised waypoints for SOMWO (MS2).

Figure 4.30: Comparison of optimised waypoints for MS2 (1 waypoint optimised).
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Figure 4.31: Comparison of optimised waypoints for MS2 (2 waypoints optimised).

Figure 4.32: Comparison of optimised waypoints for MS2 (3 waypoints optimised).
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Figure 4.33: Comparison of optimised waypoints for MS2 (4 waypoints optimised).

4.10 Conclusions

The aim of this chapter was to couple the UAV simulation constructed in Chapter 3 into

a MOEA optimiser to form a MOEA simulation optimisation method for solving a MWO

problem.

In this chapter, a detailed description of the SOMWO problem was given, including

the definitions of the optimisation parameters.

Two optimisation methods were described The UAVSM was coupled with two op-

timisers, the HAPMOEA optimiser and the SQP solver, but the experience was not

without problems. As mentioned in §2.2, merging the MATLAB-based UAVSM and the

C++-based HAPMOEA optimiser was made more challenging because the HAPMOEA

optimiser only worked under the LINUX environment, whereas the AeroSim Blockset was

developed for use in the Windows environment. In the end, the problematic executables

which some AeroSim blocks were compiled in a format that can be used under Linux and

the subsequent development process was comparatively smooth.
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Each optimiser was able to optimise from one to four waypoints, or 2 to 8 decision

variables, the results of which are shown in Tables 4.6 and 4.7 for MS1 and MS2 respec-

tively. It is evident that the SQP solver is significantly more efficient than the HAPMOEA

optimiser in the case of MS1, which is very likely due to the fact that the search region

for each waypoint is relatively small. As gradient-based methods, such as SQP, excel at

optimising problems in a localised scale, the SQP solver is more appropriate than the

HAPMOEA optimiser in this example of SOMWO. On the other hand, for MS2, the

HAPMOEA optimiser consistently outperformed the SQP solver, since a larger search

space is used in MS2.

It can be observed from the SOMWO results that the computational cost required to

obtained these optimised values can still be a concern, especially when the SQP solver is

used, since a time limit cannot be used as a stopping condition. For HAPMOEA, it must

be noted that the distributed or parallel computing capability of the HAPMOEA optimiser

was not explored in the course of this research and when implemented, the computational

costs for the HAPMOEA optimiser will be expected to improve significantly.

Overall, the capabilities of two simulation optimisation methods integrating the HAP-

MOEA optimiser and the SQP solver respectively with the MATLAB-based UAVSM were

demonstrated in this chapter, meeting Research Objectives 1 to 4 as listed in §1.2.

The next chapter, Chapter 5, will present the MOMWO process.



Chapter 5

Multi-Objective Mission Waypoint

Optimisation

5.1 Introduction

As established in Chapter 2, the following two tasks are required in order to develop a

MWO procedure for a small fixed-wing UAV, focusing on improving the fuel economy on

the UAV:

1. Construction of a simulation environment of a small fixed-wing UAV; and

2. Coupling of the constructed UAV simulation model with a SQP solver and a Multi-

Objective EA (MOEA) optimiser to form a MOEA simulation optimisation method

for MWO.

Chapter 3 saw the implementation of UAVSM, a simulation model to represent an

Aerosonde UAV that is capable of navigating through a given flight mission. Additionally,

two mission scenarios - MS1 and MS2 - were constructed to be utilised in the MWO

process, and the single-objective MWO problem was presented in Chapter 4.

This chapter expands on the SOMWO problem and presents the optimisation of a

multi-objective MWO (MOMWO) problem, as described in §5.2. The results of the

MOMWO process are presented and analysed in §5.7, and concluding remarks are given

in §5.8.

89
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5.2 Optimisation Problem Definition

The MOMWO problem extends upon the existing SOMWO problem described in §4.2,

which considers the optimisation of a given series of waypoints that forms a flight mission,

by adding a second objective in addition to the original objective of minimising the

onboard fuel consumption. Two cases of this second objective was considered and are

described in §5.4. The baseline flight mission is defined in Table 3.3, of which Waypoints

1 and 9 (which are the start and end points, and are the same location), and 4 to 6 are

not involved in the MOMWO process, as was the case in the SOMWO.

5.3 Design Variables

The design variables for MOMWO are the same ones used in the SOMWO process, as

described in §4.3, and are the coordinates – latitude and longitude – of the waypoints.

These coordinates are measured in radians, and South latitudes and East longitudes are

taken as positive values.

5.4 Fitness Functions

5.4.1 Fitness Functions for Mission Scenario 1

As stated in §5.2, the MOMWO problem considers two objectives. In the case of MS1,

these objectives are to minimise the total onboard fuel consumption, FC and maximise the

mission time, Tm, over 100 laps of the flight mission formed by the candidate waypoints.

These objectives are defined as fitness functions, f1 and f2 respectively as follows:

min(f1) : f1 = FC (5.1)

max(f2) : f2 = Tm (5.2)

As stated in §4.4 for SOMWO, the UAV executes five laps of the flight mission during

each function evaluation, and the fuel consumption and mission time over the five laps,
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FC5laps and Tm,5laps respectively, are recorded. The total fuel consumption and mission

time over the 100 laps are estimated by:

FC = 20FC5laps (5.3)

Tm = 20Tm,5laps (5.4)

5.4.2 Fitness Functions for Mission Scenario 2

For MS2, a different second objective, essentially a risk factor, was considered in addition

to the objective of minimising fuel consumption. Two Hazard Areas, A1 and A2, were

set up in nearby areas of the MS2 waypoints as listed in Table 3.4 and shown in Figure

5.1. These are high risk areas which should be avoided by the UAV during its mission,

therefore it is desired to maximise the distance between the UAV and each of these Hazard

Areas.

Figure 5.1: The Hazard Areas (in red) near the MS2 waypoints.

This risk factor is defined as:

min(f2) : f2 =
1

dist1
+

1

dist2
(5.5)

where dist1 and dist2 are the shortest distances from A1 and A2, respectively, that the

UAV reaches in the duration of the mission. This distance is calculated by firstly sectioning

the regions surrounding a Hazard Area as in Figure 5.2. If the UAV in the corner sections,

i.e. S1, S3, S6 and S8, the nearest point in the Hazard Area from the UAV is taken to

be the corner point (e.g. (lon1, lat1) in S1) and the distance from the UAV to this point
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is calculated using the great circle formula; see Equation 3.2. If the UAV is in the other

sections, then the nearest point is the point that the perpendicular path from the UAV

to the Hazard Area border intersects with the border, and the distance is calculated.

Figure 5.2: Sectioning of the region around a Hazard Area.

At any one point in time during the flight mission, the distances from the UAV to

each of these Hazard Areas are calculated and compared to previous shortest distances

so that the overall shortest distances are determined.

5.5 Upper and Lower Bounds of a Waypoint

The waypoint bounds used in the MOMWO process are identical to those used in the

SOMWO in §4.5. These are re-iterated in Tables 5.1 and 5.2 and are illustrated in Figures

4.4 and 5.1.
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Waypoint # Coordinate Lower Bound Upper Bound

2 Latitude 0.463642241 0.463693195

Longitude 2.650312648 2.650340341

3 Latitude 0.463700000 0.463720000

Longitude 2.650397006 2.650456443

7 Latitude 0.463700000 0.463720000

Longitude 2.650400061 2.650456445

8 Latitude 0.463741362 0.463762205

Longitude 2.650340137 2.650367830

Table 5.1: MOMWO waypoint bounds for MS1.

Coordinate Lower Bound Upper Bound

Latitude 0.46359639 0.46383268

Longitude 2.65031243 2.65075036

Table 5.2: MOMWO waypoint bounds for MS2.

5.6 Physical Constraints

The constraints considered in the MOMWO process are of two types – the upper and lower

bounds of waypoint coordinates, and physical constraints. These are the same constraints

used in the SOMWO process and are described in §4.6 and are listed in Tables 4.1, 4.2

and 4.3 respectively. Also, the UAV’s airspeed is maintained at 20m/s throughout the

mission, except when in descent, during which the airspeed increases to 30m/s.

5.6.1 Mathematical Formulation of MOMWO Problem

The mathematical formulation of the MOMWO is as follows:

min
x

y = f(x)

subject to lb < x < ub (5.6)

where x = (lat1, lon1, lat2, lon2, . . . , latn, lonn)T is the set of coordinates (latitude and
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longitude) of n waypoints that is to be optimised, y = (FC, 1/Tm) are the two ob-

jective functions of fuel consumption and mission time1 for MS1 and y = (FC, 1
dist1

+

1
dist2

) are the objective functions of fuel consumption and risk factor for MS2, lb =

(latLB1, lonLB1, latLB2, lonLB2, . . . , latLBn, lonLBn)T and

ub = (latUB1, lonUB1, latUB2, lonUB2, . . . , latUBn, lonUBn)T are the lower and upper

bound vectors, respectively, for the optimised waypoints.

5.6.2 Optimiser Setup

In the implementation of MOMWO, the same two optimisers as in SOMWO – HAPMOEA

optimiser and SQP solver – were used. The MATLAB-based UAVSM was used with both

optimisers in the SOMWO process and the fundamental sample time, ∆t, set at 0.1

seconds.

HAPMOEA Optimiser Setup

For the MOMWO problem, the HAPMOEA optimiser was set up with only one layer and

contains the following:

• Population size = 40

• Parents in recombination = 2

• Buffer length = 42

• Tournament-in-buffer ratio = 2.0

The population size and buffer length were increased from the settings for SOMWO

(see §4.8.1) so a better observation of the Pareto members and non-members that were

generated during the optimisation process.

HAPMOEA takes into account the lower and upper bound constraints (see §5.5) and

generates candidate waypoints with their latitude and longitude coordinates as the design

variables. The waypoint table constructed using these candidate waypoints are passed to

UAVSM to be evaluated. The outputs of the UAVSM is the fuel consumption and mission

1Because mission time is to be maximised, but the optimisation process in fact minimises the fitness
functions, therefore the fitness for mission time was converted to its inverse, or 1/Tm.
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time over the mission for MS1, and the fuel consumption and rist factor as determined

in §5.4.2 for MS2. These are passed to HAPMOEA to be optimised. Refer to Appendix

E for relevant excerpts of the HAPMOEA code for performing MOMWO.

Note that an initial estimates vector is not required for HAPMOEA.

MATLAB SQP Solver Setup

Unlike HAPMOEA, the SQP solve does not have the capability of performing multi-

objective optimisations because the fmincon function can only process scalar objective

functions, i.e. one objective only. This was overcome by combining the two objective

functions, FC and 1/Tm, using a weighted sum approach [162]. In this approach, the two

objective functions are added together using different weighting coefficients for each one

of them, which transforms the MOMWO problem into a scalar optimisation problem of

the form:

minw1 f1 + w2 f2 (5.7)

where wi ≥ 0 are the weighting coefficients representing the relative importance of the

objectives. It is usually assumed that:

∑
wi = 1 (5.8)

For the MOMWO process, the weighting coefficients are varied from 0 to 1 in in-

crements of 0.05, and one optimisation run was performed for each set of weighting

coefficients. This will result in 19 “optimised” points on the Pareto plot.

The relevant MATLAB code can be found in Appendix F for reference.

5.7 Optimisation Results and Analysis

The optimisation procedure for each optimiser used different stopping conditions:

• HAPMOEA optimiser: a time limit of 18 hours on one machine only
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• SQP solver: Default stopping condition (terminates if the magnitude of the di-

rectional directive in the search direction is less than 2 × 10−6 and the maximum

constraint violation is less than 1 × 10−6) in addition to the maximum iteration

count of 20 iterations.

5.7.1 Mission Scenario 1

Figures 5.3 and 5.4 illustrate the solutions from the HAPMOEA optimiser and SQP solver

respectively, with the number of waypoints being optimised as four waypoints (Waypoints

2, 3, 7 and 8).

Figure 5.3: HAPMOEA Optimiser results
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Figure 5.4: SQP solver results

Tables 5.3 and 5.4 display the solutions and their run time statistics and the fitness

values for each optimiser.

It can be seen that while the solutions found by the SQP solver have lower fuel

consumption values, they also have significantly lower mission time values when compared

to the solutions found by the HAPMOEA optimiser. Since the MOMWO problem aims

to minimise the fuel consumption and maximise the mission time, it seems that the

SQP solver, using the weighted sum approach, does not provide a balanced optimisation

between the two objective functions and there is much variation between the fitness

values obtained using this approach. On the other hand, the fitness values from the

HAPMOEA optimiser provide a better balance between minimising the fuel consumption

and maximising the mission time.

With regards to the run time, HAPMOEA performed the optimisation in 18 hours,

which was the maximum run time used as the stopping condition for the optimiser, while

the SQP solver required a total of 38.45 hours to perform the optimisation using 19 sets

of weight coefficients.
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Run HAPMOEA Fuel Mission HAPMOEA Fuel Mission

Time Solution Consumption Time Solution Consumption Time

(hr) # (kg) (hr) # (kg) (hr)

18 1 1.68142562 14.702 21 1.71131979 15.037

2 1.68365991 14.726 22 1.71267527 15.048

3 1.68636541 14.759 23 1.71437602 15.065

4 1.68840183 14.777 24 1.71562739 15.080

5 1.68984161 14.789 25 1.71741699 15.097

6 1.69117107 14.828 26 1.71905349 15.118

7 1.69233406 14.838 27 1.72050302 15.136

8 1.69354510 14.838 28 1.72239056 15.152

9 1.69524439 14.853 29 1.72406186 15.168

10 1.69653692 14.874 30 1.72532036 15.185

11 1.69799614 14.881 31 1.72726686 15.199

12 1.69940997 14.900 32 1.72895751 15.218

13 1.70092973 14.907 33 1.73100991 15.241

14 1.70240555 14.931 34 1.73255030 15.251

15 1.70378363 14.948 35 1.73404760 15.269

16 1.70575365 14.963 36 1.73539729 15.278

17 1.70719733 14.977 37 1.73629716 15.292

18 1.70852489 14.995 38 1.73871166 15.329

19 1.70930684 15.006 39 1.74293000 15.341

20 1.70994184 15.019

Table 5.3: Table of MOMWO statistics for HAPMOEA optimiser (MS1).

Therefore, for the purpose of MOMWO, it seems that the HAPMOEA optimiser is

significantly more efficient, while generating a more balanced set of results.

Note that the plots generated by both the HAPMOEA and SQP optimisers both

display a fairly linear relationship between the Pareto members. A possible reason for

this is that the two fitness functions, fuel consumption and mission time, are correlated

linearly. Further investigation will be required on this aspect.

5.7.2 Mission Scenario 2

Figure 5.5 illustrates the Pareto members for both optimisers, with the number of way-

points being optimised as four waypoints (Waypoints 2, 3, 7 and 8).
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SQP Run Fuel Mission

Solution Time Consumption Time

# (hr) (kg) (hr)

1 2.631 1.664264 14.5222

2 2.644 1.664264 14.5222

3 2.611 1.664526 14.5256

4 3.280 1.664852 14.5283

5 3.225 1.665344 14.5344

6 2.358 1.665719 14.5256

7 1.116 1.665793 14.5461

8 1.096 1.666134 14.5472

9 1.227 1.666278 14.5511

10 1.799 1.667333 14.5628

11 2.227 1.667587 14.5661

12 1.319 1.668095 14.5728

13 0.949 1.675356 14.6511

Total Run Time: 38.4503 hrs

Table 5.4: Table of MOMWO statistics for SQP solver (MS1).

Figure 5.5: Pareto plot of HAPMOEA Optimiser and SQP Solver results (MS2).
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Tables 5.5 and 5.6 display the Pareto members and their run time statistics and the

fitness values for each optimiser.

Run Pareto Fuel Risk

Time Member Consumption Factor

(hr) # (kg) (1/km)

18 1 2.12847973 2.53608465

2 2.13999824 2.43775235

3 2.15023037 2.37180592

4 2.1594097 2.3018945

5 2.16060612 2.26741787

6 2.17326282 2.24682338

7 2.17609764 2.15958842

8 2.19772815 2.14428743

9 2.223122 2.10868906

Table 5.5: Table of MOMWO statistics for HAPMOEA optimiser (MS2).

Pareto Run Fuel Risk

Member Time Consumption Factor

# (hr) (kg) (1/km)

1 20.126 2.816810 1.704373

2 16.631 2.777218 1.701709

3 21.868 2.390286 1.749873

4 29.79 2.234099 1.956561

5 27.873 2.146928 2.196180

6 31.122 2.111094 2.362687

7 17.629 2.023689 3.245058

Total Run Time: 444.0811 hrs

Table 5.6: Table of MOMWO statistics for SQP solver (MS2).

The most significant difference between the MOMWO results from the HAPMOEA

optimiser and SQP solver is the computational time required to perform the MWO

procedure. On one hand, the HAPMOEA optimiser was capable of performing the

MOMWO efficiently in both time and ease of use, as well as the capability of ranking

the Pareto members automatically. In comparison, the SQP solver required more than 20

times the computational time that the HAPMOEA optimiser used. Therefore, it can be

concluded that the HAPMOEA optimiser is significantly the more appropriate optimiser
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to use for MOMWO.

5.8 Conclusions

The aim of this chapter was to extend the work performed for the SOMWO problem in

Chapter 4 into solving a MOMWO problem.

In this chapter, a detailed description of the MOMWO problem was given, including

the definitions of the optimisation parameters.

The MOMWO process were performed using two different sets of fitness functions.

In the case of MS1, the objectives were to minimise the fuel consumption and maximise

the flight time. However, the optimisation results showed that these two objectives are

somewhat linearly correlated and therefore these two objectives are perhaps not the most

appropriate combination of objectives to be evaluated in this case. On the other hand,

the objectives for MS2 were to minimise the fuel consumption and maximise the shortest

distances from the UAV to the two Hazard Areas, A1 and A2. No obvious correlations

were observed in this case.

One significant observation is the computational time required for the SQP solver to

perform the MOMWO, which is more than 20 times that of the HAPMOEA optimiser.

It should also be noted that in order to use the SQP solver to perform multi-objective

optimisation, a weighted sum approach was used. This required the appropriate weights

to be known beforehand, or extra evaluations would be required in order to determine the

appropriate weights, thus introducing extra computational expense.

Overall, the capabilities of two simulation optimisation methods integrating the HAP-

MOEA optimiser and the SQP solver respectively with the MATLAB-based UAVSM to

perform MOMWO were demonstrated in this chapter, meeting Research Objectives 1 to

4 as listed in §1.2.

The next chapters, Chapters 6 and 7, will describe the development of a Hybrid-

Electric Propulsion System (HEPS) on an UAV. This was accomplished in two stages:

1. Performing of an Ideal Operating Line (IOL) analysis on an Aerosonde ICE (§6);

and
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2. Development and implementation of a HEPS simulation model and its integration

into the UAVSM (§7).

The details of each of these tasks are described in the chapters as indicated.



Chapter 6

Ideal Operating Line Analysis of Aerosonde

ICE

6.1 Introduction

As mentioned in Chapter 5, the development of a Hybrid-Electric Propulsion System

(HEPS) on an UAV was accomplished in two stages:

1. Performing of an Ideal Operating Line (IOL) analysis on an Aerosonde ICE; and

2. Development and implementation of a HEPS simulation model and its integration

into the UAVSM.

As presented in §1.1.2, the literature review has shown that a Hybrid-Electric Propul-

sion System (HEPS) with a Continuously Variable Transmission (CVT) and utilising an

Ideal Operating Line (IOL) control strategy has the potential to economise the energy

efficiency on a small fixed-wing UAV.

In order for these components to work in an organised manner, a controller is required.

Its primary function will be to determine when and how each of the components of the

HEPS will work while the UAV is in operation. For this reason, it will need to take

into account the status and states of each of the HEPS components, in order to generate

appropriate signals to operate the components accordingly. In this research, the IOL

control strategy is used in the controller.
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This chapter presents the IOL analysis of the Aerosonde ICE, which is the basis of the

IOL control strategy for the HEPS on an UAV. The resulting IOL data forms the basis

for the modelling of HEPS.

6.2 Overview of IOL Analysis

The Ideal Operating Line (IOL), also known as the e-line, is a smooth line made up

of all the points which represent the torque and speed combinations at which the fuel

consumption is minimal on different power lines for steady-state conditions [163]. A

powerplant operated on the IOL will, theoretically, enable the best performance while

consuming the least amount of fuel possible.

Typically, finding the IOL for an engine requires the engine map, which is a plot of

the engine’s performance in terms of its RPM and torque output values, with the values

represented as level contours of the corresponding brake specific fuel consumption (BSFC)

values. A typical engine map with the IOL is shown in Figure 6.1 [163].

Figure 6.1: A typical engine map with the Ideal Operating Line (IOL)
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To find the IOL, firstly lines of constant power output are plotted on the engine map.

On each of these power lines, there is a point with the smallest fuel consumption. When

all these points on all the power lines are connected together, the IOL is generated. Often

these points do not form a smooth line, mainly due to the limited number of data points

available in the engine map, as well as the very small fluctuations of fuel consumption in

a rather large area. In order to obtain a workable IOL, a smooth line is fitted through

these points and a polynomial function is created for this line.

6.3 Ideal Operating Line Analysis of Aerosonde ICE

The objective of this IOL analysis is to obtain the IOL for the ICE used on an Aerosonde

UAV. The data for this ICE - the power output and fuel flow at given values of engine

RPM and manifold pressure (MAP) - are available as part of the AeroSim Blockset [156]

and are shown in Tables 6.1 and 6.2.

RPM
MAP

60 70 80 90 92 94 96 98 100

1500 18.85 47.12 65.97 67.54 69.12 67.54 67.54 69.12 86.39

2100 59.38 98.96 127.55 149.54 151.74 160.54 178.13 200.12 224.31

2800 93.83 149.54 187.66 237.50 249.23 255.10 307.88 366.52 398.77

3500 109.96 161.27 245.57 307.88 326.20 351.86 421.50 591.14 531.45

4500 164.93 245.04 339.29 438.25 447.68 494.80 565.49 673.87 772.83

5100 181.58 245.67 389.87 496.69 528.73 571.46 662.25 822.47 993.37

5500 184.31 293.74 403.17 535.64 570.20 622.04 748.75 956.09 1059.80

6000 163.36 276.46 420.97 565.49 609.47 691.15 860.80 1131.00 1193.80

7000 124.62 249.23 417.83 586.43 645.07 762.36 996.93 1246.20 1429.40

Table 6.1: Table of power output (W) at given values of RPM and MAP for the
Aerosonde ICE

6.3.1 ICE Torque Calculations

Using the power output values for the Aerosonde ICE, the torque output can be calculated

by:
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RPM
MAP

60 70 80 90 92 94 96 98 100

1500 31 32 46 53 55 57 65 73 82

2100 40 44 54 69 74 80 92 103 111

2800 50 63 69 92 95 98 126 145 153

3500 66 75 87 110 117 127 150 175 190

4500 83 98 115 143 148 162 191 232 246

5100 93 102 130 159 167 182 208 260 310

5500 100 118 137 169 178 190 232 287 313

6000 104 126 151 184 191 206 253 326 337

7000 123 144 174 210 217 244 321 400 408

Table 6.2: Table of fuel flow (g/hr) at given values of RPM and MAP for the Aerosonde
ICE

Torque =
Power · 60

2π ·RPM
(6.1)

where Power is in Watts (W) and the resulting Torque is in Newton-metres (Nm). The

resulting torque output values are shown in Table 6.3.

RPM
MAP

60 70 80 90 92 94 96 98 100

1500 0.12 0.30 0.42 0.43 0.44 0.43 0.43 0.44 0.55

2100 0.27 0.45 0.58 0.68 0.69 0.73 0.81 0.91 1.02

2800 0.32 0.51 0.64 0.81 0.85 0.87 1.05 1.25 1.36

3500 0.30 0.44 0.67 0.84 0.89 0.96 1.15 1.34 1.45

4500 0.35 0.52 0.72 0.93 0.95 1.05 1.20 1.43 1.64

5100 0.34 0.46 0.73 0.93 0.99 1.07 1.24 1.54 1.86

5500 0.32 0.51 0.70 0.93 0.99 1.08 1.30 1.66 1.84

6000 0.26 0.44 0.67 0.90 0.97 1.10 1.37 1.80 1.90

7000 0.17 0.34 0.57 0.80 0.88 1.04 1.36 1.70 1.95

Table 6.3: Table of torque output (Nm) at given values of RPM and MAP for the
Aerosonde ICE
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6.3.2 ICE BSFC Calculations

On the other hand, the brake specific fuel consumption (BSFC) values can be calculated

using the power output and fuel flow values as follows:

BSFC =
FuelF low

Power
(6.2)

where FuelF low is in grams per hour (g/hr), Power is in Watts (W) and the resulting

BSFC is in grams per Watt-hour (g/W-hr). The BSFC values are shown in Table 6.4.

RPM
MAP

60 70 80 90 92 94 96 98 100

1500 1.6446 0.6791 0.6973 0.7847 0.7957 0.8439 0.9624 1.0561 0.9492

2100 0.6736 0.4446 0.4234 0.4614 0.4877 0.5983 0.5165 0.5147 0.4949

2800 0.5329 0.4213 0.3677 0.3874 0.3812 0.3842 0.4093 0.3956 0.3837

3500 0.6002 0.4651 0.3543 0.3573 0.3587 0.3609 0.3559 0.3563 0.3575

4500 0.5032 0.3999 0.3389 0.3263 0.3306 0.3274 0.3378 0.3443 0.3183

5100 0.5122 0.4152 0.3334 0.3201 0.3159 0.3185 0.3141 0.3161 0.3121

5500 0.5426 0.4017 0.3398 0.3155 0.3122 0.3054 0.3098 0.3002 0.2953

6000 0.6366 0.4558 0.3587 0.3254 0.3134 0.2981 0.2939 0.2882 0.2823

7000 0.9870 0.5778 0.4164 0.3581 0.3364 0.3201 0.3220 0.3210 0.2854

Table 6.4: Table of BSFC (g/W-hr) values at given values of RPM and MAP for the
Aerosonde ICE

6.3.3 Engine Map

In order to generate the engine map from these data, the in-built MATLAB function

contour was utilised and the resulting contour plot is shown below in Figure 6.2. Each of

the lines, called contours, are formed by joining the operating points that have the same

BSFC value. Because there is equal spacing of BSFC values from one contour to the next,

a region of dense contours represents the presence of a “steep” slope, whereas a region

of widely spaced contours illustrates a “gentle” slope. In other words, an engine map is

similar to a relief map, but instead of showing contours of equal altitude like a relief map

does, an engine map shows contours of equal BSFC. In this case, the computation of these

contours involved much estimation by inter- and extrapolation, since the available data
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are fairly limited in their descriptions of these engine characteristics.

Figure 6.2: Engine fuel map with BSFC contours using Aerosonde ICE data only

However, it seemed as though this fuel map should have more data in the upper regions

of the plot, therefore it was decided to obtain more ICE data values. This was conducted

using the inner components of the Piston Engine block from the AeroSim Blockset in

the form of FuelMapCalc.mdl as shown in Figure 6.3, and with the default Aerosonde

data. By setting the throttle value to 1 for full throttle and varying the static pressures

to simulate the changing in altitude (values obtained from the standard atmosphere data

were used in the Aerosonde model) and the RPM, new values of power and fuel flow

were obtained. Using Equations 6.1 and 6.2, additional values for torque and BSFC that

correspond to each were calculated. For a detailed listing of these values, see Appendix

G. The new fuel map was generated using the contour function as described previously,

and is shown in Figure 6.4. It can be seen from this plot that there is more detail in the

higher torque regions, including an “island” at approximately 4500 RPM.

6.3.4 Determining the IOL

The next step was determining the IOL. In order to do this, the power contours are

required. These were obtained using the contour function in MATLAB, as per the BSFC
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Figure 6.3: FuelMapCalc.mdl, the Simulink model based on the Piston Engine block

Figure 6.4: Engine fuel map with BSFC contours using Aerosonde ICE data and open
throttle calculations, with the “new island” boxed in red

contours, and are shown in Figure 6.5. These power contours were then superimposed

onto the engine map, shown in Figure 6.6.

On each of the power contours, the point with the smallest BSFC value was identified

manually1, and connecting the point for all the power contours on the plot gives the IOL,

1The IOL was identified manually because the power and BSFC contours were computed using the
contour function in MATLAB, therefore determining the gradient of each of those curves was very difficult.
For the purpose of this research, it was deemed that manual identification of the IOL was sufficient.
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Figure 6.5: Constant power contours for the Aerosonde ICE, obtained using Aerosonde
ICE data and open throttle calculations

Figure 6.6: Engine map of the Aerosonde ICE, with power contours (magenta)

illustrated in Figure 6.7. For each of these points on the IOL, the corresponding BSFC

values were obtained from this graph. These, along with the torque values, form the basis
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of operating the ICE on the IOL.

Figure 6.7: Engine map of the Aerosonde ICE, with the IOL (magenta)

Figure 6.8 shows the power and torque values for each point on the IOL, while Figure

6.9 illustrates the BSFC and fuel flow values. The power and fuel flow values were obtained

from the torque and BSFC values using Equations 6.1 and 6.2.

The next and final step of the IOL analysis was to determine the corresponding MAP

values to these torque and BSFC values. The power and fuel flow look-up tables (Figures

6.1 and 6.2) for the Aerosonde model were used to do this. The results are shown in

Figure 6.10.

It can be seen that in Figure 6.10 that there are noticeable differences in the lower

RPM region betweeen the MAP values obtained from power and from fuel flow values,

but the two curves approximate each other from an RPM value of about 2700 upwards.

Due to the fact that minimising energy consumption is the main goal, where the MAP

values did differ, the MAP values that give better (or smaller) fuel flow values were used,

forming the plot as shown in Figure 6.11.
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Figure 6.8: Power (red) and torque(blue) values for the IOL

Figure 6.9: BSFC (red) and fuel flow (blue) values for the IOL
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Figure 6.10: MAP values on the IOL (red - MAP from power, blue - MAP from fuel
flow)

Figure 6.11: MAP values on the IOL

6.4 Summary

In this chapter, an IOL analysis was carried out on the existing Aerosonde ICE. This

allows the determining of the most efficient (i.e. best performance at least amount of fuel
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possible) points of operation for this ICE. The resulting IOL was incorporated into the

IOL Controller in Chapter 7, which is an important component in the Hybrid-Electric

Propulsion System (HEPS).

In completing the work presented in this chapter, Research Objective 5 as listed in

§1.2 was fulfilled



Chapter 7

Modelling of Hybrid-Electric Propulsion

Subsystem Components

7.1 Introduction

As mentioned in Chapter 5, the development of a Hybrid-Electric Propulsion System

(HEPS) on an UAV was accomplished in two stages:

1. Performing of an Ideal Operating Line (IOL) analysis on an Aerosonde ICE; and

2. Development and implementation of a HEPS simulation model and its integration

into the UAVSM.

As presented in §1.1.2, the literature review has shown that a Hybrid-Electric Propul-

sion System (HEPS) with a Continuously Variable Transmission (CVT) and utilising an

Ideal Operating Line (IOL) control strategy has the potential to economise the energy

efficiency on a small fixed-wing UAV. Figure 7.1 is the parallel Hybrid-Electric configu-

ration and this shows that a possible arrangement for the components that constitute a

HEPS are:

• Engine

• Fuel

• Electric Motor (EM)

• Generator

• Battery

115
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Figure 7.1: Parallel configuration of an HEPS.

• Transmission (CVT)

Of these components, the Engine and the Fuel models are in-built in the existing

UAVSM. Even though the EM and the Generator are the same physical machine, they

will require to be modelled separately because they have different functions. The dynamics

of a Battery and the Transmission, which is a CVT, will be examined and a model for

each created.

In order for these components to work in an organised manner, a controller is required.

Its primary function will be to determine when and how each of the components of the

HEPS will work in order to operate the ICE on the IOL, or a close approximation of this,

while the UAV is in operation. For this reason, it will need to take into account the status

and states of each of the HEPS components, in order to generate appropriate signals to

operate the components accordingly. In this research, the IOL control strategy, based on

the IOL determined in Chapter 6 is used in the controller.

With the inclusion of the IOL controller, the electro-mechanical components of the

HEPS can be grouped as follows:

• Powertrain

- Piston Engine (ICE)

- Electric Motor (EM)

- Generator

- Battery
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- Transmission (CVT)

• IOL Controller

The implementation of these HEPS components as MATLAB Simulink models, which

complies with the Research Methodology as stated in §1.4. These models will form the

basis for adapting the UAVSM as a full simulation model of a Hybrid-Electric UAV

(HEUAV).

In this chapter, the modelling of HEPS and its components for the AeroSim-based

Aerosonde simulation model in the MATLAB Simulink environment is presented. Firstly,

the Powertrain components - namely the Electric Motor (EM), Generator, Battery, CVT

dynamics and related control modules - are firstly presented in §7.2. §7.3 describes the

implementation of the IOL Controller and its components. These two components are

integrated in §7.4 and finally, $7.5 presents a brief conclusion to this chapter.

7.2 HEPS Powertrain

Of the HEPS Powertrain components, the Piston Engine (ICE) and Fuel components are

already present in the UAVSM, and they remained as they were to maintain the integrity

of already working components. The ICE model is presented in §7.2.1.

The components that required modelling are:

• Electric Motor (EM);

• Generator;

• Battery;

• Transmission (CVT);

• Powertrain Output Allocation (POA) module; and

• Charge Battery Now (CBN) module.

and their simulation models are presented in §7.2.2 to §7.2.7. Relevant MATLAB codes

for these component functions can be found in Appendix I.
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7.2.1 Piston Engine Model

The Piston Engine (ICE) is the primary source of propulsion in the HEPS. The goal of

the HEPS is to operate the ICE on the Ideal Operating Line (IOL) as determined in §6.

The preset configuration of the Piston Engine block from the AeroSim Blockset was

used in this research. The modelling of the simple ICE is achieved using two-dimensional

Look-Up Tables (LUTs) of engine parameters. Given a set of RPM and manifold pressure

(MAP) values, the corresponding values for fuel flow and engine power at sea level are

determined and these are used in computations of other ICE outputs. In this research,

the engine parameters of an Aerosonde engine were used. The input/output configuration

of Piston Engine is listed in Table 7.1.

Identifier Unit Description

Input Thr - Engine throttle fraction (0.01 to 1)

Mix - Air-to-fuel ratio, or mixture

Eng Omega rad/s Engine speed

Atm Pressure Pa Atmosphere pressure at current altitude

Temp K Atmosphere temperature at current altitude

Output MAP kPa Manifold air pressure for current throttle setting
and altitude

AirFlow kg/s Instantaneous mass air flow

FuelFlow kg/s Instantaneous mass fuel flow

BSFC g/(W*hr) Brake specific fuel consumption

Power W Output power generated by the ICE

Torque Nm Output torque generated at engine shaft

Table 7.1: I/O configuration of Piston Engine.

The MATLAB Simulink schematic for the ICE module is shown in Figure 7.2, with

the inner schematics in Figure 7.3.

7.2.2 Electric Motor Model

The function of the Electric Motor (EM) within the HEPS is two-fold. It acts as a

supplementary powerplant to the ICE when required, or as the sole powerplant when

the UAV is operating in Motor-only mode. This particular mode is most likely for the

performance of a particular task, i.e. data collection or aerial imaging.



7.2. HEPS POWERTRAIN 119

Figure 7.2: The Piston Engine block.

Figure 7.3: Inside the Piston Engine block.

The EM is simulated with the use of the MATLAB function interp1, which approx-

imates a Look-Up Table (LUT) and uses a pre-existing set of input-output values and

interpolation and/or extrapolation methods to associate a given input to the appropriate

output. The interp1 function is suitable in the modelling of EMs as the outputs (mainly

torque and power) are usually controlled by and has a direct relationship with the input

current.
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To implement the Motor Subsystem module to be used in the UAVSM, a MATLAB

function block was used in conjunction with a one-dimensional LUT. This allows a MAT-

LAB function to be implemented in M-code, thus offering more flexibility programming-

wise than a simulation block module. The input/output configuration of Motor Subsystem

is listed in Table 7.2.

Identifier Unit Description

Input MotorTorqueReq Nm Torque required to be supplemented by the EM so
the Engine can continue to operate on or near the
IOL

Engine Omega rad/s Engine speed

MotorEnable - Signal to activate the EM

- 0 = disabled

- 1 = activated

BattSOC % Current Battery state-of-charge (SOC)

BattVoltage V Current Battery voltage

Output M Power W Output power produced by the EM

M Torque Nm Output torque produced by the EM

M Current A Current drawn by the EM from the Battery

Table 7.2: I/O configuration of Motor Subsystem.

The EM module will only output Motor Power and Torque values and draw current

from the Battery if it is activated (i.e. when MotorEnable = 1), and when the Battery

has adequate SOC and can provide enough voltage.

Here the EM is implemented using data from a Plettenberg HP220/25 EM with

constant 18V input to construct the LUTs; see Appendix H for details. This particular

model of EM was selected because it was readily available and it was capable of producing

the power and torque required by the Aerosonde UAV. However, switching to another EM

model will not be complicated, if the same data is available for this new EM.

The MATLAB Simulink schematic for the EM module is shown in Figure 7.4, with

the inner schematics in Figure 7.5.
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Figure 7.4: The Motor Subsystem block.

Figure 7.5: Inside the Motor Subsystem block.

7.2.3 Generator Model

Physically, the Generator and the EM are the same machine. But functionally, the

Generator module is assumed to be the “reverse” of EM. Its only function is to provide

the battery with charging current when there is extra torque available in the propulsion

system, i.e. from the ICE.

As with the EM module, the Generator will not output any values unless it is activated,

i.e. GeneratorEnable = 1. Note that it is physically impossible to activate both the EM

and the Generator at the same time. If EM is activated, the Generator needs to be

deactivated, and vice versa. This will need to be taken into account by the HEPS control

strategy to ensure correct functioning of these two modules.

To implement the Generator Subsystem module to be used in the UAVSM, a MATLAB

function block was used. The input/output configuration of Generator Subsystem is listed

in Table 7.3.

The Simulink schematic of the Generator Subsystem module is shown in Figure 7.6

with the inner schematics shown in Figure 7.7.
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Identifier Unit Description

Input GenEnable - Signal to activate the Generator

- 0 = disabled

- 1 = activated

GenTorqueAvail Nm Torque available to power the Generator, so that
current can be generated to charge the Battery

Output G Current A Current output to charge the Battery

Table 7.3: I/O configuration of Generator Subsystem.

Figure 7.6: The Generator Subsystem block.

Figure 7.7: Inside the Generator Subsystem block.

7.2.4 Battery Model

The main function of the Battery is to provide the required current and voltage to the

onboard avionics and also to EM when its activation is required. Additionally, the Battery

needs to switch to charging when excess torque is available in the system, i.e. from the

ICE. The discharging characteristics for a lithium-polymer (Li-Po) battery is modelled by

the following equation [164]:

E = E0 −K ·
Q

Q− i · t
+ Ae−B·i·t (7.1)

where
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E = battery output voltage (V)

E0 = battery constant voltage (V)

K = polarity voltage (V)

Q = maximum battery capacity

A = exponential voltage coefficient

B = exponential capacity coefficient (Ah−1)

i = battery current (A)

t = time (s)

The charging characteristics of the Battery modes are considered to follow Equation

7.1 as well, although with a negative current to indicate charging instead of discharging.

Another important characteristic of a Battery is its State-of-Charge (SOC), which is

approximated by [165]:

SOC = 100

(
1−

∫ t
0
i · t
Q

)
(7.2)

Based on Equations 7.1 and 7.2, the Simulink schematic for the Battery Subsystem

module is shown in Figure 7.8 with the inner schematics displayed in Figure 7.9.

Figure 7.8: The Battery Subsystem block.

To implement the Battery Subsystem module to be used in the UAVSM, a MATLAB

function block was also used. The input/output configuration of Battery Subsystem is

listed in Table 7.4.
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Figure 7.9: Inside the Battery Subsystem block.

Identifier Unit Description

Input BattCurrent A Input current into the Battery

Output BattSOC % Battery SOC

BattVoltage V Battery voltage

Table 7.4: I/O configuration of Battery Subsystem.

Here, the Battery Subsystem module is implemented using the data of two Air Thunder

5000mAh 6-cell Lithium-polymer (Li-Po) Battery Packs [166] in series to obtain the

required output voltage for the EM. These particular batteries were selected because

of their ability to meet the eletrical requirements (voltage and current) to power the

Plettenberg EM, as well as their availability as a COTS commodity. The discharge curves

for different amount of current drawn from the Battery are shown in Figure 7.10. These

discharge curves are fitted to (7.1) in order to establish the coefficients K, Q, A and B.

These coefficients are determined using interp1 functions in the Simulink schematic.

7.2.5 CVT Dynamics Model

The type of Transmission implemented in the HEPS is a Continuously Variable Trans-

mission (CVT). In a conventional gearbox, output torque and speed of the engine are
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Figure 7.10: Battery discharge curves.

transmitted in discrete ratios, and the action of changing from one gear to another

interrupts the power frow through the powertrain during the acceleration. One way of

overcoming this intermittent behaviour is with the use of a CVT, which has the capability

to transmit engine torque and speed in an undefined number of ratios [167]. This enables

the output of a smooth, rapid and stepless response to the demand of the controller.

Additionally, a CVT allows the engine speed to be operated independently of the vehicle

speed (wheel speed for a ground vehicle or propeller speed for an aircraft, for example),

therefore the engine can, in theory, be operated in its most fuel efficient operating point,

with the help of a suitable controller strategy to control the CVT operations. The CVT’s

potential of reducing fuel consumption and lower the output of exhaust emissions has

been confirmed various research projects [168, 169].

The dynamics of the CVT can be modelled by the following expression derived from

a simplified powertrain with a CVT [16, 22]:

ω̇prop =
Tprop + rTp − ṙωengIp

Iprop + r2Ip
(7.3)

where
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ωeng = rotational velocity of the engine (rad/s)

ωprop = rotational velocity of the propeller (rad/s)

ω̇prop = rate of change of the propeller rotational velocity (rad/s2)

Tprop = propeller torque (Nm)

Tp = powertrain torque (Nm)

Ip = total powertrain (ICE + EM) torque

Iprop = total propeller inertia

r =
ωeng
ωprop

; transmission ratio

ṙ = rate of change of ratio (RCR)

The output of this equation is the rate of change of the propeller speed, ω̇prop using the

other parameters, from which the propeller speed ωprop can be determined with a simple

integration process. To prevent overlarge values of ω̇prop from appearing, a saturation

function was used to limit the ω̇prop output.

The CVT ratio range was taken as 0.47 to 2.455, which has been taken into account

in the HEPS model in the form of saturation limits.

The input/output configuration of the CVT Dynamics Subsystem is listed in Table

7.5.

Identifier Unit Description

Input Eng Omega rad/s Engine speed

Powertrain Torque Nm Powertrain torque output

rdot - Rate of change of ratio (RCR)

Prop Torque Nm Propeller torque (usually negative)

Powertrain J kg·m2 Total powertrain inertia (ICE & EM)

Prop J kg·m2 Propeller inertia

Output OmegaPropDot rad/s2 Rate of change of propeller speed

CVT ratio - CVT ratio

Table 7.5: I/O configuration of CVT Dynamics Subsystem.

Translating Equation 7.3 to a Simulink model gives the schematics as in Figure 7.11,
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with the inner schematics in Figure 7.12.

Figure 7.11: The CVT Dynamics Subsystem block.

7.2.6 Charge Battery Now (CBN) Module

A module that is included inside the Powertrain block is the Charge Battery Now (CBN)

module. This module monitors the charging and discharging of the Battery as well as

estimates the time remaining before the UAV is required to go into “Motor Only” mode.

Because this mode is an important part of the mission, and since the EM requires adequate

Battery SOC and voltage in order to operate, therefore it is important that the Battery is

maintained at a very high level of SOC as the UAV approaches the “Motor Only” mode.

This is achieved by estimating, at any one time, the amount of time it requires to charge

the Battery back to 100%.

The input/output configuration of CBN is listed in Table 7.6.

The Simulink schematics of CBN is shown in Figure 7.13, with the inner schematics

in Figure 7.14.
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Identifier Unit Description

Input Batt Current A Current drawn from the Battery

Current BattSOC % Current Battery SOC

Current Airspeed m/s Current airspeed of UAV

SimClock s Simulation time

Output MustChargeBatt - Signal to start charging the Battery

- 1 = charge now

Table 7.6: I/O configuration of Charge Battery Now module.

Figure 7.13: The Charge Battery Now block.

Figure 7.14: Inside the Charge Battery Now block.
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7.2.7 Powertrain Output Allocation (POA) Module

The combined power and torque outputs of the Powertrain components - namely the ICE,

EM and Generator - are passed to and used in the CVT Dynamics component as well

as the subsequent components of the AeroSim aircraft block for further computations in

the simulation of an HEUAV in flight. However, a slight difference between the values

to be passed to each of these destination in the form of an RCR Torque (see §7.3.6 for

further description) is required to be taken into consideration. This term is the result of

the shifting of the CVT whilst in operation and needs to be compensated by the torque

output of either EM or Generator. Therefore the combined Powertrain torque output

into the CVT Dynamics component requires the corresponding compensation term to be

included. But on the other hand, the compensation torque is not required in the output to

the subsequent AeroSim components. The Powertrain Output Allocation (POA) module

was implemented to allow for this distinction.

The input/output configuration of POA is listed in Table 7.6.

The Simulink schematics of POA is shown in Figure 7.15, with the inner schematics

in Figure 7.16.

Figure 7.15: The Powertrain Output Allocation block.
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Identifier Unit Description

Input Eng Power W Output power from the ICE

Eng Torque Nm Output torque from the ICE

Eng Omega rad/s Engine speed

Engine Enable - Signal to activate the ICE

- 0 = disable

- 1 = enable

Motor Enable - Signal to activate the EM

- 0 = disable

- 1 = enable

Motor Power W Output power from the EM

Motor Torque Nm Output torque from the EM

Gen Torque Nm Torque available for the Generator

Gen Enable - Signal to activate the Generator

- 0 = disable

- 1 = enable

rdot - Rate of change of ratio (RCR)

CVT Ratio - CVT ratio

Output Powertrain Torque Nm Combined Powertrain torque output (passed
to CVT Dynamics; includes compensation for
RCR Torque)

TorqueToPropShaft Nm Combined Powertrain torque output to subse-
quent AeroSim aircraft components (does not
include compensation for RCR Torque)

Powertrain Power W Combined Powertrain power output

Table 7.7: I/O configuration of Powertrain Output Allocation module.

7.3 HEPS IOL Controller

As stated in §6.2, the IOL is a smooth line comprising of all the points which represent

the torque and speed combinations at which the fuel consumption is minimal on different

power lines for steady state conditions [163]. A powerplant operated on the IOL will,

theoretically, enable the best performance while consuming the least amount of fuel

possible.

The implementation of a HEPS on an UAV requires a controller which manages the

operation of each of the system components – ICE, EM, Generator and Battery – so that

operation on the IOL, or a close approximation of this, can be achieved while the UAV is
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Figure 7.16: Inside the Powertrain Output Allocation block.

in operation.

The basic control loop of the IOL Controller when in Hybrid mode is shown in Figure

7.17 [16].

Figure 7.17: The basic control loop of the IOL Controller.

The concept behind this control loop is that the ACM demands a specific throttle
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opening, which is converted to a power demand measurement and from this, the desired

torque that needs to be matched or closely approximated by the HEPS is computed.

However, the Engine should be operating on the IOL, thus producing a torque value

which is often different to the desired torque. The difference between the torque values is

provided by either the EM or the Generator - the EM provides extra torque required if

IOL torque is less than desired torque, otherwise the Generator uses the excess torque to

charge the Battery.

On the other hand, this torque difference is multiplied by the engine speed to determine

the power error. This power error is used to determine the Rate of Change of Ratio (RCR)

value within a preset limit, which determines the amount of shifting that is required of

the CVT.

The components of the IOL controller are as follows:

• Operating Mode;

• Power Demand;

• Engine Operation;

• Engine Throttle Command;

• Rate of Change of Ratio Command; and

• Torque Difference Calculation.

The details of each of these components and its functions are described in the following

sections. The MATLAB codes of each of these component functions can be found in

Appendix J.

7.3.1 Operating Mode (OM) Module

The Operating Mode (OM) module determines the mode in which the HEPS is currently

operating in. These modes can be one of the following:

• Hybrid Normal mode;

• Motor Only mode;

• Hybrid Charging mode;
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• Engine Only mode; and

• Hybrid Climbing mode.

The conditions for the switching of the operating modes are summarised in Table

7.8. The default operating mode is the Hybrid Normal mode, during which the ICE is

operating on the IOL, with the EM or Generator supplementing when a sudden increase

or decrease in the power demand occurs. If the “Motor Only” signal has been detected,

which can only occur at pre-planned, specified leg(s) of the mission, the operating mode

switches over to Motor Only mode, and only the EM is powering the UAV to maintain

its operation. If the “Must Charge Battery” signal, as generated by the CBN module

in the Powertrain (see §7.2.6), is detected, the Hybrid Charging mode is triggered if the

aircraft is not required to climb to a higher altitude (i.e. InClimb = 0), during which

the ICE is operated at an Engine speed to provide excess torque to power the Generator

and thus charge the Battery. Otherwise, the Engine Only mode is engaged in order to

preserve fuel consumption since charging the Battery requires the ICE to run at regions

with higher fuel consumptions. If charging of the Battery is not required and a higher

altitude is desired (i.e. InClimb = 1), the Hybrid Climbing mode is engaged and the EM

is activated to provide extra torque to assist the ICE in the climb. Lastly, if the “Engine

Only” signal has been detected, which only occurs at pre-planned, specific leg(s) of the

mission, the HEPS would operate in the Engine Only mode.

Operating Mode Condition

Hybrid Normal - Default operating mode

- When Battery SOC is at least 15%

Motor Only Only when the Motor Only signal is detected

Hybrid Charging When MustChgBatt signal is detected AND no
climbing is required

Engine Only When the Engine Only signal is detected

OR

When MustChgBatt AND InClimb signals are
detected simultaneously

Hybrid Climbing When InClimb signal is detected AND no charging
of Battery is required

Table 7.8: Switching conditions of operating modes.
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The input/output configuration of the OM is presented in Table 7.9 and the Simulink

and inner schematics are shown in Figures 7.18 and 7.19.

Identifier Unit Description

Input Motor/Engine Only - Signal for the Motor Only or Engine Only mode
to occur

- 0 = neither ‘Motor Only nor Engine Only

- 1 = Motor Only

- 2 = Engine Only

MustChgBatt - Signal to start charging the Battery; 1 = charge
now

InClimb - Signal to indicate climbing to a higher altitude is
required

- 0 = Climbing not required

- 1 = Climbing is required

Output Operating Mode - The current operating mode

Table 7.9: I/O configuration of Operating Mode module.

Figure 7.18: The Operating Mode block.

Figure 7.19: Inside the Operating Mode block.
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7.3.2 Power Demand (PD) Module

The Power Demand (PD) module can be called the beginning of the IOL Controller control

loop. PD takes the throttle input from the ACM block outside the Aerosonde UAV block,

which was determined using a PID controller on the aircraft altitude error, and uses it

to determine the amount of power required to be generated by the Powertrain if just the

ICE was powering the UAV.

In the original configuration of the Aerosonde UAV, this throttle input is fed directly

to the Piston Engine block, which uses this, along with other parameters, to determine

the power, torque and fuel consumption and their related outputs from the ICE. These

outputs are the amounts required for the UAV to operate as desired.

Based on this concept, PD uses parts of this Piston Engine block, namely the MAP

and Power LUT blocks, to determine the power required to keep the UAV operating as

desired.

The functionality of PD in the various operating modes is summarised in Table 7.10.

Operating Mode Process

Hybrid Normal
Converts Throttle command from ACM into the Power Demand,
using current Propeller speed at the current altitude

Motor Only

Engine Only

Hybrid Charging Converts Throttle command from ACM into the Power Demand,
using current Propeller speed at the current altitude and add the
Generator Charging Torque

Hybrid Climbig Converts Throttle command from ACM into the Power Demand,
using current Propeller speed at the current altitude and subtract
the Motor Climbing Torque

Table 7.10: Functionality of the Power Demand module.

The input/output configuration of PD is listed in Table 7.11.

The Simulink schematics of the PD is shown in Figure 7.20, with its inner schematics

in Figure 7.21.

Note that in the Piston Engine block, the effect of altitude on the Engine outputs

has been taken into account. This is required in calculations for all outputs related to

Engine power. Therefore this altitude correction factor is necessary in later power- and
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Identifier Unit Description

Input OpMode - Current operating mode

- 1 = Hybrid Normal

- 2 = Motor Only

- 3 = Hybrid Charging

- 4 = Engine Only

- 5 = Hybrid Climbing

Thr - Desired throttle from ACM (0.01 to 1)

Atm Pressure Pa Static atmospheric pressure at current altitude

Temp K Temperature at current altitude

Prop Omega rad/s Propeller speed

Eng Omega rad/s Engine speed

Output Power Demand W Power demand

AltCorrection - Altitude correction factor

Table 7.11: I/O configuration of Power Demand module.

Figure 7.20: The Power Demand block.

torque-related calculations.

In the Piston Engine block, the torque is derived from the Engine power output

following the relationship described in Equation 7.4.

Power@alt = Power · altCorrection (7.4)

Also:

Torque@alt =
Power@alt

ω
(7.5)
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Figure 7.21: Inside the Power Demand block.

Substituting Equation 7.4 into Equation 7.5 gives:

Torque@alt =
Power

ω
· altCorrection (7.6)

And lastly, substituting in the definition of Torque into Equation 7.7:

Torque@alt = Torque · altCorrection (7.7)

In the PM, this altitude correction factor, altCorrection, is calculated, but not yet

applied to the power value required. This factor is passed on to the Torque Difference

Calculation module for further processing.

7.3.3 Engine Operation (EO) Module

A critical step in the IOL control loop is to determine the ICE outputs, in particularly the

torque output. During a mission, an ICE can operate either by itself, in which the ICE

operates in the normal manner (i.e. not constrained to the IOL), or in conjunction with

the EM or Generator, in which the ICE would be operating on the IOL. For this reason,

a good approximation of the ICE outputs in each of these operating modes is required in

order to proceed to the remainder of the processes in the IOL control loop. The Engine
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Operation (EO) module was designed and implemented to perform this approximation of

ICE outputs.

The main components in the EO module are the LUTs to determine the torque and

manifold pressure (MAP) values for normal ICE and IOL modes of operation. In each

time step in the simulation, these outputs are obtained from the current engine speed

and, in the case of normal ICE operation, the MAP using atmospheric conditions. These

outputs are then passed through a MATLAB function, which takes into consideration

the current operating mode (see §7.3.1) and determines the appropriate torque and MAP

values to be used in subsequent calculations.

The input/output configuration of the EO module is listed in Table 7.12.

Identifier Unit Description

Input OpMode - Current operating mode

- 1 = Hybrid Normal

- 2 = Motor Only

- 3 = Hybrid Charging

- 4 = Engine Only

- 5 = Hybrid Climbing

Thr - Desired throttle from ACM (0.01 to 1)

Atm Pressure Pa Static pressure at current altitude

Eng Omega rad/s Engine speed

Output Eng Torque Nm Approximation of ICE torque output

Eng MAP kPa Approximation of ICE MAP

Table 7.12: I/O configuration of Engine Operation module.

The Simulink schematics of EO is shown in Figure 7.22, with its inner schematics in

Figure 7.23.

Figure 7.22: The Engine Operation block.
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Figure 7.23: Inside the Engine Operation block.

7.3.4 Engine Throttle Command (ETC) Module

The Engine Throttle Command (ETC) module computes the Engine throttle required to

operate the Engine on or close to the IOL. This module uses Equation 7.8, with the MAP

calculated by EO for IOL operation and the static pressure at the current altitude, to

calculate the throttle command.

thr =
MAP −MAPmin

p
1000
−MAPmin

(7.8)

The ETC module has the following input/output configuration as listed in Table 7.13.

Identifier Unit Description

Input Engine MAP kPa MAP for ICE operation

Atm Pressure Pa Atmospheric pressure at current altitude

Output Engine Throttle - Throttle command for the Engine to operate on
the IOL (0.01 to 1)

Table 7.13: I/O configuration of Engine Throttle Command module.

The Simulink schematics of the ETC is shown in Figure 7.24, with its inner schematics

in Figure 7.25.

The output of ETC, the Throttle Command, is passed to the Powertrain subsystem,

to be used as input into the Piston Engine block.
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Figure 7.24: The Engine Throttle Command block.

Figure 7.25: Inside the Engine Throttle Command block.

7.3.5 Rate of Change of Ratio Command (RCRC) Module

The Rate of Change of Ratio Command (RCRC) module determines the value for the

rate of change of ratio (RCR), which is an important parameter in controlling the CVT

in order for the HEPS to operate in the desired manner. The computation of the RCR

command is dependent on the operating mode from OM (see §7.3.1).

When the HEPS is operating in a Hybrid mode, the RCR is simply computed using

the power error and a gain in the following manner:

ṙcmd = Gain · PowerError

= Gain · (PowerDemand− EngPower) (7.9)

(7.10)

where PowerDemand is the output from the PD module (see §7.3.2) and EngPower

from the EO module (see §7.3.3). The Gain is taken as 1/2000 in this research, because

it is possible for the ICE to produce power up to approximately 2000W, as observed from

the engine map for the Aerosonde ICE. As the resulting RCR Command value is limited
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between −0.1 and 0.1 so that the CVT is not subjected to a large change in its ratio, this

Gain value needs to be sufficiently small, and the approximate maximum ICE power is

an appropriate value to be used in this circumstance.

On the other hand, when the HEPS is operating in either of the Motor Only or

Engine Only modes, it is assumed that the Engine is being operated at the same speed

as the Propeller, i.e. ωeng = ωprop or r = 1. Therefore, when the Motor Only or Engine

Only signal is first detected, the RCR Command is set at a value which would increase

or decrease the CVT ratio to 1 in 10 time steps. In this research, the simulations are

performed with a fixed step size of 0.1 second. This means the CVT reaches a ratio of 1

one second after the Motor Only or Engine Only signal has been detected. After the 10

time steps, the RCR Command is set at zero so that the CVT can maintain a ratio of 1

to keep the Engine operating at the same speed as the Propeller.

The RCRC module has the following input/output configuration as listed in Table

7.14.

Identifier Unit Description

Input OpMode - Current operating mode

- 1 = Hybrid Normal

- 2 = Motor Only

- 3 = Hybrid Charging

- 4 = Engine Only

- 5 = Hybrid Climbing

Power Demand W Power demand obtained from ACM throttle
setting

Engine Power W Approximation of ICE power output

CVT Ratio - CVT ratio

Output RCR Cmd - RCR command

Table 7.14: I/O configuration of RCR Command module.

The Simulink schematics of the ETC is shown in Figure 7.26, with its inner schematics

in Figure 7.27.

The output of the RCRC module is used mainly in the Subsystem CVTDynamics to

control the CVT ratio, but it is also used in the RCR Compensation Torque calculations

in the Torque Difference Calculation module.
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Figure 7.26: The RCR Command block.

Figure 7.27: Inside the RCR Command block.

7.3.6 Torque Difference Calculation (TDC) Module

The Torque Difference Calculation (TDC) module not only computes difference between

the desired torque and the IOL torque, it also uses this and other inputs to determine the

enable/disable signal to the Engine, EM and Generator modules, as well as to compute

the amount of torque available to the Generator or required from the EM.

The use of CVT in the system introduces a torque term, or RCR Torque, which needs

to be compensated by the powertrain. This term is given by Equation 7.11, which is

extracted from Equation 7.3:

RCRTComp = ṙ ωengIp (7.11)

This term is negated by the EM, the torque output of which can be expressed as follows:
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TM = TorqueDiff + k2ωengṙ (7.12)

where k2 is a constant.

Substituting Equation 7.12 into Equation 7.3 gives:

ω̇prop =
r (TE + TorqueDiff + k2ωengṙ)− ṙ (JE + JM) · ωeng − Tprop

Jprop + r2 (JE + JM)

=
r (TE + TorqueDiff) + rk2ωengṙ − ṙ (JE + JM) · ωeng − Tprop

Jprop + r2 (JE + JM)

For the EM or Generator to negate the effect of the −ṙ (JE + JM) · ωeng term, the

following evaluation of k2 can be assumed:

rk2ωengṙ = ṙ (JE + JM) · ωeng

k2 =
JE + JM

r

The input/output configuration of TDCM is as in Table 7.15.

The Simulink schematics of TDC is shown in Figure 7.28, with its inner schematics in

Figure 7.29.
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Identifier Unit Description

Input OpMode - Current operating mode

- 1 = Hybrid Normal

- 2 = Motor Only

- 3 = Hybrid Charging

- 4 = Engine Only

- 5 = Hybrid Climbing

Power Demand W Power demanded

Alt Correction - Altitude correction obtained from atmospheric
conditions

Engine Omega rad/s Engine speed

Engine Torque Nm Approximation of Engine torque output

rdot - RCR command

CVT Ratio - CVT Ratio

Output Motor Torque Req Nm Torque required to be supplemented by the EM

Gen Torque Avail Nm Torque available to the Generator

Engine Enable - Signal to activate the Engine

- 0 = disable

- 1 = enable

Motor Enable - Signal to activate the EM

- 0 = disable

- 1 = enable

Gen Enable - Signal to activate the Generator

- 0 = disable

- 1 = enable

Table 7.15: I/O configuration of Torque Difference Calc

Figure 7.28: The Torque Difference Calc block.
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Figure 7.29: Inside the Torque Difference Calc block.

All the TDC outputs are passed to the Powertrain block to their respective models.

7.3.7 Integration of IOL Controller Components

The integrated IOL Controller is shown in Figure 7.30, with the inner schematics in Figure

7.31.

Figure 7.30: The IOL Controller block.
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7.4 Integrated HEPS Model

Integrating all the components described in §7.2 and §7.3 gives the integrated HEPS

model, which is shown in Figure 7.32, with the inner schematics in Figure 7.33.

Figure 7.32: The integrated HEPS block.

This integrated HEPS model is integrated into the Aerosonde UAV Block as shown in

Figure 7.34.

Using this HEPS-integrated model, a mission simulation using the MS1 waypoints,

taken from Chapter 3 and re-iterated in Table 7.16, was performed. The results of the

simulation are shown in Figures 7.35 and 7.36. Figures 7.37 and 7.38 show that the

flight path generated by the HEPS-integrated model is a close approximate of that of the

ICE-only configuration.

At the start of the mission (t = 0s to t = 95.7s), the UAV was required to climb

to an altitude of 900m. Since the Battery was at full charge (Battery SOC = 100%),

this triggered the onset of the “Hybrid Climbing” mode (OpMode = 5) and the EM is

activated to provide assisting torque to the ICE. The fuel saving effects in this leg is

evident in the Fuel Flow plot in Figure 7.36, which showed a fuel flow of approximately

3 × 10−5g/hr for the Hybrid configuration, compared to approximately 4.5 × 10−5g/hr

for the ICE Only configuration. However, the UAV had reached the desired altitude of

900m before reaching the desired waypoint coordinates, and since the use of the EM had

drained the Battery SOC to below its “Must Charge Now” threshold, the “Engine Only”
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Waypoint Coordinates

Waypoint Latitude Longitude Altitude

(DD:MM:SS) (DD:MM:SS) (m)

WP1 26◦34’51”S 151◦50’28”S 800

(Kingaroy Airport)

WP2 26◦33’58”S 151◦51’10”E 900

WP3 26◦34’08”S 151◦51’25”E 900

WP4 26◦34’16”S 151◦53’13”E 750

WP5 26◦34’08”S 151◦53’18”E 750

WP6 26◦33’59”S 151◦53’13”E 750

WP7 26◦34’08”S 151◦51’25”E 900

WP8 26◦34’14”S 151◦51’17”E 900

WP9 26◦34’51”S 151◦40’28”S 800

(Kingaroy Airport)

Table 7.16: Waypoints in MS1.

Figure 7.35: Mission simulation using UAVSM with integrated HEPS (Plot 1).

mode (OpMode = 4) was triggered, which minimised the use of the EM and thus the

Battery.

The next leg (t = 95.8s to t = 254.2s) was a cruise phase, during which the UAV was

required to hold an altitude of 900m, followed by a descent to and hold at 750m . At the
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Figure 7.36: Mission simulation using UAVSM with integrated HEPS (Plot 2)

Figure 7.37: Flight path comparison of UAVSM with integrated HEPS and original
configuration (side view).

beginning of this leg, the UAV replenished the Battery by entering the “Hybrid Charging”

mode (OpMode = 3) and the Generator can be seen to receive a constant torque, which

charged the Battery. After the Battery SOC had reached the preset threshold of 85%,
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Figure 7.38: Flight path comparison of UAVSM with integrated HEPS and original
configuration (top view).

it was able to return to the “Hybrid Normal” mode (OpMode = 1) for most of the

remainder of this leg. At t = 169.7s, because it was desired that the aircraft enter the

“Motor Only” phase with the Battery fully charged, the “Hybrid Charging” mode was

once again triggered. This period of enforced charging of the Battery did not last long,

as the Battery SOC was at a reasonably high level before this occurred. Therefore, at

t = 184s, the UAV returned to the “Hybrid Normal” mode, with minor switching to the

“Hybrid Charging” mode at moments when the EM, and therefore the Battery, had been

activated. In terms of fuel, the “Hybrid Charging” mode required significantly more fuel

(between 3 × 10−5 to 5 × 10−5g/hr) than the ICE Only configuration (from 2 × 10−5

to 2.5 × 10−5g/hr). However, in the “Hybrid Normal” mode, the Hybrid configuration

showed smaller fuel flow values than that of the ICE Only configuration.

During the “Motor Only” phase (t = 254.3s to t = 286.2s), the UAV entered the

“Motor Only” mode (OpMode = 2), which used no fuel (zero fuel flow, compared to

approximately 2.5×10−5g/hr in the ICE Only configuration), but the Battery was drained

to a SOC of approximately 50%.

After the “Motor Only” phase, the UAV was in another climbing phase to reach an
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altitude of 900m (t = 286.3s to t = 437.5s). At the beginning of this leg, the Battery was

adequately charged to power the EM, therefore the “Hybrid Climbing” mode (OpMode =

5) was entered. This resulted in a fuel flow of approximately 3.5×10−5g/hr for the Hybrid

configuration, compared to approximately 4.5×10−5g/hr for the ICE Only configuration.

However, after approximately 20s, the lower threshold of the Battery SOC was reached,

which prompted the “Must Charge Battery” signal to be activated. This, combined with

the fact that the UAV required to climb to a higher altitude, resulted in the UAV operating

in the “Engine Only” mode (OpMode = 4). During this period of time, the fuel flow for

both configurations was identical.

The last leg of the mission (t = 437.6s to t = 526.6s) required the UAV to hold at an

altitude of 900m, then descend to the final altitude of 800m. Initially, the UAV was in

the “Hybrid Charging” mode (OpMode = 3) because the Battery SOC had reached the

lower threshold, and the fuel flow for the Hybrid configuration in this period of time was

significantly greater than that of the ICE Only configuration (between 3.5×10−5 to 4.8×

10−5g/hr versus approximately 2×10−5g/hr respectively). But at t = 487.4s, the Battery

SOC reached the threshold and further charging was not required, the UAV returned

to the “Hybrid Normal” mode (OpMode = 1). Once again, the Hybrid configuration

resulted in a fuel flow smaller in value to that of the ICE Only configuration.

Overall, the fuel consumption for the Hybrid configuration was 0.01567kg or 15.67g,

compared to 0.01676kg or 16.76g of the ICE Only configuration, which resulted in a

saving of 1.09g, or 6.5%, of fuel. This is achieved with the approximate additional weight

of the EM (0.25kg for the Plettenberg), the Battery (0.168kg for two of the Air Thunder

LiPo battery packs), and a CVT and controller that may be customised to result in

a total additional weight of less than 1.35kg, which is 10% of the mass of the original

Aerosonde UAV (13.5kg with a full tank). Therefore, this simulation demonstrated that

the implementation of a HEPS on a fixed-wing UAV is capable of reducing the onboard

fuel consumption.
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7.5 Summary

The aim of this chapter was to develop the components required for the development of

a HEPS model for small fixed-wing UAVs. These components include the following:

• Powertrain

- Engine

- Fuel

- Electric Motor (EM)

- Generator

- Battery

- Transmission (CVT)

• IOL Controller

– Operating Mode

– Power Demand

– Engine Operation

– Engine Throttle Command

– RCR Command

– Torque Difference Calculation

In this chapter, simulation models of the Hybrid-Electric Propulsion System (HEPS)

components as listd above were designed and implemented in MATLAB Simulink, incor-

porating the IOL determined in Chapter 6 into the IOL Controller. Integrated models

of the Powertrain, IOL Controller and the full HEPS were implemented. Mission sim-

ulation using the integrated HEPS were performed and results showed that the HEPS

configuration was capable of achieving a fuel saving of 6.5%.

The work described in this chapter satisfied Research Objectives 6 and 7 as specified

in §1.2.
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Chapter 8

Conclusions

8.1 Summary of the Research

The aim of this thesis was to present an investigation of methods to increase the en-

ergy efficiency onboard UAVs. One method explored was the development of a Mission

Waypoint Optimisation (MWO) procedure to improve the fuel economy onboard a small

fixed-wing UAV. Also, a foundation for the implementation of a parallel HEPS onboard

the UAV incorporating an Ideal Operating Line (IOL) control strategy was also developed.

Efficient fuel or energy consumption onboard any aircraft is always crucial in its

operations because of the limited weight and space that are available onboard the aircraft.

This is even more a problem for small UAVs, therefore it is advantageous to develop

methods of further economising the fuel consumption onboard. One way of doing so is

by performing Mission Waypoint Optimisation (MWO), or the finding of a set of mission

waypoints which, when executed by an aircraft, one or more desired parameters would be

optimised. This is different to Flight Mission Planning or trajectory optimisation in that

MWO deals with a pre-specified set of waypoints, rather than generating the waypoints, by

modifying the given waypoints within certain limits to achieve its optimisation objectives

of minimising/maximising specific parameters.

The literature review conducted in Chapter 2 identified the need to develop an accurate

simulation model of an UAV in order for MWO to be performed, an UAV’s multi-

physics nature making it impossible to develop an analytical model. One simulation

model, the UAV Simulation Model (UAVSM), was constructed in the MATLAB Simulink

157
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environment, utilising the AeroSim Blockset; see Chapter 3. Test cases confirmed the

validity of the UAVSM in tracking a flight plan. This work fulfilled Research Objective 2

as listed in §1.2.

At the same time, the use of a simulation model instead of an analytical one to

represent an UAV prompts the need for an optimisation algorithm which can perform

simulation optimisation. Two optimisation algorithms – SQP-based and EA-based, re-

spectively – were deemed the most appropriate for this purpose. The selection of these two

different methods followed a literature review conducted in Chapter 2 of the optimisation

technicques and algorithms that are currently available. Research Objective 1 was satisfied

through the completion of this work.

The integration of UAVSM and the HAPMOEA optimiser, a MOEA-based opti-

misation method that has parallel computing capabilities, was carried out and HAP-

MOEA’s ability to deal with both single-objective and multi-objective MWO problems

were demonstrated in Chapters 4 and 5 respectively. The UAVSM was also coupled

with the SQP solver, a gradient-based optimisation method as part of the MATLAB

Optimization Toolbox, was also performed. Results showed that the SQP solver was

more computationally efficient in the optimisation process when the search space is

limited, but its capabilities of performing multi-objective optimisation (MOO) was very

limited, whereas the HAPMOEA optimiser was able to explore a larger search space

more thoroughly and efficiently. Additionally, the HAPMOEA optimiser has the parallel

computer capabilities which can further improve the its computational efficiency. The

work demonstrated in these chapters met Research Objectives 3 and 4 in §1.2.

Last but not least, simulation models were implemented for the components of a par-

allel Hybrid-Electric Propulsion System (HEPS). Also, an IOL analysis of the Aerosonde

ICE was performed. However, due to the fact that only limited data are available on the

performance of the Aerosonde ICE, therefore estimation techniques such as interpolation

and extrapolation were required in the computation process for the IOL. Nonetheless, the

completion of this analysis established the tools and techniques which were helpful in the

process and fulfilled Research Objective 5.
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The components required in the implementation of a Hybrid-Electric Propulsion Sys-

tem (HEPS) were identified and individually developed. Test cases confirmed each com-

ponent to have the expected functionalities. Integration of the Powertrain components –

namely Engine, Fuel, Electric Motor, Generator, Battery, CVT Dynamics – was achieved.

Similarly, the integration of the IOL Controller components – Operating Mode, Power

Demand, Engine Operation, Engine Throttle Command, RCR Command and Torque

Difference Calculation – was also carried out. Integration of the IOL Controller and the

Powertrain components were successfully carried out, with the resulting HEPS model

integrated into the UAVSM and mission simulation was performed. It was demonstrated

through simulation that an UAV with the current HEPS configuration was capable of

achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These tasks

will enable the development of a complete simulation model of an Hybrid-Electric UAV

(HEUAV) and thus satisfying Research Objectives 6 and 7.

Overall, the research work described and completed in this thesis has fulfilled the

Research Objectives as listed in §1.2.

8.2 Future Work

Some aspects of the research conducted here will require further work. These include the

following:

1. UAV Simulation Model (UAVSM)

• Further investigation into the climb and descend capabilities need to be con-

ducted. Currently UAV encounters problems when a descend over a short

horizontal distance is required.

• Effects of wind and weather should be investigated and incorporated into the

UAVSM.

• The flight mission should be extended to include take-off and landing sequences.

2. Mission Waypoint Optimisation (MWO)

• The capability of parallel computing was not performed in the course of this

research. In the interest of reducing computation time, setting up of the parallel
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computing aspect of HAPMOEA should be investigated.

3. Hybrid-Electric Propulsion System (HEPS) Modelling

• Improvements in the implementation of the IOL controller may result in great

fuel savings.
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AIRCRAFT CONFIGURATION FOR AN AEROSONDE UAV

Sample model from AeroSim Library

Copyright 2002 Unmanned Dynamics, LLC

Revision: 1.0 (13 May, 2002)

Table A.1: Aircraft configuration for an Aerosonde

UAV

Parameter Name Identifier Value Unit

AERODYNAMICS

Aerodynamic force application point rAC
- x-coordinate 0.1425 m
- y-coordinate 0 m
- z-coordinate 0 m
Aerodynamic Parameter Bounds
Airspeed bounds VaBnd
- Upper bound 50 m/s
- Lower bound 15 m/s
Sideslip angle bounds BetaBnd
- Upper bound 0.5 rad
- Lower bound -0.5 rad
Angle of attack bounds Alpha Bnd
- Upper bound 0.3 rad
- Lower bound -0.1 rad
Aerodynamic Reference Parameters
Mean aerodynamic chord MAC 0.189941 m
Wing span b 2.8956 m
Wing area S 0.55 m2

Lift Coefficients
Zero-alpha lift CL0 0.23 -
Alpha derivative CLa 5.6106 per radian
Lift control (flap) derivative CLdf 0.74 per radian
Pitch control (elevator) derivative CLde 0.13 per radian
Alpha-dot derivative CLalphadot 1.9724 per radian
Pitch rate derivative CLq 7.9543 per radian
Mach number derivative CLM 0 per radian
Drag Coefficients
Lift at minimum drag CLmind 0.23 -
Minimum drag CDmin 0.0434 -
Lift control (flap) derivative CDdf 0.1467 per radian
Pitch control (elevator) derivative CDde 0.0135 per radian
Roll control (aileron) derivative CDda 0.0302 per radian
Yaw control (rudder) derivative CDdr 0.0303 per radian

Continued on next page
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Table A.1 – continued from previous page

Parameter Name Identifier Value Unit

Mach number derivative CDM 0 per radian
Oswald’s coefficient osw 0.75 -
Side Force Coefficients
Sideslip derivative CYbeta -0.83 per radian
Roll control derivative CYda -0.075 per radian
Yaw control derivative CYdr 0.1914 per radian
Roll rate derivative CYp 0 per radian
Yaw rate derivative CYr 0 per radian
Pitch Moment Coefficients
Zero-alpha pitch Cm0 0.135 -
Alpha derivative Cma -2.7397 per radian
Lift control derivative Cmdf 0.0467 per radian
Pitch control derivative Cmde -0.9918 per radian
Alpha dot derivative Cmalphadot -10.3796 per radian
Pitch rate derivative Cmq -38.2067 per radian
Mach number derivative CmM 0 per radian
Roll Moment Coefficients
Sideslip derivative Clbeta -0.13 per radian
Roll control derivative Clda -0.1694 per radian
Yaw control derivative Cldr 0.0024 per radian
Roll rate derivative Clp -0.5051 per radian
Yaw rate derivative Clr 0.2519 per radian
Yaw Moment Coefficients
Sideslip derivative Cnbeta 0.0726 per radian
Roll control derivative Cnda 0.0108 per radian
Yaw control derivative Cndr -0.0693 per radian
Roll rate derivative Cnp -0.069 per radian
Yaw rate derivative Cnr -0.0946 per radian

PROPELLER

Propulsion force application point rHub
- x-coordinate 0 m
- y-coordinate 0 m
- z-coordinate 0 m
Advance ratio J (See Table A.2) -
Coefficient of thrust CT (See Table A.2) -
Coefficient of power CP (See Table A.2) -
Propeller radius Rprop 0.254 m
Propeller moment of inertia Jprop 0.002 kg·m2

ENGINE

Engine RPM RPM (See Tables A.3 & A.4) rot per min
Manifold pressure MAP (See Tables A.3 & A.4) kPa
Sea-level fuel flow FuelFlow (See Table A.3) g/hr

Continued on next page
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Table A.1 – continued from previous page

Parameter Name Identifier Value Unit

Sea-level power Power (see Table A.4) W
Sea-level pressure (for above data) pSL 102300 Pa
Sea-level temperature (for above data) TSL 291.15 K
Engine shaft moment of inertia Jeng 0.0001 kg·m2

INERTIA

Empty aircraft mass (zero-fuel) mempty 8.5 kg
Gross aircraft mass (full fuel tank) mgross 13.5 kg
Empty CG location Cgempty
- x-coordinate 0.156 m
- y-coordinate 0 m
- z-coordinate 0.079 m
Gross CG location Cggross
- x-coordinate 0.159 m
- y-coordinate 0 m
- z-coordinate 0.09 m
Empty moments of inertia Jempty

Jx 0.7795 kg·m2

Jy 1.122 kg·m2

Jz 1.752 kg·m2

Jxz 0.1211 kg·m2

Gross moments of inertia Jgross
Jx 0.8244 kg·m2

Jy 1.135 kg·m2

Jz 1.759 kg·m2

Jxz 0.1204 kg·m2
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J CT CP

-1 0.0492 0.0199

0 0.0286 0.0207

0.1 0.0266 0.0191

0.2 0.0232 0.0169

0.3 0.0343 0.0217

0.35 0.034 0.0223

0.4 0.0372 0.0254

0.45 0.0314 0.0235

0.5 0.0254 0.0212

0.6 0.0117 0.0146

0.7 -0.005 0.0038

0.8 -0.0156 -0.005

0.9 -0.0203 -0.0097

1 -0.0295 -0.018

1.2 -0.04 -0.0273

2 -0.1115 -0.0737

Table A.2: Look-up table for propeller coefficient of thrust and coefficient of power

RPM MAP

60 70 80 90 92 94 96 98 100

1500 31 32 46 53 55 57 65 53 82

2100 40 44 54 69 74 80 92 103 111

2800 50 63 69 92 95 98 126 145 153

3500 66 75 87 110 117 127 150 175 190

4500 83 98 115 143 148 162 191 232 246

5100 93 102 130 159 167 182 208 260 310

5500 100 118 137 169 178 190 232 287 313

6000 104 126 151 184 191 206 253 326 337

7000 123 144 174 210 217 244 321 400 408

Table A.3: Look-up table for Engine fuel flow
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RPM MAP

60 70 80 90 92 94 96 98 100

1500 18.85 47.12 65.97 67.54 69.12 67.54 67.54 69.12 86.39

2100 59.38 98.96 127.55 149.54 151.74 160.54 178.13 200.12 224.31

2800 93.83 149.54 187.66 237.50 249.23 255.10 307.88 366.52 398.77

3500 109.96 161.27 245.57 307.88 326.20 351.86 421.50 591.14 531.45

4500 164.93 245.04 339.29 438.25 447.68 494.80 565.49 673.87 772.83

5100 181.58 245.67 389.87 496.69 528.73 571.46 662.25 822.47 993.37

5500 184.31 293.74 403.17 535.64 570.20 622.04 748.75 956.09 1059.80

6000 163.36 276.46 420.97 565.49 609.47 691.15 860.80 1131.00 1193.80

7000 124.62 249.23 417.83 586.43 645.07 762.36 996.93 1246.20 1429.40

Table A.4: Look-up table for Engine power
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MATLAB CODE

function Navigate = NavigateWaypoints(Argument)

% This function performs waypoint navigation

% Load waypoint list

S = load (’WPTTable.mat’);

WPTTable = S.WPTTable;

% Number of waypoints is table

SizeOfTable = size(WPTTable);

NoOfWPT = SizeOfTable(1);

% Allocating inputs

CurrentWaypoint = Argument(1);

CurrentLatitude = Argument(2);

CurrentLongitude = Argument(3);

CurrentAltitude = Argument(4);

CurrentAirspeed = Argument(5);

% Initialise

if (CurrentWaypoint == 0)

CurrentWaypoint = 1;

end

EndOfMission = 0;

% Get current waypoint coordinates

WPTLat = WPTTable(CurrentWaypoint, 1);

WPTLon = WPTTable(CurrentWaypoint, 2);

WPTAlt = WPTTable(CurrentWaypoint, 3);

WPTAirspeed = WPTTable(CurrentWaypoint, 4);

[Bearing, Distance] = CalculateGC(CurrentLatitude, CurrentLongitude, WPTLat, WPTLon);

Waypoint = CurrentWaypoint;

XTE = 0;

% A waypoint is captured when the aircraft comes with 20m of it

if (Distance > 20)

if (CurrentWaypoint ~= 1) % Not the first waypoint in table

LastWPTLat = WPTTable(CurrentWaypoint-1, 1);

LastWPTLon = WPTTable(CurrentWaypoint-1, 2);

LastWPTAlt = WPTTable(CurrentWaypoint-1, 3);

[RequiredTrack, TrackDistance] = ...

CalculateGC(LastWPTLat, LastWPTLon, WPTLat, WPTLon);

TrackError = RequiredTrack - Bearing;

XTE = Distance * sin(TrackError);

EndOfMission = 0;

else

LastWPTLat = 26.5808*pi/180; % Latitude of starting point

LastWPTLon = 151.8411*pi/180; % Longitude of starting point

LastWPTAlt = 850; % Altitude of starting point

[RequiredTrack, TrackDistance] = ...

CalculateGC(LastWPTLat, LastWPTLon, WPTLat, WPTLon);

TrackError = RequiredTrack - Bearing;

XTE = Distance * sin(TrackError);

EndOfMission = 0;

end

else % (Distance < 20)

if (CurrentWaypoint == NoOfWPT) % Last waypoint in table

if (Distance < 5)

LastWPTLat = WPTTable(CurrentWaypoint, 1);

LastWPTLon = WPTTable(CurrentWaypoint, 2);

LastWPTAlt = WPTTable(CurrentWaypoint, 3);

[RequiredTrack, TrackDistance] = ...

CalculateGC(LastWPTLat, LastWPTLon, WPTLat, WPTLon);

TrackError = RequiredTrack - Bearing;

XTE = Distance * sin(TrackError);

EndOfMission = 1;

end

else % Other waypoints in table

WPTLat = WPTTable(CurrentWaypoint+1, 1);

WPTLon = WPTTable(CurrentWaypoint+1, 2);

WPTAlt = WPTTable(CurrentWaypoint+1, 3);

LastWPTLat = WPTTable(CurrentWaypoint, 1);
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LastWPTLon = WPTTable(CurrentWaypoint, 2);

LastWPTAlt = WPTTable(CurrentWaypoint, 3);

[RequiredTrack, TrackDistance] = ...

CalculateGC(LastWPTLat, LastWPTLon, WPTLat, WPTLon);

TrackError = RequiredTrack - Bearing;

XTE = Distance * sin(TrackError);

Waypoint = CurrentWaypoint + 1;

EndOfMission = 0;

end

end

% Target airspeed when reached target altitude at descent

if ((Waypoint == 3) || (Waypoint == 8) || (Waypoint == 11) ...

|| (Waypoint == 16) || (Waypoint == 19) || (Waypoint == 24) ...

|| (Waypoint == 27) || (Waypoint == 32) || (Waypoint == 35) ...

|| (Waypoint == 40))

if (CurrentAltitude > WPTAlt + 10)

TargetAirspeed = WPTAirspeed;

elseif (CurrentAirspeed > 21)

TargetAirspeed = CurrentAirspeed - 2;

else

TargetAirspeed = 20;

end

else

TargetAirspeed = WPTAirspeed;

end

% Output of function

Navigate = [Bearing, WPTAlt, TargetAirspeed, XTE, Waypoint, EndOfMission];
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C.1 optimisation.parameters: An Example

PARAMETERS FOR AEROSIM FLIGHT MISSION OPTIMISATION

1 Number of runs

1 6 Optimisation will be terminated after 6 hours

1 One objective - to minimise fuel consumption

4 Number of waypoints to be optimised

8 Total number of waypoints in WPTTable

2 Number of coordinates for each waypoint (lat & lon)

0.463596392 0.463596392 0.463596392 0.463596392 Lower bounds for WPT lat (rad)

0.46383268 0.46383268 0.46383268 0.46383268 Upper bounds for WPT lat (rad)

2.650312431 2.650312431 2.650312431 2.650312431 Lower bounds for WPT lon (rad)

2.650750363 2.650750363 2.650750363 2.650750363 Upper bounds for WPT lon (rad)

500.0 Live update every 500 seconds

0 Forced synchronous evaluation is OFF (1=YES)

2.00 Migration operation will be after two generations

0.3 Migration ratio set 30%

1 One layer of hierarchical topology is set

- LEVEL ONE -

141 First layer ID is set as 141 = waypoint coordinates

10 Population size

2 Parents of recombination

1 Intermediate Recombination is ON (1=YES)

12 Buffer length

2.0 Tournament-in-Buffer ratio

0.05 Initial Mutation Size

C.2 HierarEA.cpp

////////////////////////////////////////////////////////////////

// //

// Main Program //

// //

////////////////////////////////////////////////////////////////

int

main(int argc, char* argv[])

{

// Set the priority of the driver executable down.

int priRet = setpriority(PRIO_PROCESS, 0, +5);

assert(priRet == 0);

//

// Check command line.

//

if (argc > 3)

{

cerr << "HEAAEROFOIL Usage:" << endl;

cerr << "\theaaerofoil - Uses default input file ’optimisation.parameters’"

" and writes statistics to ’output.statistics’." << endl;

cerr << "\theaaerofoil parameter_file output_file - Reads inputs from"

" ’parameter_file’ and writes statistics to ’output_file’." << endl;

cerr << "\theaaerofoil restart - Restarts the run from the point"

" at which it stopped." << endl;

return 1;

}

//

// Set up optimisation.parameters

//

int NumWptsOpt = 4; // Enter a number between 1 to 4

GenerateOptiParaFile(NumWptsOpt);

//
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// Determine the type of run.

//

char* inputFile = "optimisation.parameters";

char* outputFile = "output.statistics";

if (argc == 3)

{

inputFile = argv[1];

outputFile = argv[2];

}

if (argc == 2)

{

if (strcasecmp(argv[1], "reset") == 0)

{

int retVal = system("rm -f heaaerofoil-restart-file-alg*");

if (retVal == 0)

cout << "All files successfully deleted." << endl;

else

cout << "Problem calling \"rm -f heaaerofoil-restart-file-alg*\"." <<

endl;

return 0;

}

else

inputFile = argv[1];

}

if (argc == 3)

{

inputFile = argv[1];

outputFile = argv[2];

}

//

// Open the parameters file and read in the data.

//

ifstream fin(inputFile);

if (!fin)

throw xMain("Couldn’t open the input parameters file.");

// Independent parameters.

fin.ignore(255, ’\n’); // First line is an identifier.

cout << "*****************************************" << endl;

cout << "*** Hierarchical AeroSim Simulation ***" << endl;

cout << "*****************************************" << endl << endl;

int totalRuns;

fin >> totalRuns; // Number of runs to do

fin.ignore(255, ’\n’);

cout << "Number of Runs : " << totalRuns << endl;

int stopOption;

double stopNums;

double TerminationCond;

fin >> stopOption >> stopNums; // Maximum time.

fin.ignore(255, ’\n’);

if ( stopOption == 1 )

{

TerminationCond = stopNums * 3600.0;

cout << "Stopping by Time (Hours) For Each Run : " << stopNums << endl;

}

else if ( stopOption == 2 )

{

TerminationCond = stopNums;

cout << "Stopping by Function Evaluation For Each Run : " << stopNums << endl;

}

else

{

TerminationCond = stopNums;

cout << "Stopping by Pre-defined value For Each Run : " << stopNums << endl;

}
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int NumObjectives;

fin >> NumObjectives; // Number of objectives.

fin.ignore(255, ’\n’);

cout << "Number of Objective : " << NumObjectives << endl;

int numWpt;

fin >> numWpt; // Number of waypoints to be optimised.

fin.ignore(255, ’\n’);

if (numWpt < 1)

throw xMain("Must have at least one waypoint.");

cout << "Number of Waypoints to be Optimised : " << numWpt << endl;

int totalNumWpt;

fin >> totalNumWpt; // Total number of waypoints in WPTTable.

fin.ignore(255, ’\n’);

if (totalNumWpt < 1)

throw xMain("Must have at least one waypoint in WPTTable.");

cout << "Total Number of Waypoints in WPTTable : " << totalNumWpt << endl;

int numCoord;

fin >> numCoord; // Number of coordinates for each waypoint -- (lat & lon)

fin.ignore(255, ’\n’);

if (numCoord != 2)

throw xMain("Must have two coordinates.");

cout << "Number of coordinates (lat & lon) : " << numCoord << endl;

double lbLat;

double ubLat;

vector<double> lowerBoundLat(numWpt);

vector<double> upperBoundLat(numWpt);

// Lower bounds for latitude of waypoints (rad).

for (int i = 0; i < numWpt; ++i)

{

fin >> lbLat;

lowerBoundLat[i] = lbLat;

}

fin.ignore(255, ’\n’);

// Upper bounds for latitude of waypoints (rad).

for (int i = 0; i < numWpt; ++i)

{

fin >> ubLat;

upperBoundLat[i] = ubLat;

}

fin.ignore(255, ’\n’);

double lbLon;

double ubLon;

vector<double> lowerBoundLon(numWpt);

vector<double> upperBoundLon(numWpt);

// Lower bounds for longitude of waypoints (rad).

for (int i = 0; i < numWpt; ++i)

{

fin >> lbLon;

lowerBoundLon[i] = lbLon;

}

fin.ignore(255, ’\n’);

// Upper bounds for longitude of waypoints (rad).

for (int i = 0; i < numWpt; ++i)

{

fin >> ubLon;

upperBoundLon[i] = ubLon;

}

fin.ignore(255, ’\n’);

double liveUpdates;

fin >> liveUpdates; fin.ignore(255, ’\n’); // Live update interval (0 = None).

int forceSync;

fin >> forceSync; fin.ignore(255, ’\n’); // Force synchronous behaviour (1 = Yes).

//

// Hierarchical parameters

//
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double migrationTime;

// Number of popsize evaluations before migration.

fin >> migrationTime; fin.ignore(255, ’\n’);

cout << "* Popsize Evaluations Before Migration : " << migrationTime << endl;

if (migrationTime < 0.0)

throw xMain("Migration time must be >= 0.0.");

// Multiplier of popsize individuals to migrate.

double migrationSize;

fin >> migrationSize; fin.ignore(255, ’\n’);

cout << "* Popsize Individuals to Migrate : " << migrationSize << endl;

if (migrationSize < 0.0 || migrationSize > 1.0)

throw xMain("Migration size must be between 0.0 and 1.0 inclusive.");

int levels;

fin >> levels; fin.ignore(255, ’\n’); // Number hierarchical layers.

cout << "Number of Hiearchical levels : " << levels << endl;

if (levels < 1)

throw xMain("Number of hierarchical levels must be >= 1");

// Parameters by layer: Layer 0 = top, layer 1 = 2nd, etc.

vector<int> SidePoints(levels), mu(levels), parents(levels);

vector<int> recoType(levels), buffLength(levels);

vector<double> tournRatio(levels), delta0(levels);

for (int i = 0; i < levels; ++i)

{

fin.ignore(255, ’\n’); // Separator line.

fin >> SidePoints[i]; fin.ignore(255, ’\n’); // Aerofoil side points

fin >> mu[i]; fin.ignore(255, ’\n’); // Size of mu.

fin >> parents[i]; fin.ignore(255, ’\n’); // Parents in recombination.

fin >> recoType[i]; fin.ignore(255, ’\n’); // Recombination type, 1 = intermediate.

fin >> buffLength[i]; fin.ignore(255, ’\n’); // Buffer length.

fin >> tournRatio[i]; fin.ignore(255, ’\n’); // Tournament-in-buffer ratio.

fin >> delta0[i]; fin.ignore(255, ’\n’); // Initial mutation size.

}

fin.close();

cout << "Force Synchronous:\t\t" << (forceSync == 1 ? "Yes" : "No") << endl;

for (int i = 0; i < levels; ++i)

{

cout << "Layer " << i << ":" << endl;

cout << "\tSide Points for Solver:\t\t" << SidePoints[i] << endl;

cout << "\tPopulation Size: \t\t" << mu[i] << endl;

cout << "\tParents in Recombination:\t" << parents[i] << endl;

cout << "\tRecombination Type:\t\t" << (recoType[i] == 1 ? "Intermediate" : "Discrete") << endl;

cout << "\tBuffer Length: \t\t\t" << buffLength[i] << endl;

cout << "\tTournament-in-Buffer Ratio:\t" << tournRatio[i] << endl;

cout << "\tInitial Mutation Size:\t\t" << delta0[i] << endl;

}

//

// Run specified number of times.

//

for (int run = 0; run < totalRuns; ++run)

{

cout << "*** RUN " << (run + 1) << " OF " << totalRuns << " ***" << endl;

// Start the clock.

time_t startTime = time(NULL);

//

// Establish solvers.

//

cout << "Starting solvers:" << endl;

vector<AeroSimSolver*> solvers;

for (int i = 0, numThisLevel = 1; i < levels; ++i, numThisLevel *= 2)

{

cout << "\n\tLevel " << i << ": " << flush;

for (int j = 0; j < numThisLevel; ++j)

{

int minBufferSize = 0;

if (levels > 1)
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{

if (i == 0) // Top layer.

minBufferSize = (int) (2.0*migrationSize*mu[i+1]);

else if (i == levels - 1) // Bottom layer.

minBufferSize = (int) (migrationSize*mu[i-1]);

else // Middle layers.

minBufferSize = (int) (2.0*migrationSize*mu[i+1] + migrationSize*mu[i-1]);

}

// Must be at least equal to maximum processors.

if (minBufferSize < MaximumTasks)

minBufferSize = MaximumTasks;

if (forceSync == 1) // Must be at least equal to population size.

if (minBufferSize < mu[i])

minBufferSize = mu[i];

// Establish.

solvers.push_back(new AeroSimSolver(SidePoints[i],

NumObjectives,

numWpt,

numCoord,

totalNumWpt,

minBufferSize));

}

}

cout << endl;

//

// Establish the algorithms.

//

vector<char*> fileName;

//Fix alpha

const int N = numWpt*numCoord; // Number of dimensions (waypoint coordinates only).

cout << "N = " << N << endl;

vector<double> lowerBounds(N), upperBounds(N);

double maxSpan = -1.0;

// Setting up lower and upper bound vectors

// Storing lower and upper bounds for latitude

for (int i = 0; i < numWpt; ++i)

{

lowerBounds[i] = lowerBoundLat[i];

upperBounds[i] = upperBoundLat[i];

if (upperBounds[i] - lowerBounds[i] > maxSpan)

maxSpan = upperBounds[i] - lowerBounds[i];

}

// Storing lower and upper bounds for longitude

for (int i = 0; i < numWpt; ++i)

{

lowerBounds[i + numWpt] = lowerBoundLon[i];

upperBounds[i + numWpt] = upperBoundLon[i];

if (upperBounds[i] - lowerBounds[i] > maxSpan)

maxSpan = upperBounds[i] - lowerBounds[i];

}

for (int i = 0; i < lowerBounds.size(); ++i)

cout << lowerBounds [i];

vector<MAMDES*> algs;

cout << "Starting algorithms:" << endl;

for (int i = 0, numThisLevel = 1; i < levels; ++i, numThisLevel *= 2)

{

for (int j = 0; j < numThisLevel; ++j)

{

cout << "\tLevel " << i << ": " << endl;

const int solverRefNum = algs.size();
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solvers[solverRefNum]->FreeWorkers(); // Clear jobs.

// Actual tournament size

const int tourneySize = (int)((double) buffLength[i] / tournRatio[i]);

char* newName = new char[80];

sprintf(newName, "heaaerofoil-restart-file-alg%d.dat", solverRefNum);

fileName.push_back(newName);

try

{

algs.push_back(new MAMDES(solvers[solverRefNum],

fileName[solverRefNum]));

}

catch(MAMDESException)

{

algs.push_back(new MAMDES(solvers[solverRefNum], // Solver for this algorithm.

mu[i], // Population size.

N, // Number of variables.

lowerBounds, // { Problem }

upperBounds, // { bounds. }

parents[i], // Parents in recombination.

buffLength[i], // Buffer length.

tourneySize, // Tournament in buffer size.

delta0[i] // Starting mutation size.

)

);

algs[solverRefNum]->WriteFile(fileName[solverRefNum]);

}

algs[solverRefNum]->SetMaxFunctionEvaluations(65000); // Arbitrarily high.

algs[solverRefNum]->SetRecombineType(recoType[i] == 1 ? MAMDES::INTERMEDIATE : MAMDES::DISCRETE);

algs[solverRefNum]->SetMaximumVariance(maxSpan / 4.0);

algs[solverRefNum]->SetMinimumVariance(1e-80);

algs[solverRefNum]->SetNoiseSampleInterval(25);

algs[solverRefNum]->ForceSynchronous(forceSync == 1 ? true : false);

algs[solverRefNum]->SetReplacementStrategy(MAMDES::REPLACE_WORST_ALWAYS);

algs[solverRefNum]->SetDDMRefinementParameter(8);

algs[solverRefNum]->SetDDMMaximumEvaluations(2000);

algs[solverRefNum]->SetDDMPowerTerm(0.5);

algs[solverRefNum]->SetDDMProbabilityBounds(0.25,0.75);

algs[solverRefNum]->SetDDMLearningPhaseAccepts(25);

algs[solverRefNum]->SetDDMLearningPhaseMaxTrials(500);

algs[solverRefNum]->UseDDM(true);

}

}

cout << "Proceeding to free workers criteria " << endl;

for (int i = 0; i < (int) solvers.size(); ++i)

solvers[i]->FreeWorkers();

cout << "Proceeding to Reset the migration criteria " << endl;

// Reset the migration criteria.

MigrationCriteria(algs, migrationTime, true);

//

// Run the algorithm.

//

cout << "Running:" << endl;

time_t currentTime = time(NULL);

double elapsed = difftime(currentTime, startTime);

double numVar = numCoord * numWpt;

UpdateProgressFiles(algs, fileName, levels,

liveUpdates, elapsed,

numVar, false, true); // Reset the files.

int lastHeadEvals = algs[0]->GetFunctionEvaluations();

double TerminationTaget;
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if ( stopOption == 1 )

TerminationTaget = elapsed;

else if ( stopOption == 2 )

TerminationTaget = algs[0]->GetFunctionEvaluations();

else

TerminationTaget = algs[0]->GetElite().GetFitness()[0];

while (TerminationTaget < TerminationCond)

{

time_t currentTime = time(NULL);

elapsed = difftime(currentTime, startTime);

Evolve(algs);

if (MigrationCriteria(algs, migrationTime, false))

{

Migrate(algs, solvers, levels, migrationSize);

}

if ( stopOption == 1 )

TerminationTaget = elapsed;

else if ( stopOption == 2 )

TerminationTaget = algs[0]->GetFunctionEvaluations();

else

TerminationTaget = algs[0]->GetElite().GetFitness()[0];

//

// User update.

//

if (algs[0]->GetFunctionEvaluations() - lastHeadEvals > 10)

{

lastHeadEvals = algs[0]->GetFunctionEvaluations();

cout << lastHeadEvals << " Function Evaluations done by Head Node.";

cout << " Elapsed Time: " << elapsed << " seconds." << endl;

solvers[0]->ShowLoadDistribution();

solvers[0]->ResetWorkerStats();

cout << endl;

}

if (liveUpdates > 0.0)

UpdateProgressFiles(algs, fileName, levels, liveUpdates, elapsed, numVar);

}

UpdateProgressFiles(algs, fileName, levels, liveUpdates, elapsed, numVar, true);

// Write final point.

currentTime = time(NULL);

elapsed = difftime(currentTime, startTime);

cout << " Elapsed Time: " << elapsed << " seconds.";

// Clean up.

for (int i = 0; i < (int) fileName.size(); ++i)

{

delete [] (fileName[i]);

fileName[i] = NULL;

}

//

// Close algorithms and solvers.

//

for (int i = 0; i < (int) solvers.size(); ++i)

delete algs[i];

algs.resize(0);

cout << endl;

for (int i = 0; i < (int) solvers.size(); ++i)

delete solvers[i];

solvers.resize(0);

cout << endl;

} // End loop over separate runs.

//
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// Done.

//

return 0;

}

C.3 Analyser.cpp

//

// Get back the candidate waypoint coordinates in vector form

// - separate into lat and lon (rad) [only lat and lon coordinates are optimised]

//

vector<double> lat(numWaypoints), lon(numWaypoints);

cout << "The waypoints to be evaluated are : " << endl;

for (int i = 0; i < numWaypoints; ++i)

{

int objPos = i;

lat[i] = recObj[objPos];

objPos = objPos + numWaypoints; // move to the next position

lon[i] = recObj[objPos];

cout.precision(9);

cout << "Latitude " << i + 1 << " : " << lat[i] << endl;

cout << "Longitude " << i + 1 << " : " << lon[i] << endl;

}

//

// Obtain waypoints from WPTTableOrig_numbers.m

//

string wptTable("/home/jane/mywork/aerosimmodel-opti/WPTTableOrig_numbers.m");

ifstream wptTableInput(wptTable.c_str());

if (!wptTableInput)

cerr << "Could not open WPTTableOrig_numbers.m" << endl;

double latitude, longitude, altitude, airspeed;

vector<double> wptTableLat(totalNumWaypoints);

vector<double> wptTableLon(totalNumWaypoints);

vector<double> wptTableAlt(totalNumWaypoints);

vector<double> wptTableAsp(totalNumWaypoints);

for (int i = 0; i < totalNumWaypoints; ++i)

{

// Waypoint coordinates (lat & lon in radians)

wptTableInput >> latitude >> longitude >> altitude >> airspeed;

wptTableInput.ignore(255, ’\n’);

wptTableLat[i] = latitude; // Latitude in rad

wptTableLon[i] = longitude; // Longitude in rad

wptTableAlt[i] = altitude; // Altitude in metres

wptTableAsp[i] = airspeed; // Airspeed in m/s

}

wptTableInput.close();

//

// Create the waypoint table file aerosim_run

//

string aerosimRunFilename = string("aerosim_run_") + stringID + mfile;

string WPTTableName = string("WPTTable_") + stringID;

ofstream aerosimRunFile(aerosimRunFilename.c_str());

aerosimRunFile << "cd /home/jane/mywork/aerosimmodel-opti/" << endl;

aerosimRunFile << "clear;" << endl;

aerosimRunFile << WPTTableName.c_str() << " = [..." << endl;

// Optimising 1 or 2 WPTs

if (numWaypoints < 3)

{

// Optimised WPTs

for (int i = 0; i < numWaypoints; ++i)

{

aerosimRunFile.precision(9);

aerosimRunFile << lat[i] << " ";
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aerosimRunFile << lon[i] << " ";

aerosimRunFile << wptTableAlt[i] << " ";

aerosimRunFile << wptTableAsp[i] << ";..." << endl;

}

// The remaining WPTs

for (int i = numWaypoints; i < totalNumWaypoints; ++i)

{

aerosimRunFile.precision(9);

aerosimRunFile << wptTableLat[i] << " ";

aerosimRunFile << wptTableLon[i] << " ";

aerosimRunFile << wptTableAlt[i] << " ";

aerosimRunFile << wptTableAsp[i];

if (i < (totalNumWaypoints - 1))

aerosimRunFile << ";..." << endl;

else

aerosimRunFile << "];" << endl;

}

}

// If #WPTs to be optimised is 3 or 4, then the WPTTable is formed as follows:

// --WPT 1-2: The optimised WPTs 1 & 2

// --WPT 3-5: The loiter WPTs from original WPTTable (not optimised)

// --WPT 6 and/or 7 : The remaining optimised WPTs

// --WPT 7-8 or just 8: The remaining WPTs from original WPTTable (not optimised)

else

{

// WPT 1-2

for (int i = 0; i < 2; ++i)

{

aerosimRunFile.precision(9);

aerosimRunFile << lat[i] << " ";

aerosimRunFile << lon[i] << " ";

aerosimRunFile << wptTableAlt[i] << " ";

aerosimRunFile << wptTableAsp[i] << ";..." << endl;

}

// WPT 3-5 (loiter WPTs, not optimised)

for (int i = 2; i < 5; ++i)

{

aerosimRunFile.precision(9);

aerosimRunFile << wptTableLat[i] << " ";

aerosimRunFile << wptTableLon[i] << " ";

aerosimRunFile << wptTableAlt[i] << " ";

aerosimRunFile << wptTableAsp[i] << ";..." << endl;

}

// Remaining optimised WPTs

for (int i = 2; i < numWaypoints; ++i)

{

aerosimRunFile.precision(9);

aerosimRunFile << lat[i] << " ";

aerosimRunFile << lon[i] << " ";

aerosimRunFile << wptTableAlt[i+3] << " ";

aerosimRunFile << wptTableAsp[i+3] << ";..." << endl;

}

// Remaining WPTs (not optimised)

for (int i = numWaypoints + 3; i < totalNumWaypoints; ++i)

{

aerosimRunFile.precision(9);

aerosimRunFile << wptTableLat[i] << " ";

aerosimRunFile << wptTableLon[i] << " ";

aerosimRunFile << wptTableAlt[i] << " ";

aerosimRunFile << wptTableAsp[i];

if (i < (totalNumWaypoints - 1))

aerosimRunFile << ";..." << endl;

else

aerosimRunFile << "];" << endl;

}

}

aerosimRunFile << "WPTTable = " << WPTTableName.c_str() << ";" << endl;

aerosimRunFile << "WPTTable = [WPTTable; WPTTable];" << endl;

//

// Add the run_model code onto the aerosim_run file

//
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aerosimRunFile << endl;

aerosimRunFile << "save WPTTable WPTTable;" << endl;

aerosimRunFile << "S = load(’WPTTable.mat’);" << endl;

aerosimRunFile << "WPTTable = S.WPTTable;" << endl;

aerosimRunFile << "fuel_consumption = run_model_HAPMOEA(WPTTable);" << endl;

aerosimRunFile << "total_fuel_cons = fuel_consumption*50;" << endl;

//

// Create an output file to store the fuel consumption

//

string aerosimOutputFilename = string("fuel_cons_") + stringID;

aerosimRunFile << endl;

aerosimRunFile << "fid = fopen(’" << aerosimOutputFilename.c_str() << "’,’wt’);" << endl;

aerosimRunFile << "fprintf(fid,’%14.12f’,total_fuel_cons);" << endl;

aerosimRunFile << "fclose(fid);" << endl;

aerosimRunFile << endl;

aerosimRunFile << "quit;" << endl;

aerosimRunFile.close();

// Copying to Matlab Simulation Directory

string copyRunToMatlabDir = string("cp ") + aerosimRunFilename

+ string(" /home/jane/mywork/aerosimmodel-opti/");

cout << "Copying Run-Model file " << aerosimRunFilename.c_str() <<

" to Matlab working directory" << endl;

EXE(copyRunToMatlabDir.c_str());

// Move to Matlab Simulation Directory

string changeToMatlabDir = string("cd /home/jane/mywork/aerosimmodel-opti/");

cout << "Changing to Matlab working directory" << endl;

EXE(changeToMatlabDir.c_str());

//

// Run AeroSim.

//

string aerosimRunFilenameNoM = string("aerosim_run_") + stringID;

string aerosimExec = string("matlab -nodisplay -nojvm -r ") + aerosimRunFilenameNoM;

cout << "Running " << aerosimExec.c_str() << "." << endl;

cout << "Executing MATLAB - Calling AeroSim Model " << endl;

EXE(aerosimExec.c_str());

//

// Check for the existence of a fuel_cons file.

//

bool fuel_cons_Flag =true;

string fuelConsOutput = string("/home/jane/mywork/aerosimmodel-opti/")

+ aerosimOutputFilename;

ifstream fuel_cons_statusfile(fuelConsOutput.c_str());

if (!fuel_cons_statusfile)

{

cout << "MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM" << endl;

cout << "MM Candidate AeroSim: Failed to produce a fuel consumption value. MM" << endl;

cout << "MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM" << endl;

fuel_cons_Flag =false;

}

if (fuel_cons_Flag) // If not a failure on executing AeroSim model

{// convergenceFile

cout << "The fuel consumption has been calculated." << endl;

}

//

// Obtain the fuel consumption from the fuel_cons file

//

ifstream fcOutput(fuelConsOutput.c_str());

if (!fcOutput)

cout << "Couldn’t open the fuel consumption file." << endl;

double fuelConsumption;

fcOutput >> fuelConsumption; // Fuel consumption output of the simulation

fcOutput.ignore(255, ’\n’);

cout << "Total Fuel Consumption of Simulation : " << fuelConsumption << endl;

fcOutput.close();

//
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// Check for validity of fuel consumption value

// - If an unrealistically small value

// add 100 to it so that it will not be placed in the buffer

//

if (fuelConsumption < 0.01)

fuelConsumption = fuelConsumption + 100;

//

// Construct the fitness function

// (Currently only one objective : fuel consumption)

// Will need to be modified to accommodate more objectives

//

double fitnesses[ObjNums];

for (int i = 0; i < ObjNums; ++i)

{

fitnesses[i] = fuelConsumption;

cout.precision(9);

cout << "Final Fitness[" << i <<"] = " << fitnesses[i] << endl;

}
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D.1 fminconOpti Function for Mission Scenario 1

function [history,T1, WPTTableOpti,fuel_consumption,output,T2] = fminconOpti(numWptOpti)

% Runs the fmincon optimisation process using the AeroSim simulation model

% to evaluate the given WPTTable in terms of fuel consumption.

%

% Input:

% - numWptOpti = Number of waypoints to be optimised

%

% Outputs:

% - history = the structure that keeps track of the history of fuel

% consumptions and function evaluations

% - T1 = summary table of the fmincon process

% - WPTTableOpti = the optimised mission waypoint table

% - fuel_consumption = amount of fuel consumed during mission (kg)

% Set up shared variable with OUTFUN

history.fuelconsumption = [];

history.funccount = [];

history.iteration = [];

% Input values

maxIters = 20; % Maximum number of iterations evaluated

% Start clock

tic

% Baseline waypoint table (in radians)

WPTTableOrig = [...

(26+33.9722/60)*pi/180 (151+51.1746/60)*pi/180 900 20;...

(26+34.1315/60)*pi/180 (151+51.4181/60)*pi/180 900 20;...

(26+34.2729/60)*pi/180 (151+53.2179/60)*pi/180 750 30;...

(26+34.1322/60)*pi/180 (151+53.3082/60)*pi/180 750 20;...

(26+33.9915/60)*pi/180 (151+53.2179/60)*pi/180 750 20;...

(26+34.1315/60)*pi/180 (151+51.4181/60)*pi/180 900 20;...

(26+34.2358/60)*pi/180 (151+51.2796/60)*pi/180 900 20;...

26.5808*pi/180 151.8411*pi/180 800 30];

save WPTTableOrig;

% Baseline waypoint table (in radians)

% -- only WPTs to be optimised ---

WPTTableOpt = [WPTTableOrig(1:2,1:3); WPTTableOrig(6:7,1:3)]; % Table of WPTs to be optimised

latOpt = WPTTableOpt(:,1);

lonOpt = WPTTableOpt(:,2);

% Calculate Upper Bounds (in radians)

% -- only WPTs 2-3, 7-8 to be optimised --

% latUB = [0.463693195; 0.463718690; 0.463718124; 0.463762205];

latUB = [0.463693195; 0.463720000; 0.463720000; 0.463762205];

lonUB = [2.650340341; 2.650456443; 2.650456445; 2.650367830];

% Calculate Lower Bounds (in radians)

% -- only WPTs 2-3, 7-8 to be optimised --

% latLB = [0.463642241; 0.463709423; 0.463709989; 0.463741362];

latLB = [0.463642241; 0.463700000; 0.463700000; 0.463741362];

lonLB = [2.650312648; 2.650397006; 2.650400061; 2.650340137];

% Initialise values

numCoord = 2; % Number of coordinates per waypoint

numVarOpti = numWptOpti * numCoord; % Number of variables to be optimised

x0 = zeros(numVarOpti,1); % Starting points for optimisation

lb = zeros(numVarOpti,1); % Lower bounds

ub = zeros(numVarOpti,1); % Upper bounds

% Set up the vector of starting points for optimisation

% -- only WPTs 2-3, 7-8 to be optimised --

x0(1:numCoord:numVarOpti,1) = latOpt(1:numWptOpti);

x0(2:numCoord:numVarOpti,1) = lonOpt(1:numWptOpti);

% Set up the upper bounds vector

% -- only WPTs 2-3, 7-8 to be optimised --
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ub(1:numCoord:numVarOpti,1) = latUB(1:numWptOpti);

ub(2:numCoord:numVarOpti,1) = lonUB(1:numWptOpti);

% Set up the lower bounds vector

% -- only WPTs 2-3, 7-8 to be optimised --

lb(1:numCoord:numVarOpti,1) = latLB(1:numWptOpti);

lb(2:numCoord:numVarOpti,1) = lonLB(1:numWptOpti);

% Set up the options required for fmincon

options = optimset(’OutputFcn’,@outfun,’Display’,’iter’,...

’DiffMinChange’,1e-5,’MaxIter’,maxIters);

% Run fmincon optimisation process

% -- WPTTableOpti = the optimised waypoints

[T1,WPTTableOpti,fuel_consumption,output] = evalc(’fmincon(@run_model,x0,[],[],[],[],lb,ub,[],options)’);

% Stop clock

T2 = evalc(’toc’);

save optiResults

% *************************************

% ** Set up optimisationResults file **

% *************************************

% Setting up filename

filenameStem = ’optiResults-’;

filenameEnd = ’.txt’;

filenameNo = num2str(numWptOpti);

filename = strcat(filenameStem, filenameNo, filenameEnd);

fid = fopen(filename,’wt’);

fprintf(fid, ’Optimisation Settings:\n\n’);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’The initial starting point is at (0.463922478rad, 2.650127135rad, 850)\n\n’);

fprintf(fid, ’The original waypoint table used for this mission is:\n\n’);

for i = 1 : length(WPTTableOrig)

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

fprintf(fid, ’\n’);

fprintf(fid, ’The number of waypoints optimised : %d \n\n’, numWptOpti);

fprintf(fid, ’The initial guess for the waypoints to be optimised : \n\n’);

i = 1

for i = 1 : numVarOpti

if (rem(i,numCoord) == 1)

fprintf(fid, ’|%10.9frad ’, x0(i,1));

else

fprintf(fid, ’ %10.9frad|\n’, x0(i,1));

end

end

fprintf(fid, ’\n’);

fprintf(fid, ’The candidate coordinates are taken from an area bounded by: \n\n’);

fprintf(fid, ’--- Latitudes of %10.9frad to %10.9frad \n\n’, (26+33.8/60)*pi/180, (26+34.5/60)*pi/180);

fprintf(fid, ’--- Longitudes of %10.9frad to %10.9frad \n\n’, (151.8411)*pi/180, (151+54.5082/60)*pi/180);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’The results of the mission optimisation process is as follows: \n\n’);

fprintf(fid, ’The optimised mission waypoint table is : \n\n’);

switch numWptOpti

case 1

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(1), WPTTableOpti(2), WPTTableOrig(1,3));

i = 2;

for i = 2 : 8

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

case 2

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(1), WPTTableOpti(2), WPTTableOrig(1,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(3), WPTTableOpti(4), WPTTableOrig(2,3));

i = 3;

for i = 3 : 8

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

case 3

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(1), WPTTableOpti(2), WPTTableOrig(1,3));
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fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(3), WPTTableOpti(4), WPTTableOrig(2,3));

i = 3;

for i = 3 : 5

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(5), WPTTableOpti(6), WPTTableOrig(6,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(7,1), WPTTableOrig(7,2), WPTTableOrig(7,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(8,1), WPTTableOrig(8,2), WPTTableOrig(8,3));

case 4

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(1), WPTTableOpti(2), WPTTableOrig(1,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(3), WPTTableOpti(4), WPTTableOrig(2,3));

i = 3;

for i = 3 : 5

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(5), WPTTableOpti(6), WPTTableOrig(6,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(7), WPTTableOrig(8), WPTTableOrig(7,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(8,1), WPTTableOrig(8,2), WPTTableOrig(8,3));

end

fprintf(fid, ’\n’);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’The process table T1 is : \n\n’);

fprintf(fid, ’%s’, T1);

fprintf(fid, ’\n’);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’The fuel consumption for this mission is %8.6fkg\n\n’, fuel_consumption);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’%s’, T2);

fclose(fid)

function stop = outfun(x,optimValues,state)

% Function for generating the vector ’history’

% --- Keeps track of the history of fuel consumptions and function

% evaluations ---

stop = false;

switch state

case ’iter’

% Concatenate current fuel consumption and function evaluation

% values with history

history.fuelconsumption = [history.fuelconsumption,optimValues.fval];

history.funccount = [history.funccount,optimValues.funccount];

history.iteration = [history.iteration,optimValues.iteration];

otherwise

end

end

function fuel_cons = run_model(x0)

% Calls the AeroSim model ’aerosonde_mission_v2.mdl’ to run through the

% specified flight mission, and obtains the total fuel consumption for

% the mission.

%

% INPUT:

% - x0 = The waypoints to be optimised in the format

% |lat|

% |lon|

%

% OUTPUT:

% - fuel_cons = total fuel consumption for the mission

% Initialise

WPTTable = zeros(40,4); % Set up WPTTable

WPTTableTemp = zeros(8,4); % Set up WPTTableTemp

% Rearranging coordinates from x0 into WPTTable format

% [lat lon alt] <-- ’alt’ is taken from WPTTableOrig

% --- This is just for one lap of flight

switch numWptOpti

case 1

% only 1 waypoint (WPT 2) is being optimised

WPTTableTemp(1,1) = x0(1);
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WPTTableTemp(1,2) = x0(2);

WPTTableTemp(1,3) = WPTTableOrig(1,3);

WPTTableTemp(2:8,1:3) = WPTTableOrig(2:8,1:3);

WPTTableTemp(1:8,4) = WPTTableOrig(1:8,4); % Airspeed

case 2

% 2 waypoints (WPT 2 & 3) are being optimised

WPTTableTemp(1:2,1) = x0(1:2:4);

WPTTableTemp(1:2,2) = x0(2:2:4);

WPTTableTemp(1:2,3) = WPTTableOrig(1:2,3);

WPTTableTemp(3:8,1:3) = WPTTableOrig(3:8,1:3);

WPTTableTemp(1:8,4) = WPTTableOrig(1:8,4); % Airspeed

case 3

% 3 waypoints (WPTs 2, 3 & 7) are being optimised

WPTTableTemp(1:2,1) = x0(1:2:4);

WPTTableTemp(1:2,2) = x0(2:2:4);

WPTTableTemp(1:2,3) = WPTTableOrig(1:2,3);

WPTTableTemp(3:5,1:3) = WPTTableOrig(3:5,1:3);

WPTTableTemp(6,1) = x0(5);

WPTTableTemp(6,2) = x0(6);

WPTTableTemp(6,3) = WPTTableOrig(6,3);

WPTTableTemp(7:8,1:3) = WPTTableOrig(7:8,1:3);

WPTTableTemp(1:8,4) = WPTTableOrig(1:8,4); % Airspeed

case 4

% 4 waypoints (WPTs 2, 3, 7 & 8) are being optimised

WPTTableTemp(1:2,1) = x0(1:2:4);

WPTTableTemp(1:2,2) = x0(2:2:4);

WPTTableTemp(1:2,3) = WPTTableOrig(1:2,3);

WPTTableTemp(3:5,1:3) = WPTTableOrig(3:5,1:3);

WPTTableTemp(6:7,1) = x0(5:2:8);

WPTTableTemp(6:7,2) = x0(6:2:8);

WPTTableTemp(6:7,3) = WPTTableOrig(6:7,3);

WPTTableTemp(8,1:3) = WPTTableOrig(8,1:3);

WPTTableTemp(1:8,4) = WPTTableOrig(1:8,4); % Airspeed

end

% The mission consists of 5 laps

WPTTable = [WPTTableTemp; WPTTableTemp; WPTTableTemp; WPTTableTemp; WPTTableTemp];

save WPTTable WPTTable

S = load(’WPTTable.mat’);

WPTTable = S.WPTTable;

% Run simulation with the given waypoints

sim(’aerosonde_mission_v2’);

% Extract Fuel Mass information

size_array = size(fuel_mass);

fuel_m = zeros(1,size_array(3));

fuel_m(1:size_array(3)) = fuel_mass(:,:,1:size_array(3));

% Calculate fuel consumption

num = size(fuel_m);

fuel_cons = fuel_m(1) - fuel_m(num(2));

end

end

D.2 fminconOpti Function for Mission Scenario 2

function [history,T1, WPTTableOpti,fuel_consumption,output,T2] = fminconOpti(numWptOpti)

% Runs the fmincon optimisation process using the AeroSim simulation model

% to evaluate the given WPTTable in terms of fuel consumption.

%

% Input:

% - numWptOpti = Number of waypoints to be optimised

%

% Outputs:
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% - history = the structure that keeps track of the history of fuel

% consumptions and function evaluations

% - T1 = summary table of the fmincon process

% - WPTTableOpti = the optimised mission waypoint table

% - fuel_consumption = amount of fuel consumed during mission (kg)

% Set up shared variable with OUTFUN

history.fuelconsumption = [];

history.funccount = [];

history.iteration = [];

% Input values

maxIters = 20; % Maximum number of iterations evaluated

% Start clock

tic

% Baseline waypoint table (in radians)

WPTTableOrig = [...

(26+33.7693/60)*pi/180 (151+51.1585/60)*pi/180 900 20;...

(26+33.9588/60)*pi/180 (151+51.5236/60)*pi/180 900 20;...

(26+35.0415/60)*pi/180 (151+53.6234/60)*pi/180 750 30;...

(26+34.8070/60)*pi/180 (151+53.7740/60)*pi/180 750 20;...

(26+34.5725/60)*pi/180 (151+53.6234/60)*pi/180 750 20;...

(26+33.9588/60)*pi/180 (151+51.5236/60)*pi/180 900 20;...

(26+34.2132/60)*pi/180 (151+51.4206/60)*pi/180 900 20;...

26.5808*pi/180 151.8411*pi/180 800 30];

save WPTTableOrig;

% Baseline waypoint table (in radians)

% -- only WPTs to be optimised ---

WPTTableOpt = [WPTTableOrig(1:2,1:3); WPTTableOrig(6:7,1:3)]; % Table of WPTs to be optimised

latOpt = WPTTableOpt(:,1);

lonOpt = WPTTableOpt(:,2);

% Calculate Upper Bounds (in radians)

% -- only WPTs 2-3, 7-8 to be optimised --

% latUB = [0.463693195; 0.463718690; 0.463718124; 0.463762205];

latUB = [0.463693195; 0.463720000; 0.463720000; 0.463762205];

lonUB = [2.650340341; 2.650456443; 2.650456445; 2.650367830];

% Calculate Lower Bounds (in radians)

% -- only WPTs 2-3, 7-8 to be optimised --

% latLB = [0.463642241; 0.463709423; 0.463709989; 0.463741362];

latLB = [0.463642241; 0.463700000; 0.463700000; 0.463741362];

lonLB = [2.650312648; 2.650397006; 2.650400061; 2.650340137];

% Initialise values

numCoord = 2; % Number of coordinates per waypoint

numVarOpti = numWptOpti * numCoord; % Number of variables to be optimised

x0 = zeros(numVarOpti,1); % Starting points for optimisation

lb = zeros(numVarOpti,1); % Lower bounds

ub = zeros(numVarOpti,1); % Upper bounds

% Set up the vector of starting points for optimisation

% -- only WPTs 2-3, 7-8 to be optimised --

x0(1:numCoord:numVarOpti,1) = latOpt(1:numWptOpti);

x0(2:numCoord:numVarOpti,1) = lonOpt(1:numWptOpti);

% Set up the upper bounds vector

% -- only WPTs 2-3, 7-8 to be optimised --

ub(1:numCoord:numVarOpti,1) = latUB(1:numWptOpti);

ub(2:numCoord:numVarOpti,1) = lonUB(1:numWptOpti);

% Set up the lower bounds vector

% -- only WPTs 2-3, 7-8 to be optimised --

lb(1:numCoord:numVarOpti,1) = latLB(1:numWptOpti);

lb(2:numCoord:numVarOpti,1) = lonLB(1:numWptOpti);

% Set up the options required for fmincon

options = optimset(’OutputFcn’,@outfun,’Display’,’iter’,...

’DiffMinChange’,1e-5,’MaxIter’,maxIters);
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% Run fmincon optimisation process

% -- WPTTableOpti = the optimised waypoints

[T1,WPTTableOpti,fuel_consumption,output] = evalc(’fmincon(@run_model,x0,[],[],[],[],lb,ub,@distconstr,options)’);

% Stop clock

T2 = evalc(’toc’);

save optiResults

% *************************************

% ** Set up optimisationResults file **

% *************************************

% Setting up filename

filenameStem = ’optiResults-’;

filenameEnd = ’.txt’;

filenameNo = num2str(numWptOpti);

filename = strcat(filenameStem, filenameNo, filenameEnd);

fid = fopen(filename,’wt’);

fprintf(fid, ’Optimisation Settings:\n\n’);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’The initial starting point is at (0.463922478rad, 2.650127135rad, 850)\n\n’);

fprintf(fid, ’The original waypoint table used for this mission is:\n\n’);

for i = 1 : length(WPTTableOrig)

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

fprintf(fid, ’\n’);

fprintf(fid, ’The number of waypoints optimised : %d \n\n’, numWptOpti);

fprintf(fid, ’The initial guess for the waypoints to be optimised : \n\n’);

i = 1

for i = 1 : numVarOpti

if (rem(i,numCoord) == 1)

fprintf(fid, ’|%10.9frad ’, x0(i,1));

else

fprintf(fid, ’ %10.9frad|\n’, x0(i,1));

end

end

fprintf(fid, ’\n’);

fprintf(fid, ’The candidate coordinates are taken from an area bounded by: \n\n’);

fprintf(fid, ’--- Latitudes of %10.9frad to %10.9frad \n\n’, (26+33.8/60)*pi/180, (26+34.5/60)*pi/180);

fprintf(fid, ’--- Longitudes of %10.9frad to %10.9frad \n\n’, (151.8411)*pi/180, (151+54.5082/60)*pi/180);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’The results of the mission optimisation process is as follows: \n\n’);

fprintf(fid, ’The optimised mission waypoint table is : \n\n’);

switch numWptOpti

case 1

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(1), WPTTableOpti(2), WPTTableOrig(1,3));

i = 2;

for i = 2 : 8

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

case 2

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(1), WPTTableOpti(2), WPTTableOrig(1,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(3), WPTTableOpti(4), WPTTableOrig(2,3));

i = 3;

for i = 3 : 8

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

case 3

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(1), WPTTableOpti(2), WPTTableOrig(1,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(3), WPTTableOpti(4), WPTTableOrig(2,3));

i = 3;

for i = 3 : 5

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(5), WPTTableOpti(6), WPTTableOrig(6,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(7,1), WPTTableOrig(7,2), WPTTableOrig(7,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(8,1), WPTTableOrig(8,2), WPTTableOrig(8,3));

case 4

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(1), WPTTableOpti(2), WPTTableOrig(1,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(3), WPTTableOpti(4), WPTTableOrig(2,3));
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i = 3;

for i = 3 : 5

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(5), WPTTableOpti(6), WPTTableOrig(6,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(7), WPTTableOrig(8), WPTTableOrig(7,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(8,1), WPTTableOrig(8,2), WPTTableOrig(8,3));

end

fprintf(fid, ’\n’);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’The process table T1 is : \n\n’);

fprintf(fid, ’%s’, T1);

fprintf(fid, ’\n’);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’The fuel consumption for this mission is %8.6fkg\n\n’, fuel_consumption);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’%s’, T2);

fclose(fid)

function stop = outfun(x,optimValues,state)

% Function for generating the vector ’history’

% --- Keeps track of the history of fuel consumptions and function

% evaluations ---

stop = false;

switch state

case ’iter’

% Concatenate current fuel consumption and function evaluation

% values with history

history.fuelconsumption = [history.fuelconsumption,optimValues.fval];

history.funccount = [history.funccount,optimValues.funccount];

history.iteration = [history.iteration,optimValues.iteration];

otherwise

end

end

function fuel_cons = run_model(x0)

% Calls the AeroSim model ’aerosonde_mission_v2.mdl’ to run through the

% specified flight mission, and obtains the total fuel consumption for

% the mission.

%

% INPUT:

% - x0 = The waypoints to be optimised in the format

% |lat|

% |lon|

%

% OUTPUT:

% - fuel_cons = total fuel consumption for the mission

% Initialise

WPTTable = zeros(40,4); % Set up WPTTable

WPTTableTemp = zeros(8,4); % Set up WPTTableTemp

% Rearranging coordinates from x0 into WPTTable format

% [lat lon alt] <-- ’alt’ is taken from WPTTableOrig

% --- This is just for one lap of flight

switch numWptOpti

case 1

% only 1 waypoint (WPT 2) is being optimised

WPTTableTemp(1,1) = x0(1);

WPTTableTemp(1,2) = x0(2);

WPTTableTemp(1,3) = WPTTableOrig(1,3);

WPTTableTemp(2:8,1:3) = WPTTableOrig(2:8,1:3);

WPTTableTemp(1:8,4) = WPTTableOrig(1:8,4); % Airspeed

case 2

% 2 waypoints (WPT 2 & 3) are being optimised

WPTTableTemp(1:2,1) = x0(1:2:4);

WPTTableTemp(1:2,2) = x0(2:2:4);

WPTTableTemp(1:2,3) = WPTTableOrig(1:2,3);

WPTTableTemp(3:8,1:3) = WPTTableOrig(3:8,1:3);

WPTTableTemp(1:8,4) = WPTTableOrig(1:8,4); % Airspeed
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case 3

% 3 waypoints (WPTs 2, 3 & 7) are being optimised

WPTTableTemp(1:2,1) = x0(1:2:4);

WPTTableTemp(1:2,2) = x0(2:2:4);

WPTTableTemp(1:2,3) = WPTTableOrig(1:2,3);

WPTTableTemp(3:5,1:3) = WPTTableOrig(3:5,1:3);

WPTTableTemp(6,1) = x0(5);

WPTTableTemp(6,2) = x0(6);

WPTTableTemp(6,3) = WPTTableOrig(6,3);

WPTTableTemp(7:8,1:3) = WPTTableOrig(7:8,1:3);

WPTTableTemp(1:8,4) = WPTTableOrig(1:8,4); % Airspeed

case 4

% 4 waypoints (WPTs 2, 3, 7 & 8) are being optimised

WPTTableTemp(1:2,1) = x0(1:2:4);

WPTTableTemp(1:2,2) = x0(2:2:4);

WPTTableTemp(1:2,3) = WPTTableOrig(1:2,3);

WPTTableTemp(3:5,1:3) = WPTTableOrig(3:5,1:3);

WPTTableTemp(6:7,1) = x0(5:2:8);

WPTTableTemp(6:7,2) = x0(6:2:8);

WPTTableTemp(6:7,3) = WPTTableOrig(6:7,3);

WPTTableTemp(8,1:3) = WPTTableOrig(8,1:3);

WPTTableTemp(1:8,4) = WPTTableOrig(1:8,4); % Airspeed

end

% The mission consists of 5 laps

WPTTable = [WPTTableTemp; WPTTableTemp; WPTTableTemp; WPTTableTemp; WPTTableTemp];

save WPTTable WPTTable

S = load(’WPTTable.mat’);

WPTTable = S.WPTTable;

% Run simulation with the given waypoints

sim(’aerosonde_mission_v2’);

% Extract Fuel Mass information

size_array = size(fuel_mass);

fuel_m = zeros(1,size_array(3));

fuel_m(1:size_array(3)) = fuel_mass(:,:,1:size_array(3));

% Calculate fuel consumption

num = size(fuel_m);

fuel_cons = fuel_m(1) - fuel_m(num(2));

end

function [c,ceq] = distconstr(x0)

% Sets the constraints for the waypoints to be optimised

% -- minimum distance from other fixed waypoints

% Rearranging coordinates from x0 into WPTTable format

% [lat lon alt] <-- ’alt’ is taken from WPTTableOrig

% --- This is just for one lap of flight

% Define starting WPT (Kingaroy)

startLat = 26.5808*pi/180; % Latitude of Kingaroy

startLon = 151.8411*pi/180; % Longitude of Kingaroy

switch numWptOpti

case 1

% only 1 waypoint (WPT 2) is being optimised

% -- distance(WPT1 -> WPT2) >= 2000m

c(1) = 2000 - CalcGCDist(startLat,startLon,x0(1),x0(2));

% -- distance(WPT2 -> WPT3) >= 300m

c(2) = 300 - CalcGCDist(x0(1),x0(2),WPTTableOrig(2,1),WPTTableOrig(2,2));

% No nonlinear equality constraints

ceq = [];

case 2

% 2 waypoints (WPT 2 & 3) are being optimised

% -- distance(WPT1 -> WPT2) >= 2000m

c(1) = 2000 - CalcGCDist(startLat,startLon,x0(1),x0(2));

% -- distance(WPT2 -> WPT3) >= 300m

c(2) = 300 - CalcGCDist(x0(1),x0(2),x0(3),x0(4));

% -- distance(WPT3 -> WPT4) >= 3000m

c(3) = 3000 - CalcGCDist(x0(3),x0(4),WPTTableOrig(3,1),WPTTableOrig(3,2));
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% No nonlinear equality constraints

ceq = [];

case 3

% 3 waypoints (WPTs 2, 3 & 7) are being optimised

% -- distance(WPT1 -> WPT2) >= 2000m

c(1) = 2000 - CalcGCDist(startLat,startLon,x0(1),x0(2));

% -- distance(WPT2 -> WPT3) >= 300m

c(2) = 300 - CalcGCDist(x0(1),x0(2),x0(3),x0(4));

% -- distance(WPT3 -> WPT4) >= 3000m

c(3) = 3000 - CalcGCDist(x0(3),x0(4),WPTTableOrig(3,1),WPTTableOrig(3,2));

% -- distance(WPT6 -> WPT7) >= 3000m

c(4) = 3000 - CalcGCDist(WPTTableOrig(5,1),WPTTableOrig(5,2),x0(5),x0(6));

% -- distance(WPT7 -> WPT8) >= 300m

c(5) = 300 - CalcGCDist(x0(5),x0(6),WPTTableOrig(7,1),WPTTableOrig(7,2));

% No nonlinear equality constraints

ceq = [];

case 4

% 4 waypoints (WPTs 2, 3, 7 & 8) are being optimised

% -- distance(WPT1 -> WPT2) >= 2000m

c(1) = 2000 - CalcGCDist(startLat,startLon,x0(1),x0(2));

% -- distance(WPT2 -> WPT3) >= 300m

c(2) = 300 - CalcGCDist(x0(1),x0(2),x0(3),x0(4));

% -- distance(WPT3 -> WPT4) >= 3000m

c(3) = 3000 - CalcGCDist(x0(3),x0(4),WPTTableOrig(3,1),WPTTableOrig(3,2));

% -- distance(WPT6 -> WPT7) >= 3000m

c(4) = 3000 - CalcGCDist(WPTTableOrig(5,1),WPTTableOrig(5,2),x0(5),x0(6));

% -- distance(WPT7 -> WPT8) >= 300m

c(5) = 300 - CalcGCDist(x0(5),x0(6),x0(7),x0(8));

% -- distance(WPT8 -> WPT9) >= 1700m

c(6) = 1700 -CalcGCDist(x0(7),x0(8),WPTTableOrig(8,1),WPTTableOrig(8,2));

% No nonlinear equality constraints

ceq = [];

end

end

end
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E.1 optimisation.parameters: An Example

PARAMETERS FOR AEROSIM FLIGHT MISSION OPTIMISATION

1 Number of runs

1 6 Optimisation will be terminated after 6 hours

2 Two objectives

4 Number of waypoints to be optimised

8 Total number of waypoints in WPTTable

2 Number of coordinates for each waypoint (lat & lon)

0.463596392 0.463596392 0.463596392 0.463596392 Lower bounds for WPT lat (rad)

0.46383268 0.46383268 0.46383268 0.46383268 Upper bounds for WPT lat (rad)

2.650312431 2.650312431 2.650312431 2.650312431 Lower bounds for WPT lon (rad)

2.650750363 2.650750363 2.650750363 2.650750363 Upper bounds for WPT lon (rad)

500.0 Live update every 500 seconds

0 Forced synchronous evaluation is OFF (1=YES)

2.00 Migration operation will be after two generations

0.3 Migration ratio set 30%

1 One layer of hierarchical topology is set

- LEVEL ONE -

141 First layer ID is set as 141 = waypoint coordinates

40 Population size

2 Parents of recombination

1 Intermediate Recombination is ON (1=YES)

42 Buffer length

2.0 Tournament-in-Buffer ratio

0.05 Initial Mutation Size

E.2 HierarEA.cpp

////////////////////////////////////////////////////////////////

// //

// Main Program //

// //

////////////////////////////////////////////////////////////////

int

main(int argc, char* argv[])

{

// Set the priority of the driver executable down.

int priRet = setpriority(PRIO_PROCESS, 0, +5);

assert(priRet == 0);

//

// Check command line.

//

if (argc > 3)

{

cerr << "HEAAEROFOIL Usage:" << endl;

cerr << "\theaaerofoil - Uses default input file ’optimisation.parameters’ and writes statistics to"

" ’output.statistics’." << endl;

cerr << "\theaaerofoil parameter_file output_file - Reads inputs from ’parameter_file’ and writes"

" statistics to ’output_file’." << endl;

cerr << "\theaaerofoil restart - Restarts the run from the point at which it stopped." << endl;

return 1;

}

//

// Set up optimisation.parameters

// First try: 1 waypoint

//

int NumWptsOpt = 4;

GenerateOptiParaFile(NumWptsOpt);

//
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// Determine the type of run.

//

char* inputFile = "optimisation.parameters";

char* outputFile = "output.statistics";

if (argc == 3)

{

inputFile = argv[1];

outputFile = argv[2];

}

if (argc == 2)

{

if (strcasecmp(argv[1], "reset") == 0)

{

int retVal = system("rm -f heaaerofoil-restart-file-alg*");

if (retVal == 0)

cout << "All files successfully deleted." << endl;

else

cout << "Problem calling \"rm -f heaaerofoil-restart-file-alg*\"." <<

endl;

return 0;

}

else

inputFile = argv[1];

}

if (argc == 3)

{

inputFile = argv[1];

outputFile = argv[2];

}

//

// Open the parameters file and read in the data.

//

ifstream fin(inputFile);

if (!fin)

throw xMain("Couldn’t open the input parameters file.");

// Independent parameters.

fin.ignore(255, ’\n’); // First line is an identifier.

cout << "*****************************************" << endl;

cout << "*** Hierarchical AeroSim Simulation ***" << endl;

cout << "*****************************************" << endl << endl;

int totalRuns;

fin >> totalRuns; // Number of runs to do

fin.ignore(255, ’\n’);

cout << "Number of Runs : " << totalRuns << endl;

int stopOption;

double stopNums;

double TerminationCond;

fin >> stopOption >> stopNums; // Maximum time.

fin.ignore(255, ’\n’);

if ( stopOption == 1 )

{

TerminationCond = stopNums * 3600.0;

cout << "Stopping by Time (Hours) For Each Run : " << stopNums << endl;

}

else if ( stopOption == 2 )

{

TerminationCond = stopNums;

cout << "Stopping by Function Evaluation For Each Run : " << stopNums << endl;

}

else

{

TerminationCond = stopNums;

cout << "Stopping by Pre-defined value For Each Run : " << stopNums << endl;

}
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int NumObjectives;

fin >> NumObjectives; // Number of objectives.

fin.ignore(255, ’\n’);

cout << "Number of Objective : " << NumObjectives << endl;

int numWpt;

fin >> numWpt; // Number of waypoints to be optimised.

fin.ignore(255, ’\n’);

if (numWpt < 1)

throw xMain("Must have at least one waypoint.");

cout << "Number of Waypoints to be Optimised : " << numWpt << endl;

int totalNumWpt;

fin >> totalNumWpt; // Total number of waypoints in WPTTable.

fin.ignore(255, ’\n’);

if (totalNumWpt < 1)

throw xMain("Must have at least one waypoint in WPTTable.");

cout << "Total Number of Waypoints in WPTTable : " << totalNumWpt << endl;

int numCoord;

fin >> numCoord; // Number of coordinates for each waypoint -- (lat & lon)

fin.ignore(255, ’\n’);

if (numCoord != 2)

throw xMain("Must have two coordinates.");

cout << "Number of coordinates (lat & lon) : " << numCoord << endl;

double lbLat;

double ubLat;

vector<double> lowerBoundLat(numWpt);

vector<double> upperBoundLat(numWpt);

// Lower bounds for latitude of waypoints (rad).

for (int i = 0; i < numWpt; ++i)

{

fin >> lbLat;

lowerBoundLat[i] = lbLat;

}

fin.ignore(255, ’\n’);

// Upper bounds for latitude of waypoints (rad).

for (int i = 0; i < numWpt; ++i)

{

fin >> ubLat;

upperBoundLat[i] = ubLat;

}

fin.ignore(255, ’\n’);

double lbLon;

double ubLon;

vector<double> lowerBoundLon(numWpt);

vector<double> upperBoundLon(numWpt);

// Lower bounds for longitude of waypoints (rad).

for (int i = 0; i < numWpt; ++i)

{

fin >> lbLon;

lowerBoundLon[i] = lbLon;

}

fin.ignore(255, ’\n’);

// Upper bounds for longitude of waypoints (rad).

for (int i = 0; i < numWpt; ++i)

{

fin >> ubLon;

upperBoundLon[i] = ubLon;

}

fin.ignore(255, ’\n’);

double liveUpdates;

fin >> liveUpdates; fin.ignore(255, ’\n’); // Live update interval (0 = None).

int forceSync;

fin >> forceSync; fin.ignore(255, ’\n’); // Force synchronous behaviour (1 = Yes).

// Hierarchical parameters.

double migrationTime;

fin >> migrationTime; fin.ignore(255, ’\n’); // Number of popsize evaluations before migration.
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cout << "* Popsize Evaluations Before Migration : " << migrationTime << endl;

if (migrationTime < 0.0)

throw xMain("Migration time must be >= 0.0.");

double migrationSize;

fin >> migrationSize; fin.ignore(255, ’\n’); // Multiplier of popsize individuals to migrate.

cout << "* Popsize Individuals to Migrate : " << migrationSize << endl;

if (migrationSize < 0.0 || migrationSize > 1.0)

throw xMain("Migration size must be between 0.0 and 1.0 inclusive.");

int levels;

fin >> levels; fin.ignore(255, ’\n’); // Number hierarchical layers.

cout << "Number of Hiearchical levels : " << levels << endl;

if (levels < 1)

throw xMain("Number of hierarchical levels must be >= 1");

// Parameters by layer: Layer 0 = top, layer 1 = 2nd, etc.

vector<int> SidePoints(levels), mu(levels), parents(levels), recoType(levels), buffLength(levels);

vector<double> tournRatio(levels), delta0(levels);

for (int i = 0; i < levels; ++i)

{

fin.ignore(255, ’\n’); // Separator line.

fin >> SidePoints[i]; fin.ignore(255, ’\n’); // Aerofoil side points

fin >> mu[i]; fin.ignore(255, ’\n’); // Size of mu.

fin >> parents[i]; fin.ignore(255, ’\n’); // Parents in recombination.

fin >> recoType[i]; fin.ignore(255, ’\n’); // Recombination type, 1 = intermediate.

fin >> buffLength[i]; fin.ignore(255, ’\n’); // Buffer length.

fin >> tournRatio[i]; fin.ignore(255, ’\n’); // Tournament-in-buffer ratio.

fin >> delta0[i]; fin.ignore(255, ’\n’); // Initial mutation size.

}

fin.close();

cout << "Force Synchronous:\t\t" << (forceSync == 1 ? "Yes" : "No") << endl;

for (int i = 0; i < levels; ++i)

{

cout << "Layer " << i << ":" << endl;

cout << "\tSide Points for Solver:\t\t" << SidePoints[i] << endl;

cout << "\tPopulation Size: \t\t" << mu[i] << endl;

cout << "\tParents in Recombination:\t" << parents[i] << endl;

cout << "\tRecombination Type:\t\t" << (recoType[i] == 1 ? "Intermediate" : "Discrete") << endl;

cout << "\tBuffer Length: \t\t\t" << buffLength[i] << endl;

cout << "\tTournament-in-Buffer Ratio:\t" << tournRatio[i] << endl;

cout << "\tInitial Mutation Size:\t\t" << delta0[i] << endl;

}

//

// Run specified number of times.

//

for (int run = 0; run < totalRuns; ++run)

{

cout << "*** RUN " << (run + 1) << " OF " << totalRuns << " ***" << endl;

// Start the clock.

time_t startTime = time(NULL);

//

// Establish solvers.

//

cout << "Starting solvers:" << endl;

vector<AeroSimSolver*> solvers;

for (int i = 0, numThisLevel = 1; i < levels; ++i, numThisLevel *= 2)

{

cout << "\n\tLevel " << i << ": " << flush;

for (int j = 0; j < numThisLevel; ++j)

{

int minBufferSize = 0;

if (levels > 1)

{

if (i == 0) // Top layer.

minBufferSize = (int) (2.0*migrationSize*mu[i+1]);

else if (i == levels - 1) // Bottom layer.

minBufferSize = (int) (migrationSize*mu[i-1]);
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else // Middle layers.

minBufferSize = (int) (2.0*migrationSize*mu[i+1] + migrationSize*mu[i-1]);

}

// Must be at least equal to maximum processors.

if (minBufferSize < MaximumTasks)

minBufferSize = MaximumTasks;

if (forceSync == 1) // Must be at least equal to population size.

if (minBufferSize < mu[i])

minBufferSize = mu[i];

// Establish.

solvers.push_back(new AeroSimSolver(SidePoints[i],

NumObjectives,

numWpt,

numCoord,

totalNumWpt,

minBufferSize));

}

}

cout << endl;

//

// Establish the algorithms.

//

vector<char*> fileName;

//Fix alpha

const int N = numWpt*numCoord; // Number of dimensions (waypoint coordinates only).

cout << "N = " << N << endl;

vector<double> lowerBounds(N), upperBounds(N);

double maxSpan = -1.0;

// Setting up lower and upper bound vectors

// Storing lower and upper bounds for latitude

for (int i = 0; i < numWpt; ++i)

{

lowerBounds[i] = lowerBoundLat[i];

upperBounds[i] = upperBoundLat[i];

if (upperBounds[i] - lowerBounds[i] > maxSpan)

maxSpan = upperBounds[i] - lowerBounds[i];

}

// Storing lower and upper bounds for longitude

for (int i = 0; i < numWpt; ++i)

{

lowerBounds[i + numWpt] = lowerBoundLon[i];

upperBounds[i + numWpt] = upperBoundLon[i];

if (upperBounds[i] - lowerBounds[i] > maxSpan)

maxSpan = upperBounds[i] - lowerBounds[i];

}

for (int i = 0; i < lowerBounds.size(); ++i)

cout << lowerBounds [i];

vector<MAMDES*> algs;

cout << "Starting algorithms:" << endl;

for (int i = 0, numThisLevel = 1; i < levels; ++i, numThisLevel *= 2)

{

for (int j = 0; j < numThisLevel; ++j)

{

cout << "\tLevel " << i << ": " << endl;

const int solverRefNum = algs.size();

solvers[solverRefNum]->FreeWorkers(); // Clear jobs.

const int tourneySize = (int)((double) buffLength[i] / tournRatio[i]); // Actual tournament size.

char* newName = new char[80];
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sprintf(newName, "heaaerofoil-restart-file-alg%d.dat", solverRefNum);

fileName.push_back(newName);

try

{

algs.push_back(new MAMDES(solvers[solverRefNum],

fileName[solverRefNum]));

}

catch(MAMDESException)

{

algs.push_back(new MAMDES(solvers[solverRefNum], // Solver for this algorithm.

mu[i], // Population size.

N, // Number of variables.

lowerBounds, // { Problem }

upperBounds, // { bounds. }

parents[i], // Parents in recombination.

buffLength[i], // Buffer length.

tourneySize, // Tournament in buffer size.

delta0[i] // Starting mutation size.

)

);

algs[solverRefNum]->WriteFile(fileName[solverRefNum]);

}

algs[solverRefNum]->SetMaxFunctionEvaluations(65000); // Arbitrarily high.

algs[solverRefNum]->SetRecombineType(recoType[i] == 1 ? MAMDES::INTERMEDIATE : MAMDES::DISCRETE);

algs[solverRefNum]->SetMaximumVariance(maxSpan / 4.0);

algs[solverRefNum]->SetMinimumVariance(1e-80);

algs[solverRefNum]->SetNoiseSampleInterval(25);

algs[solverRefNum]->ForceSynchronous(forceSync == 1 ? true : false);

algs[solverRefNum]->SetReplacementStrategy(MAMDES::REPLACE_WORST_ALWAYS);

algs[solverRefNum]->SetDDMRefinementParameter(8);

algs[solverRefNum]->SetDDMMaximumEvaluations(2000);

algs[solverRefNum]->SetDDMPowerTerm(0.5);

algs[solverRefNum]->SetDDMProbabilityBounds(0.25,0.75);

algs[solverRefNum]->SetDDMLearningPhaseAccepts(25);

algs[solverRefNum]->SetDDMLearningPhaseMaxTrials(500);

algs[solverRefNum]->UseDDM(true);

}

}

cout << "Proceeding to free workers criteria " << endl;

for (int i = 0; i < (int) solvers.size(); ++i)

solvers[i]->FreeWorkers();

cout << "Proceeding to Reset the migration criteria " << endl;

// Reset the migration criteria.

MigrationCriteria(algs, migrationTime, true);

//

// Run the algorithm.

//

cout << "Running:" << endl;

time_t currentTime = time(NULL);

double elapsed = difftime(currentTime, startTime);

double numVar = numCoord * numWpt;

UpdateProgressFiles(algs, fileName, levels, liveUpdates, elapsed, numVar, false, true); // Reset the files.

int lastHeadEvals = algs[0]->GetFunctionEvaluations();

double TerminationTaget;

if ( stopOption == 1 )

TerminationTaget = elapsed;

else if ( stopOption == 2 )

TerminationTaget = algs[0]->GetFunctionEvaluations();

else

TerminationTaget = algs[0]->GetElite().GetFitness()[0];

while (TerminationTaget < TerminationCond)
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{

time_t currentTime = time(NULL);

elapsed = difftime(currentTime, startTime);

Evolve(algs);

if (MigrationCriteria(algs, migrationTime, false))

{

Migrate(algs, solvers, levels, migrationSize);

}

if ( stopOption == 1 )

TerminationTaget = elapsed;

else if ( stopOption == 2 )

TerminationTaget = algs[0]->GetFunctionEvaluations();

else

TerminationTaget = algs[0]->GetElite().GetFitness()[0];

//

// User update.

//

if (algs[0]->GetFunctionEvaluations() - lastHeadEvals > 10)

{

lastHeadEvals = algs[0]->GetFunctionEvaluations();

cout << lastHeadEvals << " Function Evaluations done by Head Node.";

cout << " Elapsed Time: " << elapsed << " seconds." << endl;

solvers[0]->ShowLoadDistribution();

solvers[0]->ResetWorkerStats();

cout << endl;

}

if (liveUpdates > 0.0)

UpdateProgressFiles(algs, fileName, levels, liveUpdates, elapsed, numVar);

}

UpdateProgressFiles(algs, fileName, levels, liveUpdates, elapsed, numVar, true);

// Write final point.

currentTime = time(NULL);

elapsed = difftime(currentTime, startTime);

cout << " Elapsed Time: " << elapsed << " seconds.";

// Clean up.

for (int i = 0; i < (int) fileName.size(); ++i)

{

delete [] (fileName[i]);

fileName[i] = NULL;

}

//

// Close algorithms and solvers.

//

for (int i = 0; i < (int) solvers.size(); ++i)

delete algs[i];

algs.resize(0);

cout << endl;

for (int i = 0; i < (int) solvers.size(); ++i)

delete solvers[i];

solvers.resize(0);

cout << endl;

} // End loop over separate runs.

//

// Done.

//

return 0;

}
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E.3 Analyser.cpp

E.3.1 Mission Scenario 1

//

// Get back the candidate waypoint coordinates in vector form

// - separate into lat and lon (rad) [only lat and lon coordinates are optimised]

//

vector<double> lat(numWaypoints), lon(numWaypoints);

cout << "The waypoints to be evaluated are : " << endl;

for (int i = 0; i < numWaypoints; ++i)

{

int objPos = i;

lat[i] = recObj[objPos];

objPos = objPos + numWaypoints; // move to the next position

lon[i] = recObj[objPos];

cout.precision(9);

cout << "Latitude " << i + 1 << " : " << lat[i] << endl;

cout << "Longitude " << i + 1 << " : " << lon[i] << endl;

}

//

// Obtain waypoints from WPTTableOrig_numbers.m

//

string wptTable("/home/jane/mywork/aerosimmodel-opti/WPTTableOrig_numbers.m");

ifstream wptTableInput(wptTable.c_str());

if (!wptTableInput)

cerr << "Could not open WPTTableOrig_numbers.m" << endl;

double latitude, longitude, altitude, airspeed;

vector<double> wptTableLat(totalNumWaypoints);

vector<double> wptTableLon(totalNumWaypoints);

vector<double> wptTableAlt(totalNumWaypoints);

vector<double> wptTableAsp(totalNumWaypoints);

for (int i = 0; i < totalNumWaypoints; ++i)

{

// Waypoint coordinates (lat & lon in radians)

wptTableInput >> latitude >> longitude >> altitude >> airspeed;

wptTableInput.ignore(255, ’\n’);

wptTableLat[i] = latitude; // Latitude in rad

wptTableLon[i] = longitude; // Longitude in rad

wptTableAlt[i] = altitude; // Altitude in metres

wptTableAsp[i] = airspeed; // Airspeed in m/s

}

wptTableInput.close();

//

// Create the waypoint table file aerosim_run

//

string aerosimRunFilename = string("aerosim_run_") + stringID + mfile;

string WPTTableName = string("WPTTable_") + stringID;

ofstream aerosimRunFile(aerosimRunFilename.c_str());

aerosimRunFile << "cd /home/jane/mywork/aerosimmodel-opti/" << endl;

aerosimRunFile << "clear;" << endl;

aerosimRunFile << WPTTableName.c_str() << " = [..." << endl;

// Optimising 1 or 2 WPTs

if (numWaypoints < 3)

{

// Optimised WPTs

for (int i = 0; i < numWaypoints; ++i)

{

aerosimRunFile.precision(9);

aerosimRunFile << lat[i] << " ";

aerosimRunFile << lon[i] << " ";

aerosimRunFile << wptTableAlt[i] << " ";

aerosimRunFile << wptTableAsp[i] << ";..." << endl;

}

// The remaining WPTs

for (int i = numWaypoints; i < totalNumWaypoints; ++i)
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{

aerosimRunFile.precision(9);

aerosimRunFile << wptTableLat[i] << " ";

aerosimRunFile << wptTableLon[i] << " ";

aerosimRunFile << wptTableAlt[i] << " ";

aerosimRunFile << wptTableAsp[i];

if (i < (totalNumWaypoints - 1))

aerosimRunFile << ";..." << endl;

else

aerosimRunFile << "];" << endl;

}

}

// If #WPTs to be optimised is 3 or 4, then the WPTTable is formed as follows:

// --WPT 1-2: The optimised WPTs 1 & 2

// --WPT 3-5: The loiter WPTs from original WPTTable (not optimised)

// --WPT 6 and/or 7 : The remaining optimised WPTs

// --WPT 7-8 or just 8: The remaining WPTs from original WPTTable (not optimised)

else

{

// WPT 1-2

for (int i = 0; i < 2; ++i)

{

aerosimRunFile.precision(9);

aerosimRunFile << lat[i] << " ";

aerosimRunFile << lon[i] << " ";

aerosimRunFile << wptTableAlt[i] << " ";

aerosimRunFile << wptTableAsp[i] << ";..." << endl;

}

// WPT 3-5 (loiter WPTs, not optimised)

for (int i = 2; i < 5; ++i)

{

aerosimRunFile.precision(9);

aerosimRunFile << wptTableLat[i] << " ";

aerosimRunFile << wptTableLon[i] << " ";

aerosimRunFile << wptTableAlt[i] << " ";

aerosimRunFile << wptTableAsp[i] << ";..." << endl;

}

// Remaining optimised WPTs

for (int i = 2; i < numWaypoints; ++i)

{

aerosimRunFile.precision(9);

aerosimRunFile << lat[i] << " ";

aerosimRunFile << lon[i] << " ";

aerosimRunFile << wptTableAlt[i+3] << " ";

aerosimRunFile << wptTableAsp[i+3] << ";..." << endl;

}

// Remaining WPTs (not optimised)

for (int i = numWaypoints + 3; i < totalNumWaypoints; ++i)

{

aerosimRunFile.precision(9);

aerosimRunFile << wptTableLat[i] << " ";

aerosimRunFile << wptTableLon[i] << " ";

aerosimRunFile << wptTableAlt[i] << " ";

aerosimRunFile << wptTableAsp[i];

if (i < (totalNumWaypoints - 1))

aerosimRunFile << ";..." << endl;

else

aerosimRunFile << "];" << endl;

}

}

aerosimRunFile << "WPTTable = " << WPTTableName.c_str() << ";" << endl;

aerosimRunFile << "WPTTable = [WPTTable; WPTTable; WPTTable; WPTTable; WPTTable];" << endl;

//

// Add the run_model code onto the aerosim_run file

//

aerosimRunFile << endl;

aerosimRunFile << "save WPTTable WPTTable;" << endl;

aerosimRunFile << "S = load(’WPTTable.mat’);" << endl;

aerosimRunFile << "WPTTable = S.WPTTable;" << endl;

aerosimRunFile << "[fuel_cons,fl_time] = run_model_2obj(WPTTable);" << endl;

aerosimRunFile << "total_fuel_cons = fuel_cons*20;" << endl;
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aerosimRunFile << "total_fl_time = fl_time*20/60/60;" << endl;

//

// Create an output file to store the mission outputs (fuel consumption & flight time)

//

string aerosimOutputFilename = string("missionOutputs_") + stringID;

aerosimRunFile << endl;

aerosimRunFile << "fid = fopen(’" << aerosimOutputFilename.c_str() << "’,’wt’);" << endl;

aerosimRunFile << "fprintf(fid,’%14.12f %14.12f’,total_fuel_cons,total_fl_time);" << endl;

aerosimRunFile << "fclose(fid);" << endl;

aerosimRunFile << endl;

aerosimRunFile << "quit;" << endl;

aerosimRunFile.close();

// Copying to Matlab Simulation Directory

string copyRunToMatlabDir = string("cp ") + aerosimRunFilename + string(" /home/jane/mywork/aerosimmodel-opti/");

cout << "Copying Run-Model file " << aerosimRunFilename.c_str() << " to Matlab working directory" << endl;

EXE(copyRunToMatlabDir.c_str());

// Move to Matlab Simulation Directory

string changeToMatlabDir = string("cd /home/jane/mywork/aerosimmodel-opti/");

cout << "Changing to Matlab working directory" << endl;

EXE(changeToMatlabDir.c_str());

//

// Run AeroSim.

//

string aerosimRunFilenameNoM = string("aerosim_run_") + stringID;

string aerosimExec = string("matlab -nodisplay -nojvm -r ") + aerosimRunFilenameNoM;

cout << "Running " << aerosimExec.c_str() << "." << endl;

cout << "Executing MATLAB - Calling AeroSim Model " << endl;

EXE(aerosimExec.c_str());

//

// Check for the existence of a missionOutputs file.

//

bool missionOutputs_Flag =true;

string missionOutputs = string("/home/jane/mywork/aerosimmodel-opti/") + aerosimOutputFilename;

ifstream missionOutputs_statusfile(missionOutputs.c_str());

if (!missionOutputs_statusfile)

{

cout << "MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM" << endl;

cout << "MM Candidate AeroSim: Failed to produce mission output values. MM" << endl;

cout << "MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM" << endl;

missionOutputs_Flag =false;

}

if (missionOutputs_Flag) // If not a failure on executing AeroSim model

{

// convergenceFile

cout << "The mission outputs have been calculated." << endl;

}

//

// Obtain the mission outputs from the missionOutputs file

//

ifstream mOutput(missionOutputs.c_str());

if (!mOutput)

cout << "Couldn’t open the mission outputs file." << endl;

double fuelConsumption;

double flightTime;

mOutput >> fuelConsumption >> flightTime; // Outputs of the simulation

mOutput.ignore(255, ’\n’);

cout << "Total Fuel Consumption of Simulation (kg) : " << fuelConsumption << endl;

cout << "Total Flight Time of Simulation (hrs) : " << flightTime << endl;

mOutput.close();

//

// Check for validity of fuel consumption and flight time values

// - If fuel consumption is an unrealistically small value

// -> add 100 to it so that it will not be placed in the buffer

// - If flight time is an unrealistically large value

// -> add 100 to its inverse so that it will not be placed in the buffer
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//

if (fuelConsumption < 0.01)

fuelConsumption = fuelConsumption + 100;

double invFlightTime = 1/flightTime;

if (invFlightTime < 0.001)

invFlightTime = invFlightTime + 100;

//

// Construct the fitness function

// - Currently two objectives: fuel consumption & flight time

//

double fitnesses[ObjNums];

fitnesses[0] = fuelConsumption;

fitnesses[1] = invFlightTime;

cout.precision(9);

cout << "Final Fitness = [" << fitnesses[0] << " " << fitnesses[1] << "]" << endl;

E.3.2 Mission Scenario 2

//

// Get back the candidate waypoint coordinates in vector form

// - separate into lat and lon (rad) [only lat and lon coordinates are optimised]

//

vector<double> lat(numWaypoints), lon(numWaypoints);

cout << "The waypoints to be evaluated are : " << endl;

for (int i = 0; i < numWaypoints; ++i)

{

int objPos = i;

lat[i] = recObj[objPos];

objPos = objPos + numWaypoints; // move to the next position

lon[i] = recObj[objPos];

cout.precision(9);

cout << "Latitude " << i + 1 << " : " << lat[i] << endl;

cout << "Longitude " << i + 1 << " : " << lon[i] << endl;

}

//

// Obtain waypoints from WPTTableOrig_numbers.m

//

string wptTable("/home/jane/mywork/aerosimmodel-opti/WPTTableOrig_numbers.m");

ifstream wptTableInput(wptTable.c_str());

if (!wptTableInput)

cerr << "Could not open WPTTableOrig_numbers.m" << endl;

double latitude, longitude, altitude, airspeed;

vector<double> wptTableLat(totalNumWaypoints);

vector<double> wptTableLon(totalNumWaypoints);

vector<double> wptTableAlt(totalNumWaypoints);

vector<double> wptTableAsp(totalNumWaypoints);

for (int i = 0; i < totalNumWaypoints; ++i)

{

wptTableInput >> latitude >> longitude >> altitude >> airspeed; // Waypoint coordinates (lat & lon in radians)

wptTableInput.ignore(255, ’\n’);

wptTableLat[i] = latitude; // Latitude in rad

wptTableLon[i] = longitude; // Longitude in rad

wptTableAlt[i] = altitude; // Altitude in metres

wptTableAsp[i] = airspeed; // Airspeed in m/s

}

wptTableInput.close();

//

// Create the waypoint table file aerosim_run

//

string aerosimRunFilename = string("aerosim_run_") + stringID + mfile;

string WPTTableName = string("WPTTable_") + stringID;

ofstream aerosimRunFile(aerosimRunFilename.c_str());

aerosimRunFile << "cd /home/jane/mywork/aerosimmodel-opti/" << endl;

aerosimRunFile << "clear;" << endl;
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aerosimRunFile << WPTTableName.c_str() << " = [..." << endl;

// Optimising 1 or 2 WPTs

if (numWaypoints < 3)

{

// Optimised WPTs

for (int i = 0; i < numWaypoints; ++i)

{

aerosimRunFile.precision(9);

aerosimRunFile << lat[i] << " ";

aerosimRunFile << lon[i] << " ";

aerosimRunFile << wptTableAlt[i] << " ";

aerosimRunFile << wptTableAsp[i] << ";..." << endl;

}

// The remaining WPTs

for (int i = numWaypoints; i < totalNumWaypoints; ++i)

{

aerosimRunFile.precision(9);

aerosimRunFile << wptTableLat[i] << " ";

aerosimRunFile << wptTableLon[i] << " ";

aerosimRunFile << wptTableAlt[i] << " ";

aerosimRunFile << wptTableAsp[i];

if (i < (totalNumWaypoints - 1))

aerosimRunFile << ";..." << endl;

else

aerosimRunFile << "];" << endl;

}

}

// If #WPTs to be optimised is 3 or 4, then the WPTTable is formed as follows:

// --WPT 1-2: The optimised WPTs 1 & 2

// --WPT 3-5: The loiter WPTs from original WPTTable (not optimised)

// --WPT 6 and/or 7 : The remaining optimised WPTs

// --WPT 7-8 or just 8: The remaining WPTs from original WPTTable (not optimised)

else

{

// WPT 1-2

for (int i = 0; i < 2; ++i)

{

aerosimRunFile.precision(9);

aerosimRunFile << lat[i] << " ";

aerosimRunFile << lon[i] << " ";

aerosimRunFile << wptTableAlt[i] << " ";

aerosimRunFile << wptTableAsp[i] << ";..." << endl;

}

// WPT 3-5 (loiter WPTs, not optimised)

for (int i = 2; i < 5; ++i)

{

aerosimRunFile.precision(9);

aerosimRunFile << wptTableLat[i] << " ";

aerosimRunFile << wptTableLon[i] << " ";

aerosimRunFile << wptTableAlt[i] << " ";

aerosimRunFile << wptTableAsp[i] << ";..." << endl;

}

// Remaining optimised WPTs

for (int i = 2; i < numWaypoints; ++i)

{

aerosimRunFile.precision(9);

aerosimRunFile << lat[i] << " ";

aerosimRunFile << lon[i] << " ";

aerosimRunFile << wptTableAlt[i+3] << " ";

aerosimRunFile << wptTableAsp[i+3] << ";..." << endl;

}

// Remaining WPTs (not optimised)

for (int i = numWaypoints + 3; i < totalNumWaypoints; ++i)

{

aerosimRunFile.precision(9);

aerosimRunFile << wptTableLat[i] << " ";

aerosimRunFile << wptTableLon[i] << " ";

aerosimRunFile << wptTableAlt[i] << " ";

aerosimRunFile << wptTableAsp[i];

if (i < (totalNumWaypoints - 1))

aerosimRunFile << ";..." << endl;

else

aerosimRunFile << "];" << endl;
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}

}

aerosimRunFile << "WPTTable = " << WPTTableName.c_str() << ";" << endl;

//

// Determine the distance constraints

//

aerosimRunFile << "numWptOpti = " << numWaypoints << ";" << endl;

aerosimRunFile << "StartPtLat = 26.5808*pi/180;" << endl;

aerosimRunFile << "StartPtLon = 151.8411*pi/180;" << endl;

aerosimRunFile << endl;

aerosimRunFile << "switch numWptOpti" << endl;

aerosimRunFile << " case 1 % Only WPT 2 is being optimised" << endl;

aerosimRunFile << " dist1to2 = CalcGCDist(StartPtLat,StartPtLon,..." << endl;

aerosimRunFile << " WPTTable(1,1),WPTTable(1,2));" << endl;

aerosimRunFile << " dist2to3 = CalcGCDist(WPTTable(1,1),WPTTable(1,2),..." << endl;

aerosimRunFile << " WPTTable(2,1),WPTTable(2,2));" << endl;

aerosimRunFile << " if ((dist1to2 < 2000) || (dist2to3 < 300))" << endl;

aerosimRunFile << " DistDiff = max([(2000-dist1to2),(300-dist2to3)]);" << endl;

aerosimRunFile << " penalty = 100*DistDiff;" << endl;

aerosimRunFile << " else" << endl;

aerosimRunFile << " penalty = 0;" << endl;

aerosimRunFile << " end" << endl;

aerosimRunFile << " case 2 % WPTs 2 and 3 are being optimised" << endl;

aerosimRunFile << " dist1to2 = CalcGCDist(StartPtLat,StartPtLon,..." << endl;

aerosimRunFile << " WPTTable(1,1),WPTTable(1,2));" << endl;

aerosimRunFile << " dist2to3 = CalcGCDist(WPTTable(1,1),WPTTable(1,2),..." << endl;

aerosimRunFile << " WPTTable(2,1),WPTTable(2,2));" << endl;

aerosimRunFile << " dist3to4 = CalcGCDist(WPTTable(2,1),WPTTable(2,2),..." << endl;

aerosimRunFile << " WPTTable(3,1),WPTTable(3,2));" << endl;

aerosimRunFile << " if ((dist1to2 < 2000) || (dist2to3 < 300) || (dist3to4 < 3000))" << endl;

aerosimRunFile << " DistDiff = max([(2000-dist1to2),(300-dist2to3),(3000-dist3to4)]);" << endl;

aerosimRunFile << " penalty = 100*DistDiff;" << endl;

aerosimRunFile << " else" << endl;

aerosimRunFile << " penalty = 0;" << endl;

aerosimRunFile << " end" << endl;

aerosimRunFile << " case 3 % WPTs 2, 3 and 7 are being optimised" << endl;

aerosimRunFile << " dist1to2 = CalcGCDist(StartPtLat,StartPtLon,..." << endl;

aerosimRunFile << " WPTTable(1,1),WPTTable(1,2));" << endl;

aerosimRunFile << " dist2to3 = CalcGCDist(WPTTable(1,1),WPTTable(1,2),..." << endl;

aerosimRunFile << " WPTTable(2,1),WPTTable(2,2));" << endl;

aerosimRunFile << " dist3to4 = CalcGCDist(WPTTable(2,1),WPTTable(2,2),..." << endl;

aerosimRunFile << " WPTTable(3,1),WPTTable(3,2));" << endl;

aerosimRunFile << " dist6to7 = CalcGCDist(WPTTable(5,1),WPTTable(5,2),..." << endl;

aerosimRunFile << " WPTTable(6,1),WPTTable(6,2));" << endl;

aerosimRunFile << " dist7to8 = CalcGCDist(WPTTable(6,1),WPTTable(6,2),..." << endl;

aerosimRunFile << " WPTTable(7,1),WPTTable(7,2));" << endl;

aerosimRunFile << " if ((dist1to2 < 2000) || (dist2to3 < 300) || (dist3to4 < 3000) ..." << endl;

aerosimRunFile << " || (dist6to7 < 3000) || (dist7to8 < 300))" << endl;

aerosimRunFile << " DistDiff = max([(2000-dist1to2),(300-dist2to3),(3000-dist3to4),..." << endl;

aerosimRunFile << " (3000-dist6to7),(300-dist7to8)]);" << endl;

aerosimRunFile << " penalty = 100*DistDiff;" << endl;

aerosimRunFile << " else" << endl;

aerosimRunFile << " penalty = 0;" << endl;

aerosimRunFile << " end" << endl;

aerosimRunFile << " case 4 % WPTs 2, 3, 7 and 8 are being optimised" << endl;

aerosimRunFile << " dist1to2 = CalcGCDist(StartPtLat,StartPtLon,..." << endl;

aerosimRunFile << " WPTTable(1,1),WPTTable(1,2));" << endl;

aerosimRunFile << " dist2to3 = CalcGCDist(WPTTable(1,1),WPTTable(1,2),..." << endl;

aerosimRunFile << " WPTTable(2,1),WPTTable(2,2));" << endl;

aerosimRunFile << " dist3to4 = CalcGCDist(WPTTable(2,1),WPTTable(2,2),..." << endl;

aerosimRunFile << " WPTTable(3,1),WPTTable(3,2));" << endl;

aerosimRunFile << " dist6to7 = CalcGCDist(WPTTable(5,1),WPTTable(5,2),..." << endl;

aerosimRunFile << " WPTTable(6,1),WPTTable(6,2));" << endl;

aerosimRunFile << " dist7to8 = CalcGCDist(WPTTable(6,1),WPTTable(6,2),..." << endl;

aerosimRunFile << " WPTTable(7,1),WPTTable(7,2));" << endl;

aerosimRunFile << " dist8to9 = CalcGCDist(WPTTable(7,1),WPTTable(7,2),..." << endl;

aerosimRunFile << " WPTTable(8,1),WPTTable(8,2));" << endl;

aerosimRunFile << " if ((dist1to2 < 2000) || (dist2to3 < 300) || (dist3to4 < 3000) || ..." << endl;

aerosimRunFile << " (dist6to7 < 3000) || (dist7to8 < 300) || (dist8to9 < 1700))" << endl;

aerosimRunFile << " DistDiff = max([(2000-dist1to2),(300-dist2to3),(3000-dist3to4),..."’ << endl;

aerosimRunFile << " (3000-dist6to7),(300-dist7to8),(1700-dist8to9)]);" << endl;
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aerosimRunFile << " penalty = 100*DistDiff;" << endl;

aerosimRunFile << " else" << endl;

aerosimRunFile << " penalty = 0;" << endl;

aerosimRunFile << " end" << endl;

aerosimRunFile << "end" << endl;

//

// Add the run_model code onto the aerosim_run file

//

aerosimRunFile << "if (penalty > 0) % any of the distance constraints has been violated" << endl;

aerosimRunFile << " % make value large so does not get entered into buffer" << endl;

aerosimRunFile << " total_fuel_cons = 100 + penalty;" << endl;

aerosimRunFile << " % make value small so its inverse does not get entered into buffer" << endl;

aerosimRunFile << " minDistToA1 = 0.000001*penalty;" << endl;

aerosimRunFile << " minDistToA2 = 0.000001*penalty;" << endl;

aerosimRunFile << "else" << endl;

aerosimRunFile << " WPTTable = [WPTTable; WPTTable; WPTTable; WPTTable; WPTTable];" << endl;

aerosimRunFile << " save WPTTable WPTTable;" << endl;

aerosimRunFile << " S = load(’WPTTable.mat’);" << endl;

aerosimRunFile << " WPTTable = S.WPTTable;" << endl;

aerosimRunFile << " [fuel_cons,minDistToA1,minDistToA2] = run_model_2obj(WPTTable);" << endl;

aerosimRunFile << " total_fuel_cons = fuel_cons*20;" << endl;

aerosimRunFile << "end" << endl;

//

// Create an output file to store the mission outputs (fuel consumption & flight time)

//

string aerosimOutputFilename = string("missionOutputs_") + stringID;

aerosimRunFile << endl;

aerosimRunFile << "fid = fopen(’" << aerosimOutputFilename.c_str() << "’,’wt’);" << endl;

aerosimRunFile << "fprintf(fid,’%14.12f %14.12f %14.12f’,total_fuel_cons,minDistToA1,minDistToA2);" << endl;

aerosimRunFile << "fclose(fid);" << endl;

aerosimRunFile << endl;

aerosimRunFile << "quit;" << endl;

aerosimRunFile.close();

// Copying to Matlab Simulation Directory

string copyRunToMatlabDir = string("cp ") + aerosimRunFilename + string(" /home/jane/mywork/aerosimmodel-opti/");

cout << "Copying Run-Model file " << aerosimRunFilename.c_str() << " to Matlab working directory" << endl;

EXE(copyRunToMatlabDir.c_str());

// Move to Matlab Simulation Directory

string changeToMatlabDir = string("cd /home/jane/mywork/aerosimmodel-opti/");

cout << "Changing to Matlab working directory" << endl;

EXE(changeToMatlabDir.c_str());

//

// Run AeroSim.

//

string aerosimRunFilenameNoM = string("aerosim_run_") + stringID;

string aerosimExec = string("matlab -nodisplay -nojvm -r ") + aerosimRunFilenameNoM;

cout << "Running " << aerosimExec.c_str() << "." << endl;

cout << "Executing MATLAB - Calling AeroSim Model " << endl;

EXE(aerosimExec.c_str());

//

// Check for the existence of a missionOutputs file.

//

bool missionOutputs_Flag =true;

string missionOutputs = string("/home/jane/mywork/aerosimmodel-opti/") + aerosimOutputFilename;

ifstream missionOutputs_statusfile(missionOutputs.c_str());

if (!missionOutputs_statusfile)

{

cout << "MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM" << endl;

cout << "MM Candidate AeroSim: Failed to produce mission output values. MM" << endl;

cout << "MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM" << endl;

missionOutputs_Flag =false;

}

if (missionOutputs_Flag) // If not a failure on executing AeroSim model

{// convergenceFile

cout << "The mission outputs have been calculated." << endl;

}
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//

// Obtain the mission outputs from the missionOutputs file

//

ifstream mOutput(missionOutputs.c_str());

if (!mOutput)

cout << "Couldn’t open the mission outputs file." << endl;

double fuelConsumption;

double minDistanceToA1, minDistanceToA2;

mOutput >> fuelConsumption >> minDistanceToA1 >> minDistanceToA2; // Outputs of the simulation

mOutput.ignore(255, ’\n’);

cout << "Total Fuel Consumption of Simulation (kg) : " << fuelConsumption << endl;

cout << "Minimum Distance to Hazard Area 1 (m) : " << minDistanceToA1 << endl;

cout << "Minimum Distance to Hazard Area 2 (m) : " << minDistanceToA2 << endl;

mOutput.close();

//

// Check for validity of the fuel consumption value

// - If fuel consumption is an unrealistically small value

// -> add 100 to it so that it will not be placed in the buffer

//

if (fuelConsumption < 0.01)

fuelConsumption = fuelConsumption + 100;

//

// Construct the fitness function

// - Currently two objectives: fuel consumption & total minimum distance to Hazard Areas

//

double fitnesses[ObjNums];

double totalMinDistToHA = 1000 * (minDistanceToA1 + minDistanceToA2) / (minDistanceToA1 * minDistanceToA2);

fitnesses[0] = fuelConsumption;

fitnesses[1] = totalMinDistToHA;

cout.precision(9);

cout << "Final Fitness = [" << fitnesses[0] << " " << fitnesses[1] << "]" << endl;
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F.1 Mission Scenario 1

F.1.1 twoOptiPareto Function

function [history,T1,WPTTableOpti,missionOutputs,T2] = twoOptiPareto(numWptOpti,w1,w2)

% Runs the fmincon optimisation process using the AeroSim simualtion model

% to evaluate the given WPTTable in terms of a combination of fuel

% consumption AND flight time (two objectives).

%

% This combination of the two objectives uses an aggregate method, in which

% different weights are used with each objective, and are then added

% together to form ONE overall objective.

%

% Inputs:

% - numWptOpti = number of waypoints to be optimised

% - w1 = weight coefficient for objective #1

% - w2 = weight coefficient for objective #2

%

% Outputs:

% - history = structure that keeps track of the history of fuel

% consumptions, flight times, objective function values

% and function evaluations

% - T1 = summary table of the fmincon process

% - WPTTableOpti = optimised mission waypoint table

% - missionOutputs = vector containing the optimised values for fuel

% consumption (kg), flight time (min), and objective

% function.

% -- fuel_consumption = amount of fule consumed during mission (kg)

% -- flight_time = time taken for the mission (hrs)

% - T2 = time taken

% Set up shared variable with OUTFUN

history.objFunc = [];

history.funccount = [];

history.iteration = [];

% Input values

maxIters = 20; % Maximum number of iterations evaluated

% Start clock

tic

% Baseline waypoint table (in radians)

WPTTableOrig = [...

(26+33.9722/60)*pi/180 (151+51.1746/60)*pi/180 900 20;...

(26+34.1315/60)*pi/180 (151+51.4181/60)*pi/180 900 20;...

(26+34.2729/60)*pi/180 (151+53.2179/60)*pi/180 750 30;...

(26+34.1322/60)*pi/180 (151+53.3082/60)*pi/180 750 20;...

(26+33.9915/60)*pi/180 (151+53.2179/60)*pi/180 750 20;...

(26+34.1315/60)*pi/180 (151+51.4181/60)*pi/180 900 20;...

(26+34.2358/60)*pi/180 (151+51.2796/60)*pi/180 900 20;...

26.5808*pi/180 151.8411*pi/180 800 30];

save WPTTableOrig;

% Baseline waypoint table (in radians)

% -- only WPTs to be optimised ---

WPTTableOpt = [WPTTableOrig(1:2,1:3); WPTTableOrig(6:7,1:3)]; % Table of WPTs to be optimised

latOpt = WPTTableOpt(:,1);

lonOpt = WPTTableOpt(:,2);

% Calculate Upper Bounds (in radians)

% -- only WPTs 2-3, 7-8 to be optimised --

% latUB = [0.463693195; 0.463718690; 0.463718124; 0.463762205];

latUB = [0.463693195; 0.463720000; 0.463720000; 0.463762205];

lonUB = [2.650340341; 2.650456443; 2.650456445; 2.650367830];

% Calculate Lower Bounds (in radians)

% -- only WPTs 2-3, 7-8 to be optimised --

% latLB = [0.463642241; 0.463709423; 0.463709989; 0.463741362];
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latLB = [0.463642241; 0.463700000; 0.463700000; 0.463741362];

lonLB = [2.650312648; 2.650397006; 2.650400061; 2.650340137];

% Initialise values

numCoord = 2; % Number of coordinates per waypoint

numVarOpti = numWptOpti * numCoord; % Number of variables to be optimised

x0 = zeros(numVarOpti,1); % Starting points for optimisation

lb = zeros(numVarOpti,1); % Lower bounds

ub = zeros(numVarOpti,1); % Upper bounds

% Set up the vector of starting points for optimisation

% -- only WPTs 2-3, 7-8 to be optimised --

x0(1:numCoord:numVarOpti,1) = latOpt(1:numWptOpti);

x0(2:numCoord:numVarOpti,1) = lonOpt(1:numWptOpti);

% Set up the upper bounds vector

% -- only WPTs 2-3, 7-8 to be optimised --

ub(1:numCoord:numVarOpti,1) = latUB(1:numWptOpti);

ub(2:numCoord:numVarOpti,1) = lonUB(1:numWptOpti);

% Set up the lower bounds vector

% -- only WPTs 2-3, 7-8 to be optimised --

lb(1:numCoord:numVarOpti,1) = latLB(1:numWptOpti);

lb(2:numCoord:numVarOpti,1) = lonLB(1:numWptOpti);

% Set up the options required for fmincon

options = optimset(’OutputFcn’,@outfun,’Display’,’iter’,...

’DiffMinChange’,1e-5,’MaxIter’,maxIters);

% Run fmincon optimisation process

% -- WPTTableOpti = the optimised waypoints

[T1,WPTTableOpti,objFuncVal,output] = evalc(’fmincon(@run_model_2obj,x0,[],[],[],[],lb,ub,[],options)’);

out1 = load(’fuel_cons’);

fuel_cons = out1.fuel_cons;

fuelConsumption = fuel_cons(2,length(fuel_cons));

out2 = load(’flight_time’);

flight_time = out2.flight_time;

flightTime = flight_time(2,length(flight_time));

missionOutputs = [fuelConsumption, flightTime, objFuncVal];

% Stop clock

T2 = evalc(’toc’);

% *********************************

% ** Set up 2objOptiResults file **

% *********************************

% Setting up filename

filenameStem = ’2objOptiResults_’;

filenameTxtEnd = ’.txt’;

filenameMATEnd = ’.mat’;

filenameNo = num2str(w1/0.05);

filenameTxt = strcat(filenameStem, filenameNo, filenameTxtEnd);

filenameMAT = strcat(filenameStem, filenameNo, filenameMATEnd);

save(filenameMAT,’history’,’T1’,’WPTTableOpti’,’missionOutputs’,’T2’)

fid = fopen(filenameTxt,’wt’);

fprintf(fid, ’Two-objective Optimisation Settings:\n\n’);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’The initial starting point is at (0.463922478rad, 2.650127135rad, 850)\n\n’);

fprintf(fid, ’The original waypoint table used for this mission is:\n\n’);

for i = 1 : length(WPTTableOrig)

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

fprintf(fid, ’\n’);

fprintf(fid, ’The number of waypoints optimised : %d \n\n’, numWptOpti);

fprintf(fid, ’The initial guess for the waypoints to be optimised : \n\n’);

i = 1

for i = 1 : numVarOpti

if (rem(i,numCoord) == 1)
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fprintf(fid, ’|%10.9frad ’, x0(i,1));

else

fprintf(fid, ’ %10.9frad|\n’, x0(i,1));

end

end

fprintf(fid, ’\n’);

fprintf(fid, ’The candidate coordinates are taken from an area bounded by: \n\n’);

fprintf(fid, ’--- Latitudes of %10.9frad to %10.9frad \n\n’, (26+33.8/60)*pi/180, (26+34.5/60)*pi/180);

fprintf(fid, ’--- Longitudes of %10.9frad to %10.9frad \n\n’, (151.8411)*pi/180, (151+54.5082/60)*pi/180);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’The results of the mission optimisation process is as follows: \n\n’);

fprintf(fid, ’The optimised mission waypoint table is : \n\n’);

switch numWptOpti

case 1

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(1), WPTTableOpti(2), WPTTableOrig(1,3));

i = 2;

for i = 2 : 8

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

case 2

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(1), WPTTableOpti(2), WPTTableOrig(1,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(3), WPTTableOpti(4), WPTTableOrig(2,3));

i = 3;

for i = 3 : 8

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

case 3

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(1), WPTTableOpti(2), WPTTableOrig(1,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(3), WPTTableOpti(4), WPTTableOrig(2,3));

i = 3;

for i = 3 : 5

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(5), WPTTableOpti(6), WPTTableOrig(6,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(7,1), WPTTableOrig(7,2), WPTTableOrig(7,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(8,1), WPTTableOrig(8,2), WPTTableOrig(8,3));

case 4

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(1), WPTTableOpti(2), WPTTableOrig(1,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(3), WPTTableOpti(4), WPTTableOrig(2,3));

i = 3;

for i = 3 : 5

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(5), WPTTableOpti(6), WPTTableOrig(6,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(7), WPTTableOrig(8), WPTTableOrig(7,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(8,1), WPTTableOrig(8,2), WPTTableOrig(8,3));

end

fprintf(fid, ’\n’);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’The process table T1 is : \n\n’);

fprintf(fid, ’%s’, T1);

fprintf(fid, ’\n’);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’The fuel consumption for this mission is %8.6fkg\n\n’, fuelConsumption);

fprintf(fid, ’The flight time for this mission is %8.6f hours \n\n’, flightTime);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’%s’, T2);

fclose(fid)

function stop = outfun(x,optimValues,state)

% Function for generation the vector ’history’

% --- Keeps track of the history of the objective function values and

% function evaluations ---

stop = false;

switch state

case ’iter’

% Concatenate current objective function value and function

% evaluation value with history

history.objFunc = [history.objFunc,optimValues.fval];

history.funccount = [history.funccount,optimValues.funccount];

history.iteration = [history.iteration,optimValues.iteration];
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otherwise

end

end

function objFuncVal = run_model_2obj(x0)

% Calls the AeroSim model ’aerosonde_mission_v3_2obj.mdl’ to run

% through the specified flight mission, and obtains the objective

% function value for the mission

%

% INPUT:

% - x0 = The waypoints to be optimised in the format

% |lat|

% |lon|

%

% OUTPUT:

% - objFunc = value of the objective function, a combination of fuel

% consumption and flight time

% Initialise

WPTTable = zeros(40,4); % Set up WPTTable

WPTTableTemp = zeros(8,4); % Set up WPTTableTemp

% Rearranging coordinates from x0 into WPTTable format

% [lat lon alt] <-- ’alt’ is taken from WPTTableOrig

% --- This is just for one lap of flight

switch numWptOpti

case 1

% only 1 waypoint (WPT 2) is being optimised

WPTTableTemp(1,1) = x0(1);

WPTTableTemp(1,2) = x0(2);

WPTTableTemp(1,3) = WPTTableOrig(1,3);

WPTTableTemp(2:8,1:3) = WPTTableOrig(2:8,1:3);

WPTTableTemp(1:8,4) = WPTTableOrig(1:8,4); % Airspeed

case 2

% 2 waypoints (WPT 2 & 3) are being optimised

WPTTableTemp(1:2,1) = x0(1:2:4);

WPTTableTemp(1:2,2) = x0(2:2:4);

WPTTableTemp(1:2,3) = WPTTableOrig(1:2,3);

WPTTableTemp(3:8,1:3) = WPTTableOrig(3:8,1:3);

WPTTableTemp(1:8,4) = WPTTableOrig(1:8,4); % Airspeed

case 3

% 3 waypoints (WPTs 2, 3 & 7) are being optimised

WPTTableTemp(1:2,1) = x0(1:2:4);

WPTTableTemp(1:2,2) = x0(2:2:4);

WPTTableTemp(1:2,3) = WPTTableOrig(1:2,3);

WPTTableTemp(3:5,1:3) = WPTTableOrig(3:5,1:3);

WPTTableTemp(6,1) = x0(5);

WPTTableTemp(6,2) = x0(6);

WPTTableTemp(6,3) = WPTTableOrig(6,3);

WPTTableTemp(7:8,1:3) = WPTTableOrig(7:8,1:3);

WPTTableTemp(1:8,4) = WPTTableOrig(1:8,4); % Airspeed

case 4

% 4 waypoints (WPTs 2, 3, 7 & 8) are being optimised

WPTTableTemp(1:2,1) = x0(1:2:4);

WPTTableTemp(1:2,2) = x0(2:2:4);

WPTTableTemp(1:2,3) = WPTTableOrig(1:2,3);

WPTTableTemp(3:5,1:3) = WPTTableOrig(3:5,1:3);

WPTTableTemp(6:7,1) = x0(5:2:8);

WPTTableTemp(6:7,2) = x0(6:2:8);

WPTTableTemp(6:7,3) = WPTTableOrig(6:7,3);

WPTTableTemp(8,1:3) = WPTTableOrig(8,1:3);

WPTTableTemp(1:8,4) = WPTTableOrig(1:8,4); % Airspeed

end

% The mission consists of 5 laps

WPTTable = [WPTTableTemp; WPTTableTemp; WPTTableTemp; WPTTableTemp; WPTTableTemp];

save WPTTable WPTTable

S = load(’WPTTable.mat’);

WPTTable = S.WPTTable;

% Run simulation with the given waypoints

sim(’aerosonde_mission_2obj’);
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% Extract objective function value

S = load(’objFunc’);

objFunc = S.objFunc;

objFuncVal = objFunc(2,length(objFunc));

end

end

F.2 Mission Scenario 2

F.2.1 twoOptiPareto Function

function [history,T1,WPTTableOpti,missionOutputs,T2] = twoOptiPareto(numWptOpti,w1,w2)

% Runs the fmincon optimisation process using the AeroSim simualtion model

% to evaluate the given WPTTable in terms of a combination of fuel

% consumption AND flight time (two objectives).

%

% This combination of the two objectives uses an aggregate method, in which

% different weights are used with each objective, and are then added

% together to form ONE overall objective.

%

% Inputs:

% - numWptOpti = number of waypoints to be optimised

% - w1 = weight coefficient for objective #1

% - w2 = weight coefficient for objective #2

%

% Outputs:

% - history = structure that keeps track of the history of fuel

% consumptions, flight times, objective function values

% and function evaluations

% - T1 = summary table of the fmincon process

% - WPTTableOpti = optimised mission waypoint table

% - missionOutputs = vector containing the optimised values for fuel

% consumption (kg), flight time (min), and objective

% function.

% -- fuel_consumption = amount of fule consumed during mission (kg)

% -- totalDist2HA = time taken for the mission (hrs)

% - T2 = time taken

% Set up shared variable with OUTFUN

history.objFunc = [];

history.funccount = [];

history.iteration = [];

% Set up x0_history variable

x0_history = [];

save(’x0_history’,’x0_history’)

% Start optimisation

startSim = 1;

save startSim;

% Input values

maxIters = 20; % Maximum number of iterations evaluated

% Start clock

tic

% Baseline waypoint table (in radians)

WPTTableOrig = [...

(26+33.7693/60)*pi/180 (151+51.1585/60)*pi/180 900 20;...

(26+33.9588/60)*pi/180 (151+51.5236/60)*pi/180 900 20;...

(26+35.0415/60)*pi/180 (151+53.6234/60)*pi/180 750 30;...

(26+34.8070/60)*pi/180 (151+53.7740/60)*pi/180 750 20;...
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(26+34.5725/60)*pi/180 (151+53.6234/60)*pi/180 750 20;...

(26+33.9588/60)*pi/180 (151+51.5236/60)*pi/180 900 20;...

(26+34.2132/60)*pi/180 (151+51.4206/60)*pi/180 900 20;...

26.5808*pi/180 151.8411*pi/180 800 30];

save WPTTableOrig;

% Baseline waypoint table (in radians)

% -- only WPTs to be optimised ---

WPTTableOpt = [WPTTableOrig(1:2,1:3); WPTTableOrig(6:7,1:3)]; % Table of WPTs to be optimised

latOpt = WPTTableOpt(:,1);

lonOpt = WPTTableOpt(:,2);

% Calculate Upper Bounds (in radians)

% -- only WPTs 2-3, 7-8 to be optimised --

latUB = ones(numWptOpti,1)*(26+34.5393/60)*pi/180;

lonUB = ones(numWptOpti,1)*(151+52.6085/60)*pi/180;

% Calculate Lower Bounds (in radians)

% -- only WPTs 2-3, 7-8 to be optimised --

latLB = ones(numWptOpti,1)*(26+33.727/60)*pi/180;

lonLB = ones(numWptOpti,1)*(151+51.103/60)*pi/180;

% Initialise values

numCoord = 2; % Number of coordinates per waypoint

numVarOpti = numWptOpti * numCoord; % Number of variables to be optimised

x0 = zeros(numVarOpti,1); % Starting points for optimisation

lb = zeros(numVarOpti,1); % Lower bounds

ub = zeros(numVarOpti,1); % Upper bounds

% Set up the vector of starting points for optimisation

% -- only WPTs 2-3, 7-8 to be optimised --

x0(1:numCoord:numVarOpti,1) = latOpt(1:numWptOpti);

x0(2:numCoord:numVarOpti,1) = lonOpt(1:numWptOpti);

% Set up the upper bounds vector

% -- only WPTs 2-3, 7-8 to be optimised --

ub(1:numCoord:numVarOpti,1) = latUB(1:numWptOpti);

ub(2:numCoord:numVarOpti,1) = lonUB(1:numWptOpti);

% Set up the lower bounds vector

% -- only WPTs 2-3, 7-8 to be optimised --

lb(1:numCoord:numVarOpti,1) = latLB(1:numWptOpti);

lb(2:numCoord:numVarOpti,1) = lonLB(1:numWptOpti);

% Set up the options required for fmincon

options = optimset(’OutputFcn’,@outfun,’Display’,’iter’,...

’DiffMinChange’,1e-5,’DiffMaxChange’,1e-3,’MaxIter’,maxIters,...

’TolX’,1e-6);

% Run fmincon optimisation process

% -- WPTTableOpti = the optimised waypoints

[T1,WPTTableOpti,objFuncVal,output] = evalc(’fmincon(@run_model_2obj,x0,[],[],[],[],lb,ub,@distconstr,options)’);

out1 = load(’fuel_cons’);

fuel_cons = out1.fuel_cons;

fuelConsumption = fuel_cons(2,length(fuel_cons));

out2 = load(’minDist2A1’)

minDist2A1 = out2.minDist2A1;

minDistToA1 = minDist2A1(2,length(minDist2A1));

out3 = load(’minDist2A2’)

minDist2A2 = out3.minDist2A2;

minDistToA2 = minDist2A2(2,length(minDist2A2));

missionOutputs = [fuelConsumption, minDistToA1, minDistToA2, objFuncVal];

% Stop clock

T2 = evalc(’toc’);

% *********************************

% ** Set up 2objOptiResults file **

% *********************************

% Setting up filename
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filenameStem = ’2objOptiResults_’;

filenameTxtEnd = ’.txt’;

filenameMATEnd = ’.mat’;

filenameNo = num2str(w1/0.05);

filenameTxt = strcat(filenameStem, filenameNo, filenameTxtEnd);

filenameMAT = strcat(filenameStem, filenameNo, filenameMATEnd);

save(filenameMAT,’history’,’T1’,’WPTTableOpti’,’missionOutputs’,’T2’)

fid = fopen(filenameTxt,’wt’);

fprintf(fid, ’Two-objective Optimisation Settings:\n\n’);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’The initial starting point is at (0.463922478rad, 2.650127135rad, 850)\n\n’);

fprintf(fid, ’The original waypoint table used for this mission is:\n\n’);

for i = 1 : length(WPTTableOrig)

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

fprintf(fid, ’\n’);

fprintf(fid, ’The number of waypoints optimised : %d \n\n’, numWptOpti);

fprintf(fid, ’The initial guess for the waypoints to be optimised : \n\n’);

i = 1

for i = 1 : numVarOpti

if (rem(i,numCoord) == 1)

fprintf(fid, ’|%10.9frad ’, x0(i,1));

else

fprintf(fid, ’ %10.9frad|\n’, x0(i,1));

end

end

fprintf(fid, ’\n’);

fprintf(fid, ’The candidate coordinates are taken from an area bounded by: \n\n’);

fprintf(fid, ’--- Latitudes of %10.9frad to %10.9frad \n\n’, (26+33.8/60)*pi/180, (26+34.5/60)*pi/180);

fprintf(fid, ’--- Longitudes of %10.9frad to %10.9frad \n\n’, (151.8411)*pi/180, (151+54.5082/60)*pi/180);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’The results of the mission optimisation process is as follows: \n\n’);

fprintf(fid, ’The optimised mission waypoint table is : \n\n’);

switch numWptOpti

case 1

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(1), WPTTableOpti(2), WPTTableOrig(1,3));

i = 2;

for i = 2 : 8

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

case 2

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(1), WPTTableOpti(2), WPTTableOrig(1,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(3), WPTTableOpti(4), WPTTableOrig(2,3));

i = 3;

for i = 3 : 8

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

case 3

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(1), WPTTableOpti(2), WPTTableOrig(1,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(3), WPTTableOpti(4), WPTTableOrig(2,3));

i = 3;

for i = 3 : 5

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(5), WPTTableOpti(6), WPTTableOrig(6,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(7,1), WPTTableOrig(7,2), WPTTableOrig(7,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(8,1), WPTTableOrig(8,2), WPTTableOrig(8,3));

case 4

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(1), WPTTableOpti(2), WPTTableOrig(1,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(3), WPTTableOpti(4), WPTTableOrig(2,3));

i = 3;

for i = 3 : 5

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(i,1), WPTTableOrig(i,2), WPTTableOrig(i,3));

end

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(5), WPTTableOpti(6), WPTTableOrig(6,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOpti(7), WPTTableOpti(8), WPTTableOrig(7,3));

fprintf(fid, ’|%10.9frad %10.9frad %6.3fm|\n’, WPTTableOrig(8,1), WPTTableOrig(8,2), WPTTableOrig(8,3));

end

fprintf(fid, ’\n’);

fprintf(fid, ’*********************************************************************\n’);
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fprintf(fid, ’The process table T1 is : \n\n’);

fprintf(fid, ’%s’, T1);

fprintf(fid, ’\n’);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’The fuel consumption for this mission is %8.6fkg\n\n’, fuelConsumption);

fprintf(fid, ’The minimum distance to Hazard Area 1 is %8.6fm\n\n’, minDistToA1);

fprintf(fid, ’The minimum distance to Hazard Area 2 is %8.6fm\n\n’, minDistToA2);

fprintf(fid, ’*********************************************************************\n’);

fprintf(fid, ’%s’, T2);

fclose(fid)

function stop = outfun(x,optimValues,state)

% Function for generation the vector ’history’

% --- Keeps track of the history of the objective function values and

% function evaluations ---

stop = false;

switch state

case ’iter’

% Concatenate current objective function value and function

% evaluation value with history

history.objFunc = [history.objFunc,optimValues.fval];

history.funccount = [history.funccount,optimValues.funccount];

history.iteration = [history.iteration,optimValues.iteration];

otherwise

end

end

function objFuncVal = run_model_2obj(x0)

% Calls the AeroSim model ’aerosonde_mission_v3_2obj.mdl’ to run

% through the specified flight mission, and obtains the objective

% function value for the mission

%

% INPUT:

% - x0 = The waypoints to be optimised in the format

% |lat|

% |lon|fprintf(fid, ’The minimum distance to Hazard Area 1 is \n\n’, minDist2A1);

%

% OUTPUT:

% - objFunc = value of the objective function, a combination of fuel

% consumption and flight time

% Initialise

WPTTable = zeros(40,4); % Set up WPTTable

WPTTableTemp = zeros(8,4); % Set up WPTTableTemp

% Rearranging coordinates from x0 into WPTTable format

% [lat lon alt] <-- ’alt’ is taken from WPTTableOrig

% --- This is just for one lap of flight

switch numWptOpti

case 1

% only 1 waypoint (WPT 2) is being optimised

WPTTableTemp(1,1) = x0(1);

WPTTableTemp(1,2) = x0(2);

WPTTableTemp(1,3) = WPTTableOrig(1,3);

WPTTableTemp(2:8,1:3) = WPTTableOrig(2:8,1:3);

WPTTableTemp(1:8,4) = WPTTableOrig(1:8,4); % Airspeed

case 2

% 2 waypoints (WPT 2 & 3) are being optimised

WPTTableTemp(1:2,1) = x0(1:2:4);

WPTTableTemp(1:2,2) = x0(2:2:4);

WPTTableTemp(1:2,3) = WPTTableOrig(1:2,3);

WPTTableTemp(3:8,1:3) = WPTTableOrig(3:8,1:3);

WPTTableTemp(1:8,4) = WPTTableOrig(1:8,4); % Airspeed

case 3

% 3 waypoints (WPTs 2, 3 & 7) are being optimised

WPTTableTemp(1:2,1) = x0(1:2:4);

WPTTableTemp(1:2,2) = x0(2:2:4);

WPTTableTemp(1:2,3) = WPTTableOrig(1:2,3);

WPTTableTemp(3:5,1:3) = WPTTableOrig(3:5,1:3);

WPTTableTemp(6,1) = x0(5);

WPTTableTemp(6,2) = x0(6);

WPTTableTemp(6,3) = WPTTableOrig(6,3);
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WPTTableTemp(7:8,1:3) = WPTTableOrig(7:8,1:3);

WPTTableTemp(1:8,4) = WPTTableOrig(1:8,4); % Airspeed

case 4

% 4 waypoints (WPTs 2, 3, 7 & 8) are being optimised

WPTTableTemp(1:2,1) = x0(1:2:4);

WPTTableTemp(1:2,2) = x0(2:2:4);

WPTTableTemp(1:2,3) = WPTTableOrig(1:2,3);

WPTTableTemp(3:5,1:3) = WPTTableOrig(3:5,1:3);

WPTTableTemp(6:7,1) = x0(5:2:8);

WPTTableTemp(6:7,2) = x0(6:2:8);

WPTTableTemp(6:7,3) = WPTTableOrig(6:7,3);

WPTTableTemp(8,1:3) = WPTTableOrig(8,1:3);

WPTTableTemp(1:8,4) = WPTTableOrig(1:8,4); % Airspeed

end

% The mission consists of 5 laps

WPTTable = [WPTTableTemp; WPTTableTemp; WPTTableTemp; WPTTableTemp; WPTTableTemp];

save WPTTable WPTTable

S = load(’WPTTable.mat’);

WPTTable = S.WPTTable;

% Run simulation with the given waypoints

sim(’aerosonde_mission_2obj’);

% Extract objective function value

S = load(’objFunc’);

objFunc = S.objFunc;

objFuncVal = objFunc(2,length(objFunc));

end

function [c,ceq] = distconstr(x0)

% Sets the constraints for the waypoints to be optimised

% -- minimum distance from other fixed waypoints

% Rearranging coordinates from x0 into WPTTable format

% [lat lon alt] <-- ’alt’ is taken from WPTTableOrig

% --- This is just for one lap of flight

% Define starting WPT (Kingaroy)

startLat = 26.5808*pi/180; % Latitude of Kingaroy

startLon = 151.8411*pi/180; % Longitude of Kingaroy

switch numWptOpti

case 1

% only 1 waypoint (WPT 2) is being optimised

% -- distance(WPT1 -> WPT2) >= 2000m

c(1) = 2000 - CalcGCDist(startLat,startLon,x0(1),x0(2));

% -- distance(WPT2 -> WPT3) >= 300m

c(2) = 300 - CalcGCDist(x0(1),x0(2),WPTTableOrig(2,1),WPTTableOrig(2,2));

% No nonlinear equality constraints

ceq = [];

case 2

% 2 waypoints (WPT 2 & 3) are being optimised

% -- distance(WPT1 -> WPT2) >= 2000m

c(1) = 2000 - CalcGCDist(startLat,startLon,x0(1),x0(2));

% -- distance(WPT2 -> WPT3) >= 300m

c(2) = 300 - CalcGCDist(x0(1),x0(2),x0(3),x0(4));

% -- distance(WPT3 -> WPT4) >= 3000m

c(3) = 3000 - CalcGCDist(x0(3),x0(4),WPTTableOrig(3,1),WPTTableOrig(3,2));

% No nonlinear equality constraints

ceq = [];

case 3

% 3 waypoints (WPTs 2, 3 & 7) are being optimised

% -- distance(WPT1 -> WPT2) >= 2000m

c(1) = 2000 - CalcGCDist(startLat,startLon,x0(1),x0(2));

% -- distance(WPT2 -> WPT3) >= 300m

c(2) = 300 - CalcGCDist(x0(1),x0(2),x0(3),x0(4));

% -- distance(WPT3 -> WPT4) >= 3000m

c(3) = 3000 - CalcGCDist(x0(3),x0(4),WPTTableOrig(3,1),WPTTableOrig(3,2));

% -- distance(WPT6 -> WPT7) >= 3000m

c(4) = 3000 - CalcGCDist(WPTTableOrig(5,1),WPTTableOrig(5,2),x0(5),x0(6));
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% -- distance(WPT7 -> WPT8) >= 300m

c(5) = 300 - CalcGCDist(x0(5),x0(6),WPTTableOrig(7,1),WPTTableOrig(7,2));

% No nonlinear equality constraints

ceq = [];

case 4

% 4 waypoints (WPTs 2, 3, 7 & 8) are being optimised

% -- distance(WPT1 -> WPT2) >= 2000m

c(1) = 2000 - CalcGCDist(startLat,startLon,x0(1),x0(2));

% -- distance(WPT2 -> WPT3) >= 300m

c(2) = 300 - CalcGCDist(x0(1),x0(2),x0(3),x0(4));

% -- distance(WPT3 -> WPT4) >= 3000m

c(3) = 3000 - CalcGCDist(x0(3),x0(4),WPTTableOrig(3,1),WPTTableOrig(3,2));

% -- distance(WPT6 -> WPT7) >= 3000m

c(4) = 3000 - CalcGCDist(WPTTableOrig(5,1),WPTTableOrig(5,2),x0(5),x0(6));

% -- distance(WPT7 -> WPT8) >= 300m

c(5) = 300 - CalcGCDist(x0(5),x0(6),x0(7),x0(8));

% -- distance(WPT8 -> WPT9) >= 1700m

c(6) = 1700 -CalcGCDist(x0(7),x0(8),WPTTableOrig(8,1),WPTTableOrig(8,2));

% No nonlinear equality constraints

ceq = [];

end

end

end

F.2.2 Updated NavigateWaypoints Function

function Navigate = NavigateWaypoints(Argument)

% This function performs waypoint navigation

% Load waypoint list

S = load (’WPTTable.mat’);

WPTTable = S.WPTTable;

% Number of waypoints is table

SizeOfTable = size(WPTTable);

NoOfWPT = SizeOfTable(1);

% Allocating inputs

CurrentWaypoint = Argument(1);

CurrentLatitude = Argument(2);

CurrentLongitude = Argument(3);

CurrentAltitude = Argument(4);

CurrentAirspeed = Argument(5);

PrevMinDist2A1 = Argument(6);

PrevMinDist2A2 = Argument(7);

% Initialise

if (CurrentWaypoint == 0)

CurrentWaypoint = 1;

end

EndOfMission = 0;

% Get current waypoint coordinates

WPTLat = WPTTable(CurrentWaypoint, 1);

WPTLon = WPTTable(CurrentWaypoint, 2);

WPTAlt = WPTTable(CurrentWaypoint, 3);

WPTAirspeed = WPTTable(CurrentWaypoint, 4);

[Bearing, Distance] = CalculateGC(CurrentLatitude, CurrentLongitude, WPTLat, WPTLon);

Waypoint = CurrentWaypoint;

XTE = 0;

% A waypoint is captured when the aircraft comes with 20m of it

if (Distance > 20)

if (CurrentWaypoint ~= 1) % Not the first waypoint in table

LastWPTLat = WPTTable(CurrentWaypoint-1, 1);

LastWPTLon = WPTTable(CurrentWaypoint-1, 2);

LastWPTAlt = WPTTable(CurrentWaypoint-1, 3);
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[RequiredTrack, TrackDistance] = CalculateGC(LastWPTLat, LastWPTLon, WPTLat, WPTLon);

TrackError = RequiredTrack - Bearing;

XTE = Distance * sin(TrackError);

EndOfMission = 0;

else

LastWPTLat = 26.5808*pi/180; % Latitude of starting point (Kingaroy)

LastWPTLon = 151.8411*pi/180; % Longitude of starting point (Kingaroy)

LastWPTAlt = 850; % Altitude of starting point (Kingaroy @ 850m)

[RequiredTrack, TrackDistance] = CalculateGC(LastWPTLat, LastWPTLon, WPTLat, WPTLon);

TrackError = RequiredTrack - Bearing;

XTE = Distance * sin(TrackError);

EndOfMission = 0;

end

else % (Distance < 20)

if (CurrentWaypoint == NoOfWPT) % Last waypoint in table

if (Distance < 5)

LastWPTLat = WPTTable(CurrentWaypoint, 1);

LastWPTLon = WPTTable(CurrentWaypoint, 2);

LastWPTAlt = WPTTable(CurrentWaypoint, 3);

[RequiredTrack, TrackDistance] = CalculateGC(LastWPTLat, LastWPTLon, WPTLat, WPTLon);

TrackError = RequiredTrack - Bearing;

XTE = Distance * sin(TrackError);

EndOfMission = 1;

end

else % Other waypoints in table

WPTLat = WPTTable(CurrentWaypoint+1, 1);

WPTLon = WPTTable(CurrentWaypoint+1, 2);

WPTAlt = WPTTable(CurrentWaypoint+1, 3);

LastWPTLat = WPTTable(CurrentWaypoint, 1);

LastWPTLon = WPTTable(CurrentWaypoint, 2);

LastWPTAlt = WPTTable(CurrentWaypoint, 3);

[RequiredTrack, TrackDistance] = CalculateGC(LastWPTLat, LastWPTLon, WPTLat, WPTLon);

TrackError = RequiredTrack - Bearing;

XTE = Distance * sin(TrackError);

Waypoint = CurrentWaypoint + 1;

EndOfMission = 0;

end

end

% Target airspeed when reached target altitude at descent

if ((Waypoint == 3) || (Waypoint == 8) || (Waypoint == 11) ...

|| (Waypoint == 16) || (Waypoint == 19) || (Waypoint == 24) ...

|| (Waypoint == 27) || (Waypoint == 32) || (Waypoint == 35) ...

|| (Waypoint == 40))

if (CurrentAltitude > WPTAlt + 10)

TargetAirspeed = WPTAirspeed;

elseif (CurrentAirspeed > 21)

TargetAirspeed = CurrentAirspeed - 2;

else

TargetAirspeed = 20;

end

else

TargetAirspeed = WPTAirspeed;

end

% Calculate the distances to nearest point in Hazard Areas 1 and 2

% respectively, and compare to previous distances to obtain the minimum

% distances

PrevDistancesToHA = [PrevMinDist2A1,PrevMinDist2A2];

distances = distToHazard(CurrentLatitude,CurrentLongitude,PrevDistancesToHA);

minDist2A1 = distances(1);

minDist2A2 = distances(2);

% Output of function

Navigate = [Bearing, WPTAlt, TargetAirspeed, XTE, Waypoint, EndOfMission, minDist2A1, minDist2A2];

F.2.3 distToHazard Function

function distances = distToHazard(CurrentLatitude,CurrentLongitude,prevDistances)
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% This function determines the distance from the current position to each

% of the hazard areas, A1 and A2 (using the given coordinates), as well as

% the minimum distances to these A1 and A2.

%

% Inputs:

% - CurrentLatitude = latitude of current position (rad)

% - CurrentLongitude = longitude of current position (rad)

% - prevDistances = minimum distances from the previous time step (m)

%

% Outputs:

% - minDist_to_A1 = minimum distance between the aircraft and Area 1 during

% the entire mission (m)

% - minDist_to_A2 = minimum distance between the aircraft and Area 2 during

% the entire mission (m)

% Set up previous distances

prevMinDistToA1 = prevDistances(1);

prevMinDistToA2 = prevDistances(2);

latLB_A = (26+33.778/60)*pi/180;

latUB_A = (26+33.9405/60)*pi/180;

lonLB_A = (151+50.842/60)*pi/180;

lonUB_A = (151+51.0407/60)*pi/180;

if (CurrentLatitude > latUB_A)

if (CurrentLongitude < lonLB_A)

% A1S1

dist_to_A1 = CalcGCDist(CurrentLatitude,CurrentLongitude,latUB_A,lonLB_A);

elseif ((CurrentLongitude >= lonLB_A) && (CurrentLongitude <= lonUB_A))

% A1S2

dist_to_A1 = CalcGCDist(CurrentLatitude,CurrentLongitude,latUB_A,CurrentLongitude);

elseif (CurrentLongitude > lonUB_A)

% A1S3

dist_to_A1 = CalcGCDist(CurrentLatitude,CurrentLongitude,latUB_A,lonUB_A);

end

elseif ((CurrentLatitude >= latLB_A) && (CurrentLatitude <= latUB_A))

if (CurrentLongitude < lonLB_A)

% A1S4

dist_to_A1 = CalcGCDist(CurrentLatitude,CurrentLongitude,CurrentLatitude,lonLB_A);

elseif (CurrentLongitude > lonUB_A)

% A1S5

dist_to_A1 = CalcGCDist(CurrentLatitude,CurrentLongitude,CurrentLatitude,lonUB_A);

end

elseif (CurrentLatitude < latLB_A)

if (CurrentLongitude < lonLB_A)

% A1S6

dist_to_A1 = CalcGCDist(CurrentLatitude,CurrentLongitude,latLB_A,lonLB_A);

elseif ((CurrentLongitude >= lonLB_A) && (CurrentLongitude <= lonUB_A))

% A1S7

dist_to_A1 = CalcGCDist(CurrentLatitude,CurrentLongitude,latLB_A,CurrentLongitude);

elseif (CurrentLongitude > lonUB_A)

% A1S8

dist_to_A1 = CalcGCDist(CurrentLatitude,CurrentLongitude,latLB_A,lonUB_A);

end

end

% Determine minimum distance to Area 1

minDist_to_A1 = min(dist_to_A1,prevMinDistToA1);

latLB_B = (26+34.8484/60)*pi/180;

latUB_B = (26+34.973/60)*pi/180;

lonLB_B = (151+52.443/60)*pi/180;

lonUB_B = (151+52.6538/60)*pi/180;

if (CurrentLatitude > latUB_B)

if (CurrentLongitude < lonLB_B)

% A2S1

dist_to_A2 = CalcGCDist(CurrentLatitude,CurrentLongitude,latUB_B,lonLB_B);

elseif ((CurrentLongitude >= lonLB_B) && (CurrentLongitude <= lonUB_B))

% A2S2

dist_to_A2 = CalcGCDist(CurrentLatitude,CurrentLongitude,latUB_B,CurrentLongitude);

elseif (CurrentLongitude > lonUB_B)

% A2S3
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dist_to_A2 = CalcGCDist(CurrentLatitude,CurrentLongitude,latUB_B,lonUB_B);

end

elseif ((CurrentLatitude >= latLB_B) && (CurrentLatitude <= latUB_B))

if (CurrentLongitude < lonLB_B)

% A2S4

dist_to_A2 = CalcGCDist(CurrentLatitude,CurrentLongitude,CurrentLatitude,lonLB_B);

elseif (CurrentLongitude > lonUB_B)

% A2S5

dist_to_A2 = CalcGCDist(CurrentLatitude,CurrentLongitude,CurrentLatitude,lonUB_B);

end

elseif (CurrentLatitude < latLB_B)

if (CurrentLongitude < lonLB_B)

% A2S6

dist_to_A2 = CalcGCDist(CurrentLatitude,CurrentLongitude,latLB_B,lonLB_B);

elseif ((CurrentLongitude >= lonLB_B) && (CurrentLongitude <= lonUB_B))

% A2S7

dist_to_A2 = CalcGCDist(CurrentLatitude,CurrentLongitude,latLB_B,CurrentLongitude);

elseif (CurrentLongitude > lonUB_B)

% A2S8

dist_to_A2 = CalcGCDist(CurrentLatitude,CurrentLongitude,latLB_B,lonUB_B);

end

end

% Determine minimum distance to Area 2

minDist_to_A2 = min(dist_to_A2,prevMinDistToA2);

% Outputs

distances = [minDist_to_A1,minDist_to_A2];
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Static Pressure MAP

(kPa) 1500 2100 2800 3500 4500 5100 5500 6000 7000

101325 97.8314 240.3359 420.1356 558.1554 838.3910 1106.5913 1128.4414 1235.4415 1550.8231

100129.439 87.5077 225.8756 400.8572 534.0588 779.2346 1004.4305 1066.4694 1197.8770 1441.2798

98945.3256 77.2829 211.5537 381.7634 510.1930 720.6447 903.2481 1005.0910 1160.6721 1332.7855

97772.5771 68.9403 197.6195 359.8520 483.2211 661.5460 804.2512 932.5131 1100.2486 1217.8286

96611.1094 68.0228 184.8491 325.7977 442.7788 598.6060 711.2060 812.1037 943.3517 1073.0865

95460.8393 67.5400 173.3881 293.6515 402.7264 546.4334 637.7748 714.5915 815.0657 933.6945

94321.6841 67.5400 163.3692 263.5892 363.0610 506.1699 586.0628 642.4203 718.4369 800.0887

93193.5613 68.1771 156.9917 252.7331 341.5134 475.8003 554.2304 601.1371 658.2150 715.0664

92076.389 69.0597 152.0761 249.4542 327.1801 449.4797 530.3621 572.1800 612.5897 649.5498

90970.0858 68.3064 150.6071 243.1896 316.7660 442.8240 512.2308 552.4031 586.8222 614.8729

89874.5705 67.5203 149.2642 236.8749 307.0984 437.0087 495.3502 533.9784 563.6773 584.3153

88789.7625 67.3500 146.8787 231.4682 300.3390 426.2735 483.7622 519.6080 547.9996 566.0254

87715.5816 67.1813 144.5166 226.1145 293.6458 415.6434 472.2878 505.3783 532.4756 547.9147

86641.9479 67.0144 142.1776 220.8133 287.0183 405.1177 460.9261 491.2884 517.1040 529.9818

85598.7819 66.8490 139.8617 215.5643 280.4560 394.6955 449.6762 477.3371 501.8836 512.2255

84556.0048 66.6853 137.5687 210.3671 273.9585 384.3762 438.5372 463.5234 486.8134 494.6442

83523.538 66.5232 135.2983 205.2213 267.5252 374.1589 427.5084 449.8463 471.8922 477.2369

82501.3031 66.3627 133.0504 200.1265 261.1556 364.0429 416.5889 436.3048 457.1188 460.0020

81489.2226 66.2038 130.8248 195.0823 254.8493 354.0273 405.7779 422.8977 442.4922 442.9383

80487.2191 66.0465 128.6214 190.0883 248.6059 344.1115 395.0745 409.6242 428.0113 426.0445

79495.2155 65.0185 126.1068 185.7358 241.3147 334.5324 382.5910 397.6461 413.6754 409.3193

78513.1354 63.1673 123.2991 181.9921 233.0357 325.2763 368.4294 386.8992 399.4833 392.7615

77540.9027 61.3346 120.5194 178.2859 224.8398 316.1130 354.4098 376.2601 385.4336 376.3696

76578.4417 59.5204 117.7678 174.6170 216.7263 307.0418 340.5311 365.7279 371.5251 360.1425

75625.677 57.7244 115.0438 170.9851 208.6945 298.0620 326.7923 355.3018 357.7567 344.0789

74682.5337 55.9466 112.3474 167.3898 200.7438 289.1729 313.1921 344.9810 344.1273 328.1775

73748.9373 54.1867 109.6782 163.8309 192.8735 280.3737 299.7297 334.7646 330.6359 312.4371

72824.8137 52.4448 107.0361 160.3082 185.0832 271.6639 286.4038 324.6519 317.2814 296.8564

71910.0892 50.7205 104.4209 156.8213 177.3721 263.0426 273.2135 314.6421 304.0627 281.4341

71004.6905 49.0138 101.8324 153.3699 169.7395 254.5092 260.1576 304.7343 290.9788 266.1691

70108.5447 47.3246 99.2703 149.9538 162.1850 246.0630 247.2352 294.9278 278.0286 251.0601

69221.5792 44.9194 95.8790 145.2034 157.2759 238.8041 240.6811 285.2217 267.6561 239.5301

68343.722 42.4377 92.4045 140.3129 152.7716 231.7716 235.0549 275.6153 257.7275 228.5911

67474.9012 39.9815 88.9657 135.4727 148.3137 224.8114 229.4866 266.1078 247.9011 217.7647

66615.0457 37.5507 85.5624 130.6824 143.9018 217.9231 223.9758 256.6984 238.1762 207.0501

65764.0844 35.1451 82.1942 125.9417 139.5355 211.1061 218.5220 247.3864 228.5518 196.4463

64921.9467 32.7631 78.8611 121.2502 135.2145 204.3597 213.1248 238.1709 219.0272 185.9524

64088.5626 30.4084 75.5625 116.6074 130.9384 197.6835 207.7836 229.0511 209.6016 175.5676

63263.8621 28.0769 72.2984 112.0130 126.7069 191.0768 202.4981 220.0264 200.2743 165.2910

62447.7761 25.7699 69.0683 107.4666 122.5195 184.5391 197.2678 211.0960 191.0443 155.1217

61640.2353 23.4869 65.8721 102.9678 118.3760 178.0699 192.0923 202.2591 181.9111 145.0590

60841.1712 21.2280 62.7094 98.5162 114.2760 171.6686 186.9711 193.5149 172.8736 135.1018

60050.5157 18.9928 59.5799 94.1114 110.2192 165.3347 181.9038 184.8628 163.9313 125.2495

Table G.1: Look-up table for Engine power (open throttle calculations)
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Static Pressure MAP

(kPa) 1500 2100 2800 3500 4500 5100 5500 6000 7000

101325 87.9625 116.3000 158.3000 199.9375 255.2750 343.1250 330.2250 344.2875 413.3000

100129.439 82.5825 111.5178 153.5178 190.9708 246.9061 313.2360 314.6827 337.7119 408.5178

98945.3256 77.2540 106.7813 148.7813 182.0899 238.6173 283.6331 299.2892 331.1993 403.7813

97772.5771 72.0903 101.7492 142.8395 172.1572 227.3378 254.0870 280.7459 317.6991 391.0168

96611.1094 67.4444 95.3611 131.8055 157.6389 203.5277 223.8888 248.8055 275.3055 345.1388

95460.8393 62.8434 88.7650 118.4518 143.7997 183.1822 200.9909 220.6776 240.3297 300.2423

94321.6841 58.2867 81.9301 102.5036 130.6994 166.6644 186.1819 196.7554 213.5596 256.3848

93193.5613 56.1936 77.5807 96.7903 122.9678 156.3549 175.9517 185.1614 199.9517 233.1131

92076.389 55.0764 74.2292 95.1146 117.3819 148.5347 167.5729 178.4583 191.5729 218.0313

90970.0858 53.9701 71.4252 93.4551 113.3953 145.4252 162.8803 173.3654 187.3953 213.3953

89874.5705 52.9122 68.8119 91.7115 109.7115 142.6488 158.6363 168.5986 183.5861 209.5485

88789.7625 52.1528 67.1846 89.2165 107.2165 139.6113 155.4903 165.1272 180.0062 205.6431

87715.5816 51.4009 65.5734 86.7458 104.7458 136.6036 152.3752 161.6899 176.4614 201.7761

86641.9479 50.6564 63.9779 84.2995 102.2995 133.6255 149.2906 158.2862 172.9514 197.9470

85598.7819 49.9191 62.3982 81.8772 99.8772 130.6766 146.2365 154.9161 169.4760 194.1556

84556.0048 49.1892 60.8340 79.4788 97.4788 127.7568 143.2124 151.5792 166.0348 190.4016

83523.538 48.4665 59.2853 77.1041 95.1041 124.8659 140.2183 148.2753 162.6277 186.6847

82501.3031 47.7509 57.7520 74.7530 92.7530 122.0036 137.2538 145.0042 159.2543 183.0047

81489.2226 47.0425 56.2338 72.4252 90.4252 119.1698 134.3187 141.7655 155.9144 179.3612

80487.2191 46.3411 54.7308 70.1206 88.1206 116.3642 131.4129 138.5591 152.6078 175.7540

79495.2155 45.2933 53.4952 68.6971 86.3943 114.1419 128.5866 136.0409 149.7380 172.4856

78513.1354 43.9184 52.5131 68.1079 85.2158 112.4723 125.8368 134.1750 147.2828 169.5394

77540.9027 42.5573 51.5409 67.5245 84.0491 110.8195 123.1145 132.3277 144.8523 166.6227

76578.4417 41.2098 50.5784 66.9471 82.8941 109.1834 120.4196 130.4990 142.4461 163.7353

75625.677 39.8759 49.6257 66.3754 81.7508 107.5637 117.7519 128.6888 140.0642 160.8770

74682.5337 38.5555 48.6825 65.8095 80.6190 105.9603 115.1111 126.8968 137.7063 158.0476

73748.9373 37.2485 47.7489 65.2494 79.4987 104.3732 112.4970 125.1230 135.3723 155.2468

72824.8137 35.9547 46.8248 64.6949 78.3898 102.8022 109.9095 123.3671 133.0620 152.4744

71910.0892 34.6741 45.9101 64.1461 77.2921 101.2472 107.3482 121.6292 130.7752 149.7303

71004.6905 33.4066 45.0047 63.6028 76.2056 99.7080 104.8131 119.9089 128.5117 147.0141

70108.5447 32.1520 44.1085 63.0651 75.1303 98.1845 102.3039 118.2062 126.2714 144.3256

69221.5792 31.9222 43.6886 62.9881 74.2994 96.8324 101.2994 116.5988 124.2875 142.3653

68343.722 31.8344 43.3375 60.8468 73.5093 95.5156 100.5093 115.0187 122.3562 140.5218

67474.9012 31.7475 42.9900 59.7174 72.7274 94.2124 99.7274 113.4548 120.4448 138.6973

66615.0457 31.6615 42.6460 58.5996 71.9535 92.9226 98.9535 111.9071 118.5531 136.8916

65764.0844 31.5764 42.3056 57.4933 71.1877 91.6461 98.1877 110.3754 116.6810 135.1046

64921.9467 31.4922 41.9688 56.3985 70.4298 90.3829 97.4298 108.8595 114.8283 133.3361

64088.5626 31.4089 41.6354 55.3151 69.6797 89.1328 96.6797 107.3594 112.9948 131.5860

63263.8621 31.3264 41.3055 54.2430 68.9375 87.8958 95.9375 105.8750 111.1805 129.8541

62447.7761 31.2448 40.9791 53.1821 68.2030 86.6717 95.2030 104.4060 109.3851 128.1403

61640.2353 31.1640 40.6561 52.1323 67.4762 85.4604 94.4762 102.9524 107.6085 126.4445

60841.1712 31.0841 40.3365 51.0935 66.7571 84.2618 93.7571 101.5141 105.8506 124.7665

60050.5157 31.0051 40.0202 50.0657 66.0455 83.0758 93.0455 100.0909 104.1111 123.1061

Table G.2: Look-up table for Engine fuel flow (open throttle calculations)
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Static Pressure MAP

(kPa) 1500 2100 2800 3500 4500 5100 5500 6000 7000

101325 0.6228 1.0929 1.4329 1.5229 1.7791 2.0720 1.9592 1.9663 2.1156

100129.439 0.5571 1.0271 1.3671 1.4571 1.6536 1.8807 1.8516 1.9065 1.9662

98945.3256 0.4920 0.9620 1.3020 1.3920 1.5293 1.6913 1.7451 1.8473 1.8182

97772.5771 0.4389 0.8986 1.2273 1.3184 1.4038 1.5059 1.6191 1.7511 1.6613

96611.1094 0.4330 0.8406 1.1111 1.2081 1.2703 1.3317 1.4100 1.5014 1.4639

95460.8393 0.4300 0.7884 1.0015 1.0988 1.1596 1.1942 1.2407 1.2972 1.2737

94321.6841 0.4300 0.7429 0.8990 0.9906 1.0741 1.0974 1.1154 1.1434 1.0915

93193.5613 0.4340 0.7139 0.8619 0.9318 1.0097 1.0377 1.0437 1.0476 0.9755

92076.389 0.4396 0.6915 0.8508 0.8927 0.9538 0.9931 0.9934 0.9750 0.8861

90970.0858 0.4349 0.6849 0.8294 0.8643 0.9397 0.9591 0.9591 0.9340 0.8388

89874.5705 0.4298 0.6787 0.8079 0.8379 0.9274 0.9275 0.9271 0.8971 0.7971

88789.7625 0.4288 0.6679 0.7894 0.8194 0.9046 0.9058 0.9022 0.7822 0.7722

87715.5816 0.4277 0.6572 0.7712 0.8012 0.8820 0.8843 0.8775 0.8475 0.7475

86641.9479 0.4266 0.6465 0.7531 0.7831 0.8597 0.8630 0.8530 0.8230 0.7230

85598.7819 0.4256 0.6360 0.7352 0.7652 0.8376 0.8420 0.8288 0.7988 0.6988

84556.0048 0.4245 0.6256 0.7174 0.7475 0.8157 0.8211 0.8048 0.7748 0.6748

83523.538 0.4235 0.6152 0.6999 0.7299 0.7940 0.8005 0.7810 0.7510 0.6510

82501.3031 0.4225 0.6050 0.6825 0.7125 0.7725 0.7800 0.7575 0.7275 0.6275

81489.2226 0.4215 0.5949 0.6653 0.6953 0.7513 0.7598 0.7343 0.7042 0.6042

80487.2191 0.4205 0.5849 0.6483 0.6783 0.7302 0.7397 0.7112 0.6812 0.5812

79495.2155 0.4139 0.5734 0.6334 0.6584 0.7099 0.7164 0.6904 0.6584 0.5584

78513.1354 0.4021 0.5607 0.6207 0.6358 0.6903 0.6899 0.6717 0.6358 0.5358

77540.9027 0.3905 0.5480 0.6080 0.6134 0.6708 0.6636 0.6533 0.6134 0.5134

76578.4417 0.3789 0.5355 0.5955 0.5913 0.6516 0.6376 0.6350 0.5913 0.4913

75625.677 0.3675 0.5231 0.5831 0.5694 0.6325 0.6119 0.6169 0.5694 0.4694

74682.5337 0.3562 0.5109 0.5709 0.5477 0.6136 0.5864 0.5990 0.5477 0.4477

73748.9373 0.3450 0.4987 0.5587 0.5262 0.5950 0.5612 0.5812 0.5262 0.4262

72824.8137 0.3339 0.4867 0.5467 0.5050 0.5765 0.5363 0.5637 0.5050 0.4050

71910.0892 0.3229 0.4748 0.5348 0.4839 0.5582 0.5116 0.5463 0.4839 0.3839

71004.6905 0.3120 0.4631 0.5231 0.4631 0.5401 0.4871 0.5291 0.4631 0.3631

70108.5447 0.3013 0.4514 0.5114 0.4425 0.5222 0.4629 0.5121 0.4425 0.3425

69221.5792 0.2860 0.4360 0.4952 0.4291 0.5068 0.4507 0.4952 0.4260 0.3268

68343.722 0.2702 0.4202 0.4785 0.4168 0.4918 0.4401 0.4785 0.4102 0.3118

67474.9012 0.2545 0.4046 0.4620 0.4047 0.4771 0.4297 0.4620 0.3945 0.2971

66615.0457 0.2391 0.3891 0.4457 0.3926 0.4624 0.4194 0.4457 0.3791 0.2825

65764.0844 0.2237 0.3738 0.4295 0.3807 0.4480 0.4092 0.4295 0.3638 0.2680

64921.9467 0.2086 0.3586 0.4135 0.3689 0.4337 0.3991 0.4135 0.3486 0.2537

64088.5626 0.1936 0.3436 0.3977 0.3572 0.4195 0.3891 0.3977 0.3336 0.2395

63263.8621 0.1787 0.3288 0.3820 0.3457 0.4055 0.3792 0.3820 0.3187 0.2255

62447.7761 0.1641 0.3141 0.3665 0.3343 0.3916 0.3694 0.3665 0.3041 0.2116

61640.2353 0.1495 0.2995 0.3512 0.3230 0.3779 0.3597 0.3512 0.2895 0.1979

60841.1712 0.1351 0.2852 0.3360 0.3118 0.3643 0.3501 0.3360 0.2751 0.1843

60050.5157 0.1209 0.2709 0.3210 0.3007 0.3509 0.3406 0.3210 0.2609 0.1709

Table G.3: Look-up table for Engine torque (open throttle calculations)
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Static Pressure MAP

(kPa) 1500 2100 2800 3500 4500 5100 5500 6000 7000

101325 0.8991 0.4839 0.3768 0.3582 0.3045 0.3101 0.2926 0.2787 0.2665

100129.439 0.9437 0.4937 0.3830 0.3576 0.3169 0.3119 0.2951 0.2819 0.2834

98945.3256 0.9996 0.4057 0.3897 0.3569 0.3311 0.3140 0.2978 0.2854 0.3030

97772.5771 1.0457 0.5149 0.3969 0.3563 0.3436 0.3159 0.3011 0.2888 0.3211

96611.1094 0.9915 0.5159 0.4046 0.3560 0.3400 0.3158 0.3064 0.2918 0.3216

95460.8393 0.9305 0.5119 0.4034 0.3571 0.3352 0.3151 0.3088 0.2949 0.3216

94321.6841 0.8630 0.5015 0.3889 0.3600 0.3293 0.3177 0.3063 0.2973 0.3204

93193.5613 0.8242 0.4942 0.3830 0.3601 0.3286 0.3175 0.3080 0.3038 0.3260

92076.389 0.7975 0.4881 0.3813 0.3588 0.3305 0.3160 0.3119 0.3127 0.3357

90970.0858 0.7901 0.4742 0.3843 0.3580 0.3284 0.3180 0.3138 0.3193 0.3471

89874.5705 0.7836 0.4610 0.3872 0.3573 0.3264 0.3203 0.3157 0.3257 0.3586

88789.7625 0.7744 0.4574 0.3854 0.3570 0.3275 0.3214 0.3178 0.3285 0.3633

87715.5816 0.7651 0.4537 0.3836 0.3567 0.3287 0.3226 0.3199 0.3314 0.3683

86641.9479 0.7559 0.4500 0.3818 0.3564 0.3298 0.3239 0.3222 0.3345 0.3735

85598.7819 0.7467 0.4461 0.3798 0.3561 0.3311 0.3252 0.3245 0.3377 0.3790

84556.0048 0.7376 0.4422 0.3778 0.3558 0.3324 0.3266 0.3270 0.3411 0.3849

83523.538 0.7286 0.4382 0.3757 0.3555 0.3337 0.3280 0.3296 0.3446 0.3912

82501.3031 0.7195 0.4341 0.3735 0.3552 0.3351 0.3295 0.3323 0.3484 0.3978

81489.2226 0.7106 0.4298 0.3713 0.3548 0.3366 0.3310 0.3352 0.3524 0.4049

80487.2191 0.7016 0.4255 0.3689 0.3545 0.3382 0.3326 0.3383 0.3566 0.4125

79495.2155 0.6966 0.4242 0.3699 0.3580 0.3412 0.3361 0.3421 0.3620 0.4214

78513.1354 0.6953 0.4259 0.3742 0.3657 0.3458 0.3415 0.3468 0.3687 0.4317

77540.9027 0.6939 0.4277 0.3787 0.3738 0.3506 0.3474 0.3517 0.3758 0.4427

76578.4417 0.6924 0.4295 0.3834 0.3825 0.3556 0.3536 0.3568 0.3834 0.4546

75625.677 0.6908 0.4314 0.3882 0.3917 0.3609 0.3603 0.3622 0.3915 0.4676

74682.5337 0.6891 0.4333 0.3932 0.4016 0.3664 0.3675 0.3678 0.4002 0.4816

73748.9373 0.6874 0.4354 0.3983 0.4122 0.3723 0.3753 0.3738 0.4094 0.4969

72824.8137 0.6856 0.4375 0.4036 0.4235 0.3784 0.3838 0.3800 0.4194 0.5136

71910.0892 0.6836 0.4397 0.4090 0.4358 0.3849 0.3929 0.3866 0.4301 0.5320

71004.6905 0.6816 0.4419 0.4147 0.4490 0.3918 0.4029 0.3935 0.4417 0.5523

70108.5447 0.6794 0.4443 0.4206 0.4632 0.3990 0.4138 0.4008 0.4542 0.5749

69221.5792 0.7107 0.4557 0.4269 0.4724 0.4055 0.4209 0.4088 0.4644 0.5944

68343.722 0.7501 0.4690 0.4337 0.4812 0.4121 0.4276 0.4173 0.4748 0.6147

67474.9012 0.7941 0.4832 0.4408 0.4904 0.4191 0.4346 0.4263 0.4859 0.6369

66615.0457 0.8432 0.4984 0.4484 0.5000 0.4264 0.4418 0.4359 0.4978 0.6612

65764.0844 0.8985 0.5147 0.4565 0.5102 0.4341 0.4493 0.4462 0.5105 0.6877

64921.9467 0.9612 0.5322 0.4651 0.5209 0.4423 0.4571 0.4571 0.5243 0.7170

64088.5626 1.0329 0.5510 0.4744 0.5322 0.4509 0.4653 0.4687 0.5391 0.7495

63263.8621 1.1157 0.5713 0.4843 0.5441 0.4600 0.4738 0.4812 0.5551 0.7856

62447.7761 1.2125 0.5933 0.4949 0.5567 0.4697 0.4826 0.4946 0.5726 0.8261

61640.2353 1.3269 0.6172 0.5063 0.5700 0.4799 0.4918 0.5090 0.5915 0.8717

60841.1712 1.4643 0.6432 0.5186 0.5842 0.4908 0.5015 0.5246 0.6123 0.9235

60050.5157 1.6325 0.6717 0.5320 0.5992 0.5025 0.5115 0.5414 0.6351 0.9829

Table G.4: Look-up table for Engine BSFC (open throttle calculations)
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I MotorPowerOut MotorTorqueOut

(A) (W) (Nm)

19.8 292.3 0.316

20.8 307.8 0.335

22.1 330.5 0.362

22.9 346.9 0.381

23.9 361.4 0.399

24.6 371.0 0.411

25.6 389.9 0.435

26.8 406.7 0.456

28.3 432.0 0.489

28.8 441.7 0.501

29.9 459.2 0.524

30.6 468.7 0.537

31.7 487.3 0.561

32.9 505.4 0.586

33.6 516.9 0.602

35.0 536.9 0.629

35.6 547.2 0.644

36.8 566.0 0.670

37.6 575.7 0.684

39.0 594.5 0.712

39.7 605.3 0.728

40.9 625.0 0.756

41.7 633.6 0.771

42.5 642.5 0.785

43.8 660.5 0.813

44.6 670.5 0.829

46.5 695.8 0.870

46.6 697.1 0.872

48.0 715.3 0.902

48.8 723.5 0.917

49.4 732.6 0.932

Table H.1: Look-up table for Plettenberg HP220/25 Motor Data
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I.1 Motor Function

function MotorOutputs = Subsystem_Mot(Argument)

% This function simulates the operation of a Motor

%

% Inputs:

% - MotorTorqueReq: Torque required from Motor (Nm)

% - MotorCurrent: Current to be drawn by the Motor from the Battery (A)

% - MotorPower: Motor Power (W)

% - MotorEnable: Motor enable signal

% MotorEnable = 0 -- Motor not operational

% MotorEnable = 1 -- Motor in operation

% - BattSOC: Battery SOC (%)

% - BattVoltage: Battery Voltage (V)

%

% Outputs:

% - M_Power: Motor power output (W)

% - M_Torque: Motor torque output (Nm)

% - M_Current: Motor current required (A)

% Allocate inputs

MotorTorqueReq = Argument(1);

MotorCurrent = Argument(2);

MotorPower = Argument(3);

MotorEnable = Argument(4);

BattSOC = Argument(5);

BattVoltage = Argument(6);

% Set up parameters

maxTorque = 0.932; % Max value from Motor Torque LUT

% Calculate outputs

if ((MotorEnable == 0) || (MotorTorqueReq == 0))

% Either Motor Enable signal or torque requied is ZERO.

M_Power = 0;

M_Torque = 0;

M_Current = 0;

elseif ((BattVoltage < 18) && (BattSOC < 5))

M_Power = 0;

M_Torque = 0;

M_Current = 0;

else

% Set up upper limit for Motor Torque

if (MotorTorqueReq > maxTorque)

MotorTorqueReq = maxTorque;

end

M_Power = MotorPower;

M_Torque = MotorTorqueReq;

M_Current = MotorCurrent;

end

% Ouptut of function

MotorOutputs = [M_Power, M_Torque, M_Current];

I.2 Generator Function

function GenOutCurrent = Subsystem_Gen(Argument)

% This function simulates the operation of a Generator

% -- The Generator is assumed to have the same response as the Motor, but

% just in reverse.

%

% Inputs:

% - GenEnable: Generator enable signal (0 or 1)

% - GenTorqueAvail: Torque available to power the Generator (Nm)

%
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% Output:

% - GenOutCurrent: Generator output current (A)

% Load Generator LUT

I = [19.8 20.8 22.1 22.9 23.9 24.6 25.6 26.8 28.3 28.8 29.9 30.6 31.7 ...

32.9 33.6 35 35.6 36.8 37.6 39 39.7 40.9 41.7 42.5 43.8 44.6 46.5 ...

46.6 48 48.8 49.4]; % A

MotorTorqueOut = [0.316 0.335 0.362 0.381 0.399 0.411 0.435 0.456 ...

0.489 0.501 0.524 0.537 0.561 0.586 0.602 0.629 0.644 0.67 0.684 ...

0.712 0.728 0.756 0.771 0.785 0.813 0.829 0.87 0.872 0.902 0.917 ...

0.932];

% Allocate inputs

GenEnable = Argument(1);

GenTorqueAvail = Argument(2);

% Determine Generator output current

if (GenEnable == 0) % Generator not activated

GenOutCurrent = 0;

elseif (GenTorqueAvail < MotorTorqueOut(1))

% If GenTorqueAvail is not enough to drive the Generator

GenOutCurrent = 0;

else

% Set upper limit

if (GenTorqueAvail > MotorTorqueOut(length(MotorTorqueOut)))

GenTorqueAvail = MotorTorqueOut(length(MotorTorqueOut));

end

% Determine output current

GenOutCurrent = interp1(MotorTorqueOut, I, GenTorqueAvail);

end

I.3 Battery Function

function BattOutputs = Subsystem_Batt(Argument)

% This function simulates the operaton of a Battery

%

% Inputs:

% - BattCurrent: Battery discharging/charging current (A)

% BattCurrent = +ve -- Discharging

% BattCurrent = -ve -- Charging

% - PrevAccCap: Previously accumulated extracted capacity (A.sec)

% - PrevBattSOC: Previous battery State-Of-Charge (%)

%

% Outputs:

% - B_SOC: Battery State-Of-Charge (%)

% - B_Voltage: Battery output voltage (V)

% - NextAccCap: Next accumulated extracted capacity (Ah)

% Battery parameters

% Current required vector

I_req = [5 50 75 100 125]; % A

% Q value Look-Up Table: Q_value = Q_value(I_req)

Q_value = [5.5 5.38172 5.26344 5.02688 4.67204]; % Amp-Hr

% Maximum Q value

Q_max = max(Q_value); % Amp-Hr

% A value Look-Up Table: A_value = A_value(I_req)

A_value = [3.224 3.453 4.054 4.166 4.446]; % V

% B value Look-Up Table: B_value = B_value(I_req)

B_value = [0.4426 1.424 4.224 6.596 9.428]; % A/h

% K value Look-Up Table: K_value = K_value(I_req)

K_value = [0.03167 0.043 0.04075 0.03957 0.04082]; % V

% Allocate inputs

PrevBattSOC = Argument(1);

BattCurrent = Argument(2);

PrevAccCap = Argument(3);
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% Calculate accumulated extracted capacity

NextAccCap = PrevAccCap + BattCurrent;

% Set upper & lower limits for extracted capacity

if (NextAccCap > Q_max*0.9999*3600)

NextAccCap = Q_max*0.9999*3600;

elseif (NextAccCap < 0)

NextAccCap = 0;

end

% Convert capacity from Amp-sec to Amp-hr

NextAccCap = NextAccCap/3600;

% Determine Battery parameters

if (BattCurrent == 0)

if (PrevAccCap == 0) % First iteration

B_SOC = 100;

B_Voltage = 0;

else

B_SOC = PrevBattSOC;

B_Voltage = 0;

end

else

% Determine parameters Q, K, A, B

abs_BattCurrent = abs(BattCurrent);

Q = interp1(I_req, Q_value, abs_BattCurrent,’pchip’,’extrap’);

K = interp1(I_req, K_value, abs_BattCurrent,’pchip’,’extrap’);

A = interp1(I_req, A_value, abs_BattCurrent,’pchip’,’extrap’);

B = interp1(I_req, B_value, abs_BattCurrent,’pchip’,’extrap’);

% Determine Battery SOC

B_SOC = 100*(1-NextAccCap/Q);

if (B_SOC > 100) % Set upper and lower limits

B_SOC = 100;

elseif (B_SOC < 0)

B_SOC = 0;

end

% Determine Battery Voltage

B_Voltage = 24+K-A-K*Q/(Q-NextAccCap)+A*exp(-B*NextAccCap);

if (B_Voltage > 24) % Set upper and lower limits

B_Voltage = 24;

elseif (B_Voltage < 0)

B_Voltage = 0;

elseif (B_SOC == 0)

B_Voltage = 0;

end

end

% Output of function

BattOutputs = [B_SOC, B_Voltage, NextAccCap*3600];

I.4 Powertrain Output Allocation Function

function PowertrainOutputs = PowertrainOutAlloc(Arguments)

% This function determines the powertrain outputs by combining the outputs

% from the Engine, Motor and Generator.

%

% Inputs:

% - EngTorque = Engine torque available (Nm)

% - EngPower = Engine power available (W)

% - EngOmega = Engine speed (rad/s)

% - EngEnable = Engine enable (0 or 1)

% - MotorTorque = Motor torque available (Nm)

% - MotorPower = Motor power available (W)

% - MotorEnable = Motor enable (0 or 1)
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% - GenTorque = Generator torque required (Nm)

% - GenEnable = Generator enable (0 or 1)

% - rdot = RCR command

% - CVTratio = CVT ratio (0 to 1)

%

% Outputs:

% - PowertrainTorque = Powertrain torque (Nm)

% - TorqueToPropShaft = Powertrain torque transmitted to Prop shaft (Nm)

% - PowertrainPower = Powertrain power (W)

% Allocate inputs

EngTorque = Arguments(1);

EngPower = Arguments(2);

EngOmega = Arguments(3);

EngEnable = Arguments(4);

MotorTorque = Arguments(5);

MotorPower = Arguments(6);

MotorEnable = Arguments(7);

GenTorque = Arguments(8);

GenEnable = Arguments(9);

rdot = Arguments(10);

CVTratio = Arguments(11);

% RCR Compensation Torque

J_eng = 0.0001; % Engine shaft moment of inertia (kg*m^2)

J_mot = 2.25e-06; % Motor shaft moment of inertia (kg*m^2)

k2_gain = (J_eng + J_mot) / (CVTratio + rdot);

RCRCompTorque = k2_gain * EngOmega * rdot;

if ((EngEnable == 1) && (MotorEnable == 1)) % Engine + Motor

PowertrainTorque = EngTorque + MotorTorque;

TorqueToPropShaft = EngTorque + MotorTorque - RCRCompTorque;

PowertrainPower = EngPower + MotorPower;

elseif ((EngEnable == 1) && (GenEnable == 1)) % Engine + Generator

PowertrainTorque = EngTorque - GenTorque;

% TorqueToPropShaft = EngTorque - GenTorque - RCRCompTorque;

TorqueToPropShaft = EngTorque - GenTorque;

PowertrainPower = PowertrainTorque / EngOmega;

elseif ((EngEnable == 0) && (MotorEnable == 1)) % Motor only

PowertrainTorque = MotorTorque;

TorqueToPropShaft = MotorTorque - RCRCompTorque;

% This should become just MotorTorque 10 time steps after detecting

% Motor Only signal

PowertrainPower = MotorPower;

else % Engine only

PowertrainTorque = EngTorque;

TorqueToPropShaft = EngTorque + MotorTorque - RCRCompTorque;

% This should become just EngTorque 10 time steps after detecting

% Engine Only signal

PowertrainPower = EngPower;

end

PowertrainOutputs = [PowertrainTorque,TorqueToPropShaft,PowertrainPower];

I.5 ChargeBattNow Function

function Outputs = ChargeBattNow(Inputs)

% Determines if the Battery requires immediate charging

% Inputs:

% - CurrentMustChargeBatt = Current "Must Charge Battery" signal

% - CurrentMustChargeBatt = 1: Must charge battery

% - CurrentMustChargeBatt = 0: Battery doesn’t need charging

% - CurrentBattSOC = Current Battery SOC, from 0% to 100%

% - CurrentAirspeed = Current aircraft airspeed (m/s)

% - CurrentDistRem = Current distance remaining until "Motor Only" (m)

% - BattInputCurrent = Input current into the Battery (A)

% - AvgChgCurrent = Average charge current (A)
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% - ChgCurrentCount = Number of recorded charge currents

% - SimClock = Current simulation time (s)

%

% Outputs:

% - NextMustChargeBatt = Next "Must Charge Battery" signal

% - NextMustChargeBatt = 1: Must charge battery

% - NextMustChargeBatt = 0: Battery doesn’t need charging

% - NextDistRem = Next distance remaining until "Motor Only" (m)

% - NextAvgChgCurrent = Next average charge current (A)

% - NextChgCurrentCount = Updated number of recorded charge currents

%

% Other data required:

% - TOTALDIST2MO = Total distance from start of mission to "Motor Only"

% mode; calculated in "WPTTable.m".

% - I_req = Battery current vector for Q-value calculations

% - Q_value = Q-value vector for the Battery

% Allocate inputs

CurrentMustChargeBatt = Inputs(1);

CurrentBattSOC = Inputs(2);

CurrentAirspeed = Inputs(3);

BattInputCurrent = Inputs(4);

CurrentDistRem = Inputs(5);

AvgChgCurrent = Inputs(6);

ChgCurrentCount = Inputs(7);

SimClock = Inputs(8);

% Load data

TOTALDIST2MO = 5495.623946181784; % Initial distance to Motor Only mode

I_req = [5 50 75 100 125]; % Battery current vector

Q_value = [5.5 5.38172 5.26344 5.02688 4.67204]; % Q-value vector

% Initialisation

NextMustChargeBatt = CurrentMustChargeBatt; % Default: let sleeping Battery sleep

t_to_MO = 0; % Time remaining until "Motor Only" mode (s)

t_to_FC = 0; % Time required for Battery to be fully charged (s)

delta_time = 0.1; % Time interval for one interation; taken from Aerosonde UAV block (s)

% Calculate the time until "Motor Only"

if (SimClock < delta_time)

% In the first iteration

CurrentDistRem = TOTALDIST2MO;

end

t_to_MO = CurrentDistRem/CurrentAirspeed;

% Calculate the distance remaining until "Motor Only" after this iteration

NextDistRem = CurrentDistRem - CurrentAirspeed*delta_time;

% Keep this value above zero

if (NextDistRem < 0)

NextDistRem = 0;

end

% Calculate average Battery charging current

NextAvgChgCurrent = AvgChgCurrent; % Initialise, carry over prev value

NextChgCurrentCount = ChgCurrentCount; % Initialise, carry over prev value

if (BattInputCurrent < 0)

% Battery is charging (-ve = charging)

if (ChgCurrentCount == 0)

% No value in vector yet

NextChgCurrentCount = 1;

NextAvgChgCurrent = abs(BattInputCurrent);

else

NextChgCurrentCount = ChgCurrentCount + 1;

NextAvgChgCurrent = (AvgChgCurrent*ChgCurrentCount+abs(BattInputCurrent))/NextChgCurrentCount;

end

else

% Battery is not charging

NextChgCurrentCount = ChgCurrentCount;

NextAvgChgCurrent = AvgChgCurrent;

end
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% Calculate the time required to fully charge the Battery

if (ChgCurrentCount > 0) % Battery has undergone charging

Q_AvgCurrent = interp1(I_req, Q_value, NextAvgChgCurrent,’pchip’,’extrap’);

t_to_FC = Q_AvgCurrent*(1-CurrentBattSOC/100)/NextAvgChgCurrent;

else % Battery hasn’t required charging

t_to_FC = 0; % SOC is near 100% even if not having charged before

end

% Determine the value for NextMustChargeBatt

% if (CurrentBattSOC > 90)

% NextMustChargeBatt = 0; % No charging required

% ChgCase = 5;

if (((t_to_MO-t_to_FC) < 60) && (CurrentDistRem > 0))

% Almost not enough time to bring Battery to full charge and "Motor

% Only" mode has not been reached

if (CurrentBattSOC > 99.5)

NextMustChargeBatt = 0; % No charging required

ChgCase = 5;

else

NextMustChargeBatt = 1; % Battery needs charging now

ChgCase = 1;

end

elseif (CurrentBattSOC < 20)

% SOC_charge less than 20%

NextMustChargeBatt = 1;

ChgCase = 2;

elseif ((CurrentBattSOC < 80) && (CurrentMustChargeBatt == 1))

% Battery has been charging, but SOC not yet 80%

NextMustChargeBatt = 1;

ChgCase = 3;

elseif ((CurrentBattSOC >= 85) && (CurrentDistRem <= 0))

% Battery SOC >= 85% after the "Motor Only" mode has been reached

NextMustChargeBatt = 0; % No charging required

ChgCase = 4;

else

NextMustChargeBatt = 0;

ChgCase = 0;

end

% Define the output vector

Outputs = [NextMustChargeBatt, NextDistRem, NextAvgChgCurrent, NextChgCurrentCount, ChgCase];
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J.1 OpMode Function

function CurrentOpMode = OpMode(Argument)

% This function determines the mode in which the HEPS is currently

% operating in

%

% Inputs:

% - MotEngOnly: The Motor Only or Engine Only signal

% MotEngOnly = 0 -- HEPS operating in Hybrid mode

% MotEngOnly = 1 -- HEPS in Motor Only mode

% MotEngOnly = 2 -- HEPS in Engine Only mode

% - MustChgBatt: If the Battery needs to charging

% MustChgBatt = 1 -- Charge Battery NOW!

% MustChgBatt = 0 -- No need to charge Battery

% - InClimb: If the aircraft is in a climb

% InClimb = 1 -- Aircraft is climbing

% InClimb = 0 -- Aircraft is not climbing

%

% Output:

% - CurrentOpMode: The current mode of operation for the HEPS

% CurrentOpMode = 1 -- Hybrid Normal

% CurrentOpMode = 2 -- Motor Only

% CurrentOpMode = 3 -- Hybrid Charging

% CurrentOpMode = 4 -- Engine Only

% CurrentOpMode = 5 -- Hybrid Climbing

% Allocate inputs

MotEngOnly = Argument(1);

MustChgBatt = Argument(2);

InClimb = Argument(3);

% Determine the operating mode

if (MotEngOnly == 1)

% Motor Only mode

CurrentOpMode = 2;

elseif (MotEngOnly == 2)

% Engine Only mode

CurrentOpMode = 4;

elseif (MustChgBatt == 1)

if (InClimb == 1)

% Engine Only mode

CurrentOpMode = 4;

else

% Hybrid Charging mode

CurrentOpMode = 3;

end

elseif (InClimb == 1)

% Hybrid Climbing mode

CurrentOpMode = 5;

else

% Hybrid Normal mode (default)

CurrentOpMode = 1;

end

J.2 PowerDemandAlloc Function

function PowerDemand = PowerDemAlloc(Argument)

% This function determines the Power Demand which is required to maintain

% UAV flight.

%

% Inputs:

% - EngOmega: Engine speed (rad/s)

% - PowerReq: Power required obtained from throttle setting (W)

% - OpMode: Current mode of operation for the HEPS

% OpMode = 1 -- Hybrid Normal
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% OpMode = 2 -- Motor Only

% OpMode = 3 -- Hybrid Charging

% OpMode = 4 -- Engine Only

% OpMode = 5 -- Hybrid Climbing

%

% Output:

% - PowerDemand: Total Power Demand from the HEPS (W)

% Allocate inputs

EngOmega = Argument(1);

PowerReq = Argument(2);

OpMode = Argument(3);

% Parameter Setup

GenChgT = 0.4; % Generator charging torque (Nm)

% Uses a value slightly greater than the minimum

% Motor/Gen torque value

MotClimbT = 0.4; % Motor torque to assist when climbing (Nm)

% Determine the Power Demand

switch OpMode

case {1,2,4}

% Hybrid Normal, Motor Only and Engine Only modes

PowerDemand = PowerReq;

case 3

% Hybrid Charging mode

PowerDemand = PowerReq + GenChgT * EngOmega;

case 5

% Hybrid Climbing mode

PowerDemand = PowerReq - MotClimbT * EngOmega;

end

J.3 EngOp Function

function EngOutputs = EngOp(Argument)

% This function determines the Torque, Power and Manifold Pressure (MAP)

% values that are required to be produced by the Engine

%

% Inputs:

% - Torque_IOL: Engine IOL torque (Nm)

% - MAP_IOL: MAP required to produce the Engine IOL torque (kPa)

% - Torque_EngNorm: Engine torque in normal operations (Nm)

% - MAP_EngNorm: Engine MAP in normal operations (kPa)

% - OpMode: Current mode of operation for the HEPS

% OpMode = 1 -- Hybrid Normal

% OpMode = 2 -- Motor Only

% OpMode = 3 -- Hybrid Charging

% OpMode = 4 -- Engine Only

% OpMode = 5 -- Hybrid Climbing

%

% Outputs:

% - EngTorque: Torque required to be produced by the Engine (Nm)

% - EngMAP: MAP required at the Engine (kPa)

% Allocate inputs

Torque_IOL = Argument(1);

MAP_IOL = Argument(2);

Torque_EngNorm = Argument(3);

MAP_EngNorm = Argument(4);

OpMode = Argument(5);

% Determine the Engine outputs required

switch OpMode

case {1,3,5}

% Hybrid Normal, Hybrid Charging and Hybrid Climbing modes

EngTorque = Torque_IOL;

EngMAP = MAP_IOL;
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case 2

% Motor Only mode

EngTorque = 0;

EngMAP = 0;

case 4

% Engine Only mode

EngTorque = Torque_EngNorm;

EngMAP = MAP_EngNorm;

end

% Define the outputs vector

EngOutputs = [EngTorque,EngMAP];

J.4 EngThrCommand Function

function EngThr = EngThrCommand(Arguments)

% This function determines the engine throttle command required to operate

% the Engine at the desired Torque value

%

% Inputs:

% - EngMAP = Engine MAP required (kPa)

% - p_alt = atmosphere pressure at current altitude (Pa)

%

% Outputs:

% - EngThr = engine throttle command (0.01 to 1)

% Allocating inputs

EngMAP = Arguments(1);

p_alt = Arguments(2);

% Set up

MAPmin = 60; % From Aerosonde config file

% Calculating Engine throttle command

if (EngMAP == 0)

% Motor Only mode; no Engine output required

EngThr = 0;

else

% Hybrid Normal, Hybrid Charging and Engine Only modes

EngThr = (EngMAP-MAPmin)/(p_alt/1000-MAPmin);

% Put upper and lower limits on EngThr

if (EngThr < 0.01)

EngThr = 0.01;

elseif (EngThr > 1)

EngThr = 1;

end

end

J.5 RCRCommand Function

function Outputs = RCRCommand(Arguments)

% This function determines the Rate of Change of Ratio (RCR), or rdot,

% command

%

% Inputs:

% - PowerDemand: Power demand (W)

% - EngPower: Power required from the Engine (W)

% - CVT_ratio: Current CVT ratio

% - OpMode: Current mode of operation for the HEPS

% OpMode = 1 -- Hybrid Normal

% OpMode = 2 -- Motor Only

% OpMode = 3 -- Hybrid Charging
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% OpMode = 4 -- Engine Only

% OpMode = 5 -- Hybrid Climbing

% - PrevRdotCount: Current value of a counter for RCR determination

% - Prev_r0: The record of the CVT ratio when Engine Only or Motor Only is

% first detected

%

% Outputs:

% - rdot = RCR command

% - NextRdotCount: Next value of a counter for RCR determination

% - Next_r0: The record of the CVT ratio when Engine Only or Motor Only is

% first detected

% Allocating inputs

PowerDemand = Arguments(1);

EngPower = Arguments(2);

CVT_ratio = Arguments(3);

OpMode = Arguments(4);

PrevRdotCount = Arguments(5);

Prev_r0 = Arguments(6);

% Set up parameter

RCR_gain = 1/2000;

% Determine the RCR Command

switch OpMode

case {1,3,5}

% Hybrid Normal, Hybrid Charging and Hybrid Climbing modes

Next_r0 = 0;

rdot = RCR_gain*(PowerDemand-EngPower);

% Upper and lower limits on value of rdot

% -0.1 < rdot < 0.1

if (rdot < -0.1)

rdot = -0.1;

elseif (rdot > 0.1)

rdot = 0.1;

end

NextRdotCount = 0;

case {2,4}

% Motor Only or Engine Only modes

% When Motor Only or Engine Only is first detected

if (PrevRdotCount == 0)

Next_r0 = CVT_ratio;

rdot = 1-Next_r0;

NextRdotCount = 1;

elseif ((PrevRdotCount > 0) && (PrevRdotCount < 10))

% Within the first 10 time steps of detecting Motor Only or

% Engine Only signals

% -- Simulation step size = 0.1 sec --> 10 time steps = 1 sec

Next_r0 = Prev_r0;

rdot = 1-Next_r0;

NextRdotCount = PrevRdotCount + 1;

else

% After CVT ratio has settled at 1

Next_r0 = 0;

rdot = 0; % No more changes to CVT ratio required

NextRdotCount = PrevRdotCount;

end

end

% Define the outputs vector

Outputs = [rdot,NextRdotCount,Next_r0];

J.6 TorqueDiffCalc Function

function Outputs = TorqueDiffCalc(Arguments)

% This function determines the amount of torque required from the Motor, or

% available for the Generator. Also, the on/off signals for Engine, Motor
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% and Generator components are also determined here.

%

% Inputs:

% - PowerDemand: Total Power Demand required (W)

% - AltCorrection: Altitude correction

% - EngTorque: Torque required to be produced by the Engine (Nm)

% - EngOmega: Engine speed (rad/s)

% - CVT_Ratio: Current CVT ratio

% - rdot: RCR command

% - OpMode: Current mode of operation for the HEPS

% OpMode = 1 -- Hybrid Normal

% OpMode = 2 -- Motor Only

% OpMode = 3 -- Hybrid Charging

% OpMode = 4 -- Engine Only

% OpMode = 5 -- Hybrid Climbing

%

% Outputs:

% - MotorTorqueReq: Torque required to be supplemented by the Motor (Nm)

% - GenTorqueAvail: Torque available to be used by the Generator (Nm)

% - EngEnable: Engine Enable signal

% EngEnable = 0 -- Engine OFF

% EngEnable = 1 -- Engine ON

% - MotorEnable: Motor Enable signal

% MotorEnable = 0 -- Motor OFF

% MotorEnable = 1 -- Motor ON

% - GenEnable: Generator Enable signal

% GenEnable = 0 -- Generator OFF

% GenEnable = 1 -- Generator ON

% Allocate inputs

PowerDemand = Arguments(1);

AltCorrection = Arguments(2);

EngTorque = Arguments(3);

EngOmega = Arguments(4);

CVT_Ratio = Arguments(5);

rdot = Arguments(6);

OpMode = Arguments(7);

% Parameter Setup

J_eng = 0.0001; % Engine shaft moment of inertia (kg*m^2)

J_mot = 2.25e-06; % Motor shaft moment of inertia (kg*m^2)

GenChgT = 0.4; % Generator charging torque (Nm)

MotClimbT = 0.4; % Motor torque to assist when climbing (Nm)

% RCR Compensation Torque

k2_gain = (J_eng + J_mot) / (CVT_Ratio + rdot);

RCRCompTorque = k2_gain * EngOmega * rdot;

% Determine the Motor/Generator Torque values

switch OpMode

case 1

% Hybrid Normal mode

TorqueDiff = (PowerDemand / EngOmega - EngTorque) * AltCorrection + RCRCompTorque;

if (TorqueDiff >= 0)

% Motor is required to supplement torque

MotorTorqueReq = TorqueDiff;

GenTorqueAvail = 0;

EngEnable = 1; % Engine ON

MotorEnable = 1; % Motor ON

GenEnable = 0; % Generator OFF

else

% Excess torque is available to charge the Battery

MotorTorqueReq = 0;

GenTorqueAvail = -TorqueDiff;

EngEnable = 1; % Engine ON

MotorEnable = 0; % Motor OFF

GenEnable = 1; % Generator ON

end

case 2

% Motor Only mode

MotorTorqueReq = PowerDemand / EngOmega * AltCorrection + RCRCompTorque;

GenTorqueAvail = 0;

EngEnable = 0; % Engine OFF
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MotorEnable = 1; % Motor ON

GenEnable = 0; % Generator OFF

case 3

% Hybrid Charging mode

MotorTorqueReq = 0;

GenTorqueAvail = GenChgT - RCRCompTorque;

EngEnable = 1; % Engine ON

MotorEnable = 0; % Motor OFF

GenEnable = 1; % Generator ON

case 4

% Engine Only mode

MotorTorqueReq = (PowerDemand / EngOmega - EngTorque) * AltCorrection + RCRCompTorque; % This should be small

GenTorqueAvail = 0;

EngEnable = 1; % Engine ON

if (abs(MotorTorqueReq) < 0.001)

MotorEnable = 0; % Motor OFF

else

MotorEnable = 1; % Motor ON

end

GenEnable = 0; % Generator OFF

case 5

% Hybrid Climbing mode

MotorTorqueReq = MotClimbT + RCRCompTorque;

GenTorqueAvail = 0;

EngEnable = 1; % Engine ON

MotorEnable = 1; % Motor ON

GenEnable = 0; % Generator OFF

end

% Define output vector

Outputs = [MotorTorqueReq,GenTorqueAvail,EngEnable,MotorEnable,GenEnable];
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