

Queensland University of Technology Brisbane Australia

This is the author's version of a work that was submitted/accepted for publication in the following source:

Haddix, Michelle L, Plante, Alain F., Conant, Richard T., Paul, Eldor A., Six, Johan, Steinweg, J. Megan, Magrini-Baer, K., Drijber, Rhae A., & Morris, Sherri J. (2011) The role of soil characteristics on temperature sensitivity of soil organic matter. *Soil Science Society of America. Journal*, *75*, pp. 56-68.

This file was downloaded from: http://eprints.qut.edu.au/46183/

# © Copyright 2011 Soil Science Society of America

**Notice**: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source:

http://dx.doi.org/10.2136/sssaj2010.0118

## **Soil Science Society of America Journal**

Type of Contribution: Original research article

**Date of Preparation:** 

Number of Text Pages: 28 pages

Number of Tables: 6 tables

Number of Figures: 4 figures

**Title:** The role of soil characteristics on temperature sensitivity of soil organic matter. **Authors:** Michelle L. Haddix<sup>1\*</sup>, Alain F. Plante<sup>2</sup>, Richard T. Conant<sup>1</sup>, Johan Six<sup>3</sup>, J. Megan Steinweg<sup>1</sup>, Kim Magrini-Bair<sup>4</sup>, Rhae A. Drijber<sup>5</sup>, Sherri J. Morris<sup>6</sup>, Eldor A. Paul<sup>1</sup> **Addresses:** <sup>1</sup>Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523-1499; <sup>2</sup>Department of Earth & Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316; <sup>3</sup>Department of Plant Sciences, University of California, Davis, CA 95616; <sup>4</sup>National Renewable Energy Laboratory, Golden, CO 80401; <sup>5</sup>Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583-0915; <sup>6</sup>Biology Department, Bradley University, Peoria, IL 61625 **\*Corresponding author:** Phone: (970) 491-6162; Fax: (970) 491-1965; E-mail: mlhaddix@nrel.colostate.edu

## Acknowledgments

M. Vigil, R. Teague, D. Tanaka, C.C. Cerri, and C.E.P Cerri assisted with site selection and sampling. Rebecca Greenwood, Jenny Carlson, Matt Carpenter, and Jeremy Schulman assisted in laboratory measurements. This research was supported by the Office of Science (BER), U.S. Department of Energy and a National Science Foundation grant DEB-0444880.

## 1 The role of soil characteristics on temperature sensitivity of soil organic matter.

2

#### 3 Abstract

4 The uncertainty associated with how projected climate change will affect global carbon 5 (C) cycling could have a large impact on soil C stocks. The purpose of our study was to 6 determine how various soil decomposition and chemistry characteristics relate to SOM 7 temperature sensitivity. We accomplished this objective using long-term soil incubations 8 at three temperatures (15, 25, and 35°C) and pyrolysis molecular beam mass 9 spectrometry (py-MBMS) on twelve soils from six sites along a mean annual temperature 10 (MAT) gradient (2 to 25.6°C). We calculated  $Q_{10}$  values from the CO<sub>2</sub> respired in our 11 long-term incubation using the  $Q_{10-q}$  method and found the decomposition of the resistant 12 fraction to be more temperature sensitive with a  $Q_{10-q}$  of  $1.95\pm0.08$  for the labile fraction 13 and a  $Q_{10-q}$  of  $3.33\pm0.04$  for the resistant fraction. We used a two pool model (active and 14 slow) with first-order kinetics to fit our soil respiration data, along with a three pool 15 model for comparison purposes. We found that the two and three pool models 16 statistically fit the data equally well. The size of the active pool in these soils, calculated 17 using the two pool model, increased with incubation temperature and ranged from 0.1 to 18 12.8% of initial soil organic C. Sites with an intermediate MAT and lowest C:N ratio had 19 the largest active pool. Pyrolysis Molecular Beam Mass Spectrometry on these soils 20 indicated that there were chemical differences in the SOM between the land use 21 treatments which may have lead to differences found between the total amount of  $CO_2$ 22 respired and size of the active pool of the soils.

24 **Keywords:** decomposition; temperature sensitivity; soil carbon; long-term incubation;

25 py-MBMS

26

# 27 1. Introduction

28 Temperature effects on chemical reactions have been studied since the late 29 1800's, originating with Arrhenius and van't Hoff (Lloyd and Taylor, 1994); yet, there is 30 still much debate on mechanistically how temperature regulates soil organic matter 31 (SOM) decomposition. Soil organic matter contains two to three times as much C as the 32 atmosphere (Davidson et al., 2000), with respiration of SOM by microbes contributing 33 50-75 Pg of CO<sub>2</sub>-C to the atmosphere annually – approximately ten times the current 34 annual emissions from burning fossil fuels (Schimel, 1995). Temperature is an important 35 factor controlling SOM turnover and understanding how temperature affects SOM 36 decomposition will allow us to better predict how global climate change will affect SOM 37 stocks.

A Q<sub>10</sub> of 1.5-2.0 or an Arrhenius type function, where the effective activation energy for respiration varies inversely with temperature, has commonly been used for the temperature response of SOM decomposition (Friedlingstein et al., 2006), and most terrestrial C models apply the same respiration-temperature relationship to each of the different SOM pools (Melillo et al., 1995; Burke, 2003; Friedlingstein et al., 2006). Contrary to common model formulations in which different types of SOM follow the same temperature decomposition relationship, many recent studies have found that

| 45 | different SOM pools have different temperature responses, although consensus on their         |
|----|-----------------------------------------------------------------------------------------------|
| 46 | apparent temperature sensitivities has not yet been reached (Davidson and Janssens,           |
| 47 | 2006). In addition, although determining the temperature sensitivity of SOM by                |
| 48 | evaluating the $Q_{10}$ response is commonly calculated using incubations of fixed durations, |
| 49 | the approach may generate incorrect values for temperature sensitivity due to                 |
| 50 | comparisons of SOM with different labilities at different temperatures (Leifeld and           |
| 51 | Fuhrer, 2005; Reichstein et al., 2005; Conant et al., 2008), which further complicates        |
| 52 | conclusions about SOM temperature sensitivity.                                                |
| 53 | Understanding the temperature sensitivity of SOM decomposition is challenging                 |
| 54 | because soil organic matter is composed of many different organic C compounds, with           |
| 55 | differing inherent kinetic properties (Davidson and Janssens, 2006). To simplify the          |
| 56 | process of modeling SOM decomposition, this range of compounds is usually classified          |
| 57 | into a small number of discrete, kinetically-defined pools with some portion of SOM           |
| 58 | being labile and easily decomposable and the rest comprising one or more other pools          |
| 59 | being less labile and decomposing slowly. In most decomposition models, temperature           |
| 60 | effects are modeled as a decomposition rate multiplier for fixed SOM pools (Lloyd and         |
| 61 | Taylor, 1994; Del Grosso et al., 2005). However, some recent studies have hypothesized        |
| 62 | that temperature may actually alter the amount of substrate that would be considered          |
| 63 | easily decomposable or labile (Zogg et al., 1997; Zak et al., 1999; Dalias et al., 2003;      |
| 64 | Rasmussen et al., 2006). Such a response could be caused by temperature-driven shifts in      |
| 65 | microbial community composition (Zogg et al., 1997; Zak et al., 1999) or in the selection     |
| 66 | of compounds being decomposed (Andrews et al., 2000). A change in the microbially-            |

67 available SOM indicates that reaction rates may not be the only factor controlling

68 decomposition responses to altered temperatures.

69 The objective of this study was to reconcile the differences between the inherent 70 and apparent temperature sensitivity of SOM with differing labilities. To accomplish this 71 we determined the temperature sensitivity of a labile and more resistant soil fraction 72 using a long-term incubation on a set of soils along a mean annual temperature gradient 73 (MAT). At each point along our MAT we had two soils with different land uses as a way 74 to compare similar soils with differing amounts and types of SOM. We used respiration 75 response curves and pyrolysis molecular beam mass spectrometry to characterize the 76 SOM in each of our soils. By utilizing this multi-approach method we wanted to have a better understanding of the apparent temperature sensitivity of SOM. 77

78

#### 79 2. Materials and Methods

# 80 2.1. Sample Sites

81 Surface soil samples were collected from six sites along a mean annual 82 temperature gradient (2 to 25.6°C), each with a native and either cultivated (Indian Head, 83 SK; Mandan, ND; Akron, CO; and Waggoner Ranch, TX) or pasture (Alajuela, Costa Rica and Nova Vida Ranch, Brazil) land use (Table 1). At each site, samples were 84 85 collected from three locations separated by several meters each (field replicate n = 3) 86 within each land use. Surface litter and above ground vegetation were cleared away prior 87 to sampling. Small pits were dug to a depth of 20 cm, and samples were collected from 0-88 20 cm. Soils were packaged and transported to the laboratory, where rocks, surface litter

and root materials were removed while soil clods were broken by hand and passed
through a 2-mm sieve. Soil samples were then air-dried and stored at room temperature
until incubations began. Soil organic C (SOC) and total N concentrations were
determined with a LECO CHN-1000 autoanalyzer (LECO Corporation, St. Joseph, MI,
USA).

94

# 95 2.2. Laboratory Incubation

96 Four laboratory replicates from bulked field samples from each site and treatment 97 combination were incubated at 15, 25, and 35°C for 588 days. For each sample, 80 g of 98 soil were wetted up to 60% water filled pore space to optimize microbial activity (Linn 99 and Doran, 1984). Gravimetric soil moisture was periodically checked throughout the 100 incubation and water was added when water loss was greater than 5% of initial water 101 added. Samples were placed in sealed canning jars fitted with septa, along with 102 scintillation vials containing 20 ml of water to maintain humidity. Incubation starting 103 days were staggered by replicate and each replicate of a soil was measured on a different 104 day to take into account daily measurement variability. Soils were pre-incubated for 105 three days at 25°C and then four days at the respective incubation temperature prior to 106 measurements to allow the soil to equilibrate after wetting up (Paul et al., 2001). 107 Headspace gas samples were analyzed for CO<sub>2</sub> concentration using a Li-Cor LI-6252 108 IRGA (LI-COR Biosciences Lincoln, NE, USA). Jars were flushed with compressed 109 tank air regularly before CO<sub>2</sub> concentrations reached 5% to prevent CO<sub>2</sub> concentration 110 from inhibiting microbial activity. The CO<sub>2</sub> measurements were taken daily during the

111 first two weeks of the incubation, weekly for the next two weeks, and then every four

112 weeks thereafter, generating a total of 36 sampling times over the course of 588 days.

113

114 2.3. Temperature Sensitivity

115 Temperature sensitivity of SOM decomposition/mineralization was determined 116 using the  $Q_{10-q}$  method described by Conant et al. (2008a) utilizing the CO<sub>2</sub> respired from 117 our long-term incubations. The method involves determining the amount of time needed 118 for a given amount of C to be respired at a given temperature. The time required to 119 respire a given amount of C at two temperatures is then used to calculate a  $Q_{10}$  value. 120 There are two assumptions associated with this method (Conant et al., 2008a). The first 121 is that changes in decomposition rates during the incubation are due to changes in the 122 lability of the SOM being decomposed. The second is that the effect temperature has on 123 the sequence in which SOM compounds are decomposed is small relative to the effect of 124 temperature on decomposition rates. Soil microbial biomass has been found to decline 125 over time in long-term incubations (Follett et al., 2007), but this decline in biomass has 126 not been found to limit the microorganisms capacity to decompose organic matter in 127 long-term incubations (Follett et al., 2007; Steinweg et al., 2008). Because of this we 128 believe that our first assumption that changes in decomposition rates are due to changes 129 in SOM lability is reasonable.  $Q_{10-q}$  values were calculated for the initial 0.5% soil C 130 respired, which we considered the labile fraction, and the last 0.5% C respired, which we considered the resistant fraction.  $Q_{10-q}$  values were calculated using the 25 and 35°C 131 132 incubations. The 15°C respiration data was not used due to the limited amount of C

respired by the Costa Rica pasture soil. Statistical comparisons of  $Q_{10-q}$  values were done by treating the six different sites as random variable replicates (PROC MIXED, SAS Institute, Cary NC).

136

We used  $CO_2$  respiration results from the 15, 25, and 35°C incubations for curve fitting. The respiration results from the four laboratory replicates of each site-treatmenttemperature combination were averaged, and mean respiration rates were used to determine pool size and decomposition rate constants by curve fitting. Pool size and decomposition rate constants were determined using a two-pool model where the two pools, active (C<sub>a</sub>) and slow pool (C<sub>s</sub>), sum to the total soil C (C<sub>soil</sub>):

144 
$$C_{soil} = C_a + C_s \tag{1}$$

145 We used a two-pool first-order equation (Andren and Paustian, 1987):

146 
$$C_{cum}(t) = C_a(1 - e^{-k_a^* t}) + C_s(1 - e^{-k_s^* t})$$
(2)

where  $C_{cum}$  (t) is the cumulative soil respiration at time t (µg C (g soil)<sup>-1</sup>),  $C_a$  is the size of the active fraction (µg C (g soil)<sup>-1</sup>), and  $C_s$  is the size of the slow fraction (µg C (g soil)<sup>-1</sup>). The parameters  $k_a$  and  $k_s$  are the decomposition rate constants (day<sup>-1</sup>) for the active and slow pools, respectively. We utilized data from rate curves rather than cumulative respiration because this minimized error accumulation through time (Hess and Schmidt, 1995). We used the following rate form of eqn. 2 from Paul et al. (2001) to determine parameter estimates:

154 
$$\frac{\Delta C_{cum}}{\Delta t} = C_a * k_a (e^{-k_a * t}) + C_s * k_s (e^{-k_s * t})$$
(3)

where  $\Delta C_{cum}/\Delta t$  is in units of  $\mu g C (g \text{ soil})^{-1} (day)^{-1}$ . The size of the active and slow pools adds up to the total amount of C in the soil ( $C_{soil}$ ) (eqn 1); causing C<sub>s</sub> to be determined by the difference of the total soil C and the active pool C. This method of curve fitting also has the assumption that changes in respiration rate over the course of an incubation are due to changes in SOM lability.

160 A three-pool model with first-order kinetics has been found to effectively describe 161 SOC dynamics (Paustian et al., 1992); because of this we also fit our respiration rate 162 curves to a three-pool first order equation. We used the same rate equation as the two-163 pool model (eqn. 3) and included a resistant pool which was estimated to be fifty percent 164 of the total soil C. The decomposition rate for the resistant pool was estimated using a 165 field mean residence time of 500 years and a  $Q_{10}$  adjustment of 2 for the different 166 incubation temperatures. This calculation was only done for comparative purposes and 167 parameter estimates and subsequent temperature sensitivity calculations were done with 168 the two-pool equation.

Best fit parameters ( $C_a$ ,  $k_a$  and  $k_s$ ) for the two-pool model were estimated using non-linear regression of the CO<sub>2</sub> evolved with time in SAS v9.2 PROC NLIN with the Gauss method (SAS Institute, Cary NC). The only restriction imposed on parameters is that the values had to be greater than zero. There were three instances (N. Dakota native grassland 15°C, Colorado native grassland 15°C, and Colorado cultivated 15°C) where the slow pool decomposition rate were not positive and these three samples were not used

in subsequent analysis. The errors associated with model parameters are standard error ofthe model determined in SAS NLIN.

177

178 2.5 Pyrolysis-molecular beam mass spectrometry (py-MBMS)

179 Chemical composition of SOM was characterized using py-MBMS. Details of the 180 analytical method are provided in Magrini et al. (2002) and Hoover et al. (2002). Briefly, 181 two subsamples ( $\sim 0.1$  g) from each field replicate sample were weighed in quartz boats 182 and pyrolyzed in a reactor consisting of a quartz tube (2.5 cm inside diameter) with helium flowing through at 5 l min<sup>-1</sup> heated and maintained at 500°C. The molecular beam 183 184 system consisted of an ExtreITM Model TQMS C50 mass spectrometer for both 185 pyrolysis and combustion vapor analysis. Mass spectral data from m/z 20 to 500 were 186 acquired on a Teknivent Vector 2TM data acquisition system using 22 eV electron 187 impact ionization and programmed storage in a personal computer. Repetitive scans (typically one 480 amu scan s<sup>-1</sup>) were recorded during the evolution of a pyrolysis wave 188 189 from each soil sample.

Overall, 36 samples were collected from the field (6 sites × 3 field replicates × 2 land uses). Two aliquots from each of these 36 were analyzed by py-MBMS, resulting in 72 total spectra. Two spectra from the analyses of samples from Saskatchewan and one from North Dakota were, however, excluded from further analysis due to data quality issues, leaving a total of 69 spectra.

Multivariate analysis has proven to be an important tool for pattern recognition in
pyrolysis mass spectrometry (Schulten et al., 1988). Signal intensities from individual

197 spectra (m/z 20-500) were normalized to 100% total ion intensity (TII, the sum of the 198 intensity for each m/z), and reduced data sets (m/z 57-500) were used in the multivariate 199 analyses to omit the small mass units typical of water, CO<sub>2</sub> and other volatiles. We used 200 principal component analysis (PCA) to group samples by similarity with samples having 201 similar chemical compositions being tightly grouped in a PCA score plot, while samples 202 with dissimilar and heterogeneous compositions were more scattered. Eight principal 203 components and full cross validation were used to build the PCA model to determine 204 whether SOM composition could be grouped by site or land use. Partial least squares 205 (PLS) regression analysis was used to predict the dependent variables (i.e., the model 206 estimates for respiration rates during incubation at 15, 25, and 35°C) from our set of 207 independent variables (i.e., the signal intensities from the py-MBMS spectra). Two PLS 208 regressions were performed: one for the respiration rates early in the incubation when the 209 respiration is mostly from the active pool (day 5 of the incubation), and one for 210 respiration rates later in the incubation when the respiration is mostly from the slow pool 211 (day 225 of the incubation). Full cross-validation and Martens' uncertainty test were used 212 to determine statistically significant correlations between py-MBMS spectral data and the 213 biological properties of the samples. PLS analyses were performed iteratively to 214 determine which independent variables were significant based on Martens' uncertainty 215 test, and then subsequent PLS analyses were performed using only the significant 216 variables. This process was repeated until all independent variables were found to be 217 significant. All multivariate analyses were performed using the Unscrambler v.8.0 218 software package (CAMO Process AS, Oslo, Norway).

| 220 | 3. Results                                                                                   |
|-----|----------------------------------------------------------------------------------------------|
| 221 | 3.1. Site Comparisons                                                                        |
| 222 | Soil organic C (SOC) concentrations (0-20cm) ranged from 0.7 to 20.0% among                  |
| 223 | the six sites (Table 2). The Costa Rican soil is allophanic and consequently had much        |
| 224 | higher SOC concentrations than the other five sites. SOC and total N concentrations          |
| 225 | differed between land use within each site (except for Texas), with SOC and total N          |
| 226 | concentrations decreasing after land-use conversion at Saskatchewan, N. Dakota,              |
| 227 | Colorado, and Costa Rica.                                                                    |
| 228 | Due to the large differences in SOC content among soils, the total amount of C               |
| 229 | respired was normalized for the initial amount of SOC. After 588 days of incubation, the     |
| 230 | cumulative amount of SOC respired was greater under warmer incubation temperatures           |
| 231 | for all soils (Table 2). Overall there was a significant land use difference $(p<0.001)$ for |
| 232 | the four sites where the native grassland was converted to wheat cultivation, with the       |
| 233 | native soils on average respiring significantly more SOC than the cultivated soils, both in  |
| 234 | absolute terms and after being normalized for total SOC content. Cumulative soil             |
| 235 | respiration differences were not statistically significant for the native forest to pasture  |
| 236 | land use conversion in the Costa Rica and Brazil sites ( $p = 0.127$ ).                      |
| 237 |                                                                                              |

3.3. Temperature Sensitivity

- In all but two instances the labile fraction had a smaller  $Q_{10\mbox{-}q}$  value than the resistant fraction (Table 2) with N. Dakota cultivated and Brazil native forest being the

| 241 | two exceptions. For the N. Dakota cultivated and the Brazil native forest the $Q_{10-q}$ values      |
|-----|------------------------------------------------------------------------------------------------------|
| 242 | for the resistant fraction were much lower than the values for the resistant fraction of the         |
| 243 | other soils. The Costa Rica pasture site had the highest $Q_{10-q}$ values overall (table 2).        |
| 244 | There did not appear to be a trend with MAT and $Q_{10-q}$ values for the sites. When sites          |
| 245 | were treated as replicates and $Q_{10-q}$ values were pooled there was a significant difference      |
| 246 | in $Q_{10-q}$ values for the labile and resistant fractions (p = 0.0026) with the $_{Q10-q}$ for the |
| 247 | labile fraction being $1.95\pm0.08$ and the resistant fraction being $3.33\pm0.04$ . There was not   |
| 248 | significant land use treatment effect ( $p = 0.127$ ) or land use by SOM fraction effect ( $p =$     |
| 249 | 0.338)                                                                                               |
| 250 |                                                                                                      |
| 251 | 3.2. Curve Fitting                                                                                   |
| 252 | Respiration rates declined over time for all soils at all three incubation                           |
| 253 | temperatures with the two tropical sites, Costa Rica and Brazil, having a much more rapid            |
| 254 | decline in respiration rates early in the incubation compared to the other four sites (Fig.          |
| 255 | 1). Respiration rates leveled off for all soils by the end of the incubation, but differences        |
| 256 | in the respiration rates among the three incubation temperatures were still apparent at the          |
| 257 | end of the incubation (Fig. 1).                                                                      |
| 258 | Overall the two-pool equation fit the respiration data fairly well; an exception to                  |
| 259 | this was the Costa Rica native forest soil at 35°C where the two-pool equation                       |
| 260 | overestimated the respiration rate later in the incubation (Fig. 1). We also fit the data to a       |

- three-pool first order equation, described by Paul et al. (2001), where the third pool was
- 262 50% of the total SOC and the turnover for the third pool was estimated to be 500 years.

263 We found that both the two and three-pool equations statistically fit the data equally well. 264 Although estimates of the active pool size and decomposition rate were not statistically 265 different between the two-pool and three-pool equation, the three-pool equation 266 consistently had a smaller active pool compared to the two-pool equation by an average 267 of 5% and the three-pool equation consistently had a higher decomposition rate of the 268 active pool compared to the two-pool equation by an average of 6% (Table 3). We used 269 the simpler two-pool model on all subsequent analysis, realizing that the resistant pool 270 contributes only slightly to the respiration of the slow pool because of its high mean 271 residence time.

272 The native grassland Colorado soil had the largest active pool, comprising 273 between 9.4 and 14.0% of total SOC, while the Costa Rica native forest soil had the 274 smallest active pool, comprising between 0.1% and 1.0% of total SOC (Table 4). In the 275 native grassland/cultivated sites (Saskatchewan, N. Dakota, Colorado, and Texas) the 276 native treatment had a significantly larger active pool than the cultivated treatment (p =277 0.003). The size of the active pool at 25°C appeared to be negatively correlated with the C:N ratio of the soil ( $r^2 = 0.34$ , p = 0.045 for all soils) (Fig. 2). The relationship between 278 279 the active fraction and C:N was improved when the Colorado cultivated and Brazil native forest soils were removed ( $r^2=0.84$ , p=0.0002), which appeared to behave differently than 280 281 the other soils.

Since there were no restrictions placed on the size of the pools, pool sizes were allowed to vary with temperature if it provided the best fit of the data. In all but four instances (N. Dakota cultivated 35°C, Texas cultivated 25°C, Brazil native forest 25°C,

| 285 | Costa Rica pasture 25°C) there was an increase in active pool size with temperature. For         |
|-----|--------------------------------------------------------------------------------------------------|
| 286 | the four soils where the active pool size declined with increasing temperature, it was           |
| 287 | likely due to high initial respiration rates that quickly declined over time. The                |
| 288 | decomposition rates of the slow pool increased with increasing incubation temperature            |
| 289 | for all of the soils and the decomposition rate for the active pool increased with               |
| 290 | increasing temperature in only half the instances (Table 4).                                     |
| 291 |                                                                                                  |
| 292 | 3.4. Soil organic matter composition                                                             |
| 293 | A semi-empirical quantification of SOM composition can be achieved by                            |
| 294 | assigning the relative intensity of individual mass signals from the py-MBMS to a set of         |
| 295 | previously identified marker signals associated with several classes of compounds (Sorge         |
| 296 | et al., 1993; Schulten, 1996). A large proportion of the mass spectra of each sample could       |
| 297 | be classified, leaving only $6.7 \pm 2.5\%$ of TII unidentified (Table 5). The volatile fraction |
| 298 | (m/z 20-56) represented 50.9 $\pm$ 4.5% of the total signal intensity, dominated by m/z 44.      |
| 299 | The largest classes of identified compounds were various N-containing compounds (11.9            |
| 300 | $\pm$ 1.8% of TII) and carbohydrates (10.6 $\pm$ 2.6% of TII). The various N-containing          |
| 301 | compounds are identified by Schulten (1996) as heterocyclic N-containing compounds,              |
| 302 | but the heterocyclic N is thought to be formed by the pyrolysis process (Sharma et al.,          |
| 303 | 2003). Peptides, phenols and lignin monomers, alkyl aromatics, and lipids were also              |
| 304 | significant contributors (in decreasing order), while sterols and lignin dimers each             |
| 305 | contributed < 1% of TII (Table 5). The conversion of native grasslands to agriculture            |

306 causes a decline in carbohydrates, but the change in carbon compounds with conversion 307 from native forest to pasture was not consistent for the other two sites (Table 5). 308 In many of the sites there were differences in the abundance of chemical 309 compounds with py-MBMS between the native and cultivated/pasture treatments. Figure 310 3 illustrates the differences in chemical composition between the native and cultivated 311 soils for the Saskatchewan site, as an example. The Saskatchewan native grassland had a 312 greater abundance of the lower m/z compounds especially m/z 57 and 96 which are 313 associated with carbohydrates and m/z 67 and 81 which are associated with various 314 nitrogen compounds. The cultivated soil had a greater abundance of higher molecular 315 weight compounds, many of which are associated with lipids, lignin, and alkyl aromatics. 316 Principal components analysis was unable to significantly distinguish SOM 317 composition when all samples were analyzed together (Fig. 4). The first four principal 318 components combined explained only 43% of the variance. Taken together, PCA scores 319 of samples were not tightly grouped on the basis of site or land use, with the exception 320 that native forest and grassland samples appear to be more tightly grouped than cultivated 321 samples. While there was minor separation of samples by site along the PC 1 axis, SOM 322 composition from those sites was comparatively heterogeneous. However, significant 323 clustering was observed on the basis of land-use treatment when sites were analyzed 324 individually (data not shown), although there were no consistent trends across sites. The 325 PCA score results suggest that SOM composition in the Costa Rica samples was highly homogeneous. PCA loadings were dominated by low molecular weight and odd-326

numbered m/z fragments, which are likely derived from carbohydrate, amino acid and
peptide side-chains (data not shown).

329 Sequential application of the Martens' uncertainty test found a small number of 330 m/z values that were significantly correlated to respiration rates at day 5 of the incubation 331 (Table 6). PLS regression using this reduced set of independent variables was able to 332 explain 65% of the variance using the first four components. Respiration rates at day-5 of 333 the incubation were highly correlated with low molecular components associated 334 primarily with carbohydrates, peptides and various N compounds. Regression against 335 respiration rates at day 225 of the incubation resulted in more m/z values that were 336 significantly correlated (Table 6), but each correlation coefficient was smaller than those 337 for day 5. PLS regression of the reduced set of independent variables was able to explain 338 59% of the variance using the first four components. The additional m/z values were 339 generally higher molecular weights. Some were associated with phenols and lignin 340 monomers, lignin dimmers, and lipids, but many were not identified by Schulten (1996), 341 Hempfling & Schulten (1990), or Gillespie et al. (2009) as marker signals for specific 342 compounds classes.

343

## 344 **4. Discussion**

During our incubation the total amount of SOC respired increased with warmer incubation temperatures for all twelve soils. Similar responses across the MAT range of 2 to 25.6°C (Table 2) could suggest that increasing global temperatures could affect soils equally. The low respiration rates per unit SOC for the Costa Rica soils were likely due

| 349 | to the unique mineral composition. Protective effects of amorphous aluminum, iron, and         |  |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 350 | allophanic material have been shown to contribute to the much higher SOM                       |  |  |  |  |  |  |  |
| 351 | concentrations found in these types of soils ( Munevar and Wollum, 1977; Boudot et al.,        |  |  |  |  |  |  |  |
| 352 | 1986; Martin and Haider, 1986; McKeague, 1986). The characteristics that cause SOM             |  |  |  |  |  |  |  |
| 353 | accumulation also likely cause their minimal loss of SOC upon incubation (Boudot et al.        |  |  |  |  |  |  |  |
| 354 | 1988). However, the relative temperature response of the Costa Rica soil did not differ        |  |  |  |  |  |  |  |
| 355 | from the other soils. Respiration rates declined over time in all the soils with the           |  |  |  |  |  |  |  |
| 356 | differences in respiration rates between temperatures still apparent at the end of the         |  |  |  |  |  |  |  |
| 357 | incubation. Correlations from PLS regression analysis of the py-MBMS products versus           |  |  |  |  |  |  |  |
| 358 | the respiration rates could indicate that higher molecular weight compounds, and               |  |  |  |  |  |  |  |
| 359 | therefore more resistant SOM, were being utilized in the later stages of the incubation.       |  |  |  |  |  |  |  |
| 360 | These correlations support the first assumption of the $Q_{10-q}$ method, that changes in      |  |  |  |  |  |  |  |
| 361 | decomposition rates are driven in changes in SOM lability.                                     |  |  |  |  |  |  |  |
| 362 | We found in most instances the resistant SOM was more temperature sensitive                    |  |  |  |  |  |  |  |
| 363 | than the labile SOM. We utilized the same method of determining temperature                    |  |  |  |  |  |  |  |
| 364 | sensitivity of SOM decomposition as described by Conant et al. (2008a) along with two          |  |  |  |  |  |  |  |
| 365 | of the same sites (Colorado and Texas) and got similar results with an expanded set of         |  |  |  |  |  |  |  |
| 366 | sites. The results found by us and Conant et al. (2008a) are consistent with multiple other    |  |  |  |  |  |  |  |
| 367 | studies (Bosatta and Agren, 1999; Bol et al., 2003; Fierer et al., 2005; Knorr et al., 2005).  |  |  |  |  |  |  |  |
| 368 | However, it is important to point out that there were two soils in our study that did not      |  |  |  |  |  |  |  |
| 369 | follow this overall trend and in those two soils the resistant fraction had a lower $Q_{10-q}$ |  |  |  |  |  |  |  |

370 value than the labile fraction and the  $Q_{10-q}$  value of the resistant fraction was also much

371 lower than the  $Q_{10-q}$  value determined for the resistant fraction of the other soils. Our 372 results illustrate how a study that utilizes a single soil for determining temperature 373 sensitivity of SOM decomposition could possibly come to a different conclusion with 374 regards to SOM temperature sensitivity.

375 The estimated size of the active pool for all the sites ranged from 0.1 to 14.0% of 376 initial SOC (Table 4). This range for the active pool is slightly wider than results found 377 by Rey and Jarvis (2006), which ranged from 0.27% to 11.4%. Many other studies have 378 estimates that fall with in these ranges (Collins et al., 2000; Haile-Mariam et al., 2000; 379 Cochran et al., 2007). Our wider range of estimates for the active pool is likely due to the 380 wide range of soils and incubation temperatures utilized. The two central sites, Texas 381 and Colorado, respired the most total SOC by the end of the incubation and had the 382 largest active pools, contrary to the comparison of forested tropical soils and dry forested 383 temperate soils by Trumbore (1993) in which the tropical soils were comprised of more 384 labile C in the upper 22 cm than temperate soils. The larger active pools in our temperate 385 soils and higher cumulative respiration could be due to the greater amount of N in the 386 soils, which indicates a higher proportion of proteinaceous constituents. Our results are 387 consistent with Thomsen et al. (2008), who found the C:N ratio to be an indicator of the 388 decomposability of the SOM in a soil, with soils having lower C:N ratios having greater 389 CO<sub>2</sub> evolution up to a certain threshold.

390

391

Temperature-induced changes in pool sizes could be an indication that warmer temperatures may enable microbes to quickly decompose a larger portion of SOM.

392 Increased labile pool size with temperature evidenced in this study indicates that at

393 warmer temperatures SOM otherwise unavailable to microbes at lower temperatures 394 becomes available for decomposition. This could be attributed to shifts in microbial 395 community composition at different temperatures (Zogg et al., 1997; Zak et al., 1999), 396 changes is substrate use (Andrews et al., 2000; Schimel and Mikan, 2005), or the 397 overcoming of biochemical resistance of SOM by microbes (Conant et al., 2008b). 398 We had utilized different land use treatments at our sites as a way to compare 399 soils with the same MAT but varying amounts and types of SOM. For the four native 400 grassland/cultivated sites the native grassland treatments respired a greater amount of 401 total soil C and had larger active pools then their cultivated counterparts. The native 402 grassland soils had greater percentages of carbohydrates as found by py-MBMS, which 403 could be the reason for the greater respiration and larger active pool. Plante et al. (2009) 404 found that cultivation resulted in significant decreases in carbohydrates, peptides, and 405 phenols, also utilizing py-MBMS. Surprisingly, the decline in carbohydrates with 406 cultivation did not result in significant trends in  $Q_{10-q}$  values with land use. Our MAT 407 gradient did not produce consistent trends with regards to temperature sensitivity, also. It 408 may have been that differences in soil characteristics among sites were too great to 409 elucidate trends with MAT.

The size of our estimated active pool did increase with warmer incubation temperatures for most soils indicating that there may be changes in microbial community or function with temperature that should be considered in model incorporation. Our results indicate that although individual soils may have varying apparent temperature sensitivities for labile versus more resistant SOM depending on the inherent

| 415 | characteristics of the soil, overall the more resistant SOM tends to be more temperature   |
|-----|--------------------------------------------------------------------------------------------|
| 416 | sensitive. We were unable to link differences between inherent and apparent temperature    |
| 417 | sensitivity of SOM to MAT, land use, or the chemical composition of SOM. This is an        |
| 418 | area that requires more investigation and is necessary to better model temperature effects |
| 419 | on SOM decomposition.                                                                      |
| 420 |                                                                                            |
| 421 | References                                                                                 |
| 422 | Andrén, O., Paustian, K., 1987. Barley straw decomposition in the field - a comparison of  |
| 423 | models. Ecology 68,1190-1200.                                                              |
| 424 | Andrews, J.A., Matamala, R., Westover, K.M., Schlesinger, W.H., 2000. Temperature          |
| 425 | effects on the diversity of soil heterotrophs and the delta C-13 of soil-respired          |
| 426 | CO2. Soil Biology & Biochemistry 32, 699-706.                                              |
| 427 | Black, A.L., and D. L. Tanaka, 1997. A conservation tillage-cropping systems study in      |
| 428 | the Northern Great Plains of the United States. In: Paul, E.A. (Ed.). Soil organic         |
| 429 | matter in temperate agroecosystems. CRC Press, Inc.335-342.                                |
| 430 | Bol, R., Bolger, T., Cully, R., Little, D., 2003. Recalcitrant soil organic materials      |
| 431 | mineralize more efficiently at higher temperatures. Journal of Plant Nutrition and         |
| 432 | Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 166, 300-307.                |
| 433 | Bosatta, E., Agren, G.I., 1999. Soil organic matter quality interpreted thermodynamically. |
| 434 | Soil Biology & Biochemistry 31, 1889-1891.                                                 |
| 435 | Boudot, J.P., Belhadj, B.A., Chone, T., 1986. Carbon Mineralization in Andosols and        |
| 436 | Aluminum-Rich Highland Soils. Soil Biology & Biochemistry 18, 457-461.                     |

| 437 | Boudot, J.P., Brahim, A.B.H., Chone, T., 1988. Dependence of Carbon and Nitrogen            |
|-----|---------------------------------------------------------------------------------------------|
| 438 | Mineralization Rates Upon Amorphous Metallic Constituents and Allophanes in                 |
| 439 | Highland Soils. Geoderma 42, 245-260.                                                       |
| 440 | Burke, I., J. P. Kaye, S. P. Bird, S. A. Hall, R. L. McCulley, and G. L. Sommerville,       |
| 441 | 2003. Evaluating and testing models of terrestrial biogeochemistry: The role of             |
| 442 | temperature in controlling decomposition. In: Canham, C., J. Cole, W. Lauenroth             |
| 443 | (Ed.). Models in Ecosystem Science. Princeton University Press, Princeton, N. J.,           |
| 444 | pp. 225-253.                                                                                |
| 445 | Campbell, C.A., G. P. Lafond, A. P. Moulin, L. Townley-Smith, and R. P. Zentner, 1997.      |
| 446 | Crop production and soil organic matter in long-term crop rotations in the sub-             |
| 447 | humid Northern Great Plains of Canada. In: Paul, E.A. (Ed.). Soil organic matter            |
| 448 | in temperate agroecosystems. CRC Press, Inc.297-315.                                        |
| 449 | Cerri, C.E.P., Paustian, K., Bernoux, M., Victoria, R.L., Melillo, J.M., Cerri, C.C., 2004. |
| 450 | Modeling changes in soil organic matter in Amazon forest to pasture conversion              |
| 451 | with the Century model. Global Change Biology 10, 815-832.                                  |
| 452 | Cochran, R.L., Collins, H.P., Kennedy, A., Bezdicek, D.F., 2007. Soil carbon pools and      |
| 453 | fluxes after land conversion in a semiarid shrub-steppe ecosystem. Biology and              |
| 454 | Fertility of Soils 43, 479-489.                                                             |
| 455 | Collins, H.P., Elliott, E.T., Paustian, K., Bundy, L.C., Dick, W.A., Huggins, D.R.,         |
| 456 | Smucker, A.J.M., Paul, E.A., 2000. Soil carbon pools and fluxes in long-term                |
| 457 | corn belt agroecosystems. Soil Biology & Biochemistry 32, 157-168.                          |
|     |                                                                                             |

| 458 | Conant, R.T., Drijber, R.A., Haddix, M.L., Parton, W.J., Paul, E.A., Plante, A.F., Six, J., |
|-----|---------------------------------------------------------------------------------------------|
| 459 | Steinweg, J.M., 2008a. Sensitivity of organic matter decomposition to warming               |
| 460 | varies with its quality. Global Change Biology 14, 868-877.                                 |
| 461 | Conant, R.T., Steinweg, J.M., Haddix, M.L., Paul, E.A., Plante, A.F., Six, J., 2008b.       |
| 462 | Experimental warming shows that decomposition temperature sensitivity                       |
| 463 | increases with soil organic matter recalcitrance. Ecology 89, 2384-2391.                    |
| 464 | Dalias, P., Kokkoris, G.D., Troumbis, A.Y., 2003. Functional shift hypothesis and the       |
| 465 | relationship between temperature and soil carbon accumulation. Biology and                  |
| 466 | Fertility of Soils 37, 90-95.                                                               |
| 467 | Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon                |
| 468 | decomposition and feedbacks to climate change. Nature 440, 165-173.                         |
| 469 | Davidson, E.A., Trumbore, S.E., Amundson, R., 2000. Biogeochemistry - Soil warming          |
| 470 | and organic carbon content. Nature 408, 789-790.                                            |
| 471 | Del Grosso, S.J., Parton, W.J., Mosier, A.R., Holland, E.A., Pendall, E., Schimel, D.S.,    |
| 472 | Ojima, D.S., 2005. Modeling soil CO2 emissions from ecosystems.                             |
| 473 | Biogeochemistry 73, 71-91.                                                                  |
| 474 | Fierer, N., Craine, J.M., McLauchlan, K., Schimel, J.P., 2005. Litter quality and the       |
| 475 | temperature sensitivity of decomposition. Ecology 86, 320-326.                              |
| 476 | Fissore, C., Giardina, C.P., Swanston, C.W., King, G.M., Kolka, R.K., 2009. Variable        |
| 477 | temperature sensitivity of soil organic carbon in North American forests. Global            |
| 478 | Change Biology 15, 2295-2310.                                                               |

| 479 | Follett, R.F., Paul, E.A., Pruessner, E.G., 2007. Soil carbon dynamics during a long-term |
|-----|-------------------------------------------------------------------------------------------|
| 480 | incubation study involving C-13 and C-14 measurements. Soil Science 172, 189-             |
| 481 | 208.                                                                                      |
| 482 | Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W., Brovkin, V., Cadule, P.,  |
| 483 | Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T.,          |
| 484 | Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H.D., Raddatz, T., Rayner, P.,            |
| 485 | Reick, C., Roeckner, E., Schnitzler, K.G., Schnur, R., Strassmann, K., Weaver,            |
| 486 | A.J., Yoshikawa, C., Zeng, N., 2006. Climate-carbon cycle feedback analysis:              |
| 487 | Results from the (CMIP)-M-4 model intercomparison. Journal of Climate 19,                 |
| 488 | 3337-3353.                                                                                |
| 489 | Gillespie, A.W., Walley, F.L., Farrell, R.E., Leinweber, P., Schlichting, A., Eckhardt,   |
| 490 | K.U., Regier, T.Z., Blyth, R.I.R., 2009. Profiling Rhizosphere Chemistry:                 |
| 491 | Evidence from Carbon and Nitrogen K-Edge XANES and Pyrolysis-FIMS. Soil                   |
| 492 | Science Society of America Journal 73, 2002-2012.                                         |
| 493 | Haile-Mariam, S., Cheng, W., Johnson, D.W., Ball, J.T., Paul, E.A., 2000. Use of carbon-  |
| 494 | 13 and carbon-14 to measure the effects of carbon dioxide and nitrogen                    |
| 495 | fertilization on carbon dynamics in ponderosa pine. Soil Science Society of               |
| 496 | America Journal 64, 1984-1993.                                                            |
| 497 | Halvorson, A. D., Vigil M.F., Peterson G.A., Elliot E.T., 1997. Long-Term Tillage and     |
| 498 | Crop Residue Management Study at Akron, Colorado. In: E. A. Paul (Eds.), Soil             |
| 499 | organic matter in temperate agroecosystems. CRC Press, Inc, pp. 361-370.                  |

| 500 | Hempfling, R., Schulten, H.R., 1990. Chemical Characterization of the Organic-Matter in    |
|-----|--------------------------------------------------------------------------------------------|
| 501 | Forest Soils by Curie-Point Pyrolysis GC MS and Pyrolysis Field-Ionization                 |
| 502 | Mass-Spectrometry. Organic Geochemistry 15, 131-145.                                       |
| 503 | Hess, T.F., Schmidt, S.K., 1995. Improved Procedure for Obtaining Statistically Valid      |
| 504 | Parameter Estimates from Soil Respiration Data. Soil Biology & Biochemistry 27,            |
| 505 | 1-7.                                                                                       |
| 506 | Hoover, C.M., Magrini, K.A., Evans, R.J., 2002. Soil carbon content and character in an    |
| 507 | old-growth forest in northwestern Pennsylvania: a case study introducing                   |
| 508 | pyrolysis molecular beam mass spectrometry (py-MBMS). Environmental                        |
| 509 | Pollution 116, S269-S275.                                                                  |
| 510 | Knorr, W., Prentice, I.C., House, J.I., Holland, E.A., 2005. Long-term sensitivity of soil |
| 511 | carbon turnover to warming. Nature 433, 298-301.                                           |
| 512 | Leifeld, J., Fuhrer, J., 2005. The temperature response of CO2 production from bulk soils  |
| 513 | and soil fractions is related to soil organic matter quality. Biogeochemistry 75,          |
| 514 | 433-453.                                                                                   |
| 515 | Linn, D.M., Doran, J.W., 1984. Effect of Water-Filled Pore-Space on Carbon-Dioxide         |
| 516 | and Nitrous-Oxide Production in Tilled and Nontilled Soils. Soil Science Society           |
| 517 | of America Journal 48, 1267-1272.                                                          |
| 518 | Lloyd, J., Taylor, J.A., 1994. On the Temperature-Dependence of Soil Respiration.          |
| 519 | Functional Ecology 8, 315-323.                                                             |
| 520 | Magrini, K.A., Evans, R.J., Hoover, C.M., Elam, C.C., Davis, M.F., 2002. Use of            |
| 521 | pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest                |

| 522 | soil carbon: method and preliminary results. Environmental Pollution 116, S255-           |
|-----|-------------------------------------------------------------------------------------------|
| 523 | S268.                                                                                     |
| 524 | Martin, J.P., Haider, K., 1986. Influence of mineral colloids on turn-over rates of soil  |
| 525 | organic carbon. In: Huang, P.M. (Ed.). Interactions of soil minerals with natural         |
| 526 | organics and microbes. The Soil Science Society of America, Madison, Wis.,                |
| 527 | USA, pp. 283-304.                                                                         |
| 528 | Martin, R.E., Asner, G.P., Ansley, R.J., Mosier, A.R., 2003. Effects of woody vegetation  |
| 529 | encroachment on soil nitrogen oxide emissions in a temperate savanna. Ecological          |
| 530 | Applications 13, 897-910.                                                                 |
| 531 | McKeague, J.A., M. V. Cheshire, F. Andreux, and J. Berthelin, 1986. Organo-mineral        |
| 532 | complexes in relation to pedogenesis. In: Huang, P.M. (Ed.). Interactions of soil         |
| 533 | minerals with natural organics and microbes. The Soil Science Society of                  |
| 534 | America, Madison, Wis., USA, pp. 549-592.                                                 |
| 535 | Melillo, J.M., Borchers, J., Chaney, J., Fisher, H., Fox, S., Haxeltine, A., Janetos, A., |
| 536 | Kicklighter, D.W., Kittel, T.G.F., McGuire, A.D., McKeown, R., Neilson, R.,               |
| 537 | Nemani, R., Ojima, D.S., Painter, T., Pan, Y., Parton, W.J., Pierce, L., Pitelka, L.,     |
| 538 | Prentice, C., Rizzo, B., Rosenbloom, N.A., Running, S., Schimel, D.S., Sitch, S.,         |
| 539 | Smith, T., Woodward, I., 1995. Vegetation Ecosystem Modeling and Analysis                 |
| 540 | Project - Comparing Biogeography and Biogeochemistry Models in a                          |
| 541 | Continental-Scale Study of Terrestrial Ecosystem Responses to Climate-Change              |
| 542 | and Co2 Doubling. Global Biogeochemical Cycles 9, 407-437.                                |

| 543 | Munevar F      | Wollum A G    | 1977  | Effects of Addition | of Phosphorus and  | Inorganic |
|-----|----------------|---------------|-------|---------------------|--------------------|-----------|
| 545 | mune vui, i ., | , onum, 11.0. | 1//// | Lifetts of Huunton  | or i nosphorus und | morganie  |

- 544 Nitrogen on Carbon and Nitrogen Mineralization in Andepts from Colombia. Soil
  545 Science Society of America Journal 41, 540-545.
- 546 Paul, E.A., S. J. Morris, S. Böhm, 2001. The Determination of Soil C Pool Sizes and
- 547 Turnover Rates: Biophysical Fractionation and Tracers. In: Lal, R., J. M. Kimble,
  548 R. F. Follett, B. A. Stewart (Ed.). Assessment Methods for Sol Carbon. Lewis
- 549 Publishers, Boca Raton, pp. 193-206.
- Paustian, K., Parton, W.J., Persson, J., 1992. Modeling Soil Organic-Matter In Organic Amended and Nitrogen-Fertilized Long-Term Plots. Soil Science Society of
- 552 America Journal 56, 476-488.
- Plante, A.F., Magrini-Bair, K., Vigil, M., Paul, E.A., 2009. Pyrolysis-molecular beam
  mass spectrometry to characterize soil organic matter composition in chemically
  isolated fractions from differing land uses. Biogeochemistry 92, 145-161.
- Rasmussen, C., Southard, R.J., Horwath, W.R., 2006. Mineral control of organic carbon
  mineralization in a range of temperate conifer forest soils. Global Change Biology
  12, 834-847.
- Reichstein, M., Katterer, T., Andrén, O., Ciais, P., Schulze, E.D., Cramer, W., Papale, D.,
  Valentini, R., 2005. Temperature sensitivity of decomposition in relation to soil
- organic matter pools: critique and outlook. Biogeosciences 2, 317-321.
- 562Rey, A., Jarvis, P., 2006. Modeling the effect of temperature on carbon mineralization
- rates across a network of European forest sites (FORCAST). Global Change
- 564 Biology 12, 1894-1908.

| 565 | Schimel, J.P., Mikan, C., 2005. Changing microbial substrate use in Arctic tundra soils  |
|-----|------------------------------------------------------------------------------------------|
| 566 | through a freeze-thaw cycle. Soil Biology & Biochemistry 37, 1411-1418.                  |
| 567 | Schimel, J.P., 1995. CO2 and the carbon cycle. In: Houghton, J.T. (Ed.). Climate change, |
| 568 | 1994: radiative forcing of climate change and an evaluation of the IPCC IS92             |
| 569 | emission scenarios. Cambridge University Press, Cambridge [England]; New                 |
| 570 | York, pp. 35-71.                                                                         |
| 571 | Schulten, H.R., 1996. Direct pyrolysis-mass spectrometry of soils: a novel too in        |
| 572 | agriculture, ecology, forestry, and soil science. In: Boutton, T.W., Yamasaki, Si.       |
| 573 | (Eds.). Mass spectrometry of soils. M. Dekker, New York, pp. 373-436.                    |
| 574 | Schulten, H.R., Hempfling, R., Zech, W., 1988. Discriminating horizons in a modern       |
| 575 | profile by field-ionization mass-spectrometery and pattern-recognition. Geoderma         |
| 576 | 41, 211-222.                                                                             |
| 577 | Sharma, R.K., Chan, W.G., Seeman, J.I.Hajaligol, M.R., 2003. Formation of low            |
| 578 | molecular weight heterocycles and polycyclic aromatic compounds (pacs) in the            |
| 579 | pyrolysis of alpha-amino acids. Journal of Analytical and Applied Pyrolysis              |
| 580 | 66,97-121.                                                                               |
| 581 | Sorge, C., Muller, R., Leinweber, P., Schulten, H.R., 1993. Pyrolysis mass-spectrometry  |
| 582 | of whole soils, soil particle-size fractions, litter materials and humic substances -    |
| 583 | statistical evaluation of sample weight, residue, volatilized matter and total ion       |
| 584 | intensity. Fresenius Journal of Analytical Chemistry 346, 697-703.                       |

| 585 | Thomsen, I.K., Petersen, B.M., Bruun, S., Jensen, L.S., Christensen, B.T., 2008.    |
|-----|-------------------------------------------------------------------------------------|
| 586 | Estimating soil C loss potentials from the C to N ratio. Soil Biology &             |
| 587 | Biochemistry 40, 849-852.                                                           |
| 588 | Trumbore, S.E., 1993. Comparison of Carbon Dynamics in Tropical and Temperate Soils |
| 589 | Using Radiocarbon Measurements. Global Biogeochemical Cycles 7, 275-290.            |
| 590 | Zak, D.R., Holmes, W.E., MacDonald, N.W., Pregitzer, K.S., 1999. Soil temperature,  |
| 591 | matric potential, and the kinetics of microbial respiration and nitrogen            |
| 592 | mineralization. Soil Science Society of America Journal 63, 575-584.                |
| 593 | Zogg, G.P., Zak, D.R., Ringelberg, D.B., MacDonald, N.W., Pregitzer, K.S., White,   |
| 594 | D.C., 1997. Compositional and functional shifts in microbial communities due to     |
| 595 | soil warming. Soil Science Society of America Journal 61, 475-481.                  |

| Site                                      | GPS<br>location       | MAT/<br>MAP      | Soil<br>Taxonomy           | Treatment           | % Clay | Vegetation                                                                 | Year converted to<br>present land use | Citation          |
|-------------------------------------------|-----------------------|------------------|----------------------------|---------------------|--------|----------------------------------------------------------------------------|---------------------------------------|-------------------|
| Indian Head,<br>Saskatchewan              | 50.533 N              | 2°C              | Udic Boroll                | Native<br>grassland | 50     | Grassland containing<br>predominantly cool<br>season grasses               | 1957                                  | Campbell et al.   |
| ARGCN                                     | -103.517 W            | 421 mm           |                            | Cultivated          | 61     | Spring-wheat-based rotations                                               |                                       | 1997              |
| Mandan, North<br>Dakota                   | 46.767 N              | 5°C              | Typic                      | Native<br>grassland | 28     | Warm mixed grass prairie                                                   | 1984                                  | Black & Tanaka    |
| NGPRL                                     | -100.917 W            | 402mm            | Argiboroll                 | Cultivated          | 33     | Continuous spring wheat                                                    |                                       | 1997              |
| Akron, Colorado                           | olorado 40.150 N      |                  | Aridic                     | Native<br>grassland | 23     | Grassland with predominantly $C_4$ grasses                                 | 1957                                  | Halvorson et al.  |
| CGPRS                                     | -103.150 W            | 420 mm           | Paleustoli                 | Cultivated          | 28     | Continuous wheat                                                           |                                       | 1997              |
| Vernon, Texas                             | xas 33.939 N          |                  | Typic                      | Native<br>grassland | 31     | Grassland with a mix of $C_4$<br>and $C_3$ grasses                         | N/A                                   | Martin et al.     |
| Waggoner Ranch                            | -99.413 W             | 665 mm           | Paleustoll                 | Cultivated          | 44     | Continuous wheat with<br>conventional tillage                              | N/A                                   | 2003              |
| Alajuela, Costa Rica<br>Alajuela Research | N/A                   | 20°C             | Hydric                     | Native<br>forest    | 9      | Tropical forest with predominantly $C_3$ species                           | 1979                                  | N/A               |
| Station                                   |                       | IN/A             | Welanudanu                 | Pasture             | 12     | C <sub>4</sub> warm season grasses                                         |                                       |                   |
| Rondônia, Brazil<br>Nova Vida Ranch       | 10.168 S<br>-62.824 W | 25.6°C<br>2200mm | Paleudult &<br>Kandiuldult | Native<br>forest    | 30     | Open humid tropical forest<br>with predominantly C <sub>3</sub><br>species | 1972                                  | Cerri et al. 2004 |
|                                           |                       |                  |                            | Pasture             | 25     | C <sub>4</sub> warm season grasses                                         |                                       |                   |

# Table 1. Characteristics of the six locations, sampled in the spring of 2005, used in our long-term incubation

597 MAT, mean annual temperature; MAP, mean annual precipitation.

Table 2. Soil C and N content, C:N ratio, cumulative respiration after 588 days of incubation at 15°C, 25°C, and 35°C, and Q<sub>10-q</sub>

calculated for the  $35/25^{\circ}$ C comparison using the cumulative respiration after 588 days for the six sites and land-use types examined in the cross site comparison (mean + 1 standard deviation n-4)

| 600 | the cross site comparison. | (mean $\pm 1$ standard deviation, n=4) |
|-----|----------------------------|----------------------------------------|
|     |                            |                                        |

|                   |                       |                  |                   |      | Cumulativ       | e Respiration (% | Q <sub>10-q</sub> |               |                        |
|-------------------|-----------------------|------------------|-------------------|------|-----------------|------------------|-------------------|---------------|------------------------|
| Site <sup>†</sup> | Land Use <sup>‡</sup> | SOC (%)          | Total N (%)       | C:N  | 15 °C           | 25 °C            | 35 °C             | labile §      | resistant <sup>¶</sup> |
| SK                | NG                    | 3.71 ± 0.09      | $0.358 \pm 0.008$ | 10.4 | $6.52 \pm 0.37$ | $10.40 \pm 0.60$ | 14.37 ± 0.23      | $1.6 \pm 0.0$ | 2.5 ± 0.2              |
| SK                | С                     | 2.29 ± 0.09      | 0.204 ± 0.021     | 11.2 | $4.33 \pm 0.14$ | $7.73 \pm 0.53$  | 13.05 ± 0.50      | $2.0 \pm 0.1$ | 3.3 ± 1.3              |
| ND                | NG                    | 3.24 ± 0.06      | $0.293 \pm 0.004$ | 11.0 | $3.93 \pm 0.30$ | $8.14 \pm 0.68$  | 15.03 ± 2.90      | 1.7 ± 0.1     | 2.7 ± 0.2              |
| ND                | С                     | 2.80 ± 0.24      | $0.240 \pm 0.004$ | 11.7 | 5.17 ± 0.16     | 9.17 ± 0.44      | 11.32 ± 1.06      | $1.5 \pm 0.1$ | $1.3 \pm 0.2$          |
| CO                | NG                    | 1.16 ± 0.08      | 0.135 ± 0.003     | 8.6  | $9.64 \pm 0.65$ | $17.93 \pm 0.53$ | $30.20 \pm 2.39$  | 1.5 ± 0.1     | $2.8 \pm 0.3$          |
| CO                | С                     | 0.69 ± 0.02      | $0.100 \pm 0.002$ | 6.9  | $7.45 \pm 0.25$ | 13.09±1.58       | 24.04 ± 2.58      | $2.2 \pm 0.2$ | 4.6 ± 1.4              |
| ТΧ                | NG                    | 1.12 ± 0.02      | $0.129 \pm 0.006$ | 8.7  | $9.60 \pm 0.46$ | 14.96 ± 1.10     | $24.36 \pm 0.43$  | $2.0 \pm 0.2$ | $3.4 \pm 0.5$          |
| ТΧ                | С                     | 1.02 ± 0.04      | $0.125 \pm 0.004$ | 8.1  | $8.62 \pm 0.20$ | 15.61 ± 0.68     | 23.22 ± 1.60      | $1.6 \pm 0.1$ | $3.1 \pm 0.2$          |
| CR                | NF                    | $20.02 \pm 0.62$ | 1.660 ± 0.045     | 12.1 | $2.04 \pm 0.10$ | 4.21 ± 0.27      | $9.70 \pm 0.53$   | $1.9 \pm 0.2$ | $4.1 \pm 0.4$          |
| CR                | Р                     | $14.16 \pm 0.19$ | 1.045 ± 0.019     | 13.5 | $1.29 \pm 0.05$ | $2.68 \pm 0.07$  | $5.65 \pm 0.17$   | $2.9 \pm 0.3$ | $6.5 \pm 0.4$          |
| BR                | NF                    | 1.06 ± 0.02      | $0.109 \pm 0.006$ | 9.7  | $5.72 \pm 0.54$ | 11.81 ± 0.74     | 19.50 ± 2.28      | $2.2 \pm 0.3$ | $1.4 \pm 0.3$          |
| BR                | Р                     | 1.41 ± 0.02      | 0.133 ± 0.011     | 10.6 | 6.76±0.36       | 10.65 ± 0.45     | 21.60 ± 0.97      | $2.4 \pm 0.4$ | $4.2 \pm 0.6$          |

<sup>†</sup> SK, Saskatchewan; ND, North Dakota; CO, Colorado; TX, Texas; CR, Costa Rica; BR, Brazil

602 <sup>‡</sup> NG, native grassland; NF, native forest; C, cultivated; P, pasture

603 <sup>§</sup> Labile was considered the first 0.5% SOC respired in the incubation

604 Resistant was considered the last 0.5% SOC respired in the incubation

Table 3. Parameter estimates averaged across all soils and temperatures and fit estimates for the two-pool and three-pool models for

| Model  | Active Pool     | Active Pool Decomp. Rate | Slow Pool       | Slow Pool Decomp. Ra | te Resistant Pool | Resistant Pool Decomp. Rate | $R_a^2$ |
|--------|-----------------|--------------------------|-----------------|----------------------|-------------------|-----------------------------|---------|
|        | (µg C g soil⁻¹) | (day⁻¹)                  | (µg C g soil⁻¹) | (day <sup>-1</sup> ) | (µg C g soil⁻¹)   | (day <sup>-1</sup> )        |         |
| 2 pool | 1060            | 2.85E-02                 | 42840           | 1.36E-04             |                   |                             | 0.83    |
| 3 pool | 1002            | 3.03E-02                 | 20948           | 3.10E-04             | 21950             | 1.76E-05                    | 0.83    |

606 the six sites and land use types examined in the cross site comparison.

| 610 | Table 4. Size of the active pool and active and slow | pool decomposition rates at 15 | 5°C, 25°C, and 35°C for the two-pool model for the |
|-----|------------------------------------------------------|--------------------------------|----------------------------------------------------|
|     |                                                      |                                |                                                    |

| Site <sup>†</sup> | Land use $^{\ddagger}$ | Inc. Temp     | Active Pool      | Active Pool Decomp. Rate | Slow Pool Decomp. Rate  |
|-------------------|------------------------|---------------|------------------|--------------------------|-------------------------|
|                   |                        | ( <b>°</b> C) | (% total soil C) | (day⁻¹)                  | (day <sup>-1</sup> )    |
| SK                | NG                     | 15            | 3.7 ± 1.3        | 6.74E-03 ± 1.97E-03      | 5.60E-05 ± 2.24E-05     |
|                   |                        | 25            | 5.3 ± 1.4        | 1.03E-02 ± 2.56E-03      | 1.01E-04 ± 3.22E-05     |
|                   |                        | 35            | 6.7 ± 2.1        | 1.35E-02 ± 4.15E-03      | 1.72E-04 ± 5.83E-05     |
| SK                | С                      | 15            | 2.1 ± 1.5        | 6.77E-03 ± 4.03E-03      | 4.33E-05 ± 2.52E-05     |
|                   |                        | 25            | 2.6 ± 1.2        | 1.08E-02 ± 4.73E-03      | 9.55E-05 ± 2.70E-05     |
|                   |                        | 35            | $4.2 \pm 0.7$    | 1.26E-02 ± 2.12E-03      | 1.73E-04 ± 1.89E-05     |
| ND                | NG                     | 15            | ND               | ND                       | ND                      |
|                   |                        | 25            | $3.5 \pm 0.7$    | 8.68E-03 ± 1.48E-03      | 8.82E-05 ± 1.33E-05     |
|                   |                        | 35            | 7.2 ± 2.5        | 6.72E-03 ± 1.89E-03      | 1.67E-04 ± 4.48E-05     |
| ND                | С                      | 15            | $2.0 \pm 0.5$    | 1.03E-02 ± 2.35E-03      | 6.04E-05 ± 1.03E-05     |
|                   |                        | 25            | $4.0 \pm 1.4$    | 7.58E-03 ± 2.26E-03      | 9.88E-05 ± 2.57E-05     |
|                   |                        | 35            | 4.0 ± 1.1        | 1.17E-02 ± 2.94E-03      | 1.35E-04 ± 2.76E-05     |
| CO                | NG                     | 15            | ND               | ND                       | ND                      |
|                   |                        | 25            | 9.4 ± 2.4        | 6.88E-03 ± 1.42E-03      | 1.85E-04 ± 4.46E-05     |
|                   |                        | 35            | 14.0 ± 2.7       | 7.05E-03 ± 1.08E-03      | 3.31E-04 ± 5.38E-05     |
| CO                | С                      | 15            | ND               | ND                       | ND                      |
|                   |                        | 25            | 3.1 ± 1.0        | 1.60E-02 ± 5.11E-03      | 1.91E-04 ± 2.94E-05     |
|                   |                        | 35            | 7.3 ± 1.3        | 1.44E-02 ± 2.48E-03      | $3.52E-04 \pm 4.00E-05$ |
| ТΧ                | NG                     | 15            | 7.0 ± 2.7        | 5.43E-03 ± 1.66E-03      | 5.93E-05 ± 4.35E-05     |
|                   |                        | 25            | 8.9 ± 2.0        | 9.02E-03 ± 1.80E-03      | 1.25E-04 ± 4.59E-05     |
|                   |                        | 35            | 10.0 ± 1.2       | 1.38E-02 ± 1.60E-03      | 3.14E-04 ± 3.85E-05     |
| ТΧ                | С                      | 15            | $6.8 \pm 3.9$    | 5.54E-03 ± 2.51E-03      | 4.66E-05 ± 6.21E-05     |
|                   |                        | 25            | 6.7 ± 2.8        | 1.57E-02 ± 6.53E-03      | 1.86E-04 ± 8.59E-05     |
|                   |                        | 35            | 8.8 ± 1.4        | 1.87E-02 ± 2.99E-03      | 3.17E-04 ± 5.19E-05     |
| CR                | NF                     | 15            | 0.1 ± 0.0        | 2.89E-01 ± 6.87E-02      | 4.63E-05 ± 7.20E-06     |
|                   |                        | 25            | 0.6 ± 0.1        | 7.64E-02 ± 8.34E-03      | 6.57E-05 ± 8.07E-06     |
|                   |                        | 35            | 1.0 ± 0.1        | 6.22E-02 ± 8.81E-03      | 1.63E-04 ± 1.41E-05     |

611 six sites and land-use types examined in the cross site comparison. Error is model standard error.

| CR | Р  | 15 | $0.7 \pm 0.4$ | 6.15E-03 ± 2.56E-03 | 9.63E-06 ± 6.10E-06 |
|----|----|----|---------------|---------------------|---------------------|
|    |    | 25 | 0.5 ± 0.1     | 4.94E-02 ± 1.12E-02 | 3.96E-05 ± 7.75E-06 |
|    |    | 35 | $3.2 \pm 0.3$ | 1.17E-02 ± 9.10E-04 | 4.83E-05 ± 6.15E-06 |
| BR | NF | 15 | 1.1 ± 0.2     | 5.61E-02 ± 1.14E-02 | 8.58E-05 ± 1.90E-05 |
|    |    | 25 | 0.6 ± 0.1     | 1.11E-01 ± 2.15E-02 | 2.14E-04 ± 2.11E-05 |
|    |    | 35 | 2.1 ± 0.3     | 4.92E-02 ± 9.52E-03 | 3.45E-04 ± 3.46E-05 |
| BR | Р  | 15 | 1.9 ± 0.3     | 3.59E-02 ± 6.00E-03 | 9.64E-05 ± 1.75E-05 |
|    |    | 25 | 3.7 ± 0.7     | 2.23E-02 ± 4.23E-03 | 1.37E-04 ± 2.55E-05 |
|    |    | 35 | 6.0 ± 0.7     | 2.91E-02 ± 3.76E-03 | 3.35E-04 ± 3.94E-05 |

612 <sup>†</sup> SK, Saskatchewan; ND, North Dakota; CO, Colorado; TX, Texas; CR, Costa Rica; BR, Brazil

613 <sup>‡</sup> NG, native grassland; NF, native forest; C, cultivated; P, pasture

614 ND values were not determined because the model calculated negative decomposition rates for the slow pool for these samples

616 Table 5. Proportions (%) of ion intensity attributable to carbohydrates, peptides, phenols, lignin dimmers, lipids, alkyl-aromatics,

| 617 | various N-containing com | pounds (VCN). | sterols and the re | emaining unknown | m/z fore each of the | soils sampled. ( | mean $\pm 1$ standard |
|-----|--------------------------|---------------|--------------------|------------------|----------------------|------------------|-----------------------|
|     | 0                        |               |                    | 0                |                      | 1 1              |                       |

618 deviation, n= 6)

| Site <sup>1</sup> | Land<br>use <sup>‡</sup> | m/z<br>20-56   | Carbs          | Peptides | Phenols &<br>Lignin<br>Monomers | Lignin<br>dimers | Lipids  | Alkyl<br>aromatics | VNC      | Sterols | Unknown              |
|-------------------|--------------------------|----------------|----------------|----------|---------------------------------|------------------|---------|--------------------|----------|---------|----------------------|
| SK                | NG                       | 52.8           | 11.0           | 9.7      | 4.0                             | 0.3              | 0.4     | 2.5                | 12.9     | 0.3     | 4.7                  |
|                   | С                        | 59.0           | 8.0            | 8.2      | 3.0                             | 0.6              | 0.8     | 1.9                | 9.6      | 0.6     | 6.6                  |
| ND                | NG                       | 52.8           | 11.0           | 9.1      | 3.9                             | 0.3              | 0.5     | 2.2                | 13.1     | 0.3     | 5.1                  |
|                   | С                        | 54.4           | 10.1           | 9.4      | 4.0                             | 0.3              | 0.4     | 2.1                | 13.1     | 0.3     | 4.5                  |
| CO                | NG                       | 51.8           | 9.7            | 8.5      | 3.9                             | 0.6              | 0.9     | 2.5                | 11.5     | 0.7     | 7.5                  |
|                   | С                        | 48.5           | 8.1            | 8.4      | 4.0                             | 1.0              | 1.8     | 2.4                | 9.2      | 1.1     | 11.5                 |
| ΤX                | NG                       | 53.4           | 9.1            | 8.8      | 3.3                             | 0.6              | 0.9     | 2.4                | 11.0     | 0.8     | 7.3                  |
|                   | С                        | 52.1           | 8.0            | 7.5      | 3.5                             | 0.9              | 1.6     | 2.2                | 9.3      | 1.1     | 10.7                 |
| CR                | NF                       | 41.0           | 15.6           | 12.3     | 6.0                             | 0.5              | 0.2     | 2.3                | 14.2     | 0.4     | 4.8                  |
|                   | Р                        | 47.5           | 15.4           | 11.2     | 4.6                             | 0.3              | 0.1     | 2.1                | 13.3     | 0.3     | 3.5                  |
| BR                | NF                       | 50.0           | 9.6            | 9.4      | 4.2                             | 0.6              | 0.9     | 2.1                | 12.8     | 0.6     | 7.5                  |
|                   | Р                        | 47.6           | 11.8           | 10.3     | 4.4                             | 0.5              | 0.7     | 2.5                | 13.4     | 0.6     | 6.2                  |
| Mear              | 1                        | $50.9 \pm 4.5$ | $10.6 \pm 2.6$ | 9.4±1.4  | 4.1±0.7                         | 0.5±0.2          | 0.8±0.5 | 2.3±0.2            | 11.9±1.8 | 0.6±0.3 | 6.7 <del>±</del> 2.5 |

619<sup>†</sup> SK, Saskatchewan; ND, North Dakota; CO, Colorado; TX, Texas; CR, Costa Rica; BR, Brazil

620 <sup>‡</sup> NG, native grassland; NF, native forest; C, cultivated; P, pasture

- 621 Table 6. Statistically significant m/z values from Martens' uncertainty test and sequential
- 622 PLS regressions of chemical compositions against respiration rate at two different times
- 623 of incubation ranked from largest to smallest value of regression coefficient. Where
- 624 possible, m/z values marked with a compound class identifier based on classifications by
- 625 Schulten (1996).
- 626

| Day 5   | 97 (Pep), 98 (CH), 60 (CH), 73 (Pep), 111 (VNC), 58, 87 (Pep), 125 (VNC), 126 (CH), 59 (VNC), 74 (Pep), 123 (VNC), 138 (PLM), 101, 139 (VNC), 165, 75 (Pep)                                                                                         |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day 225 | 97 (Pep), 98 (CH), 83, 60 (CH), 80, 73 (Pep), 111 (VNC), 58, 125 (VNC), 87 (Pep), 126 (CH), 59 (VNC), 74 (Pep), 138 (PLM), 123 (VNC), 86, 72 (CH), 101, 139 (VNC), 168 (PLM), 143, 165, 428, 194 (PLM), 485, 479, 387, 446, 385, 373, 415, 332, 459 |

627 CH = carbohydrate; Pep = peptide; PLM = phenol and lignin monomer; LD = lignin

- 628 dimer; LP = lipid, alkane, alkene, fatty acid and n-alkyl ester; AA = alkyl aromatic; VNC
- 629 = various nitrogen containing compounds; S = sterol

## 631 Figure Legend

- 632 Figure 1. Decomposition rates over time at 15°C, 25°C, and 35°C for the twelve soils. NG
- 633 is native grassland and NF is native forest. Values represent means  $\pm$  SEM (n = 4).

634

- Figure 2. Correlation between the C to N ratio of the soil and the size of the active
- 636 fraction in percent of total SOC for the twelve soils sampled. All sites are represented by
- 637 closed circles except Colorado cultivated (CO-C), an unfilled square, and Brazil native
- 638 forest (BR-NF), an unfilled triangle.

639

640 Figure 4. Normalized mass spectrum for spectral range m/z=57-500 from the pyrolysis

641 molecular beam mass spectrometry analysis of Saskatchewan native grassland (NG), N.

Dakota cultivated, and the difference between the two spectra. In the difference graph

643 m/z that are more abundant in the native grassland are positive and m/z that are more

abundant in the cultivated are negative. Spectra are means of 6 samples.

645

Figure 3. PCA scores of whole-soil samples analyzed by py-MBMS for the twelve soils
sampled. Closed symbols are native treatments, open symbols are cultivated or pasture
treatments.





Figure 1.





657 Figure 2.



Figure 3.





Figure 4.