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Abstract

This paper proposes the use of eigenvoice modeling techniques
with the Cross Likelihood Ratio (CLR) as a criterion for speaker
clustering within a speaker diarization system. The CLR has
previously been shown to be a robust decision criterion for
speaker clustering using Gaussian Mixture Models. Recently,
eigenvoice modeling techniques have become increasingly pop-
ular, due to its ability to adequately represent a speaker based
on sparse training data, as well as an improved capture of dif-
ferences in speaker characteristics. This paper hence proposes
that it would be beneficial to capitalize on the advantages of
eigenvoice modeling in a CLR framework. Results obtained on
the 2002 Rich Transcription (RT-02) Evaluation dataset show
an improved clustering performance, resulting in a 35.1% rel-
ative improvement in the overall Diarization Error Rate (DER)
compared to the baseline system.
Index Terms: eigenvoice modeling, joint factor analysis, cross
likelihood ratio, speaker clustering, speaker diarization

1. Introduction
Speaker clustering, the process of associating segments of
speech produced by the same speaker, is commonly performed
as one of the final stages within a speaker diarization system.
The clustering stage is responsible for associating all speech
segments belonging to the same speaker by providing them with
the same speaker label. Speaker clustering is commonly re-
garded as the most crucial step in the final stages of a speaker
diarization system.

One of the most popular speaker clustering strategies to
date involves the use of a distance metric in conjunction with
agglomerative clustering, otherwise known as bottom-up hier-
archical clustering. In this approach, clustering is performed by
iteratively merging the closest pair of clusters, as determined
by some distance metric. The distance metric measures the dis-
similarity between the two clusters of interest, and the choice of
an appropriate distance metric is essential to the success of the
clustering system using this approach. Various distance metrics
have been proposed in speaker diarization literature, including
the Bayesian Information Criterion (BIC) [1], the symmetric
Kullback-Leibler divergence [2] and the Bayes Factor [3], each
with varying degrees of success. In the LIMSI broadcast news
diarization system [4], the Cross Likelihood Ratio (CLR) is
used as a distance metric for agglomerative speaker clustering.
The CLR criterion elegantly combines the information present
in both clusters of interest with knowledge of the show back-
ground model. This system was the top participant in the most
recent NIST Rich Transcription broadcast news evaluation, the
RT-04F [5], and is used as the baseline system in this paper.

Recently, eigenvoice modeling of speaker segments using
Joint Factor Analysis (JFA) techniques have become increas-
ingly popular in speaker recognition literature [6]. Compared to
traditional Gaussian Mixture Model (GMM) based approaches,
which can potentially suffer from the lack of data caused by
short speaker segments resulting in poor quality models, eigen-
voice modeling enjoys the advantage of being able to ade-
quately represent a speaker with limited enrollment data. This
is achieved by taking advantage of the highly informative prior
distribution contained in the speaker models, and using only
the most prominent eigenvoices, which account for most of the
speaker variability. This greatly reduces the dimensionality and
hence the number of parameters that need to be estimated. JFA
also has the potential to achieve improved capture of differ-
ences in speaker characteristics, through explicit and indepen-
dent modeling of speaker and channel variations. While earlier
work on JFA in the area of speaker recognition have generally
focused on the speaker verification task, such as in [7], increas-
ing research efforts are being placed on the application of JFA
techniques in the speaker diarization task in recent years. Pub-
lished speaker diarization systems that use eigenvoice modeling
for speaker clustering include the Variational Bayes system, as
reported in [8]. Inspired by the pioneering work by Valente [9],
which used Variational Bayesian methods for speaker cluster-
ing, this system combines the success of factor analysis meth-
ods in speaker recognition with the advantages of a Bayesian
approach to the diarization problem. A significant reduction in
DER was achieved over the baseline agglomerative clustering
system using the BIC.

This paper proposes that it would be beneficial to incorpo-
rate eigenvoice modeling in a CLR framework for speaker clus-
tering, in order to combine the advantages of the two techniques
described above. Section 2 presents an overview of the base-
line broadcast news diarization system, which performs speaker
clustering using traditional GMM based modeling techniques.
Section 3 outlines the theory behind eigenvoice modeling, and
shows how eigenvoice modeling techniques can be integrated
into the CLR framework. Section 4 presents the result obtained
on the RT-02 Evaluation dataset and compares the result to the
baseline system, and Section 5 draws some conclusions.

2. Baseline system overview
The baseline system used for comparison in this paper is based
on thec-sid configuration of the LIMSI broadcast news diariza-
tion system [4], which was the top participant in the most re-
cent NIST Rich Transcription broadcast news evaluation, the
RT-04F [5]. In the baseline system, the audio is first passed
through a speech activity detection stage which separates the
audio into speech and non-speech regions. Bayes Factor based



speaker segmentation is then performed to partition the speech
regions into homogeneous speaker segments, as described in
detail in [10]. This is followed by a Viterbi resegmentation stage
which aims to refine the segment boundary locations. The set
of speaker segments are then passed to the speaker clustering
stages of the system, which aim to merge the segments contain-
ing the utterances produced by the same speaker.

Speaker clustering is performed in two separate stages, a
Bayes Factor based initial clustering stage, as detailed in [3],
followed by a second clustering stage, which uses the CLR cri-
terion with traditional GMM based modeling techniques [4].
Both clustering stages use agglomerative clustering. Due to the
lack of data in the initial clustering stage, where speaker seg-
ments are relatively short, a multivariate normal distribution is
used to model the data, as opposed to a GMM. The initial clus-
tering stage merges only the closest speaker segments and is ter-
minated early, resulting in a set of underclustered nodes, which
is passed into the second clustering stage that performs further
clustering using more complex models. The performance of the
initial clustering stage is hence crucial to the success of the over-
all diarization system, since correct clustering decisions made
in this stage will generate pure, homogeneous clusters with suf-
ficient data to be represented by more complex models in the
subsequent clustering stage.

At the end of the initial clustering stage, the segment bound-
aries are refined once more via Viterbi resegmentation. The re-
fined segments are then passed into the second clustering stage,
which completes the clustering process using the CLR as the
decision criterion. In this clustering stage, the initial clusters
have considerably more data than the individual speaker seg-
ments passed into the first clustering stage. GMM’s are there-
fore used to model the more complex distributions of data in
each speaker cluster. A show background model, represented by
a 128-mixture GMM, is first trained using all speech segments
from the whole show. Models for each individual speaker clus-
ter are then obtained via MAP adaptation of the GMM means
from the show background model, using data from the relevant
cluster of interest. The CLR between each pair of clusters is
then calculated and agglomerative clustering is performed, iter-
atively merging the closest pair of clusters until no more suitable
merge candidates can be found. The second clustering stage
produces the final diarization output, consisting of a relative,
show-internal set of speaker labels and their corresponding start
and end times.

3. Incorporating eigenvoice modeling in the
Cross Likelihood Ratio framework

This section describes how eigenvoice modeling techniques can
be integrated into the CLR framework for speaker clustering. A
brief summary of the theory behind eigenvoice modeling is first
presented. The CLR criterion as a similarity measure is then in-
troduced, followed by a mathematical derivation showing how
eigenvoice modeling can be integrated into the CLR framework.
Finally, the implementation details of the new speaker cluster-
ing systems are outlined.

3.1. Eigenvoice modeling of speaker segments

As in some traditional speaker clustering approaches, eigen-
voice modeling techniques are based around the use of GMM’s
to model a speaker. LetC be the number of mixture components
in the GMM, andF be the dimensionality of the feature vector.
From common practice in speaker recognition, only the GMM

means are adapted during training. A GMM can therefore be
conveniently expressed as aCF × 1 supervector, obtained by
concatenating the mean vectors of each mixture component.

In eigenvoice modeling, it is assumed that speaker super-
vectors have a Gaussian distribution of the form

s = m+ V y , (1)

wheres represents a randomly chosen speaker segment model,
andm is a speaker independent UBM mean supervector ob-
tained by the concatenation of the UBM component mean vec-
tors. V is a CF × R matrix containingR basis supervec-
tors in the eigenspace, often referred to as eigenvoices. While
R ≪ CF , it is assumed that the most prominentR eigenvoices
contained inV is capable of capturing most of the speaker vari-
ability. This greatly reduces the dimensionality and hence the
number of parameters that need to be estimated, allowing ad-
equate speaker segment models to be constructed from limited
enrollment data.y is a hiddenR × 1 vector of speaker factors.
The speaker variability model is trained such thaty follows a
standard normal distribution [6].

While the most prominentR eigenvoices have been shown
to capture most of the speaker variability, adding a residual
termDz to the speaker model has proven beneficial in speaker
recognition literature. By providing additional modeling power
through the introduction of extra model parameters, the resid-
ual term aims to model any residual speaker variations that the
speaker factor term fails to take into account. The expression
for a given speaker segment model then becomes

s = m+ V y +Dz . (2)

The results obtained using both (1) and (2) under the CLR
framework will be reported in this paper.

3.2. The Cross Likelihood Ratio criterion

The CLR between two clusters, containing dataxi andxj re-
spectively, is given in [4] as

CLR =
1

ni

log
p(xi|Mj)

p(xi|MB)
+

1

nj

log
p(xj |Mi)

p(xj |MB)
, (3)

whereni and nj are the number of frames in each cluster,
p(x|M) denotes the likelihood of the acoustic framesx given
model M , andMB represents the show background model.
This symmetric similarity measure elegantly combines the in-
formation present in both clusters of interest with knowledge of
the show background model.

In the CLR equation, 1
ni

and 1

nj
serve as normalization

constants, in order to compensate for the different amounts of
data present in the clusters of interest. If the speech segments
present in the two clusters are produced by the same speaker,
p(xi|Mj) andp(xj |Mi) should be large, resulting in a large
CLR value. Therefore, the larger the CLR, the more evidence
that the two clusters should be merged into a single cluster, and
vice versa.

3.3. The Cross Likelihood Ratio decision criterion using
eigenvoice modeling

In order to describe how eigenvoice modeling can be integrated
into the CLR framework, it is useful to first define some no-
tations. LetΣ be the covariance of the speaker independent
UBM; aCF ×CF diagonal matrix whose diagonal blocks are



Σc (c = 1, · · · , C), whereΣc is theF × F diagonal covari-
ance matrix corresponding to the mixture componentc. Let
N , F andS denote the zeroth, first and second order statistics
of the speaker segment respectively, as defined in [6]. In the
eigenvoice modeling framework, it can be shown [6] that the
log likelihood of the acoustic framesx, given modelM (in this
case, the speaker factorsy), can be written as

log p(x|M) =

C
∑

c=1

(

Nc log
1

(2π)
F
2 |Σc|

1

2

)

−
1

2
tr (Σ−1

S)

+ y
∗

V
∗

Σ
−1

F −
1

2
y
∗

V
∗

NΣ
−1

V y . (4)

This expression can be broken down into two parts. The first
two terms are dependent only on the data present in the speaker
segment, whereas the last two terms also depend on the speaker
model. This expression is not very easy to evaluate in its current
form. However, the first two terms conveniently cancel out un-
der the CLR formulation, due to the fact that each ratio making
up the CLR rely on the same data. Under the CLR criterion,
log p(x|M) can hence be conveniently implemented as

log p(x|M) = y
∗

V
∗

Σ
−1

F −
1

2
y
∗

V
∗

NΣ
−1

V y . (5)

In order to use this result to construct the CLR as a decision
criterion for speaker clustering, one must substitute (5) into each
relevant term on the right hand side of (3), using the relevant
data and speaker models. The end result is shown in (6) below.
The CLR between two clustersi andj can be written as

CLR =
1

ni

[

(yj − yB)
∗

V
∗

Σ
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y
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∗
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]

, (6)

whereyi andyj are the enrolled speaker factors for clustersi

andj respectively, andyB is the background speaker factors,
enrolled using all speech segments from the whole show. This
expression can now be used directly as a decision criterion for
speaker clustering.

3.4. System implementation

The theory developed in this paper was tested against the final
clustering stage of the baseline system, which uses a traditional
GMM based modeling approach with the CLR decision crite-
rion. To ensure a fair comparison, the new systems are identical
to the baseline system up until the final clustering stage.

Two separate systems were implemented. An intermediate
system was first implemented using eigenvoice modeling tech-
niques to adapt the UBM means for each speaker segment. The
adapted supervectors are then converted back to a GMM, and
the CLR was evaluated, as in the baseline system. In the fi-
nal system, eigenvoice modeling of speaker segments was inte-
grated into the CLR framework, using (6) given above. The re-
sults obtained by the final system will hence demonstrate the de-
gree of overall success achieved by integrating eigenvoice mod-
eling techniques into the CLR framework; whereas the results
obtained by the intermediate system will indicate how much of
that success can be attributed to the advantages of eigenvoice
modeling over traditional GMM based modeling approaches.

In the new systems, the 512-mixture speaker independent
UBM was trained using a total of approximately 5.5 hours of
speech data, randomly selected from the 1996 and 1997 HUB4
English Broadcast News Corpus, as well as the 1996 USC Mar-
ketplace Corpus.V was trained using utterances from 1165
speakers from the same databases, each of whom have at least
60 seconds of total speech. The large amount of data used
to trainV ensures a strong, highly informative prior on what
the speaker model should look like. To prevent any dominant
speakers from being overrepresented, data from all speakers
with more than 5000 seconds of total speech were truncated
to 5000 seconds for training. 300 principal eigenvoices were
used to capture the speaker variability.D was trained using ut-
terances from 30 speakers, also from the same databases, each
with approximately 60 seconds of speech. In order to maximise
the potential of the residual term to model any speaker varia-
tions that the speaker factor term fails to take into account, a
disjoint set of speakers was used to trainD.

In the intermediate system, a show model was first adapted
from the speaker independent UBM, using all speech segments
from the whole show. Each initial cluster was then enrolled in-
dependently from the same UBM, resulting in a mean-adapted
supervector for each initial cluster. The cluster models were
then converted back to traditional GMM’s. Since only the
means are adapted, the variances and mixture weights of the
mean adapted cluster model is the same as that of the UBM.
Agglomerative speaker clustering was then performed using the
CLR criterion. As in the baseline system,p(x|M) was calcu-
lated using the alignment scores of the acoustic frames with the
associated model. In each iteration of the agglomerative clus-
tering process, the CLR was calculated for each pair of potential
merge candidates, and the closest pair of clusters merged. This
process is repeated until no more suitable merge candidates can
be found.

In the final system, eigenvoice modeling techniques were
integrated into the CLR framework, using (6) given above. The
background modelyB was first enrolled using all speech seg-
ments from the whole show. Each initial cluster was then en-
rolled, the value of (6) calculated between each pair of clusters,
and agglomerative clustering performed. Once a merge is per-
formed at the end of each iteration, a newy was enrolled for
the combined cluster using the combined data from both merge
candidates. This new cluster then becomes a merge candidate
in future iterations.

4. Results
This section presents the results of the CLR based clustering ap-
proach using eigenvoice models, as obtained on the NIST Rich
Transcription 2002 (RT-02) Evaluation dataset, and compares
the results to the baseline system. Results obtained with and
without the residual termDz in eigenvoice modeling will be
reported for both the intermediate and final systems. The RT-02
Evaluation dataset consists of 6 recorded broadcast news shows,
each with a scorable region of approximately 600 seconds.

4.1. Performance evaluation metrics

The results obtained by the new systems will be evaluated us-
ing the Diarization Error Rate (DER) measure, as defined in [5].
The DER is the primary performance evaluation metric used in
the NIST Rich Transcription Diarization tasks. It can be inter-
preted as the percentage of the total amount of scorable time
that is not attributed to the correct speaker, taking into account



speech detection errors. The DER is calculated via an optimal
one-to-one mapping of the reference speaker IDs to the hypoth-
esis speaker IDs so as to maximize the total overlap between the
reference and mapped hypothesis speakers.

4.2. Diarization results

Table 1 below shows the overall diarization results for each sys-
tem, without the residual termDz in the eigenvoice modeling.
The “Local“ results shown are obtained by using the optimal
local stopping threshold for each show in the final clustering
stage, whereas the “Global“ results are obtained by using the
same optimal global threshold across all shows that produces
the best average DER, a condition that is consistent with the
NIST evaluation protocol [5]. The average result of the 6 shows
is calculated based on a time weighted average of the amount
of scorable time in each show. As evident from Table 1, there
is a 24.1% relative improvement in DER between the baseline
system and the intermediate system when evaluated using lo-
cal thresholds, and a 16.6% improvement when evaluated using
global thresholds. This improved performance can be attributed
to the use of eigenvoice model adaptation of speaker models
compared to traditional GMM based modeling. Comparing the
intermediate system to the final system, despite the fact that the
local results were slightly worse, a 16.0% relative improvement
in DER was achieved using a global stopping threshold, due
to the fact that the optimal stopping thresholds were very sim-
ilar across all shows. This improvement can be attributed to
the integration of eigenvoice modeling techniques into the CLR
framework.

Table 1: Diarization Error Rates (%) - No Residual Term

Show
Baseline Intermediate Final

Local Global Local Global Local Global

1 12.26 21.31 10.02 13.35 7.54 7.54
2 10.58 10.58 6.51 10.55 6.19 6.51
3 1.19 1.28 0.95 1.28 0.95 0.95
4 14.77 16.05 9.44 11.61 11.61 11.61
5 3.87 6.70 4.42 6.10 4.42 5.30
6 26.18 26.18 20.87 25.59 25.24 25.59

Avg DER 11.66 13.92 8.85 11.61 9.48 9.75

Table 2 shows the overall diarization results for each sys-
tem, including the residual termDz in the speaker segment
model expression. As expected, the result obtained by both the
intermediate and final systems outperformed their counterparts
shown in Table 1, due to the additional modeling power intro-
duced by the residual term. The intermediate system achieved
relative improvements of 24.9% and 24.6% in DER over the
baseline, evaluated using local and global stopping thresholds
respectively. The final system achieved a further improvement
of 4.0% and 13.8% respectively over the intermediate system.
Overall, the final system achieved a 35.1% relative improve-
ment in DER compared to the baseline system, based on the
“Global“ results.

5. Conclusions
This paper proposes the use of eigenvoice modeling techniques
with the CLR criterion for speaker clustering within a speaker
diarization system. By incorporating eigenvoice modeling into
the CLR framework, it was possible to capitalize on the ad-
vantages of each technique to produce a robust speaker clus-

Table 2: Diarization Error Rates (%) - With Residual Term

Show
Baseline Intermediate Final

Local Global Local Global Local Global

1 12.26 21.31 10.02 11.43 7.54 10.02
2 10.58 10.58 6.51 6.51 6.19 6.51
3 1.19 1.28 0.33 0.65 0.95 0.95
4 14.77 16.05 9.44 11.61 11.61 11.61
5 3.87 6.70 4.42 5.30 4.42 5.30
6 26.18 26.18 20.87 26.34 18.93 18.93

Avg DER 11.66 13.92 8.76 10.49 8.41 9.04

tering system which outperforms traditional approaches using
GMM based modeling. Results obtained on the RT-02 Evalua-
tion dataset show an improved clustering performance using the
proposed approach, leading to a 35.1% relative improvement in
the overall diarization performance compared to the baseline
system. Through the use of an intermediate system, it was also
possible to determine how much of that overall improvement
can be attributed to the advantages of using eigenvoice model-
ing of speaker segments over traditional GMM based modeling
approaches, and how much has been contributed by integrating
eigenvoice modeling techniques into the CLR framework.
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