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Abstract 

Railway level crossings are amongst the most complex of road safety control systems, due to the conflicts 

between road vehicles and rail infrastructure, trains and train operations. Driver behaviour at railway 

crossings is the major collision factor. The main objective of the present paper was to evaluate the 

existing conventional warning devices in relation to driver behaviour. The common conventional warning 

devices in Australia are a stop sign (passive), flashing lights and a half boom-barrier with flashing lights 

(active). The data were collected using two approaches, namely: field video recordings at selected sites 

and a driving simulator in a laboratory. This paper describes and compares the driver response results 

from both the field survey and the driving simulator. The conclusion drawn is that different types of 

warning systems resulted in varying driver responses at crossings. The results showed that on average 

driver responses to passive crossings were poor when compared to active ones. The field results were 

consistent with the simulator results for the existing conventional warning devices and hence they may be 

used to calibrate the simulator for further evaluation of alternative warning systems. 
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1. Introduction 

Background 

Railway level crossings create serious potential conflict points for collisions between road vehicles and 

trains. Safety at level crossings is a world-wide issue which increasingly attracts the attention of relevant 

transport authorities, the rail industry and the public. According to a report by the National Transportation 

Safety Board (1998), more than 2,000 accidents occurred at active and passive railway crossings in the 

United States each year from 2006 through 2010 (Federal Railroad Administration, 2011). Each year 

hundreds of people across Europe die in accidents at level crossings, which accounts for one third of all 

rail fatalities and 1-2% of all road deaths (European Commission, 2010).  In Australia, during the years 

2007 to 2009, there was an average of 55 collisions at crossings involving road vehicles each year 

(Australia Transport Safety Bureau, 2010).  These accidents not only cause loss or injury of humans but 

also incur huge property and economic losses.  The financial cost of collisions at crossings has been 

estimated at AUD$32M per year excluding rail operators and infrastructure losses (Australian Transport 

Council, 2003; Bureau of Transport and Regional Economics, 2002). 

 

Level crossings are amongst the most complex of road safety issues, due to the addition of road vehicles 

with rail infrastructure, trains and train operations. The contributory factors to collisions at crossings can 

be difficult to determine and generally involve several factors for a particular incident. Nevertheless, in 

Europe, 95% of level crossing accidents are caused by road users (Woods, 2010). In 2008, there were 

around 2,000 accidents and almost 600 fatalities mainly due to users’ misbehaviours (European Level 

Crossing Forum, 2011). In Australia, among the major collision factors are adverse weather or road 
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conditions (13%), unintended motor vehicle driver error (46%), alcohol / drug use by motor vehicle driver 

(9%), excessive speed (of motor vehicle driver) (7%), fatigue (of motor vehicle driver) (3%) and other 

risk taking (of motor vehicle driver) (3%) (Australian Transport Safety Bureau, 2002). From these 

statistics, it is clear that human factors are the major cause of these accidents (total 68%). 

 

There are approximately 9,400 public railway crossings in Australia. They are protected by either passive 

(64%) or by active or automated systems (28%) (Ford and Matthews, 2002). Passive crossings provide 

only a stationary sign regardless of approaching train to the crossing. Thus their message remains constant 

with time. Drivers approaching a crossing with a ‘stop sign’ are expected to obey the regulatory sign to 

stop the vehicle preceding the stop line and to look to the left and right for train traffic regardless of train 

presence. An active warning systems begins functioning with automatic warning devices (i.e., flashing 

lights, boom barrier, etc.) as it detects a train approaching. The active systems used in Australia comprise 

either a ‘flashing light’ or ‘half boom barrier with a flashing light’, which requires drivers to stop when 

the red light is activated by an approaching train. The differences in the operational characteristics of 

these systems together with the varying crossing geometry, traffic or/and train characteristics, form 

different driver behaviours at crossings. These driver behaviours subsequently become the major concerns 

to safety issues at crossings. 

 

This paper is structured as follows: Section 1 summarises previous research, Section 2 provides a 

description of the methodology of data collection and analysis; Section 3 presents and compares the 

results from the field survey and driving simulator experiment and Section 4 presents the main findings 

and discusses future research. 
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Previous Research 

As mentioned previously, different types of warning devices used at crossings significantly influence 

drivers’ behaviour (Anandarao and Martland, 1998; Caird et al., 2002; Yeh and Multer, 2007). For 

instance, violations of warning devices have been detected in previous research. As part of Pickett and 

Grayson’s (1996) study, 100 drivers were interviewed after being seen to cross level crossings when the 

red stop lights were flashing. Results from the interviews concluded that the majority of respondents 

showed an understanding of the operation of the crossings but an understanding of level crossing signals 

was on the whole poor compared with that of conventional road traffic signals. Results from another 

study conducted in New Jersey cities by Jeng (2005) suggested that some traffic control devices used in 

the vicinity of level crossings, such as a stop sign and traffic signal lights, could confuse drivers. Many 

drivers were not familiar with traffic control devices at crossings, which may have led to misjudgement of 

appropriate reactions at crossings. 

 

Passive crossings show an increased likelihood of recognition errors by drivers because drivers may 

simply fail to see trains at these types of crossings. Active crossings dramatically reduce these kinds of 

recognition errors. Nevertheless, they produce other forms of driver behaviour error. For example, the 

level of automation can induce violation behaviour when drivers are required to wait for a lengthy period 

of time (Caird et al., 2002). Documented interviews with train drivers indicate many situations where 

motorists deliberately choose to ignore the crossing signs or signals, perhaps to minimise delays or 

inconvenience (Davey et al., 2005). 

 

Drivers’ age and gender have been identified as contributing factors to violation of road rules (Abraham 

et al., 1998; Davey et al., 2006; Parker et al., 1992), which in turn may be strongly related to collision 

likelihood. Potentially, violation can be used to evaluate system performance of varying warning devices. 

This parameter was adopted in some studies (Carlson and Fitzpatrick, 1999; Hirou, 1999; Meeker et al., 
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1997). Abraham et al. (1998) presented a possible association between violations of road rules and past 

crash histories at crossings. 

 

While warning systems seem to affect the violation rate, how speed reduction patterns are influenced by 

the warning devices should also be investigated in order to better understand the efficiency of a particular 

system in attracting drivers’ attention, respect and adherence. Although early detection of warning 

devices does not necessary result in safe adhering behaviour, it allows drivers to have adequate time to 

make decisions. Several studies have investigated the mean speed reduction at the approach way of level 

crossings (Ng and Saccomanno, 2010; Shinar and Raz, 1982; Ward and Wilde, 1995; Wilde et al., 1987). 

Moon and Coleman III (1999) have used drivers’ speed selection as a direct element of behaviour in their 

study. They have suggested that the development of vehicular speed profiles is an important variable to be 

considered in characterising driver behaviour at crossings.   

 

In addition to initial speed reduction on approach, final braking responses prior to stopping can also be 

obtained from a vehicular approaching speed profile towards a crossing. The activation position of final 

braking directly contributes to the collision/near-miss likelihood since the later the braking, the shorter the 

time-to-collision, hence the higher the possibility of a collision. It has been found that braking responses 

at road intersection are gender and age-related, similar to warning violation (Bao and Boyle, 2008; El-

Shawarby et al., 2007). Nevertheless, relatively little research has been conducted specifically into drivers’ 

braking position at level crossings in particular to the influence of various types of warning devices. 

 

Other than driver characteristics such as age and gender, human factors like ‘familiarity’, ‘distraction’ and 

‘fatigue’ are frequent reasons affecting driver behaviours. For instance, familiarity with a crossing can 

influence driver behaviour in a variety of ways. Wigglesworth (2001) noted in his Australian study that 

85% of those killed lived locally and were familiar with the crossing. In the United Kingdom, Pickett and 
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Grayson (1996) also found that the majority of drivers who violated activated warning systems were 

regular users of the level crossings. 

 

Since driver behaviour is one of the important contributing factors to the success of a particular warning 

system, this paper evaluates driver responses towards different conventional warning devices at railway 

crossings. The evaluation uses ‘stopping compliance’, ‘approaching speed profile’ and ‘final braking 

position’ to measure the responses. These measurements are direct parameters in determining the 

effectiveness of the systems in attracting driver’s attention and respect, and hence, are reflected in the 

results of their reactions. Nevertheless, research on the influence of some human factors (familiarity, 

distraction, fatigue, and so forth) on driver behaviour at crossings, in particular to varying types of 

warning devices, are difficult to conduct in the field as they may endanger or/and interrupt traffic 

operations. Due to this fact, the current study included a driving simulator as a tool to collect the same 

measurements of driver responses in laboratory as in the field video recording survey. Findings from the 

driving simulator were compared with the field results. It was hoped that if they correlated the driving 

simulator could be used for future research on alternative warning devices and influences of various 

human factors. By disaggregating the scenarios in an actual field setting and in a laboratory setting, this 

paper identified the impact of different conventional warning systems on driver behaviour. 

  

2. Methodology 

The data were collected using two approaches: field video recordings at selected sites and driving 

simulation in a laboratory. 

 

2.1 Field video recording 

Setting up 

Data were collected using a portable traffic surveillance camera. A telescoping flag-pole of 1.5 to 5 m 

high was modified to hold the camera in order to attach it to a suitable support at the crossing site such as 
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a traffic pole or tree. The selected study sites were carefully investigated so that the camera was installed 

in such a way that it was hidden from drivers’ attention, which may have affected their driving behaviour. 

The camera was erected near the crossing to capture the operation of the warning devices as well as more 

than 200 m of roadway from the stop line as schematically shown in Figure 1. Once the recording process 

started, distance was measured using a ‘distance measuring wheel’. Steel plates painted in white were 

placed at 20 m intervals from the stop line (referred as 0 m) until 200 m on both sides of the road. An 

enumerator then walked across the road at every interval as an indicator of the distances measured from 

the stop line. This process was recorded by the camera. The white steel plates were then removed from 

the site after the distance marking process was completed to avoid distracting the drivers’ attention.   

 

[Figure 1: Setting up of camera for field surveys] 

 

Video footage was captured under normal daylight conditions from 6:00 a.m. to 5:30 p.m. at 25 video 

frames per second. Data were collected for all vehicle types including passenger vehicles, trucks, and 

buses. However, the major traffic composition was passenger vehicles. From the field observation during 

site selection trips, an approaching distance of 200 m was found to be sufficient for drivers of all vehicle 

types to react appropriately to the warning devices. 

 

Site selection 

One assumption was made here, and is perhaps true, that the driver responses observed at crossings were 

mainly attributed to the warning devices used. Hence, a criterion of site selection was to minimise other 

possible geometric distractions to drivers’ attention such as side road in proximity of a crossing, road 

gradient, and poor visibility. The visibility to warning devices at all the sites was adequate. Posted speed 

limits at the study sites were within 60-70 km/hr. Based on the conditions of the sites selected, it is 

practicable to assume that the operational characteristic of the warning system was the main element 

influencing drivers’ responses. 
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Crossings with three different types of existing conventional warning devices (stop sign, flashing lights 

and half boom barrier) currently in use in Australia were included in the current study for comparison of 

driver responses. For that purpose, three level crossings in or close to Brisbane in Queensland, Australia 

were selected. The first selected site, Site 1, is a passive crossing equipped with stop sign (as shown in 

Figure 2(a), (Standards Australia, 2009)). This crossing crosses a rural road at a 90 degree angle. The 

roadway is a two-lane two-way road that branches out from a major collector linking a few towns 

between Ipswich and Toowoomba. The crossing is located more than 1 km away from the major 

collector. The train track serves weekly passenger trains from Brisbane to Toowoomba and coal trains to 

the Port of Brisbane. Site 2, the second study site, is equipped with flashing red lights and a bell. The 

flashing red light signal (as shown in Figure 2(b), (Standards Australia, 2009)) consists of twin red circle 

lights arranged horizontally and equipped to flash alternately. This crossing crosses a major local street 

with one-lane in each traffic direction, at 90 degrees.  The crossing is located approximately 400 m from 

an adjacent T-intersection. The train track mainly serves a holiday/tourism train and occasionally coal 

trains from Swanbank Power Station to the Port of Brisbane. The third crossing, Site 3, is equipped with 

flashing red lights, a bell and a half boom barrier (as shown in Figure 2(c), (Standards Australia, 2009)). 

As the warning system detects an approaching train, the flashing red signal is activated, followed 7-8 

seconds later by the boom barrier, which starts to descend from the upright position to its horizontal 

position in approximately 8 seconds, blocking the traffic from entering the crossing on the appropriate 

side of the road. After the train passes the crossing, the boom barrier lifts gradually to its original vertical 

position in approximately 10-12 seconds; followed by deactivation of the flashing lights approximately 0-

2 seconds later. The train track crosses a four-lane two-way local major street with a median barrier at 45 

degrees.  The crossing is located approximately 500 m from an adjacent signalised T-intersection. The 

train track is part of the daily Brisbane city passenger train network. 

 

[Figure 2: (a) Stop sign; (b) Flashing lights; and (c) Half boom barrier] 
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Table 1 summarises the crossing characteristics, traffic and train volume for the three sites. Data from 

Sites 1 and 2 were collected at two and three days respectively, in order to obtain adequate sample size 

due to the low traffic volume at Site 1 and low exposure rate to oncoming trains at Site 2. Only one day 

was allocated for data collection at Site 3 since there was high traffic and train volume. 

 

[Table 1: Specific characteristics of selected study sites] 

 

2.2 Driving simulator 

Twenty-four volunteer drivers aged 17 to 66 years were recruited from the local community and 

university population to participate in a driving experiment in the Perception and Motor Systems 

Laboratory at The University of Queensland. The experiment was conducted in a fixed-base driving 

simulator. 3D images were projected onto a 3.2 m x 2.7 m white flat projection screen at a distance of 2 m 

from the ‘driving seat’. A virtual environment simulation which included level crossings with different 

warning devices was developed. After approximately 1.5 km of driving, the driver approached a level 

crossing. All level crossings that drivers encountered during the scenarios had the same road 

characteristics but different types of warning devices appeared randomly at the crossings. Two of the 

conventional warning devices (stop sign and flashing red-lights) were included for comparison with 

results from the afore-mentioned field video recording survey. A controlling computer acquired position 

data at each frame (time step). The details of the experiment setup are referred to in Tey et al. (2011). 

 

2.3 Data analysis 

From the field video recording survey, the time was encoded on each video frame and distances marked 

during the recording (intervals of 200 m, 100 m, 80 m, 60 m 40 m, 20 m, 10 m and 0 m from the stop line 

or landmarks) were indicated on transparent sheets. The primary data retrieved were: 
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1) The ‘stopping compliance’ of every vehicle to the warning devices. For Site 1 with a stop sign, three 

categories of responses were observed: the vehicle stopped (compliance), slowed down but did not 

stop (non-compliance) or drove through the crossing neither slowing down nor stopping (non-

compliance). For Site 2 with flashing lights, two categories were recorded: the vehicle stopped 

(compliance) or drove through (non-compliance). These two categories were also recorded for Site 3 

after warning devices had been activated. In addition for Site 3, the compliance of the vehicles was 

noted after the warning devices had been deactivated. The compliance behaviours were categorised 

into three groups, namely: the vehicle started to move after both the boom barrier and the flashing 

lights were deactivated (compliance), after the boom barrier but before the flashing lights had 

deactivated (non-compliance), or before both the boom barrier and the flashing lights had deactivated 

(non-compliance). 

2) The ‘approaching speed profile’ of the ‘subject’ as it approached and stopped at the crossings. The 

‘subject’ refers to the first vehicle approaching the crossing from more than 200 m that was 

uninhibited by other vehicles after the warning devices had been activated. The times when the 

warning device was activated and subject reached the distance intervals indicated were recorded. 

From this data, the ‘approaching speed profile’ was derived of vehicle speed from the plots of 

distance as a function of time. 

3) The ‘final braking position’ of each subject was analysed from its ‘speed profile’. ‘Final braking 

position’ is defined as the point where the driver completed braking prior to stopping at the stop line. 

Thus, the point where the final abrupt speed reduction inspected prior to the stop line (distance 

referred to as 0 m) was determined from the speed profile plot. 

 

From the driving simulator experiment, data on ‘stopping compliance’, ‘approaching speed profile’ and 

‘final braking position’ were retrieved directly from the vehicle trajectories records in the controlling 

computer. 

 



11 
 

3. Results and discussion 

Despite the small sample size, significant results were obtained as discussed in this section. 

 

3.1 Stopping compliance 

Field results 

From the video recordings, data on 66 (Site 1), 27 (Site 2) and 204 (Site 3) vehicles were analysed. Figure 

3 shows the comparison of compliance behaviour of drivers approaching the crossings at Sites 1 (stop 

sign), 2 (flashing lights) and 3 (boom barrier and flashing lights). For Sites 2 and 3, the non-compliance 

category of ‘Slow Down’ was not existent because no speed reduction was observed with non-compliant 

behaviour. The compliance percentage for passive crossings (41%) was considerably lower than for the 

active crossings (70% and 77% respectively). Chi-squared tests (contingency table technique) performed 

indicate that driver compliance at passive crossings were statistically different at the 99% confidence 

level from active crossings (between Sites 1 and 2, 2=6.65; between Sites 1 and 3, 2=29.86), while 

differences in driver compliance were not significant within active crossings (between Sites 2 and 3, 

2=0.57). Such an observation was expected, given the greater prominence of train approach of active 

systems. Ignoring a stop sign at a crossing may ultimately lead to a collision with a train, as drivers have 

been found to be unable to accurately judge the speed and distance of an oncoming train (Cohn and 

Nguyen, 2003; Cooper and Ragland, 2008) 

 

Similar to results reported by various other studies (Carlson and Fitzpatrick, 1999; Meeker et al., 1997; 

Shinar and Raz, 1982), the compliance rate with boom barrier (77%) is slightly higher than with flashing 

lights (70%), as shown in Figure 3; although Abraham et al. (1998) found the opposite with drivers 

tending to commit more violations at gated level crossings compared to those with only flashing lights. 

These differences are thought to exist due to different localised site conditions, driver behaviour and other 

environmental conditions. Additionally, it was found that drivers tended to be more cautious at passive 
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crossings (18%) than at active ones (30% and 23% for flashing lights and boom barrier and flashing lights 

respectively). This scenario is likely to occur because drivers’ are scanning for train information at 

passive crossings whereas this information is readily available at active crossings. 

 

Some reasons for non-compliant behaviours were reported in previous studies such as driver familiarity 

with particular level crossings (Abraham et al., 1998; Caird et al., 2002; Pickett and Grayson, 1996; 

Wallace, 2008; Wigglesworth, 1979), traffic control devices used (Abraham et al., 1998; Jeng, 2005; 

Smith, 2004), and drivers’ intentional action or/and unintended error (Anandarao and Martland, 1998; 

Caird et al., 2002; Cairney, 2003; Davey et al., 2007; Pickett and Grayson, 1996; Wigglesworth, 2001; 

Witte and Donohue, 2000). 

 

 [Figure 3: Comparison of compliance behaviours at Sites 1, 2 and 3] 

 

Inspection of the video at Site 3 identified the compliant behaviours of 157 of the 204 vehicles after the 

warning devices had been deactivated. Once the train was detected leaving the crossing, the warning 

devices would be deactivated, first by lifting the boom barrier to its vertical position taking approximately 

10-12 seconds, followed by stopping the flashing lights 0-2 seconds later. Vehicles were permitted to 

navigate the crossing after both the boom barrier and flashing lights had been deactivated. Thus, vehicles 

waiting at the crossing were investigated for their compliance with the warning devices and categorised 

into ‘Compliance’ (moved after both the boom barrier and flashing lights were deactivated), ‘Boom-gate’ 

(moved before the boom barrier fully lifted) or ‘Flashing Light’ (moved after the boom barrier fully lifted 

but before the lights stop flashing). This scenario was investigated because it is important for ‘second 

train collisions’. Figure 4 shows that more than one-third of the drivers ignored the operation of the 

warning devices. These violations indicated that the possibility of intentional action rather than 

unintended error was high. 
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[Figure 4: Compliance behaviour after warning devices deactivated at Site 3] 

 

Experimental results from the driving simulator 

The results from the driving simulator in the laboratory (Figure 5) were consistent with the field results 

(Figure 3): passive crossings (stop sign) showed a lower compliance rate (74%) than active crossings 

(flashing-red-lights) (100%). The compliance percentages for both passive and active devices were higher 

in the simulated experiment by 33% and 30% respectively. This is expected since the simulation 

experiment had less contributing variables compared to those occurring in the actual field. Furthermore, 

some drivers in the simulation experiment might have had the mindset that they were being tested and 

thus did not react as they might normally do in the actual world. The ratio of compliance percentage of 

passive to active devices in both simulated and actual environments were considerably close, 74:100 (0.74) 

(Figure 5) and 41:70 (0.59) (Figure 3) respectively. Although non-compliance at crossings was expected 

from the field survey and previous observational studies, it is surprising to observe a high non-compliance 

rate for passive crossings in the simulated experiment, given the fact that the participants were aware they 

were being ‘observed’. It is worth noting that non-compliance at passive crossings in a driving simulator 

was also found in a study in Victoria, Australia (Lenne et al., 2011). 

 

[Figure 5: Comparison of compliance behaviours in driving simulator with ‘stop sign’ and ‘flashing-red-

light’] 

 

3.2 Approaching speed profile 

Field results 

There was no speed reduction observed for the non-compliant vehicles. Typical speed profiles for each of 

the sites are shown in Figure 6. Overall, the vehicle’s speed decreased as it approached the crossing. 

Similar results were observed in Moon and Coleman III’s (1999) study, with their results indicating that 
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there was a tendency for vehicles to reduce speed from the approach way to the track zone when a single 

vehicle was approaching the crossing. In Figure 6, the speed profile of Site 1 (stop sign) shows more 

obvious speed changes nearer to the stop line as compared to the smoother speed profiles of Sites 2 

(flashing lights) and 3 (boom barrier and flashing lights). At Sites 2 and 3, drivers reacted more quickly 

and, as a result, slowed down more gradually. This may be due to the lack of prior warning of a stop sign 

in attracting drivers’ line of sight as compared to flashing lights and a boom barrier which allow drivers to 

observe the flashing lights from further away, thus having more time to react to the stimulus. These 

results support  Shinar and Raz’s (1982) findings that when drivers were given the opportunity to utilise 

information provided by the different warning systems while they are still quite distant from the crossing, 

they produced a smoother speed profile. This situation may possibly lead to a shorter time-to-collision at 

passive crossings and hence, a higher probability of a collision with a train. Although some may argue 

that restricted visibility (e.g. vegetation) influences the speed reduction behaviour, Ward and Wilde (1996) 

found in their study that improvement of lateral sight distances at passive crossings resulted in an upward 

shift to longer search times but a tendency towards faster approach speeds, and thus failed to produce a 

calculated net safety benefit. This finding again confirms how important the choice of a warning device 

type affects driver behaviour at crossings. 

 

[Figure 6: Field results comparing typical speed profiles recorded at Sites 1, 2 and 3] 

 

Experimental results from the driving simulator 

The comparison of typical speed profiles of the two conventional warning devices (stop sign and flashing 

lights) are presented in Figure 7 for the designated speed of 60 km/hr. Overall, vehicle speed decreased as 

it approaching the crossing. The speed profile for the flashing-red-lights was smoother compared to the 

stop-sign where more obvious speed changes were observed nearer to the stop line. This pattern is 

consistent with the field results shown in Figure 6. The speed reduction profiles established can be used to 

model driver behaviour in traffic simulation models. 
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[Figure 7: Comparison of typical speed profiles recorded in the driving simulator] 

 

3.3 Final braking position 

Field results 

The distributions of ‘final braking positions’ for Sites 1, 2 and 3 are shown in the box-and-whisker plot in 

Figure 8. It clearly indicates that the majority of drivers at Site 1 reacted nearer to the crossing as 

compared to Sites 2 and 3. The box plot shows a box encased by two outer lines known as ‘whiskers’. 

The box contains the middle 50% of the data sample – the bottom and top of the box are the 25th and 75th 

percentile (the lower and upper quartiles) respectively. The single line inside the box represents the 

median. The remaining 50% of the sample is contained within the areas between the box and the whiskers. 

Also shown in Figure 8 are the mean, skewness of the sample and the kurtosis. Results from Site 1 are 

normally distributed because the median line is located near the centre of the box and the box is nearly 

centred between the whiskers. The lower (13 m) and upper (20 m) quartiles indicate that middle half of 

the drivers observed reacted in this zone. All data were contained within the whiskers (-1.5*interquartile 

range to +1.5*interquartile range) without any extreme cases (outliers).   

 

Results from Site 2 are positively skewed as the box is shifted significantly to the lower end. The lower 

(21.5 m) and upper (32 m) quartiles indicate that the middle half of the drivers observed reacted in this 

zone. All data were contained within the whiskers without any extreme values except for two cases (both 

48 m) that were slightly above the maximum (+1.5*interquartile range) value of 47.8 m. Results from Site 

3 are similar to Site 2 except that the distribution of data is more widely spread and the maximum value 

(60.9 m) is further from the stop line. The results are positively skewed as the box is shifted significantly 

to the lower end. The lower (21.5 m) and upper (37.3 m) quartiles indicate that the middle half of the 

drivers observed reacted in this zone. All data were contained within the whiskers without any extreme 
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cases except for one value (61 m) that was slightly above the maximum value of 60.9 m. Comparatively, 

mean ‘final braking positions’ at Site 1 with a stop sign (16.5 m) are nearer to the stop line than at Sites 2 

(28.5 m) and 3 (30 m) with active systems. Many drivers at Site 2 and particularly at Site 3 reacted much 

earlier when train approach information (warning devices activated) was available, although the mean and 

median values were close to the stop line. Some statistical values of ‘final braking positions’ for Sites 1, 2 

and 3 are tabulated in Table 2. 

 

[Figure 8: Comparison of ‘final braking positions’ recorded at Sites 1, 2 and 3] 

 

[Table 2: Summary of ‘final braking positions’ comparison of Sites 1, 2 and 3] 

 

Experimental results from the driving simulator 

The mean ‘final braking positions’ results from the simulated experiment were 21 m and 36.9 m for the 

stop sign and flashing lights respectively. These are consistent with the field results: passive crossing 

(stop sign) showed ‘final braking positions’ closer to the crossing than for active crossings (flashing-red-

lights). The average ‘final braking positions’ for the stop sign and flashing-red-lights was higher in the 

simulated experiment than in the field results (4.5 m and 8.4 m respectively). The driving simulator 

results of ‘final braking positions’ were 1.3 times higher than the field results for both stop sign 

(21÷16.5=1.3) and flashing-red-lights (36.9÷28.5=1.3). Evaluation of the different warning systems in the 

field and in the laboratory shows that the average ‘final braking position’ at passive crossings is half that 

of active crossings. 

 

4. Conclusions 

Driver behaviours are important in determining candidate warning systems for railway crossings. The 

results of this paper reveal the weaknesses of the passive warning system in obtaining drivers’ respect in 

compliance and slower reaction to reduce speed. While within active systems the response differences 
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between flashing lights and the boom barrier are small, the boom barrier produces a slightly higher 

percentage of compliant behaviour and earlier braking. This clearly indicates that drivers behave 

differently to different warning systems, particularly to the passive system which is commonly used in 

rural areas. Based on the results of the current study, it is concluded that on average driver responses to 

passive crossings are poor compared to active crossings. This conclusion is consistent with previous 

observational studies that found compliance at stop signs at crossings was low (Lerner et al., 1990; 

National Transportation Safety Board, 1998). A study in 1978 highlighted the fact that the majority of 

drivers did not search for trains at passive crossings which revealed the failure of passive warnings 

(Wigglesworth, 1978). One of the key suggestions to reduce the risk of accidents at passive crossings was 

to make warning devices (traffic signs) more conspicuous (Russell et al., 1999; Ward and Wilde, 1995). 

Nevertheless, Stackhouse (1996) found no evidence suggesting that bigger and/or brighter or other 

modifications of traditional signs and/or signals led to favourable changes in drivers’ behaviour at 

crossings. In Sweden, an observational study by Aberg (1988) showed that many drivers turned their 

heads to look for trains although the crossings were equipped with flashing warning lights. He found no 

reason for this. However, upgrading passive crossings to active ones still seems worthwhile. 

 

The evidence from the current study and from previous research in Australia, shows that installation of 

active systems at crossings provides substantial safety benefits. However, to upgrade all the passive 

crossings with automatic systems involves a huge investment while the feasibility is questionable since 

collisions occur randomly with significant variations in time and space. Furthermore, recent crossing 

collision records have revealed that 50% of vehicle collisions at crossings happen at actively controlled 

crossings (Australian Transport Council, 2003). These collisions are reported to be mainly attributed to 

driver behaviours in response to the warning systems (Australian Transport Council, 2003; Chartier, 2000; 

Wallace et al., 2008). These situations raise the question of whether upgrading crossings from passive to 

active is a real solution for safety at crossings, considering the cost incurred and the system effectiveness 

gained.  In view of that, searching for new cost-effective technologies or devices is compelling.   
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Considerable research and innovation has occurred in some countries on low-cost warning systems for 

crossing safety. For instance, several researchers found that installation of rumble strips resulted in speed 

reduction (Gates et al., 2008; Gorrill, 2007; Hore-Lacy, 2008; Radalj and Kidd, 2005; Thompson et al., 

2006). In addition, in-vehicle technologies such as in-vehicle warning systems are a potential intelligent 

transportation system countermeasure that provide warning of train presence to motorists via visual 

and/or audio warnings in their vehicles. Porter et al. (2008) encountered faster brake response times with 

the presence of an in-vehicle auditory alert in their simulated driving experiments. The considerably 

lower costs of application of some of these systems compared to conventional active systems provide 

extra motivation for their use (Graham and Hogan, 2008; Roop et al., 2005). There are opportunities for 

immediate application of some low-cost innovative systems subject to their effectiveness and adaptation 

to Australian conditions. Thus, the effectiveness of these alternative systems in influencing local driver 

behaviour needs to be assessed. However, there are challenges to test them in the field since these devices 

are not yet common/in use in the traffic network. Here, the use of a driving simulator allows evaluation of 

driver behaviour towards these innovative warning devices at crossings with current conventional devices 

included as control samples.   

 

Comparison of driver responses in terms of ‘stopping compliance’, ‘approaching speed profile’ and ‘final 

braking position’ in this current paper has  produced a better understanding of their responses towards 

existing conventional warning systems at railway crossings. In turn, these results have provided a more 

accurate comparison of driver responses at crossings in the field and of those obtained using a driving 

simulator. As the driving simulator provided similar results to the field data, their future use investigating 

the influence of human factors (i.e., age, gender, distraction, use of mobile phone, fatigue) to drivers’ 

responses to new devices can be designed. Future research by the authors will concentrate on evaluating 

driver responses to alternative systems at crossings using a driving simulator. Improving level crossing 

safety by examining the drivers’ responses to alternative systems is paramount. This future work will 
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endeavour to answer the most fundamental research question in level crossing safety– how can safe 

driving responses be elicited from motorists to best protect them against the risks associated with 

approaching trains at level crossings? It has the potential to not only save lives but reduce the 

socioeconomic costs of vehicle-train collisions.  
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