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Abstract— Autonomous development of sensorimotor 

coordination enables a robot to adapt and change its action 

choices to interact with the world throughout its lifetime. The 

Experience Network is a structure that rapidly learns 

coordination between visual and haptic inputs and motor 

action. This paper presents methods which handle the high 

dimensionality of the network state-space which occurs due to 

the simultaneous detection of multiple sensory features. The 

methods provide no significant increase in the complexity of 

the underlying representations and also allow emergent, task-

specific, semantic information to inform action selection. 

Experimental results show rapid learning in a real robot, 

beginning with no sensorimotor mappings, to a mobile robot 

capable of wall avoidance and target acquisition. 

I. INTRODUCTION 

HE semantics of an object stem from its purpose or 

use. While high-level object semantics can come from 

multiple domains, initial understanding of object use arises 

from the action-outcome relationships which occur through 

interaction. Given a task, it is these semantics that enable a 

robot to select an object from those available in the 

environment with which to interact.  

 A robot’s sensorimotor coordination (SMC) links 

perception, action and outcome [1]. The basic object 

semantics are therefore grounded in the SMC system of the 

robot. If a robot is to autonomously acquire understanding 

of object semantics over its lifetime it must be able to 

autonomously develop its SMC.   

 Object semantics become important when acting in an 

environment in which multiple objects are present. 

However, in such environments, the high dimensionality 

which occurs due to combinations of different objects being 

simultaneously detected in the sensory field makes the task 

of developing the SMC non-trivial, even for a low degree 

of freedom robot with the task of navigating to useful 

objects.  

 The proposed Experience Network (EN) is a type of 

Markov Network which continually develops the robot’s 

SMC over its lifetime. The EN captures sensory 

experiences in the nodes of the network, and temporal and 

motor information in the inter-nodal links. While network 

dynamics are similar to that of typical reinforcement 
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learning [2], the research focus is on how the continual 

stream of sensorimotor data is efficiently organised to 

produce the SMC representations which capture the 

required object semantics. 

 Previous work demonstrates the development of SMC 

representations which allow various goal states to be 

achieved, when interacting with only a single object [3]. 

The work is extended into a domain in which the robot 

simultaneously detects multiple features from both 

foreground and background entities, requiring the 

formation of basic semantics in order to achieve a goal 

state. Three problems are considered: (1) how unchecked 

growth can be minimised when state-space size increases 

exponentially with state dimensionality, (2) how emergent 

semantic information about feature relevance can be 

captured and used to better inform action, and (3) how 

learning speed can be boosted through inferring actions 

from of novel states. 

 This paper presents an alternative to developing a 

network which stores the entire sensory state within a 

single node. Instead, each node is created with only a single 

sensory feature, and thereby distributes the state across 

multiple nodes in the network. This has three benefits: (i) 

the state space size becomes O(N) with respect to the 

dimensions of the sensory features, rather than O(c
N
), (ii) 

the probabilistic dynamics of the Markov network can 

perform pattern generalisation and separation to efficiently 

generate more semantically driven sensorimotor 

coordination, (iii) inference of action from nodes can be 

more easily calculated as there is no ambiguity in the credit 

assignment resulting from groupings of features.  

 The paper proceeds by outlining related work in section 

II, before describing the details of the EN in section III. 

Studies using a real mobile robot are presented in section 

IV. Object detection is colour-based; however features are 

extracted from both the foreground and background 

entities. Results and discussions are presented in Section V 

and VI respectively, and Section VII describes future work. 

II. BACKGROUND 

Autonomously building object models is usually performed 

by  predefining the foreground [4-6], or the background [7],  

so the semantically interesting information is available to 

the robot. The problem of autonomously learning the 

relevance of a feature (which is task contextual, and may 

not be static) is less often considered.  

 Learning appropriate actions to achieve the desired goal 
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is often performed by finding object, action, outcome 

relationships in a second phase, after object representations 

have been formed [5]. Outcome learning has been 

performed by statistically averaging the change in object 

state, after an applied action, over multiple runs [7],[8] 

More continuous methods generally apply an uphill 

learning algorithm to optimise the performance of a single 

task [4]. To acquire relevant semantics over the lifetime of 

the robot the learning must occur simultaneously to actions 

being performed. The representations learnt must also be 

flexible in allowing different goals to be achieved given a 

change in task.   

 While Markov networks have successfully been 

employed in robot navigation scenarios in the past [9], 

research in reinforcement learning has shown that network 

structures have issues with computational complexities 

when confronted with large state spaces and high 

dimensionality [2]. However, other recent trends in 

object/affordance learning have shown that the 

dimensionality can be reduced by employing Bayesian 

network learning to capture the conditional dependence 

relationships [5], allowing the full state distribution to be 

estimated by modelling only the most causal relationships. 

III. THE EXPERIENCE NETWORK 

The Experience Network is a Markov network of sensory 

states which have been experienced by the agent and which 

are linked together through the actuation commands that 

were performed when the state changed. The sensory state 

at time t is referred to as an agent's experience et:  

 ttt
HVe ,

  
where Vt is a set of visual features and Ht is a set of haptic 

features. Each visual feature vi in features Vt is extracted 

from the raw data and defined as: 

 iii
cfv ,

  
where fi∈Fv is a description or label component of the 

feature and ci is a component describing the position in the 

visual field. Similarly haptic features are defined by a label, 

selected from set Fh, and position in the haptic field. 

 The robot’s actuation command is referred to as an 

action. The action a at time t is:  

 
Aa

t   
where the set A defines the set of all possible actions. 

 

A. A Network of Experience and Action 

The EN is realised using a graph structure in which the 

sensory experiences are stored within the nodes, N, and the 

actions are stored within the set of all links, L, that connect 

nodes (Fig. 1). The graph structure can then be exploited by 

forming an agent state from one or more nodes and 

following links towards a node with a desirable experience.  

 
Fig.  1. The multi-dimensional EN projected in 2 dimensions. Each node 

stores sensory data while each link store transitional data. The dotted lines 
indicate links to experiences not shown.  

 Each node Nn
i

 is representative of an experience: 

 
iii

HVn ,
 

 

where Vi are the features which describe the node visually 

and Hi are the features which describe the node haptically. 

A link connecting node i to node j by performing action a is 

defined as:  

 
ijaijaija
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where sija is the strength or repeatability of the link, and tija 

is the time to traverse between nodes. 

B. Measures of Node Similarity 

Nodes are added to the network by considering the 

information currently stored in the network and comparing 

it to the experience at time t. To perform a comparison a 

measure of the similarity of two nodes is required. The 

probability that node ni is the same as node nj is calculated 

as:  

 )|()|()|(
jijiji

HHPVVPnnP  (1) 

where the probability based on the visual element is 

calculated as: 

 )]|()|([max)|(
1
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which makes the assumption that the feature label and 

position are independent. Independence is also assumed 

between feature labels; the label similarity is calculated as: 
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 The probability due to position in sensory field is defined 

by a closeness measure which assumes that areas in the 

field are dependent on neighbouring areas: 
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The haptic component can be calculated in a similar fashion 

depending on the sensor arrangement. Due to simplistic 

haptic sensors of the current robotic setup, the haptic 

probability was simplified to: 
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C. Node Addition 

The two methods for developing nodes and adding them to 

the EN, combination of features and distributed features, 

are now defined. In general both methods form the current 

robot state St, which is a subset of all nodes N, by selecting 

nodes already in the network or by adding new ones to it. 

New nodes are added when no current node similarity is 

above the threshold Tn. 

 Combining features in a single node is the direct 

extension to previous work, a single node is required to 

represent the current state and all features within the node 

must match to ‘revisit’ this node in the future.  

Algorithm 1: Combination of Features 

1. {}
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5.  },{
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 The distributed method adds nodes to the network by 

forming individual nodes for each feature in the experience. 

Many nodes are then required to represent the current state; 

however a change in a single component feature does not 

shift the entire state to a new node, only the specific feature 

that changed.  

Algorithm 2: Distributed Features 

1. {}
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D. Link Addition 

Links are added between nodes by considering the 

change in robot state from time t-1 to time t. For each node 

in St-1 no longer present in St, a link is added to the most 

probable node in St.  

Due to the closeness measure, P(cy|cz), and the fact that 

the label probability, P(fy|fz), is a binary measure, often the 

most probable node will be a nearby node with the same 

feature. This behaviour is designed to allow the modelling 

of feature motion through the visual field, however this is 

not an absolute ‘rule’ as noise in feature detection, as well 

as perceptual aliasing (the same feature can be in scene 

multiple times), will introduce uncertainty. Over time 

correct trends in motion should emerge. In cases in which 

no node has the same feature all other nodes become 

equally probable (at 0) and thus links are made to all nodes. 

Over time emergent behaviour, such as a feature changing 

label due to viewpoint change, can be captured.  

Once links are chosen the current network links are 

updated by increasing the link strength, sija, by 1 and 

averaging the time component, tija, over all traversals. 

E. Network Navigation  

The graph representations formed in the EN are exploited 

to direct future agent action, closing the sensorimotor loop. 

Given the current agent state, St, the next action is selected 

so as to minimise the probable time it takes to arrive at a 

node that complies with a set goal criteria.  

 The probable time to a goal node given an action, T(ak), 

is calculated for every node in the network, given each 

action, using dynamic programming techniques [2]. Nodes 

which meet goal criteria are set to have a T value of 0 and 

every other node is updated according to:  
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where Pij(ak) is the probability of action ak changing the 

state from node ni to node nj. Pij(ak) is calculated as: 

 

Nn

ika

ija

kijkij

k

s

s
LannPaP ),,|()(  (7) 

If action ak has never been performed from node ni (i.e. the 

denominator of (7) is 0) the time to goal is set as: 

  1)(
ki

aT  (8) 

which instigates the exploration of unperformed links to 

new nodes. Alternatively the time can be inferred from 

other nodes as described in the following sub-section.  

In the distributed feature method the current state is 

formed by multiple nodes; a greedy method is used to 

perform action selection in order to minimise the probable 

time to goal given all possible actions and all nodes in St: 

 )])([min(min
ki
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F. Inference 

Many objects in the world have similar SMC behaviours, 

and hence will have similar network connections within the 

EN. To remove the need for complete exploration of a 

previously un-encountered feature’s state-space, the time to 

goal, Ti(ak), can be inferred from already established nodes. 

If a successful match, based on partial link similarity, can 

be made between two different features, the entire state-

space of that feature can be inferred resulting in reduced 

learning times. Feature similarities are more causally 

calculated in a distributed network as the links from a given 

features only represent the change in the change in a single 

feature, as opposed to many. 

 Two algorithms are introduced to perform inference.  To 

recognise when two features exhibit similar behaviour, the 

inference measure I between the features fu and fv is 

continuously calculated as the network is developed: 
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where the values of α and β are updated each time a link is 

added. Given a link between node ni and nj is added with 



 

 

 

the action at-1 the values of α and β (initially zero) are 

updated by finding similar links within the network based 

on the feature position c in pre and post nodes (Algorithm 

3). The resulting cross-correlation matrix I defines the 

similarity in sensorimotor behaviour for all features in F. 

Algorithm 3: Inference Calculation 
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 The similarity between features is used when calculating 

probable times of each node for network navigation. If an 

appropriate inferred node can be found when action a has 

never been performed from node ni the time is, instead, 

inferred. 

Algorithm 4: Inference Usage 
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IV. EXPERIMENTS 

A. Robot and Environment 

Experiments were performed on a Pioneer3-DX mobile 

robot with a 2-DOF gripper including an IR break beam 

between the paddles for haptic sensing. A forward facing 

Logitech Webcam Pro 9000 was used as visual input 

(Figure 2). 

 
Fig.  2. The robot in the experimental 3x3m walled environment. The red, 
and other (green) markers, can be detected using the gripper while the wall 

and floor cannot. 

The robot's experience consisted of visual features from the 

camera and haptic data from the gripper. Colour-based 

image segmentation was employed as illustrated in Figure 

3. Although colour segmentation is a simple way to extract 

useable features from the environment the experiments are 

only initial studies in which no distinction between 

foreground and background is made, the robot had to 

develop its own semantics about which features where 

important to achieve its goals. 

 
Fig.  3. The visual features extracted from a typical scene. The image is 
colour segmented allowing features to be generated by the walls, the floor, 

and the red and green markers. Each visual experience consists of the 

visual features fv and the centroid cv. 

The elementary actions available to the robot were forward, 

left, and right and selected at a rate of 10 Hz. Laser range 

data was used to detect when robot actions would lead to a 

collision, any detection would stall the robot before 

collision occurred. The network was built with the node 

similarity threshold, Tn, set so nodes cover a region with a 

~20 pixel radius (in a qqVGA image) and the inference 

threshold, TI, was set to 30%. 

B. Experimental Procedure 

Each run was conducted with the robot in an initial position 

and the markers randomly placed within the robot's field of 

view. The robot began with an empty EN, hence no 

understanding of the sensory-motor mappings. The goal 

criterion was set to be nodes with the IR break beam 

triggered. Robot and marker positions were reset upon 

reaching a goal state. Two EN’s were developed based on 

both Algorithm 1 and Algorithm 2, however only the 

network formed using Algorithm 2 was used to control the 

action of the robot. 

 Study 1: 20 runs were performed with a single red 

marker in the arena. The study aim was to demonstrate that 

the distributed EN could be successfully exploited to solve 

the target acquisition problem in the face of multiple 

different background/foreground sensory input. 

 Study 2: A further 20 runs were performed, continuing 

the use of the EN from Study 1. An additional red marker 

was added and the aim was to investigate performance and 

representation size when two distinctive (goal) features 

were present. 

 Study 3: A final 10 runs were performed with only a 

single green marker in the arena. The study aim was to 

investigate the utility of inferring novel feature behaviour 

from known feature representations. 

V. RESULTS 

A. Node Addition Method Comparison 

The distributed network (DN) led to a smaller network size 

than the combined features network (CFN) as can be seen 

in Figure 4. The CFN size grew significantly larger than the 

DN due to the state-space dimensionality; each feature in 



 

 

 

each position was an orthogonal axis in the state space. It 

was from this evidence that the CFN was disregarded in 

further analysis; the time and physical exploration required 

to develop worthwhile representations was exponentially 

larger than the DN.  

The DN growth supports the method’s advantages: it 

slowed in the first study as a reasonable amount of the state 

space was physically explored, was not required to grow 

when a second marker was added, and only required new 

nodes to represent the green marker in the third study. The 

CFN continually increases in size over all three studies as 

the state-space is exponentially larger. It is only in the third 

study when growth slowed, due to the traversal of similar 

paths by the (action selecting) DN. 

 
Fig.  4. The state-space size comparison between the CF network (dotted) 
and IF network (solid). The slope is reported in units of nodes/minute. 

B. Study 1: Grounding Multiple Sensory Features 

The initial trial took over 5 minutes as the robot filled out 

the empty EN with newly acquired sensorimotor 

experience. Subsequent runs, even with the marker in a 

random position, showed the effectiveness of the DN to 

acquire the task specific semantic information required to 

complete the task, as the average time dropped to 28s. It 

learnt that the marker feature is the most important feature 

to use given the haptic goal and in most cases the wall and 

floor features are not helpful. 

 
Fig.  5. The time to goal for each run in study 1. The dotted line indicates 

the number of wall 'hits' as indicated on the right axis. 

 When the robot cannot see the informative marker 

feature, goal directed behaviour is not possible. There is no 

egocentric information available to the robot to make a 

prediction about the relative location of the target unless it 

is in the field of view. However the robot would learn to 

turn rather than drive straight at the wall, although at times 

it would prevaricate between turning left and right without 

gaining sight of the target, as evidenced in runs 8 and 16. 

These runs also show an increased number of wall hits as 

the robot learnt more about the semantics of the wall as a 

feature. The ability to avoid walls is learnt as can be seen in 

the decreasing number of wall hits.  

C. Study 2: Navigating with Multiple Goal States 

The already grounded network was able to continue to 

achieve a goal state when a second marker was added to the 

environment (Figure  6). Very few new nodes were added 

to the EN in this study (Figure 4), hence the SMC state 

representations were already adequate for correct behaviour 

with links continually being reinforced. Due to the greedy 

algorithm the closest node could be selected as the goal 

target only further reducing the time to goal. In contrast the 

CFN network would have to develop new representations 

to represent the combination of 2 marker features. 

 
Fig.  6. The time to goal and wall hits for each run in study 2. 

D. Study 3: Inferring Novel Feature Utility 

While inference between features was being calculated and, 

if necessary, invoked throughout all studies it was only in 

the third study in which they came into effect. The walls 

floor and marker all had unique movement behaviour with 

respect to their centroids and hence no inference was 

performed. When the green marker was introduced 

(producing a previously unseen feature) it was closely 

matched with the already developed red marker nodes 

(Table 1), allowing correct actions to almost immediately 

be performed to achieve the goal state (Figure 7).  

The long run duration in runs 45 and 48 were caused by 

the incorrect association of the green marker with the wall 

features. In both runs the marker was positioned towards 

the top of the visual image, where typical wall behaviour is 

to turn, rather than driving forwards. Action was then 

incorrectly inferred and hence direct motion to the marker 

was not performed. The red marker had a zero inference 

value from the green marker as the red marker was never 

reintroduced after the green marker was introduced. 



 

 

 

TABLE 1 

MOTION INFERENCE BETWEEN FEATURES 

 Wall Floor Red Marker Green Marker 

Wall 48.45% 29.41% 17.31% 58.73% 

Floor 4.35% 19.25% 10.20% 15.40% 

Red Marker 14.81% 5.70% 47.26% 0.00% 

Green Marker 32.79% 4.50% 33.21% 58.89% 

The probability that a feature (rows) has the same sensorimotor behaviour 
as another (columns). Auto-inference is not 100% as the probability only 

increased when Pij(a) > 0.5. 

 
Fig.  7. The time to goal and wall hits for each run in study 3.  

VI. DISCUSSION 

The Distributed Experience Network algorithm differs from 

other methods of learning sensorimotor coordination in a 

number of important ways. 

A. Learning is One-Shot and On-Line 

While the EN develops an adaptable SMC from scratch, the 

network complexity is kept manageable by having each 

node deal only with a single sensory feature from an 

experience, representing the experience in a distributed 

fashion. The EN does not require separate learning and 

recall phases. All of the robot’s interactions with the 

environment result in learning, allowing the robot to 

continually update its SMC over the lifetime of the robot  

B. Attention is Intrinsic to the Network 

Our experiments used colour segmentation to simplify the 

incoming visual information, but no specification was made 

as to which features were in the foreground, and which 

were in the background. There is no inherent attention 

operator to highlight features of interest – rather the EN 

develops task specific semantic information by noting 

which sensory changes occur consistently with motor 

action. Only the foreground features (i.e. from the object) 

are recognised as informative. 

C. Learning can be Boot Strapped by Inference 

Bootstrapping knowledge between features is important 

when using state-action representations especially in high 

dimensional space, as otherwise each state of each feature 

needs to be explored and grounded. The distributed 

network more easily allows for dependencies to be learnt 

which are then exploited to reduce the amount of learning 

the network has to do before appropriate actions are 

emergent.  

VII. FUTURE WORK 

Adapting these studies to a real-world environment requires 

the introduction of appearance-based features, such as 

SURF [10]. The large increase in the number of features 

which must be processed forms the key challenge of doing 

so. While the individual features can be picked out in the 

DN, a single object can produce multiple features in this 

scenario. It would then seem viable to allow small 

groupings of features to autonomously form in nodes 

thereby reducing the number of features to be processed, 

while also demonstrating emergent ‘object recognition’. 

 Bayesian network theory could also be employed to 

increase the robustness of inference between variables in 

the system, such as in [5]. Not only does this speed learning 

but also allows reduction of the dimensionality of the 

system if new variables were added, such as global X, Y 

coordinates. This would allow the robot to then search for 

objects outside the immediate view, and also, in a similar 

method to visual features, develop task-specific spatial 

semantic information.   
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