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Abstract 

This chapter focuses on the interactions and roles between delays and intrinsic noise 

effects within cellular pathways and regulatory networks. We address these aspects by 

focusing on genetic regulatory networks that share a common network motif, namely the 

negative feedback loop, leading to oscillatory gene expression and protein levels. In this 

context, we discuss computational simulation algorithms for addressing the interplay of 

delays and noise within the signaling pathways based on biological data. We address 

implementational issues associated with efficiency and robustness.  In a Molecular Biology 

setting we present two case studies of temporal models for the Hes1 gene (Monk, 2003; 

Hirata et al., 2002), known to act as a molecular clock, and  the Her1/Her7 regulatory system 

controlling the periodic somite segmentation in vertebrate embryos (Giudicelli and Lewis, 

2004; Horikawa et al., 2006).  

 

1. Introduction 

The mathematical modeling and simulation of genetic regulatory networks can provide 

insights into the complicated biological and chemical processes associated with genetic 

regulation. However, highly resolved computational models of such biochemical complexity 

can be very expensive and often infeasible and, thus, it is important that the models are kept 

simple but nevertheless capture the key processes. 

Two vital aspects in modeling genetic regulatory networks are intrinsic noise and 

delays. Intrinsic noise arises in the system when there are small to moderate numbers of 

certain key molecules and is due to the uncertainty of knowing when a reaction occurs and 

which reaction it might be. Intrinsic noise is entirely different to extrinsic noise in which state 

changes are due to fluctuations in external conditions, such as temperature. These intrinsic 

noise effects can be modeled through the Stochastic Simulation Algorithm (SSA), first 

applied by Gillespie (1977) to simulate discrete chemical kinetics as the evolution of a 

discrete nonlinear Markov process. 

Delays are intrinsic to slow biochemical processes that do not occur instantaneously 

and are often affected by spatial inhomogeneities. For instance, they are often associated with 

transcription and translation, two processes that imply other spatiotemporal processes often 

not explicitly modeled, such as (in eukaryotes) diffusion and translocation into and out of the 

nucleus, RNA polymerase activation, splicing, protein synthesis, and protein folding.  These 

processes can take many minutes and so the effects are very important especially in the laying 

down of oscillating patterns of gene expression (Hirata et al., 2002).  Monk (2003) notes that 

in mouse there is an average delay of 10–20 minutes between the action of a transcription 

factor on the promoter region of a gene and the appearance of the corresponding mRNA in the 

cytosol. Similarly, there is a delay of typically 1–3 minutes for the translation of a protein 

from mRNA. 

By incorporating delays into the temporal model we can capture essential information 

on a macroscopic level, the delay can itself account for the multitude of biochemical 

processes and events on a microscopic time scale that render us unable to compute cell 

dynamics in real-time. Hence, we can expect more accurate and reliable predictions of cellular 

dynamics through the use of time delay models (Barrio et al., 2006).  

One of the first people to consider feedback differential equation models for the 

regulation of enzyme synthesis was Goodwin (1965). An der Heiden (1979) then modified 

these ideas by including transport delays into Goodwin‟s model. The oscillatory behavior of 
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the ensuing delay differential equations (DDEs) as a function of the size of delays was 

investigated by an der Heiden.  However, these DDE models act in the continuous 

deterministic regime and this regime is not always appropriate when considering small 

numbers of molecules such as in the case of genetic regulation with small numbers of 

transcription factors.  

In a lovely set of experiments, Hirata et al. (2002) measured the production of hes1 

mRNA and Hes1 protein in mice. This work forms the basis of one of our case studies in 

Section 4.1. Serum treatments on cultured cells result in oscillations in expression levels for 

hes1 mRNA and Hes1 protein in a two hour cycle with a phase lag of approximately 15 

minutes between the oscillatory profiles of mRNA and protein. The oscillations in expression 

continue for 6 to 12 hours.  

In order to explain the observed behaviors, Hirata et al. modified a mathematical 

model developed by Elowitz and Leibler (2000) for a synthetic gene network constructed in 

E. coli cells by introducing one gene from  -phage. By postulating a Hes1 interacting factor 

as a third molecular species Hirata et al. obtained a system of three Ordinary Differential 

Equations (ODEs) that gives rise to sustained oscillatory behavior. However, there is no direct 

experimental evidence for such an interacting factor. Rather, the introduction of a third 

variable is due to the fact that certain systems of two ODEs cannot generate sustained 

oscillations. This observation together with the experimental results of Hirata et al. led to a 

number of papers in which simple coupled delay differential equations were developed in 

order to explain the sustained oscillations without recourse to the addition of a third variable 

(Monk, 2003; Jensen et al., 2003; Lewis, 2003; Bernard et al., 2006).  

Barrio et al. (2006) took a different approach from the above authors and tried to 

explain the results of Hirata et al. by taking proper account of both time delays and intrinsic 

randomness.  They developed a Delay Stochastic Simulation Algorithm (DSSA) that 

generalizes the Stochastic Simulation Algorithm (SSA) to the delayed setting. Independently, 

Bratsun et al. (2005) developed a delay SSA without considering waiting times for delayed 

reactions while only non-consuming reactions can be specified to be delayed. More recently, 

Cai (2007) introduced a direct delay SSA method and showed that both, the DSSA by Barrio 

et al. and the direct method are exact stochastic simulation algorithms for chemical reaction 

systems with delays.  The experimental results of Hirata et al. seemed to be better explained 

through the delay stochastic simulation algorithm approach rather than through delay 

differential equations (Barrio et al., 2006). 

When modeling biological systems with large numbers of molecules and/or rate 

constants, the time steps in stochastic simulation algorithms can become very small and, 

hence, the simulation can be computationally highly expensive. By consequence, this limits 

the feasible „real-time‟ span of the simulations. In order to reduce the computational load we 

need new algorithms that still model intrinsic noise in a delayed setting but overcome the 

issues of small step sizes. Temporal coarse-graining has been considered through the use of  -

leap methods (Gillespie, 2001; Tian and Burrage, 2004; Peng et al. 2007, Anderson, 2007, 

2008), and similar ideas have been applied in the delay setting (Leier et al., 2008(a)), thus 

rendering an efficient algorithm that yields accurate simulations in time spans that are long 

enough to be of actual interest to the experimentalists. 

Lastly, temporal delay models lack spatial resolution but nevertheless allow for 

portraying spatial aspects of cellular processes by compartmentalization, that is, by 

distinguishing between identical molecular species according to their location. Recent 

research suggests that molecular translocation processes can be well captured and modeled by 

means of time delayed processes with specific delay distributions. However, it is worth 
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mentioning that spatial algorithms are not replaceable in all cases. Examples of the latter are 

scenarios with high spatial heterogeneity, anisotropies, or when single-particle tracking 

becomes strictly necessary. Spatial highly-resolved algorithms are computationally most 

expensive, and coarse-graining techniques have also been developed for this case (Chatterjee 

and Vlachos, 2005; Chatterjee and Vlachos, 2006). 

The outline of this Chapter is as follows.  In section 2 we give an overview of some of 

the approaches to the temporal modeling of chemical kinetics.  In section 3 we present various 

types of simulation algorithms with and without delays and discuss how we can improve the 

accuracy and robustness by so-called  leap approaches.  Section 4 gives two case studies: the 

Hes1 molecular clock and the Her1/7 complex which plays a role in somite formation in 

zebrafish.  Section 5 presents some conclusions. 

 

2. Modeling Chemical Kinetics 

Modeling and simulations are valuable tools for investigating complex biochemical 

systems. Not only do they allow us to determine if a proposed reaction mechanism is 

consistent with observed experimental results, but they can also aid experimental design 

techniques by exploring reaction network interactions with relative ease. The choice for a 

particular modeling approach depends on several factors, such as molecular concentrations, 

distributions, the type of reactions and their time scales, whether discreteness and internal 

noise have noticeable macroscopic effects and, lastly, if the model requires spatial 

information.  

Deterministic models assume a time evolution that is both continuous and predictable. 

However, randomness is intrinsic to biological systems, where system behavior is typically 

represented by noisy signals. Often the most important source of stochasticity stems from the 

fact that molecular reactions are random events, as it is impossible to say with certainty the 

specific type of reaction that will happen next, or when or where such event is to occur. 

Moreover, low molecular concentrations, coupled to random diffusion, are an important 

source of spatial inhomogeneity and stochastic variation. 

In a purely temporal setting, and when there are large numbers of molecules present, 

chemical reactions are modeled by ordinary differential equations that are based on the laws 

of Mass Action and the fact that reaction rates can be estimated on the basis of average values 

of the reactant density. Any set of m chemical reactions can be characterized by two sets of 

quantities: the stoichiometric vectors (update rules for each reaction) 1,..., m   and the 

propensity functions 1( ( )),..., ( ( ))ma X t a X t . The propensity functions represent the relative 

probabilities of each of the m reactions occurring. Here X(t) is the vector of concentrations at 

time t of the N species involved in the reactions. The ODE that describes this chemical 

system, under the Law of Mass Action, is given by 

'

1

( ) ( ( )).
m

j j

j

X t a X t


      (1) 

In order to make this clearer we give a simple example for Michaelis–Menten kinetics.  

This system involves a substrate (S), an enzyme (E), a complex (C) and a product (P).  The 

kinetics can be written as 

    

 CSE  , 

 SEC  , 



  Page 5 of 27 

 PEC  . 

  

Let X(t) be the concentration of (E(t), S(t), C(t)) then the stoichiometric vectors (or the update 

rules for each of the three reactions) are 

.)1,0,1(,)1,1,1(,)1,1,1( 321

TTT    

The time dependent propensity functions 1( ( )),..., ( ( ))ma X t a X t  are the relative 

probabilities of each of the three reactions occurring, respectively, and are given by 

.)(
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In this case (1) becomes 
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Often in such systems there is a conservation of molecular numbers (here 



X1'X3' 0) 

and so one or more equations can be removed. Additional equations can be removed by the 

use of the Quasi-Steady State Assumption (QSSA). Under the QSSA it is assumed that the 

fast reactions go to equilibrium much more quickly that the slow reactions. Thus a system of 

algebraic equations can be solved at the “fast equilibrium” and this solution substituted back 

into the original system, thus reducing the dimension and altering the propensity functions to 

include nonlinear Hill functions. 

In the case of small numbers of molecules the appropriate modeling formulation is the 

Stochastic Simulation Algorithm, as ODEs can only describe a mean behavior. The SSA is 

essentially an exact procedure that describes the evolution of a discrete nonlinear Markov 

process. It accounts for the inherent stochasticity (internal noise) of the m reacting channels 

and only assigns integer numbers of molecules to the state vector. At each step, the SSA 

simulates two random numbers (representing probabilities) from the uniform distribution 

U[0,1] to evaluate an exponential waiting time, , for the next reaction to occur and an integer 

j between 1 and m that indicates which reaction occurs. The state vector is updated at the new 

time point by the addition of the j
th

 stoichiometric vector to the previous value of the state 

vector, that is 

( ) ( ) .jX t X t     

The main limiting feature of SSA is that the time step can become very small, 

especially if there are large numbers of molecules or widely varying rate constants. In order to 

overcome these limitations, a number of different approaches (so called  -leap methods) have 

been suggested in which the sampling of likely reactions is taken from either Poisson 

(Gillespie, 2001) or Binomial (Tian and Burrage, 2004) distributions. In these cases a much 

larger time step can be used at the loss of a small amount of accuracy.  Cao et al. (2006) have 

analyzed effective strategies for choosing the step size in  -leap methods. The reason 

sampling occurs from a Poisson distribution is due to the fact that the SSA can also be viewed 

as a type of  leap method based on Poisson sampling (Kurtz, 1971). On the other hand, 

Binomial sampling is valid because as the number of molecules becomes large, Poisson 

random variables are well approximated by Binomial random variables. 
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A very different approach is to note that the discrete nonlinear Markov process 

described by the SSA has a probability density functions that is the solution of the so-called 

Chemical Master Equation (CME). The CME is a discrete parabolic partial differential 

equation in which there is an equation for each configuration of the State Space. When the 

State Space is enumerated, the CME becomes a linear ODE and the probability density 

function takes the form 

)0()( petp At  

 

where A is the state-space matrix. Even for relatively small systems, the dimension of A can 

be in the millions, so it would appear that this is not a computationally feasible approach. 

However, one should consider that not all of the states are reachable. Furthermore, a proposed 

finite state projection algorithm (Munsky and Khammash, 2006) reduces the size of the 

matrix A. Then one can use Krylov subspace techniques (Burrage et al., 2006) to efficiently 

compute the exponential of a matrix times a vector, making the computation of the probability 

density function directly a very feasible technique (MacNamara et al., 2007). 

Finally, it is important to note that there is a regime intermediate to the discrete 

stochastic regime and the continuous deterministic ODE regime in which the internal noise 

effects are still significant but continuity arguments can apply. This leads to the so-called 

Chemical Langevin Equation (CLE) that is an Itô stochastic ordinary differential equation 

(SDE), driven by a set of Wiener processes that describes the fluctuation in the concentrations 

of the molecular species. The CLE preserves the correct dynamics for the first two moments 

of the SSA and takes the form 

1

( ( )) ( ( )) ( ).
m

j j

j

dX a X t B X t dW t


   

Here 1( ) ( ( ),..., ( ))NW t W t W t  is a vector of N independent Wiener processes whose 

increments ( ) ( )j j jW W t h W t     are (0, )N h  and where 

1 1 1( ) , ( ,..., ) ( ( ),..., ( ))( ,..., ) .T

m m mB x C C Diag a X a X      

Here h is the time discretization step. This formulation can be derived from the Poisson 

formulation of the SSA by noting that as 



Th with 



h0, 



P(Th)N(Th,Th)  Th  ThN(0,1)

 Th  T W .
 

Effective numerical methods designed for the numerical solution of SDEs (such as the Euler-

Maruyama method) can be used to simulate the chemical kinetics in this intermediate regime. 

Furthermore, adaptive multiscale methods have been developed which attempt to move back 

and forth between these three regimes as the numbers of molecules change (Burrage et al., 

2004). 

None of these frameworks explicitly incorporate delay affects but in fact the same 

modeling regimes arise in a natural fashion if delay is included. These have been thoroughly 

explored in Barrio et al. (2006) and Tian et al. (2007) in terms of the same modeling regimes 

mentioned above. We now discuss some of the issues when incorporating noise and delays. 

3. Simulation algorithms  

In recent years, discrete stochastic simulation techniques have been widely used to 

help understand the dynamic behavior of biochemical systems such as genetic regulatory 

networks and intra-cellular and inter-cellular signaling pathways when there are small to 
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moderate numbers of molecular species involved. In addition to the methods mentioned 

above, other simulation type methods have also been proposed recently, for example, Gibson 

and Bruck‟s next reaction method (2000), Gillespie‟s continuous model (2000) and the 

probability-weighted Monte-Carlo approach by Resat et al. (2001). In this section we review 

some of these approaches without and with delays and then discuss extensions via tau leaping 

strategies which can dramatically improve robustness and computational performance. 

 

3.1 SSA  

The SSA (Stochastic Simulation Algorithm) is a numerical Monte Carlo procedure that 

can be used to simulate the time evolution of a set of molecular species affected by a given set 

of reactions. It was introduced by Gillespie (1977) as an exact calculation that generates 

simulated trajectories of the system state. These trajectories are numerical realizations of the 

Chemical Master Equation (CME). It is important to note that the SSA is based on a 

fundamental stochastic premise that defines the probability, given a particular state that one 

reaction will occur in the next infinitesimal time internal. This assumption is used without 

approximation by the SSA and makes it exact with respect to the CME. 

More precisely, consider a well-stirred volume  of molecules containing N molecular 

species {S1,...,SN} that interact at constant temperature through M chemical reactions 

{R1,...,RM}. Given the system state at a particular time X(t) which represents the number of 

molecules of each species, we can define for each reaction Rj (j=1,...,M) its propensity 

function aj(x) in a given state X(t)=x so that 

aj(x)dt = probability that one Rj reaction will occur somewhere inside  in the next 

infinitesimal time interval [t,t+dt). 

Additionally, each reaction is characterized by its stoichiometric vector j that defines 

the state change in the number of species due to reaction Rj.  

The procedure to generate simulated trajectories of X(t) is based on the probability 

function of the two random variables: (1) the  time  to the next occurring reaction, and (2) the 

index j of the next reaction. Given a current state x, the probability of state change per unit of 

time is constant (a0(x)) and so the waiting time to the next reaction is an exponential random 

variable with mean 1/a0(x). The reaction index j is an integer random variable with point 

probabilities 

aj(x) /a0(x), where a0(x) = 


M

k

ka
1

(x). 

These two random variables and their distributions are the basis of the SSA. One of the 

simplest Monte Carlo procedures for generating time and index of the next reaction is the so-

called „direct method‟. Two independent random numbers r1 and r2 are drawn from the 

uniform distribution in the unit interval U(0,1), and then  is assigned as 

 1

0

1ln
)(

1
r

xa
 , 

while j is the  reaction index that satisfies  









j

jk

k

j

k

k xaxarxa )()()( 02

1

1
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Then the system is updated by x(t+) = x(t) +j, and the procedure is repeated to evolve the 

system through time. The following is an algorithmic representation of the direct method. 

 

 

 

 

3.2 Delay SSA  

Biological processes often involve complex reactions and mechanisms that cannot be 

considered instantaneous. Reactants are processed and products are not present until a certain 

future time point. This time delay should be incorporated into our computational models if we 

want to capture a faithful representation of the biological process. Additionally, delays are 

often important parameters that affect the dynamic evolution of the system. A system of 

DDEs can take the general form   



y' f (t,y(t),y(t )), 

and in the case of chemical kinetics as described by (1), the DDE formulation is 



X '(t)   ja j X t  j  
j1

m

 .. 

There are a number of suitable numerical methods for solving such systems, some of which 

are implemented in MATLAB. However, if intrinsic noise is important then we need a 

generalization of the stochastic simulation algorithm (SSA) for chemical kinetics with 

delayed reactions. The DSSA differs from the SSA by making a clear distinction between the 

reaction waiting time and reaction delay. The former is the time between two consecutive 

reactions whereas the latter is the time elapsed from the processing of the reactants to the 

appearance of the products. 

 

Simulation proceeds in the standard way (SSA) if non-delayed reactions take place. 

However, if the next reaction index points to a delayed reaction then we have to distinguish 

between two different types: consuming and non-consuming. In case of non-consuming 

reactions, the corresponding reactants and products are not updated. Instead, the state update 

is scheduled for „present time + delay‟ which will be reached in a future simulation step. 

When that happens, the last drawn reaction is ignored and instead the state is updated 

according to the delayed reaction. Simulation continues at the delayed reaction time point. On 
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the other hand, if the reaction is consuming, reactants and products of delayed consuming 

reactions must be updated separately: (1) reactant consumption updates the state when the 

delayed reaction is selected and (2) product generation is updated when the reaction is 

completed. 

 

The trajectories simulated by SSA are numerical realizations of the state evolution 

X(t). Additionally, the probability density function of X(t) is completely determined by the 

Chemical Master Equation. Similarly, a CME for the DSSA, namely a DCME, has been 

derived from first principles and the DSSA has a corresponding representation as a system of 

delay differential equations (DDEs) – see Barrio et al. (2006) and Tian et al. (2008).  

 

Algorithm 2 is an algorithmic description of the DSSA dealing with both delayed and 

non-delayed, as well as with consuming and non-consuming, reactions. Time steps are 

defined either by a next reaction waiting time or by a delayed time update. 

 

3.3 Spatial Methods  

In many Cell Biology settings spatially resolved simulations are mandatory. Some 

common examples in which spatial simulations are unavoidable are systems embedded in 

complex spatial structures, molecular motion described by low diffusion rates, or systems 

containing significantly low numbers of molecules, to name a few.  The most straightforward 

spatial technique is through reaction-diffusion partial differential equations.  However, this 

approach is only valid if dealing with large molecular concentrations and when noise is not 

amplified throughout the system. If at least one of these conditions fails to hold, one must rely 

on spatial stochastic simulators, which can be discrete or continuous in nature and have 

different levels of spatial resolution. 

It should always be kept in mind that there is a trade-off between simulation time and 

resolution. That is, the more highly-resolved, the more computationally expensive these 

simulations become. The highly resolved end of the discrete spatial stochastic simulators 

spectrum is represented by lattice and off-lattice particle based methods. In lattice methods a 

two-dimensional or three-dimensional computational lattice is used to represent a membrane 

or the interior of some part of a cell (Turner et al., 2004; Morton-Firth and Bray, 1998; 

Nicolau et al., 2006). Such a lattice is then “populated” with particles of different molecular 

species that may diffuse throughout the simulation domain by jumping to empty neighboring 

sites and, depending on user-specified reaction rules, interacting chemically with a certain 

probability. Such lattice-based simulators are commonly referred to as Kinetic Monte Carlo 

Methods.  

In off-lattice methods, particles have their own specific spatial coordinates and reaction 

bins whose size depends on the particular diffusion rates are drawn around them. If one or 

more molecules happen to be inside such a bin, appropriate chemical reactions can take place 

with a certain probability, and if a reaction is readily performed, the reactant particles are 

flagged. It should be noted that in off-lattice methods, the domains and/or compartments are 

usually still discretized to efficiently localize particles. 

Particle methods can provide very detailed simulations of highly complex systems at the 

cost of exceedingly large amounts of computational time and, possibly, restrictions on the size 

of the simulation domain. Hence, such detailed simulations can often only yield short 

simulation time spans that may not be of sufficient interest to experimentalists.  
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3.4 Coarse Grained Methods 

A major drawback of delayed and non-delayed, spatial and non-spatial stochastic 

simulation algorithms are their high computational costs when dealing with large numbers of 

molecules or widely varying rate constants. These factors inevitably result in exceedingly 

small simulation time steps, making the overall simulation computationally expensive or even 

infeasible. In order to reduce the computational load, we can coarsen the simulation, 

accounting for many events in one single larger time step. This is the general idea behind the 

so-called -leap methods, where the simulation advances in time leaps while updating the 

system state according to a reasonably good approximation for the accumulated number of 

reactions (and diffusions if a spatial simulation) within the time step.  

3.4.1 -leap Methods  
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Gillespie (2001) proposed the Poisson -leap method in which the number of reactions 

in each -leap are sampled from a Poisson distribution, and the  step is controlled by a 

selection strategy that depends on a pre-specified control parameter ε, such that 0<ε<<1. 

The update procedure for the Poisson -leap method can be written as 

    



M

j

jjKtxtx
1

 , where    tXaPK jj  , for reactions Mj ,,1 , is a sample 

from the Poisson distribution with mean   ja X t  . Further improvements were made by 

Gillespie and Petzold (2003), Rathinam et al. (2003), and Cao et al. (2005, 2006). 

However, samples from a Poisson distribution range from zero to unbounded values. 

Hence, when updating the system, negative numbers of molecules can occur if larger step 

sizes are used. In order to avoid this, Tian and Burrage (2004) and later Chatterjee et al. 

(2006) proposed the Binomial -leap method where the numbers of reactions in a leap are 

drawn from a Binomial distribution. Thus, the various jK  take the form  
jjj PNBK , , 

where there are some subtleties in the form of the jN  and jP , and such variables jN  and jP  

represent the sample size and probability of occurrence of reaction type j, respectively. Auger 

et al. (2006) presented a modification to the original Binomial -leap method which is a more 

robust implementation than the original formulation.  Furthermore, Anderson (2007, 2008) 

has shown interesting connections between sampling from the Poisson and Binomial 

distributions in the context of -leap methods in both a non-delayed and delayed setting. 

Recently, Peng et al (2007) developed a modified Binomial -leap method that estimates 

the number of reaction products within a -leap step allowing them to participate in additional 

reactions in the same leap. However, Leier et al. (2008) show that such an approach may not 

accurately describe complex dynamics including time delays, and they propose a generalized 

-leap method, that is described in more detail in Section 3.4.2. Lastly, -leap methods can 

also be extended to the spatially resolved spectrum, where the simulation advances in time 

leaps that account for several molecular diffusion and reaction events, as shown by Marquez-

Lago and Burrage (2007) and described in Section 3.4.3. 

3.4.2 B-DSSA  

Initial Binomial -leap algorithms (Tian and Burrage, 2004; Peng et al., 2007) were not 

able to capture accurately the dynamics of certain chemical kinetics compared to the exact 

SSA/DSSA approach, due to insufficient numbers of reactions drawn in -leap steps. In Leier 

et al. (2008) a new generalized Binomial -leap method (B-DSSA) is presented that 

addresses the difficulties associated with complex chemical kinetics and introduces delays 

into the Binomial -leap framework. A description of the B-DSSA is given in Algorithm 3. 

Estimating a proper maximum number jN  of potential reaction events of type jR  for 

the Binomial random variables  
jj PNB ,  is crucial for an accurate reproduction of system 

dynamics.  For specific reactions, Table I shows how to calculate jN  assuming jR  is an 

isolated reaction that does not share reactants with any other reactions. While this estimation 

is straightforward for isolated, elementary reaction, it is less obvious for chemical kinetics 

involving large, interacting reaction networks where multiple reactions share the same 

reactants. 
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Reaction 
jR  Propensity 

ja  
jN  Stoichiometric 

Coefficients 

1
st
 order 

l

c

k SS j  kjj Xca   
kX  

1, kj , 

1, lj  

Heterodimeric 

m

c

lk SSS j  lkjj XXca    lk XX ,min  
1,,  ljkj  , 

1, mj  

Homodimeric 

l

c

kk SSS j  
2/)1(  kkjj XXca  









2

kX
 

2, kj , 

1, lj  

Hill type 

lk

fc

k SSS j   

)( kjj Xfca   where 

h

0 )/)((1

1
 - 1))((

XtX
tXf

k

k


  

(activation) or 

h

0 )/)((1

1
 ))((

XtX
tXf

k

k


  

(inhibition) 

with Hill coefficient h. 

constant,  

1jN  
1, lj  

 

Table I: Some simple reactions jR  and their corresponding propensities ja , stoichiometric 

coefficients ,j  and maximum number of potential reaction events jN . Hill functions are 

often used to describe the regulatory effect of one or more transcription factors on the 

chemical kinetics. For a Hill function depending on a single transcription factor kX  this 

results in the propensity )( kjj Xfca  . Calculating the  xN j  for Hill-type reactions 

involves some subtlety.  For Hill type reactions, Leier et al. (2008) define   CxN j   where 

C  is some constant. Simulations show that, unless C  is too small (< 10), it has no noticeable 

effect on the simulation outcome. 

 

The B-DSSA samples reaction numbers from Binomial distributions  
jj PNB ,  (Step 5 

in Algorithm 3). Here,  ,xNN jj  , with  M ,,1   and  xN ii  , is the maximal 

number of potential reaction events of type jR  when M ,,1   reactions of MRR ,,1   occur 

in the -step. For  ,xN j  it is assumed that 0,, Mj    since only the already sampled 

reaction numbers 11 ,, j   are considered. However, unlike the original Binomial -leap 

method by Tian and Burrage (2004), the jN  are calculated considering only those reactions 

iR  (and hence i ) that share reactant species with jR .  Figure 1 illustrates the difference.  

As a consequence, in the B-DSSA the maximal number of potential reaction events is 

usually larger than in the original Binomial -leap method. Numbers of delayed reactions are 

sampled in the same way as numbers of non-delayed reactions. The update of the system state 

(Step 6 in Algorithm 3) has to distinguish between delayed consuming and non-consuming 

reactions scheduled within the -leap, but also has to sample the update times of all delayed 

reactions drawn for the -leap.  
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Numerical simulations reveal that, unlike previous Binomial -leap methods, the B-
DSSA is better able to accurately capture the dynamics of oscillating patterns of gene 

expression. In such systems delayed reactions play a crucial role in maintaining the cyclic 

behavior and sampling too many or an insufficient number of delayed reactions will 

inevitably lead to a different cycle frequency. For the applications in Section 4.2, the B-
DSSA was able to reproduce the oscillatory dynamics both accurately and significantly faster 

than the DSSA. In case of the Her1/7-model for 5 coupled cells, B-DSSA was 70 to 100 

times faster than the DSSA implementation of Barrio et al. (2006). 

 

 

 1R : BA  ,  

1R

2R

3R

4R

5R

6R
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 2R : CBA  , 

 3R : BAC  , 

 4R : DCB  , 

 5R : CBD  , 

 6R : FEB  , 

 

Figure 1: Artificial chemical kinetics system. The set of reactions 1R  to 6R  constitutes a 

network where two reactions, i.e. two vertices, are connected by an edge if and only if they 

have one or more common reactant species. The network has two connected subnetworks, 

{ 5R } and { 1R , 2R , 3R , 4R , 6R }. In the original Binomial -leap formulation, the maximum 

number of potential reaction events of type 6R  was calculated as the minimum iN  (see Table 

I) over the subnetwork { 1R , 2R , 3R , 4R , 6R } (the subnetwork that 1R  belongs to). The B-

DSSA calculates  ,6 xN  considering only 6R  and its direct (shaded) neighbors: 

   5422426 ,min0,,,,,, xxxN    with  Bx 2  and  Ex 5 . 

 

3.4.3 B-SSSA  

As mentioned before, particle methods can provide very detailed simulations at the cost 

of exceedingly large amounts of computational time and, possibly, restrictions on the size of 

the simulation domain. In other words, we may need to coarsen the simulation in order to 

provide a spatially resolved method that yields accurate chemical kinetics in meaningful 

simulation times that are of actual biological interest to experimentalists.  

The idea behind -leaping in space is to account for several diffusion and reaction events 

in one larger time step, without compromising spatial nor temporal accuracy. Marquez-Lago 

and Burrage (2007) presented the Binomial -leap Spatial Simulation Algorithm, B-SSSA, a 

coarse-grained version of an existing spatial stochastic simulation algorithm known as the 

next subvolume method (Elf and Ehrenberg, 2004; Elf et al., 2003; Hattne et al. 2005). 

The next subvolume method is a generalization of the SSA, where the volume is divided 

into separate subvolumes that are small enough to be considered homogeneous by diffusion 

over the time scale of the reaction. At each step, the state of the system is updated by 

performing an appropriate reaction or by allowing a molecule to jump at random to a 

neighboring subvolume, where diffusion is modeled as a unary reaction with rate proportional 

to the two dimensional molecular diffusion coefficient divided by the length of a side of the 

subvolume. In this way, diffusion inside the algorithm becomes another possible event with a 

propensity function and follows the same update procedure as chemical reaction. Then, the 

expected time for the next event in a subvolume is calculated similarly to the SSA, including 

the reaction and diffusion propensities of all molecules contained in that particular subvolume 

at that particular time. However, time for next events will only be recalculated for those SVs 

that were involved in the current time step, and they are re-ordered in an event queue.  

A natural extension of the next subvolume method is to perform -leaps that account for 

one or more diffusion and reaction events, the idea behind B-SSSA (Marquez-Lago and 

Burrage, 2007). At each iteration, the subvolume with shortest reaction-diffusion -leap is 

selected, which is to be found at the top of the time event queue. Then, all randomly chosen 

but possible events inside such subvolume are executed, a new -leap for all subvolumes that 

were involved in the current -leap is calculated, the time event queue in increasing time is 
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reordered, and the subvolume indicated by the top of the time event queue is chosen. The 

algorithm is complicated and the reader can refer to the description in the article. 

 

4. Case Studies  

In this section we present results from two studies involving Notch signaling molecules. 

The first model is a model of hes1 auto-inhibition by Hes1 proteins in mouse (Monk, 2003; 

Barrio et al. 2006). The second model (Figure 2) describes the Delta-Notch dependent 

synchronization of Her1 and Her7 protein levels in a 1-dimensional array of cells in zebrafish 

(Lewis, 2003; Horikawa et al., 2006). In this model, the two linked genes her1 and her7 are 

autorepressed by their own gene products and positively regulated by Delta-Notch cell-cell 

signaling that leads to oscillatory gene expression in the cells of the presomitic mesoderm 

(PSM), a region at the tail end of the vertebrate embryo, thus generating regular patterns of 

somites (embryonic organs that develop into vertebrae and other mammalian repetitive 

structures (Gonzales and Kageyema, 2007)).  

In mammals there are four known Notch genes that encode transmembrane receptors for 

mediating short-range signaling events. The five known ligands of Notch (Jagged-1,-2 and 

Delta like-1, -3, and -4) are also transmembrane proteins. At the cell surface, a Notch receptor 

can interact with one of its ligands in a neighboring cell leading to the release of the Notch 

intracellular domain (NICD). The subsequent nuclear translocation of NICD results in 

transcriptional activation of specific genes (Hes and Her/Hesr families) whose corresponding 

proteins in turn act as transcriptional repressors. There is evidence that endogeneous NICD 

acts at very low concentration (Fiúza and Arias, 2007), strongly suggesting a stochastic 

simulations approach for modeling Delta-Notch signaling. In both models, the transcriptional 

and translational delays are responsible for the oscillatory behavior. The involved genetic 

regulation is modeled by delayed Hill type reactions. 

 

Notch

Delta

Delta

her1 / her7

delta

Her1 / Her7

Notch

Notch Delta

Delta

Notch

 

 

Figure 2: Delta-Notch signaling pathway and the autoinhibition of Notch target genes her1 

and her7. Delta proteins in the neighboring cells activate the Notch signal within the cell.  

 

4.1 Delta-Notch Signaling: Hes1 and Her1/7 

4.1.1 Hes1 

The hes1 gene is one of the best characterized genes in the segmentation clocks. Hirata 

et al. (2004) measured the production of hes1 mRNA (M) and Hes1 protein (P) in mouse. 

Serum treatments on cultured cells, that have already been shown to induce circadian 
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oscillation by Balsalobre et al. (1998), result in oscillations in expression levels for hes1 

mRNA and Hes1 protein in a two hour cycle. Between the oscillatory profiles of mRNA and 

protein is a phase lag of approximately 15 min. The oscillations in expression continue for 6–

12 h and are not dependent on the stimulus but can be induced by exposure to cells expressing 

Delta. It has been argued that the lag between protein and mRNA oscillation levels of 15 min 

reflects the time needed for protein degradation. Specifically, the data presented in the paper 

by Hirata et al. (Figure 1 in Hirata et al., 2004) indicates sustained oscillation of hes1 mRNA 

over six periods and that oscillation of Hes1 protein that dies away after 6–8 h.  

Hirata et al. examined the underlying mechanisms for the observed oscillations and 

showed that in the presence of the proteasome inhibitor MG132, hes1 mRNA is initially 

induced but after 3 h it is suppressed because of constant repression of transcription by 

persistently high protein levels (negative autoregulation). Treatment with cycloheximide leads 

to sustained increase of hes1 mRNA and blocks its oscillation. A similar effect occurs with 

overexpression of dnHes1, a dominant-negative form of Hes1 that is known to suppress Hes1 

protein activity (Ström et al., 1997). These results reveal that both Hes1 protein synthesis and 

degradation are needed for oscillations in the expression levels of hes1 mRNA. Other 

experiments showed that the same mechanisms hold for hes1 mRNA expression levels in the 

PSM in mouse.  Hirata et al. also estimate the half-lives of hes1 mRNA and Hes1 protein to 

be 24.1 +/- 1.7 min, 22.3 +/- 3.1 min, respectively. Experiments with various protease 

inhibitors suggest that Hes1 protein is specifically degraded by the ubiquitin–proteasome 

pathway.  

Since the simple negative feedback loop of hes1 mRNA and Hes1 was unable to 

generate sustained oscillations when modeled as a system of two ODEs, Hirata et al. 

postulated a Hes1 interacting factor as a third molecular species.  Subsequently, they obtained 

a system of three ODEs that was then able to generate sustained oscillatory behavior. 

However, there is no direct experimental evidence for such an interacting factor.  

Later, it was shown that simple coupled delay differential equations (DDEs), 

representing the time delays due to transcription and translation, are able to explain the 

sustained oscillations without recourse to the addition of a third variable (Monk, 2003; Jensen 

et al., 2003; Lewis, 2000; Bernard et al., 2006). Monk and Jensen et al. proposed the DDE  

  

  PtM
dt

dP

MtPf
dt

dM

PP

MM








 

 

for the two species, hes1 mRNA (M) and Hes1 (P) and a regulatory Hill function 

h

0 )/)((1

1
 ))((

PtP
tPf


  

representing the repression of mRNA production by the binding of Hes1 dimers to the 

promoter region, with combined transcriptional and translational delay , Hill coefficient h  

and DNA dissociation constant 0P . The reaction rates M  and P  are the degradation rates of 

hes1 mRNA and Hes1, respectively, M  is the maximal mRNA transcription rate in the 

absence of protein repression, and P  is the translation rate. See Table II for parameters. 

Jensen et al. showed via simulations that for the case 2h , oscillations are only 

sustained for 80  and there are no oscillations for 10 . For )80,10( , the period of 

the damped oscillations is approximately 170 min, which is much greater than the observed 

period of 120 min. Bernard et al. had shown previously for a modification of the DDE model 
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by Monk that for the experimentally observed period of T=120 min, sustained oscillations can 

only be obtained for 1.4h , 7.19 . On the other hand, it was argued that since the 

transcription factor is a Hes1 dimer and there are at least three separate binding sites for Hes1 

dimers in the regulatory region of the hes1 gene, an appropriate value of h  is at least 2. 

However, whether h  should be as large as 4.1 is debatable. 

Barrio et al. (2006) studied the Hes1 negative feedback loop as a discrete, stochastic 

delay model based on the DDE model by Monk (2003). The chemical kinetics is described by 

the following reactions: 

  1R : 0 MM
 , 

 2R : 0 PP
 , 

 3R : PMM P 
 , 

 4R : PMP
fM  
 ,, . 

Reactions 1R  and 2R  are the degradations of M and P, respectively. 3R  represents the 

translation of M and 4R  is the regulated transcription with Hill function f .  

By performing discrete stochastic simulations of the model with varying values for h , 

 , and 0P  using the DSSA algorithm, Barrio et al. showed that h  need not be as large as 4.1 

to obtain sustained oscillations when discrete models are used. The results indicate that in the 

presence of intrinsic noise the critical value of the Hill coefficient, under which the system 

dynamics does not show sustained oscillations, decreases to just less than 3. Reasonably well-

defined sustained regular oscillations could be observed for values of 15  with 4h , and 

10  with 3h  (Figure 3). Values for   lower than 10 result in noisy and irregular delay. 

By knowing more accurate values for the transcriptional and translational delays an even 

more accurate prediction of h  might be possible and vice-versa. 

 

 

parameter description value Reference 

M  Hes1 mRNA degradation rate 0.029 [min
−1

] Hirata et al. (2002) 

P  Hes1 degradation rate 0.031 [min
−1

] Hirata et al. (2002) 

P  translation rate 1 [min
−1

] Monk (2003) 

M  max. transcription rate 1 [min
−1

] Normalized;  

Monk (2003) 

0P  critical no. of Hes1 protein 

(Hill function parameter) 

10-100 Lewis (2003),  

Monk (2003) 

h  Hill cooperativity factor 

(Hill function parameter) 

2-4 Lewis (2003),  

Monk (2003) 

  total delay 

(transcription, translation, translocation) 

10-40 [min] Monk (2003) 

 

Table II: Parameters used in the Hes1-model. 

 

 

 

 

 

 (a) 
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 (b)  

  
Figure 3: Single DSSA trajectories for values of (a) 15 min with 4h , and (b) 

10 min with 3h  ( 1000 P ). 

 

Barrio et al. (2006) computed the arithmetic mean over 1,000 independent stochastic 

simulation runs for constant and variable delay. In spite of the differences between individual 

simulations due to inherent stochasticity, the arithmetic mean showed damped oscillation. 

This matched the biological experiments where Western-blots of Hes1 from the whole cell 

population showed damped oscillations that are arrested after eight hours. However, the 

difference between individual stochastic simulations and the mean suggests that the damping, 

observed at the whole population level, arises from desynchronization of Hes1 oscillation in 

individual cells. This was supported by real-time imaging experiments showing that the 

oscillations in individual cells continue for longer than 8 hours (Masamizu et al., 2006). 

 The study of the Hes1 negative feedback loop demonstrated the usefulness of the DSSA 

for chemical kinetics involving delays. Because this approach is very general, it is able to 

provide deep insights into the relationship between delayed processes, intrinsic noise, and 

small numbers of molecules in many biological systems. 

 

 

4.1.2 Her1/7  

The Notch signaling pathway, which includes several signaling molecules (such as Hes1 

and Her1/Her7) in mouse and zebrafish, respectively, plays a key role in the segmentation 

clock of vertebrates. In (wildlife) zebrafish, about 30–32 somites are formed at a rate of one 

every 30 min (at 28±C). Although it is suggested that some anterior somites (12) are derived 
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due to some form of dorsal convergence, most somites emerge sequentially from the PSM. It 

is distinguished between the posterior and anterior parts of the PSM. In zebrafish embryos at a 

developmental stage of 10 somites, the posterior PSM extends over 25 cells in anterior to 

posterior axis, which are the precursors for approximately five somites, each about five cells 

in length. The anterior PSM contains the cells that lead to the next two to three somites.  

In zebrafish, the genes her1 and her7 are autorepressed by their own gene products 

(Her1 and Her7) and positively regulated by Notch signaling (Lewis 2003; Giudicelli and 

Lewis, 2004) - Figure 2. In both cases, transcriptional and translational delays are responsible 

for the oscillatory behavior and determine its period. Additional information on the somite 

segmentation clock in zebrafish is in Holley (2007) and Lewis and Ozbudak (2007).  

Horikawa et al. (2006) performed experiments in which they investigated the system 

level properties of the segmentation clock in zebrafish. Their main conclusion is that the 

segmentation clock behaves as a coupled oscillator. The key element is the Notch-dependent 

intercellular communication, which is regulated by the internal hairy oscillator and whose 

coupling of neighboring cells synchronizes the oscillations. In one particular experiment, they 

replaced coupled cells by cells that were out of phase with the remaining cells and showed 

that at a later stage they still became fully synchronized. Clearly, the intercellular coupling 

plays a crucial role in minimizing the effects of noise to maintain coherent oscillations.  

The stochastic model is based on the chemical reaction models by both Lewis (2003) 

and Horikawa et al.
 
(2006). Lewis models a single cell and two coupled cells. His work is 

generalized by Horikawa et al. to a one-dimensional array of n cells. For each cell we 

simulate the dynamics of 6 different species controlled by 12 reactions. Denote by 
ihM 1 , 

ihM 7 , 
idM , 

ihP 1 , 
ihP 7 , and 

idP  the species Her1 mRNA, Her7 mRNA, DeltaC mRNA, Her1 

protein, Her7 protein and DeltaC protein in a particular cell i. For each of the species 

iiiiii dhhdhh PPPMMMS ,,,,, 7171 , the model contains a degradation reaction 

0
cS  

with associated rate constant dhhdhh bbbcccc ,,,,, 7171 . The three different proteins 
ihP 1 , 

ihP 7 , 

idP  are synthesized with translational delays ph1 , ph7 , and dp , respectively. The 

corresponding reactions are 

211 SSS c   

with        1 2 1 1 7 7, ,  or ,  or ,
i i i i i ih h h h d dS S M P M P M P  and associated reaction rate constants 

dhh aaac ,, 71 . The transcription of 
ihM 1 , 

ihM 7  and 
idM  are regulated reactions with 

transcriptional delays mh1 , mh7 , and dm , respectively. The reactions are 

211 SSS cf   

with    
ii hh MPSS 1121 ,,   or  

ii hh MP 77 ,  and associated reaction rate constants 71, hh kkc    

211 SSS cg   

with    
ii dd MPSS ,, 21   and dkc  . As described in detail in Horikawa et al. (2006), the 

individual negative and positive regulations are modeled using specific Hill functions f  and 

g . For cells i with ni 1  (all except for the first and last in the one-dimensional cell array) 

the Hill function f is defined by 

 
11

11

11

0

2

071

2

071

71
21

1

1

1
,,,





 









ii

ii

iiii

iiii

dd

dd

hh

hd

hh

hddhh
PPD

PP

PPP
r

PPP
rPPPPf , 

and for cell 1 and n it is given by 
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respectively. The parameters hr and hdr  are weight parameters that determine the balance of 

internal and external contribution of oscillating molecules. Here, we assume 100% coupling, 

i.e. 1hdr . For all cells, the Hill function g  that describes the inhibition of DeltaC mRNA 

synthesis by Her1 and Her7 is given by 

 
2

071

71
1

1
,

PPP
PPg

ii

ii

hh

hh


 . 

The single cell, single-gene model consists only of 2 species (her1 mRNA and Her1 protein) 

and 4 reactions. The two degradation and the single translation reactions correspond to those 

in the n-cell model. For the inhibitory regulation of transcription a Hill function with Hill 

coefficient 2 is assumed ( 1hP  acts as a dimer). The Hill function takes the form  

 
2

01

1
1

1

PP
Pf

h

h


 . 

See Table III for the full list of model parameters. 

A comparison of the DDE solutions with stochastic simulation results of the DSSA and 

B-DSSA in Leier et al. (2007) and Burrage et al. (2007) revealed differences in the system 

dynamics. For a single cell, after an initial overshoot, the DDE solution shows completely 

regular amplitudes and an oscillatory period of approximately 40 minutes (Figure 4). In the 

intrinsic noise case there are still sustained oscillations but there is some irregularity in the 

profiles and the oscillatory period is closer to 50 minutes. The time lag (5-7 min) between 

protein and mRNA is about the same in both cases (Figure 5). 

 

 

Figure 4: DDE solution for the Her1/Her7 

single cell model 

 

Figure 5: DSSA run for the Her1/Her7 single 

cell model 

 

DSSA simulations of a one-dimensional array of 5 cells exhibit a period of oscillation 

that is closer to 45 minutes (Figure 6-7). The lag between protein and mRNA is about 25 

minutes for DeltaC and about 7 minutes for Her1. Obviously, the cell coupling has some 

effect on the period of oscillation.  
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Figure 6: DSSA simulation of five Delta-
Notch coupled cells , showing the dynamics of 

deltaC mRNA and protein in cell three 

 

Figure 7: DSSA simulation of five Delta-
Notch coupled cells , showing the dynamics 

of Her1 mRNA and protein in cell three 

 

Leier et al. mimic an experiment by Horikawa et al. In both the DDE and the DSSA 

setting cell 3 (out of 5) is disturbed after a certain time period: after 500 minutes in the DSSA 

case and 260 minutes in the DDE case, at times when the delta mRNA levels are near their 

maximum. This is done by resetting all the values for cell 3 to zero at this point. This is meant 

to represent the experiment of Horikawa et al. in which some of the cells are replaced by 

oscillating cells that are out of phase. Horikawa et al. observed that nearly all the cells become 

resynchronized after three oscillations (90 min).  

 

 

(a) 
 

 

(b) 

 

(c) 

 

 

(d) 

Figure 8: DSSA simulation result and DDE solution for the 5-cell array in the non-disturbed and 

disturbed setting. The graphs show the dynamics of deltaC and her1 mRNA in cell three. (a,c) DSSA and 
DDE results in the non-disturbed setting, respectively. (b,d) DSSA and DDE results in the disturbed 

setting. Initial conditions for cell 3 are set to zero. All other initial molecular numbers stem from the non-

disturbed DSSA and DDE results in (a,c) after 500 and 260 minutes, respectively 
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In the DDE setting it takes about 60 minutes for the onset of resynchronization while in 

the DSSA setting it takes about 180 minutes (Figure 8). The difference can be partly due to 

the larger number of cells that are experimentally transplanted as well as differences in the 

cell arrangement between the three-dimensional in vivo experiments and the simulated one-

dimensional cell array. 

 

parameter description value 

dhh bbb ,, 71  Her1/Her7/DeltaC protein degradation rate 0.23 [min
−1

] 

dhh ccc ,, 71  Her1/Her7/DeltaC mRNA degradation rate 0.23 [min
−1

] 

dhh aaa ,, 71  Her1/Her7/DeltaC protein synthesis rate (max.) 4.5 [min
−1

] 

dhh kkk ,, 71  Her1/Her7/DeltaC mRNA synthesis rate (max.) 33 [min
−1

] 

0P  critical no. of Her1+Her7 protein/cell 40 

0D  critical no. of Delta protein/cell 1000 

dmmhmh  ,, 71  time to produce a single Her1/Her7/DeltaC 

mRNA molecule 

12.0, 7.1, 16.0 [min] 

dpphph  ,, 71  time to produce a single Her1/Her7/ DeltaC 

protein 

2.8, 1.7, 20.5 [min] 

 

Table III: Parameters for the multicellular Her1-Her7 model. Parameter values are taken 

from Horikawa et al. (2006) 

 

This study, although in an early stage, is another example indicating the relevance of 

both intrinsic noise delay models and continuous deterministic delay models for genetic 

regulatory systems. Despite some similarities between the dynamics of both the deterministic 

and stochastic models, the intrinsic noise simulations do make some predictions that are 

different from the deterministic model and that could be verified experimentally. 

The reason for limiting the stochastic model to 5 cells is due to the long runtime of 

individual simulations when using the DSSA. To overcome the issue of small step-sizes, Leier 

et al. (2008(a)) introduced the B-DSSA (see Section 3.4.2). The significant speed-up (while 

performing equally accurate as normal DSSA) allows the role of intrinsic noise and delay to 

be studied for large cellular systems and long time frames. There are many other issues that 

must be addressed when modeling both delays and intrinsic noise, one of which is how we 

represent delays. Clearly if delays are to represent complex processes such as transcription 

and translation, the delays should not be fixed but distributed. Appropriate distributions from 

which to sample the delays include uniform or truncated normal over some appropriate 

interval that represents lower and upper bounds for the delays. Other issues include whether it 

is appropriate to lump delays together into a single delay and how spatial effects associated 

with, for example, diffusion can be captured in purely temporal models by the use of delays. 

 

5. Conclusions and Future Directions  

In cell biology, cell signaling pathway problems are often tackled with a mix of 

deterministic temporal models, well mixed stochastic simulators, and/or hybrid methods. But, 

in fact, three dimensional stochastic spatial modeling of reactions happening inside the cell is 

sometimes needed in order to fully understand these cell signaling pathways. This is because 
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noise effects, low molecular concentrations, and spatial heterogeneity can all affect the 

cellular dynamics. However, there are ways in which important effects can be accounted 

without going to the extent of using these highly resolved spatial simulators.  This reduces the 

overall computation time significantly, while at the same time still being able to capture the 

essential dynamics.  

 

In this Chapter we have focused on how we can model both intrinsic noise and 

delayed reactions in a genetic regulatory setting via generalizations of the Stochastic 

Simulation Algorithm (the DSSA).  We have also shown how we can coarsen in both time 

and space and demonstrated that this can improve the computational performance by several 

orders of magnitude over the DSSA.  We have also shown, through two important 

applications, why we need algorithms that mimic both noise and delay effects as these 

approaches can capture the individual cell variability.  We have also discussed what form the 

delays should take: fixed, variable, distributed, etc. 

 

In the delay setting at least, codes based on the algorithms described here are still in 

their infancy and there is a need to standardize implementations and make these codes 

available to researchers. Future research must surely focus on multi-scale simulations and 

there is a great need to develop efficient algorithms that link different temporal and spatial 

scales – such as genetic regulatory models with those for cellular and organ function. This 

scientific field is wide open and can promise the dedicated researcher fascinating and 

rewarding endeavors. 
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