
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Sweetser, Penelope & Wiles, Janet (2002) Current AI in games : a review.
Australian Journal of Intelligent Information Processing Systems, 8(1), pp.
24-42.

This file was downloaded from: http://eprints.qut.edu.au/45741/

c© Copyright 2002 [please consult the author]

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10907098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Sweetser,_Penelope.html
http://eprints.qut.edu.au/45741/

Current AI in Games: A Review

Abstract – As the graphics race subsides and gamers grow

weary of predictable and deterministic game characters,

game developers must put aside their “old faithful” finite

state machines and look to more advanced techniques that

give the users the gaming experience they crave. The next

industry breakthrough will be with characters that behave

realistically and that can learn and adapt, rather than

more polygons, higher resolution textures and more

frames-per-second. This paper explores the various

artificial intelligence techniques that are currently being

used by game developers, as well as techniques that are

new to the industry. The techniques covered in this paper

are finite state machines, scripting, agents, flocking, fuzzy

logic and fuzzy state machines decision trees, neural

networks, genetic algorithms and extensible AI. This paper

introduces each of these technique, explains how they can

be applied to games and how commercial games are

currently making use of them. Finally, the effectiveness of

these techniques and their future role in the industry are

evaluated.

Keywords – computer games, artificial intelligence

Introduction

There are many different artificial intelligence (AI)

techniques in use in modern computer games. The most

prevalent techniques include finite state machines,

scripting, agents and flocking. These techniques are well-

established, simple and have been successfully employed

by game developers for a number of years. Additionally,

the use of fuzzy logic and fuzzy state machines as an

alternative to finite state machines is starting to become

widely accepted and commonplace, as is the addition of

extensible AI for games. Finally, there are a few game

developers that are venturing out to try new and interesting

techniques, which have not been possible until recently,

due to processor constraints. These techniques include

decision trees, neural networks and genetic algorithms.

This review will explore each of these techniques and their

applications in industry and in computer games. Each

technique will be introduced, the possibilities and

boundaries of use of the technique in industry and games

will be given and the use of the technique in current games

will be explained. Additionally, an appendix is included

that provides a summary table of the advantages,

disadvantages and applications of these techniques.

Finite State Machines

Finite State Machines (FSMs) are used more frequently in

computer games than any other AI technique. This is

because they are simple to program, easy to understand

and debug, and general enough to be used for any problem

[37]. The idea of an FSM is to divide a game object’s

behaviour into logical states so that the object has one state

for each different type of behaviour it exhibits [36]. An

FSM can be any system that has a limited number of states

of operation. An FSM may not always provide the optimal

solution, but it generally provides a simple solution that

works. Furthermore, a game object that uses an FSM can

also use other techniques such as neural networks or fuzzy

logic [36].

In general, game AI focuses on creating the appearance of

intelligence [21]. In many games it comes down to what

the player perceives and whether they are convinced that

the AI is behaving reasonably. Often, the use of more

advanced algorithms and techniques is not possible, due to

computation or other constraints, and in these

circumstances a simple solution such as an FSM is

desirable. Furthermore, if the simplest technique works for

the problem, then the use of advanced techniques is not

necessary, especially if it won’t give better results.

Some problems with using FSMs are that they tend to be

poorly structured with poor scaling, so that they increase in

size uncontrollably as the development cycle progresses.

These properties tend to make FSM maintenance very

difficult. Furthermore, FSMs in games tend to include

states within states, multiple state variables, randomness in

state transitions and code executing every game tick within

a state [37]. Consequently, game FSMs that are not well

planned and structured can grow out-of-hand quickly and

become very challenging to maintain.

When making an FSM for a game, the developer needs to

anticipate, plan and test the elements on which the player’s

attention might possibly be focused. The more the

developer can anticipate, the more immersive the

environment will be for the player. For game AI, the

possible ways in which to use an FSM are endless. It could

be used to manage the game world or maintain the status

of the game or game object. An example is modelling unit

behaviour in a real-time strategy game. Alternatively, it

could be used to parse input from the human player or

even to simulate the emotion of a non-player character

[13]. For example, an FSM could be used to represent a

monster with emotional states such as berserk, rage, mad,

annoyed and uncaring. In each of these states, the game AI

would do something different to reflect the monster’s

changing attitude. In this case, an FSM would be used to

manage the monster’s attitude and the transitions between

states based on the input from the game. Different inputs

in this example could include information about the

player’s actions, such as whether they have come into view

of the monster, attacked the monster or run away. Also,

information about the monster would also be important,

such as whether the monster has been hurt or healed.

These variables form the input to the FSM and based on

the input values and the monster’s current attitude, the

monster’s attitude will change, or transition, to another

state.

FSMs are used in most commercial computer games, some

examples are Age of Empires, Enemy Nations, Half-Life,

Doom and Quake. Specifically, Quake 2 uses nine

different states for each character. These states are

standing, walking, running, dodging, attacking, melee,

seeing the enemy, idle and searching. In order to form an

action, these states may be connected together. For

example, in order to attack the player, the states could first

go from ‘idle’ to ‘run’ to allow the attacker to get closer to

the player, then switch to ‘attack’ [17].

FSMs are by far the most popular type of artificial

intelligence in modern games. This is due to how easily

FSMs can be understood and programmed [33]. FSMs are

amongst the simplest computational devices. Also, they

have a low computational overhead and can be used as

core modules of agents. Most importantly, they give a

large amount of power relative to their complexity [10].

These attributes make FSMs ideal for the conditions of

game AI development, which involves limited

computational resources and, as the AI is usually one of

the last things to be implemented, limited development and

testing time. It will be a long time before game developers

abandon the FSM in search of other, more advanced

techniques. Most likely, this transition will include an

FSM backbone with neural nets or fuzzy logic for

specialised components of the AI.

Agents

Intelligent agents are software agents that perceive their

environment and act in that environment in pursuit of their

goals. Examples of intelligent agents include autonomous

robots in a physical environment, software agents with the

internet as their environment or synthetic characters in

computer games and entertainment [28]. Agents usually

integrate a range of competences, such as goals, reactive

behaviour, emotional states and the consequent

behaviours, natural language, memory and inference.

Agents are central to the study of many problems in AI,

such as modelling human mental capabilities and

performing complex tasks [28].

Games are ideal environments for agents as they provide

realistic environments in which only limited information is

available and where decisions must be made under time

and pressure constraints [28]. Generally, agents in games

are sets of FSMs that work on their particular problems

and send messages to each other. Alternatively, an agent

could be a set of fuzzy state machines, neural networks,

genetic algorithms or any combination of some or all of

these techniques.

Important decisions that need to be made when designing

an agent is the architecture and whether the agent is to be

reactive, goal-directed or some combination of the two. A

purely reactive agent is suited to highly dynamic

environments where little information about previous

actions and states is necessary. At the other extreme, a

purely goal-directed agent is suited to a static environment

where planning and considering previous moves are highly

desirable. For example, a monster in a first-person shooter

or a role-playing game would be more suited to simply

reacting to what is currently happening in the game.

However, an agent governing the strategy for the AI in a

strategy game needs to carefully plan its moves depending

on what has happened so far in the game.

A good architecture for a real-time strategy agent is

necessary to ensure success. For example, in the game

Empire Earth, the AI consists of several components called

managers. Each manager is responsible for a specific area

in the management of the computer player. In Empire

Earth, there are managers for the civilisation, building,

units, resources, research and combat [40]. The civilisation

manager is the highest level manager and is responsible for

the development of the computer player’s economy and

the coordination between the other managers. The other

managers have lower-level duties and send requests and

reports to each other. This forms a well-structured agent

that provides for maintenance and extensibility.

In summary, an agent’s job in a computer game is to make

decisions and perform tasks to achieve some set of goals,

as does a human player. Every game that includes AI can

be said to be using an agent of some form. However, the

important question is whether the agents are well designed

and structured, or put together ad hoc as development

progresses. The latter case is true in most games that build

FSM components as necessary, without any real prior

planning. Unfortunately, these agents do not provide the

power, extensibility and maintainability of a well-

structured agent, such as the one used in Empire Earth. An

agent that is structured and decomposed into

communicating layers or modules has a large advantage

over any agent that consists of one or two enormous state

machines that grow uncontrollably throughout the

development process.

Scripting

A scripting language is any programming language created

to simplify any complex task for a particular program. It is

a fourth generation language that is used to control the

game engine from the outside. The scope of a scripting

language can vary significantly depending on the problems

it is designed to solve, ranging from a simple configuration

script to a complete runtime interpreted language [35].

Scripting languages for games, such as Quake’s QuakeC

or Unreal’s UnrealScript, allow game code to be

programmed in a high-level, English-like language [25].

They are designed to simplify some set of tasks for a

program and hide many complicated aspects of a game [5],

thus allowing non-programmers, such as designers and

artists, to write script for the game. During development,

the designers use scripting to implement stories [35], while

artists use scripting to automate repetitious tasks, do things

that the computer can do better than humans and add new

functionality [41]. After the game is shipped, mod groups

and hobbyists write scripts if the scripting system has been

exposed to the public [35]. However, as with FSMs,

scripting languages are deterministic and they require the

game developer to hard-code character behaviour and

game scenarios. Therefore, the developer must anticipate

and hard-code each of the situations the player might be in.

The uses of scripting languages in games vary from simple

configuration files to entirely script-driven game engines.

The common uses include creating events and opponent AI

for the single-player mode of the game. Also, in single-

player mode, they can be used to tell the story of the game

and control the player’s enemies [35]. A first-person

shooter game could use scripting to create a monster’s AI.

Alternatively, a real-time strategy game might use

scripting to define how spells function or to define a quest

or part of the game story. Also, scripting can be a very

powerful tool in massively multiplayer online games

(MMOGs). In MMOGs, scripting can be used for hiding

the details of dealing with multiple servers in a server

farm, simplifying sending network events to a client. Also,

scripting languages can handle saving an object’s state

automatically. In role-playing games scripting can be used

to define simple conversation trees for a non-player

character. Finally, a scripting language could even be a

complicated object-oriented language that controls every

aspects of gameplay [5].

Many commercial games have used scripting for some, if

not all, of the game AI. Games that have successfully used

scripting, whether it was a custom-made scripting

language or an off-the-shelf language, include Black &

White, Unreal, Dark Reign and most of the games

developed by BioWare.

The game Black & White used a custom scripting

language to present the game’s storyline through a set of

‘Challenges’, which served to advance the storyline, give

the player an opportunity to practice their skills, and

entertain the player [3]. The Challenge language was

developed to implement the logic and cinematic sequences

for the Challenges and allowed the game developers to

experiment independently of the programmers. Also, as

the script was independent of the data structures and game

code, it was less likely that a bug in the script would cause

the game to crash [3].

The games developed by Bioware using their Infinity

Engine, including Baldur’s Gate, Baldur’s Gate II,

Planescape: Torment and Icewind Dale, all used a custom

scripting language called BGScript. BGScript

implemented a very simple syntax in which the scripts

consisted of stacked if/then blocks with no nesting, loops

or other complicated structures. It was designed

fundamentally as a simple combat scripting language.

However, it was also used for simple, noncombat creature

scripting, trap and trigger scripting, conversation and in-

game movies [6]. In Baldur’s Gate, players are able to

directly edit scripts that control the actions of their non-

player characters. All non-player characters have their own

AI scripting, outlining their basic reactions to basic

situations and at anytime the player can override what the

non-player character is currently doing [45]. Bioware’s

most recent game, Neverwinter Nights, used a scripting

language call NWScript. NWScript was designed to

include the features from BGScript, as well as spells and

pathfinding around doors. Both BGScript and NWScript

were designed to be used by the end user. Also, Bioware’s

game MDK2 and the LucasArts game Escape From

Monkey Island both used the Lua scripting language,

which was heavily modified by the game developers to

give the desired behaviour [6].

Scripting, similar to FSMs, is a favourite tool of game

developers and will be a part of game development for a

long time to come. Scripting languages are ideal for games

as they are suitable for non-programmers, such as

designers, artists and end users. Therefore, the designers

and artists can implement sections of the game

independently of the game programmers and that end users

can make their own mods for the game. Also, scripting

languages are generally separate from the game’s data

structures and codebase and thus provide a safe

environment for non-programmers and end users to make

changes to the game, so that bugs in the script will not

cause the game to crash. Many commercial games use

scripting to some degree and most developers report

success when they customise their own scripting tools.

Fuzzy Logic

Fuzzy Logic is unlike traditional Boolean logic in that it

allows intermediate values to be defined between

conventional values such as yes/no or true/false [4].

Consequently, “fuzzy” values such as ‘rather hot’ or ‘very

fast’ that are used to describe continuous, overlapping

states can be used in an exact mathematical way [29].

The benefit of Fuzzy logic is that decisions can be made

based on incomplete or erroneous data that cannot be used

in Boolean logic [25]. The power of fuzzy logic lies in the

ability to represent a concept using a small number of

fuzzy values [2], whereas in Boolean logic every state and

transition needs to be hard coded. Fuzzy logic can be

applied to the areas of decision making, behavioural

selections and input/output filtering [25] and has been used

in tools for controlling subway systems, industrial

processes, household and entertainment electronics and

diagnostic systems [29].

Fuzzy logic is applicable when there is no simple

mathematical model that can solve the problem, when the

processing of expert knowledge is required and for highly

nonlinear problems. However, fuzzy logic is not ideal

when conventional methods yield a satisfying result, when

there is an existing mathematical model that already solves

the problem or when the problem is not solvable [4]. In

short, if there is already a simple solution that satisfies a

problem then there is no need to complicate things.

However, if the problem is non-linear or there is no simple

solution, then fuzzy logic may be appropriate.

According to Zarozinski [47], fuzzy logic makes its way

into most computer games. However, its role in games

usually doesn’t exceed complex if-then-else statements due

to the complexity of creating a fuzzy logic system from

scratch. A game AI engine can use fuzzy logic to fuzzify

input from the game world, use fuzzy rules to make a

decision and output fuzzy or crisp values to the game

object being controlled [25]. Fuzzy logic can prove

especially useful in decision-making and behaviour

selection in game systems [1]. Also, it can be used for AI

opponents to determine how frightened they are of the

player, for non-player characters to decide how much they

like the player, for flocking algorithms to see how close

together the flock should stay or even for events such as

how the clouds would move given the wind speed and

direction [32].

Commercial computer games that have made use of this

technology include BattleCruiser: 3000AD, Platoon

Leader and SWAT 2. BattleCruiser: 3000AD, developed

by Derek Smart, mostly uses neural networks to control

the non-player characters in the game. However, in

situations where neural networks are not applicable, it uses

fuzzy logic. Also, the game SWAT 2, developed by

Yosemite Entertainment, makes extensive use of fuzzy

logic to enable the non-player characters to behave

spontaneously, based on their defined personalities and

abilities [45].

In summary, fuzzy logic is a superset of traditional

Boolean logic, with similar rules and operations. The main

difference lies in the use of Fuzzy Linguistic Variables

(FLVs) that define a range of values to be used in place of

crisp values. Consequently, a small number of FLVs and

rules can be used in place of extensive, hard-coded

Boolean rule bases. Fuzzy logic has many commercial

applications and can be successfully applied in games for

decision-making and behaviour selection.

Fuzzy State Machines

A fuzzy state machine (FuSM) brings together fuzzy logic

and FSMs. Instead of determining that a state has or has

not been met, a FuSM assigns different degrees of

membership to each state. Therefore, instead of the states

on/off or black/white, a FuSM can be in the states ‘slightly

on’ or ‘almost off’. Furthermore, a FuSM can be in both

the ‘on’ and ‘off’ states simultaneously to various degrees.

Therefore, in a game situation, a non-player character

doesn’t have to simply be ‘mad’ at the player. Instead, they

can be ‘almost mad’, ‘very mad’ or ‘raging mad’ at the

player, behaving differently in each situation [14]. Thus,

by using a FuSM, a character can have varying degrees of

membership of a state assigned to it and these states do not

have to be specific or discreet. The method for calculating

these degrees of membership are determined by the

programmer and plenty of game testing.

In games, it is important that behaviour is not predictable.

However, in FSMs, the requirement of determinism

prevents variable behaviour from being exhibited, as they

are composed of a large set of predetermined states and

transitions. On the other hand, FuSMS are composed of

fewer, non-deterministic transitions [10], allowing greater

flexibility and variability with far fewer fuzzy states and

transitions.

A FuSM is an easy way to implement fuzzy logic, which

can allow more depth in the representation of the concepts

and relationships between objects in the game world. A

FuSM can increase gameplay by allowing for more

interesting and varied responses by non-player characters,

which leads to less predictable non-player character

behaviour. Therefore, the player can interact with non-

player characters that can be various degrees of ‘mad’,

‘wounded’ or ‘helpful’. This variability increases

gameplay by adding to the level of responses that can be

developed for the non-player character and seen by the

human player. Also, a FuSM can increase replayability of

a game by expanding the range of responses and

conditions that the player may encounter in given

situations during the game. Therefore, the player will be

more likely to experience different outcomes in similar

situations each time they play the game [14].

FuSMs can be used in varying forms in different types of

computer games. For example, a FuSM could be used in a

role-playing game or first-person shooter for the health or

hit points of a non-player character or agent [14]. In this

case, instead of the finite states healthy or dead, a range

could be used for the hit points that would allow the agent

to be in the fuzzy states ‘totally healthy’, ‘almost healthy’,

‘slightly wounded’, ‘badly wounded’, ‘almost dead’ or

‘dead’. In a racing game, a FuSM could be used for the

control process for accelerating or braking an AI-

controlled car. So, the FuSM would allow various degrees

of acceleration or braking to be calculated rather than the

finite states of ‘throttle-up’, ‘throttle-down’, ‘brake-on’

and ‘brake-off’ [14]. Furthermore, a FuSM is ideal for

representing non-player character emotional status and

attitude toward the player or other non-player characters.

That is, instead of simply ‘liking’ or ‘disliking’ the player,

the non-player character could have a range of emotional

states from ‘really liking’ or ‘rather liking’ to ‘slightly

disliking’ or ‘violently disliking’ the player.

The games that have made use of FuSMs include

Civilisation: Call to Power, Close Combat 2, Enemy

Nations, Petz and The Sims. In Call to Power, FuSMs are

used to set priorities for the strategic level AI, allowing the

creation of new unit types and civilisations. Close Combat

2 uses a FuSM that weights hundreds of variables through

many formulas to determine a probability of a particular

action [45].

In summary, FuSMs are a combination of FSMs and fuzzy

logic, meaning that they consist of fuzzy states and fuzzy

transitions, rather than the usual finite set of crisp states

and transitions. Consequently, FuSMs can represent a

greater variation in states and transitions with far fewer

variables and rules than in an FSM, where everything must

be hard-coded. Most games that make use of FuSMs do so

in combination with other techniques such as flocking,

FSMs or neural networks. FuSMs are ideal for controlling

the behaviour of game characters, giving greater variation

in actions and reactions.

Flocking

Flocking is an AI technique for simulating natural

behaviours for a group of entities, such as a herd of sheep

or a school of fish [18]. Flocking, also known as swarming

or herding, was developed by Craig Reynolds in 1987 [42]

as an alternative to the conventional method of scripting

the paths of each bird individually. Scripting, for a large

number of individual objects, was tedious, error-prone and

hard to edit. In flocking, each bird in the flock is an

individual that navigates according to its local perception

of its environment, the laws of physics that govern this

environment and a set of programmed behaviours.

Flocking assumes that a flock is simply the result of the

interaction between the behaviours of individual birds.

Also, flocking is a stateless algorithm, which means that

no information is maintained from update to update [42].

Each member revaluates its environment at every update

cycle. This reduces the memory requirements and allows

the flock to be purely reactive, responding to the changing

environment in real time.

Flocking has been used with great success in a variety of

commercial titles. It can provide a powerful tool for unit

motion and for creating realistic environments the player

can explore [42]. For example, in a real-time strategy or

role-playing game, flocking can be used to allow groups of

animals to wander the terrain more naturally and for

realistic unit formations or crowd behaviours [43]. For

example, groups of swordsmen can be made to move

realistically across bridges or around obstacles, such as

boulders. Alternatively, in first person shooter games,

monsters can wander the dungeons in a more believable

fashion, avoiding players and waiting until their flock

grows large enough to launch an attack.

Apart from games, the possible applications of flocking

include the visual simulation of bird flocks or fish schools

in computer animation or the simulation of crowds of

extras for feature films. For example, the movie Batman

Returns made use of flocking algorithms to simulate bat

swarms and penguin flocks [39]. Also, flocking could aid

in predicting traffic patterns, such as the flow of cars on a

freeway, or be used in the scientific investigation of flocks,

herds or schools [38].

Many games have successfully used flocking to simulate

the group behaviours of monsters and animals. Games that

have used flocking include Half-Life, Unreal and Enemy

Nations [45]. Half-Life uses flocking to simulate the squad

behaviour of the marines, who run for reinforcements

when wounded, lob grenades from a distance and attack

the player with dynamic group tactics. Unreal used

flocking for many of the monsters as well as the other

creatures such as birds and fish. Enemy Nations used a

modified flocking algorithm to control unit formations and

movement across a 3D environment [42].

In summary, flocking is currently used widely in games

where there are groups of animals or monsters that need to

simulate life-like flock behaviour. It is a relatively simple

algorithm and only composes a small component of a

game engine. However, flocking makes a significant

contribution to games by making an attack by a group of

monsters or marines realistic and coordinated. It therefore

adds to the suspension of disbelief of the game and is ideal

for real-time strategy or first-person shooter games that

include flocks, swarms or herds.

Decision Trees

Decision tree learning is a method for approximating

discrete-valued target functions. It is one of the most

widely used and practical methods for inductive inference

[19]. Additionally, decision trees are robust to noisy data

and missing values. Consequently, they are a standard tool

in data mining. Decision trees are generally preferred over

other nonlinear techniques due to the readability of their

learned rules and the efficiency of their training and

evaluation [7]. A decision tree acts as a predictor or

classifier for classifying a particular example into one of a

given set of classes. Each example is a description of an

instance composed of a set of attribute-value pairs. Similar

to biological trees, decision trees have a single root, which

branches out into various subtrees, which in turn have

subtrees, until terminating in leaves.

Decision trees are widely used in data mining, to find

relationships in large sets of data and to predict future

outcomes. They have been successfully applied to

industrial applications in marketing, finance,

manufacturing and health care. However, their use in

commercial computer games so far has been limited.

Decision trees are applicable in games where classification

or prediction is required. For example, a character could

use a decision tree to learn which of a set of actions will

most likely have the best result in different situations. This

learning could be achieved by using the example situations

during play to build up a tree and then using the tree to

estimate the best action to take. Alternatively, the tree

could be pre-built before shipping and simply used for

prediction, rather than learning. Another example would

be to allow a character to learn about objects or other

characters in its environment. The tree would be built of

attributes of objects the character has encountered and

their classification, or type. Then, given a new object, the

character could predict what the object is and what to do

with it.

Decision trees are appropriate for problems in which the

instances can be represented as attribute-value pairs. That

is, the instances are described by a fixed set of attributes

and their values. The easiest situation for decision tree

learning is when each attribute has a small number of

possible values. Also, decision trees can only be used

when the target function has discrete output values. This

allows the decision tree to assign a classification to each

example, chosen from two or more possible classes [19].

Decision trees are robust in the presence of errors, missing

data and large numbers of attributes. They do not require

long training time to estimate and are easier to understand

than other types of models, as the derived rules have a

straightforward interpretation.

The game Black & White allows the player to have a

creature that could learn from the player and other

creatures as the game progresses. Each creature has a set

of beliefs based on a Belief-Desire-Intention architecture.

A creature’s beliefs about objects are represented

symbolically as a list of attribute-value pairs and its beliefs

about types of objects are represented as decision trees.

The creature has opinions about what types of objects are

most suitable for satisfying different desires [16]. The

creature can learn opinions by dynamically building

decision trees. The creature remembers the learning

episodes and uses the attributes that best divide the

learning episodes into groups. The algorithm used is based

on Quinlan’s ID3 algorithm [15]. For example, a creature

learns what sorts of objects are good to eat by looking

back at its experience of eating different types of things

and the feedback it received in each case, such as how nice

it tasted. The creatures tries to makes sense of this data by

building a decision tree that minimises entropy, a measure

of the degree of disorder of the feedback [16].

In short, decision trees are straightforward tree-like

structures that are used for learning, classification and

prediction. Although decision trees have not been used

widely in games, they are much simpler to implement,

tune and understand than other learning and classification

techniques, such as neural networks. Therefore, they

should be one of the first nonlinear techniques to be

trialled in future games and become used more widely.

They are ideal for allowing a character to explore and learn

about concepts and objects during the game. Alternatively,

the decision tree could be built prior to shipping and used

for a character’s decision making.

Neural Networks

An Artificial Neural Network (NN) is an electronic

simulation based on a simplified human brain. In an NN,

knowledge is acquired from the environment through a

learning process and the network’s connection strengths

are used to store the acquired knowledge [20].

Choosing the variables from the game environment that

will be used as inputs is the most labour intensive part of

developing an NN [30]. This difficulty is due to the fact

that there is wealth of information that can be extracted

from the game world and choosing a good combination of

relevant variables can be difficult. Also, the number inputs

needs to be kept to a minimum to prevent the search space

from becoming too large [9]. Therefore, it is a good idea to

start with the essential variables and add more if required.

Choosing inputs that are poor representations of the game

environment is the primary reason for failed applications.

NNs are techniques that can be used in a wide variety of

applications. Some common uses include memory, pattern

recognition, learning and prediction. There are many

commercial applications of NNs across various industries,

including business, food, financial, medical and health

care, science and engineering [24]. Prominent companies

that are using NNs include Microsoft, Sharp Corporation,

Mars, Intel, John Deere, Mastercard, Fujitsu and Siemens

[24]. Some examples of applications that NNs are being

used for are predicting sales, handwritten character

recognition for PDAs and faxes, odour analysis via

electronic nose, stock market forecasting, credit card fraud

detection, Pap smear diagnosis, protein analysis for drug

development and weather forecasting. This list illustrates

the wide variety of applications that can make successful

use of NNs, and how their usefulness is only limited to

what can be imagined.

The computer game industry is no different from the

industries mentioned above in terms of the variety of

applications of NNs. A few applications are described by

LaMothe [26], including environmental scanning and

classification, memory and behavioural control. The first

application, environmental scanning and classification,

involves teaching the NN how to interpret various visual

and auditory information from the environment, and to

possibly choose a response. The second application,

memory, involves allowing the AI to learn a set of

responses through experience and then respond with the

best approximation in a new situation. Finally, behavioural

control relates to the output of the NN controlling the

actions of the AI, with the inputs being various game

engine variables. Also, the NN can be taught to imitate the

human player of the game [31].

Basically, an NN can be used to make decisions or

interpret data based on previous input and output it has

been given. The input can be seen as various games states,

similar to that used by a state machine, and the output

could be the action to be performed. The important

difference is that the current state doesn’t need to have

been hard-coded. Instead, the NN makes the best

approximation that it can, based on the states that it

already knows about. This means that the NN will choose

an action that would have been performed in a similar

state.

So far, game developers have been reluctant to allow a

game to ship with the learning in NNs and other

techniques “switched on”, in case the AI were to learn

something stupid [46]. Therefore, the developers that have

used NNs in their games have not used them for learning,

but rather trained them during development and locked the

settings before shipping. Some examples of games that

include NNs for various tasks include BattleCruiser:

3000AD, Black & White, Creatures, Dirt Track Racing

and Heavy Gear.

In BattleCruiser: 3000AD (BC3K) the AI uses NNs to

control the non-player characters as well as to guide

negotiations, trading and combat [45]. It uses the

development language AILOG (Artificial Intelligence &

Logistics), which was created by the developer of BC3K,

Derek Smart, and uses an NN for very basic goal oriented

decision making and route finding, with a combination of

supervised and unsupervised learning. In Black & White

the player has a creature that learns from the player and

other creatures. The creature’s mind includes a

combination of symbolic and connectionist

representations, with their desires being represented as

NNs [15]. Finally, the Creatures series of games makes

heavy use of Artificial Life techniques, including

heterogeneous NNs, in which the neurons are divided into

lobes that have individual sets of parameters. In

combination with genetic algorithms, the creatures use the

NN to learn behaviour and preferences over time.

In short, NNs are techniques that can be used for a wide

range of applications in many different environments.

Several commercial games have used this technique

successfully, with the most recent and prominent being the

game Black & White. This technique’s flexibility means

that it has the potential to be applied in a wide range of

situations in future games. Therefore, it is likely that NNs

will play a bigger role in commercial games in the near

future.

Genetic Algorithms

A Genetic Algorithm (GA) is an AI technique for

optimisation and machine learning that uses ideas from

evolution and natural selection to evolve a solution to a

problem [8]. A GA works by starting with a small number

of initial strategies, using these to create an entire

population of candidate solutions and evaluating each

candidate’s ability to solve the problem. Gradually, more

effective candidates are evolved over several generations

until a specified level of performance is reached [27].

The possible applications of GAs are immense. Any

problem that has a large enough search domain could be

suitable [22]. Traditional methods of search and

optimisation are too slow in finding a solution in a very

complex search space. However, a GA is a robust search

method requiring little information to search effectively in

a large, complex or poorly-understood search space. GAs

are also useful in nonlinear problems [11]. There are many

applications that can benefit from the use of a GA, once an

appropriate representation and fitness function has been

devised. An effective GA representation and meaningful

fitness evaluation are the keys to the success of GA

applications. The appeal of GAs comes from their

simplicity and elegance as robust search algorithms, as

well as from their power to discover good solutions rapidly

for difficult high-dimensional problems. GAs are useful

and efficient when domain knowledge is scarce or expert

knowledge if difficult to encode to narrow the search

space, when no mathematical analysis is available and

when traditional search methods fail [12].

GAs have been used for problem solving and modelling,

and applied to many scientific, engineering, business and

entertainment problems [12]. Also, GAs have been

extensively explored by academics. However, they are yet

to become accepted in game development. They offer

opportunities for developing interesting game strategies in

areas where traditional game AI is weak. For example, a

GA could be used in a real-time strategy game to adapt the

computer’s strategy to exploit the human player’s

weaknesses. This GA would need to consider things like

how the player’s base is set up, how well they can cope

with multiple engagements, unit mobility and combined

force flexibility. A GA could also be used in a real-time

strategy to define the behaviour of individual units rather

than groups of units or the overall strategy [23].

Additionally, a GA could be used in a role-playing game

or first-person shooter to evolve behaviours of characters

and events [34]. For example, a GA could take the

creatures in the game that have survived the longest and

evolve them to produce future generations. This would

only need to be done when a new creature is needed [25].

Furthermore, GAs could be used in games for pathfinding,

in which the chromosome could represent a series of

vectors and the fitness function could be the distance the

sum of vectors is away from a target point [8].

The downside is that in game development AI has to fight

with graphics and sound for scarce CPU time and

resources. GAs are computationally expensive and the

more resources they can access the better. Also, large

populations and more generations give better solutions.

Therefore, GAs are better used offline. One solution is that

the GA could work on the user’s computer while the game

is not being played, utilising the computer’s down time.

Alternatively, all the work could be done in-house before

shipping and then released with the parameters locked.

Computer games that have used GAs include Cloak,

Dagger, and DNA, the Creatures series, Return Fire II and

Sigma. Cloak, Dagger, and DNA uses GAs to guide the

computer opponent’s play. It starts with four DNA strands,

which are rules governing the behaviour of the computer

opponents. As each DNA strand plays it tracks how well it

performed in every battle. Between battles the user can

allow the DNA strands to compete against each other in a

series of tournaments, which allows each DNA strand to

evolve. There are a number of governing rules for DNA

strand mutation, success and so on, and the player is able

to edit a strand’s DNA ruleset. The Creatures series of

games makes more use of Artificial Life technology, such

as GAs and NNs, than any other series of games. It uses a

combination of heterogeneous NNs and a GA-like

winnowing process to push evolution of the creatures. It is

effectively a self-training NN that allows the creatures to

learn over time what they like, what they’re not supposed

to do and so on.

In summary, GAs are based on evolution and natural

selection and are used for learning and optimisation. They

are resource intensive and require much time in

development and tuning, which does not make them ideal

for in-game learning. Generally, the most difficult part in

GA development is determining a suitable representation

for the solutions. Also, parameters such as population size,

mutation and recombination operators and the number of

solutions to erase, make parents or keep unchanged can

take a long time to tune. Basically, a GA is not a good

algorithm to incorporate into a game where time and

resources are limited. Unfortunately, this describes most

commercial games. However, GAs also have many

advantages, in that they are a robust search method for

large, complex or poorly-understood search spaces and

nonlinear problems. In short, if GAs are to be used in

games, they will most likely be evolved before shipping or

between games, and it will be a long time before they

become widespread in games.

Extensible AI

Some game developers have built various degrees of

extensibility into their game AI and made it accessible to

the user community. These games provide some

functionality through which the user can modify or

develop customised AI for the game [44]. Games with

extensible AI provide greater flexibility to the players.

Also, customising the actions and reactions of game

characters increases the replayability of the game and

gives the player a greater “stake” in their characters [45].

Furthermore, games that have successfully implemented

extensible AI usually have large online user communities

dedicated to providing tutorials and documentation,

swapping their creations and showing off their prowess in

writing their own AI. Games such as Quake and Unreal

have cult followings of people who enjoy coding and

trading their own game bots.

There are many different games using a range of methods

that allow the player to customise or create their own AI.

Most of these methods are based on either scripting or

some kind of toolkit. Scripting is where the player can

actually write their own AI code for the game characters

and usually accesses the game data files rather than the

actual game codebase. These scripting languages are

usually customised, English-like languages that are used

by game designers in development. The other method of

providing extensible AI, toolkits, includes a wide range of

different interfaces and varying control over the game AI.

Some toolkits merely allow the player to tweak parameters

and others allow them to have total control of all character

and scenario facets, almost to the point of scripting it

themselves.

There are many different games that allow the player to

edit the game’s monsters, characters and scenarios. Some

well-known games that include extensible AI are Age of

Empires, Baldur’s Gate, Civilisation: Call to Power, Dark

Reign, Halflife, Quake, Unreal, Warzone and most

recently, Neverwinter Nights. Following is a brief

description of how these games make use of extensible AI.

Age of Empires includes a scripting capability through the

game’s data files, which gives the user some ability to

design and customise the game AI. In Baldur’s Gate,

players are able to directly edit scripts that control the

actions of their non-player characters. Each non-player

character has its own AI scripting, outlining its basic

reactions to basic situations [45]. The game Civilisation:

Call to Power allows the players to modify unit attributes

and access the fuzzy logic rule sets used by the AI to set

priorities for the strategic AI. This allows the creation of

new unit types and civilisations. In Dark Reign, the user

can design their own missions and adjust the computer AI

within that mission. It also allows the player to tailor the

behaviour of individual units for the game. Halflife

provides the player with a toolkit to allow the development

of customised AI bot code. Quake 1 includes a kit that

allows the player to write code and modify the behaviour

of enemies and weapons. Quake 2 extends the engine’s

capabilities with a fully java scripting language interface

[44]. Unreal allows the player to write their own mods and

game types through a custom scripting language called

Unrealscript. Warzone 2100 features an extensible AI that

uses a basic C-like language in external scripts, which

provides a fair amount of flexibility. Neverwinter Nights

provides a graphical interface to allow the user to create

their own scenarios, monsters, non-player characters and

tell them how to behave in different situations through

scripting in C++. Finally, a not so popular game that

utilises extensible AI that is worth a mention is Cloak,

Dagger, and DNA, as it uses GAs. This game offers the

user a “lab” for breeding new and better AIs. The user has

some control over the breeding and evolution of the AIs

and can tailor them to be more aggressive, risky and so on

[44].

Conclusion

It is easy to see why current games are employing

techniques such as finite state machines, scripting, agents

and flocking. It is because these techniques are simple,

require little tuning compared to the alternatives and

adhere to the game developer’s constraints of time and

resources. However, users are growing weary of

predictable and deterministic game characters, and so

developers must look to new techniques for solutions.

Also, as the graphics race in games diminishes, it is likely

the next wave of games will require superior AI as a

selling point, rather than more polygons, higher resolution

textures and more frames-per-second. This will drive the

need to create better AI, using more advanced techniques

such as fuzzy logic, decision trees, NNs and GAs. As more

development and processor time is allocated to AI, these

advanced techniques will allow games to include in-game

learning, adaptive strategies and a wide range of non-linear

behaviour from game characters and events. Ultimately,

games will converge to like-like behaviour rather than the

typical “there’s no point doing it if the user can’t see it”

that resounds from game developers today.

Appendix. Summary Table of AI Techniques in Games

Technique Advantages Disadvantages Applications Games
Finite State
Machine

- simple
- general
- use in conjunction with other

techniques
- computationally inexpensive
- lots of power relative to

complexity

- can be poorly
structured

- poor scaling
- need to anticipate all

situations
- deterministic

- manage game world
- manage objects /

characters

- Age of
Empires

- Half-Life
- Doom
- Quake

Scripting - simple
- can be used by non-

programmers
- safe environment

- deterministic
- need to anticipate all

situations

- events
- opponent AI
- tell the story
- automate tasks
- conversation trees

- Black &
White

- Unreal
- Dark Reign
- Baldur’s Gate

Fuzzy Logic - when no simple solution
- when expert knowledge is

needed
- non-linear problems
- more flexible, variable

- not good when there
is a simple solution

- complicated to build
from scratch

- decision making
- behavioural selections
- input/output filtering
- health of NPC
- emotional status of

NPC

- SWAT 2
- Call to Power
- Close Combat
- Petz
- The Sims

Flocking - purely reactive
- memory requirements
- realistic / lifelike

- limited applications - unit motion
- groups of animals /

monsters

- Half-Life
- Unreal
- Enemy

Nations
Decision
Trees

- robust to noise / missing
values

- readable
- efficient training / evaluation
- simpler than NNs

- need tuning - prediction
- classification
- learning

- Black &
White

Neural
Networks

- flexible
- non-deterministic
- non-linear

- need tuning
- choosing variables is

difficult
- complicated
- resource intensive

- memory
- pattern recognition
- learning
- prediction
- classification
- behavioural control

- Black &
White

- BC3K
- Creatures
- Heavy Gear

Genetic
Algorithms

- robust search method
- effective in large, complex,

poorly understood search
spaces

- non-linear
- non-deterministic

- resource intensive
- slow
- need a lot of tuning
- complicated

- optimisation
- learning
- developing game

strategies
- evolve behaviour
- pathfinding

- Cloak,
Dagger &
DNA

- Creatures
- Return Fire II

References

[1] Alexander, T. “An Optimised Fuzzy Logic
Architecture for Decision-Making.” In S. Rabin
(Ed.), AI Game Programming Wisdom. Hingham,
MA: Charles River Media, Inc., 2002.

[2] Attar Software Limited. “White Paper: Fuzzy Logic

in Knowledge Builder.” Retrieved June 20, 2002,
from http://www.attar.com/pages/fuzzy.htm, 2002.

[3] Barnes, J. “Scripting for Undefined Circumstances.”

In S. Rabin (Ed.), AI Game Programming Wisdom.
Hingham, MA: Charles River Media, Inc., 2002, pp.
530-540.

[4] Bauer, P., Nouak, S. and Winkler, R. “A Brief

Course in Fuzzy Logic and Fuzzy Control.”
Retrieved March 7, 2002, from http://www.flll.uni-
linz.ac.at/pdw/fuzzy/index.html, 1996.

[5] Berger, L. “Scripting: Overview and Code

Generation.” In S. Rabin (Ed.), AI Game
Programming Wisdom. Hingham, MA: Charles
River Media, Inc., 2002, pp. 505-510.

[6] Brockington, M. & Darrah, M. “How Not to

Implement a Basic Scripting Language.” In S.
Rabin (Ed.), AI Game Programming Wisdom.
Hingham, MA: Charles River Media, Inc., 2002, pp.
548-554.

[7] Brown, M. “Decision trees.” Retrieved July 18,

2002, from http://www.cse.ucsc.edu/research/
compbio/genex/genexTR2html/node10.html, 1999.

[8] Buckland, M. “Genetic Algorithms in Plain

English.” Retrieved March 7, 2002, from
http://www.btinternet.com/~fup/ga_tutorial.html,
2002.

[9] Champandard, A. J. “The Dark Art of Neural

Networks.” In S. Rabin (Ed.), AI Game
Programming Wisdom. Hingham, MA: Charles
River Media, Inc., 2002, pp. 640-651.

[10] Collins, E. “Evaluating the Performance of AI

Techniques in the Domain of Computer Games.”
Retrieved July 16, 2002, from
http://www.dcs.shef.ac.uk/_u8aec/com301, 2001.

[11] Dulay, N. “Application of Genetic Algorithm.”

Retrieved July 18, 2002, from
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vo
l1/tcw2/article1.html, 1996.

[12] Dulay, N. Genetic Algorithms. Retrieved July 18,

2002, from http://www.doc.ic.ac.uk/~nd/
surprise_96/journal/vol4/tcw2/report.html, 1996.

[13] Dybsand, E. “A Finite-State Machine Class.” In M.

Deloura (Ed.), Game Programming Gems.

Hingham, MA: Charles River Media, Inc., 2000, pp.
237-248.

[14] Dybsand, E. “A Generic Fuzzy State Machine in

C++.” In M. Deloura (Ed.), Game Programming
Gems 2. Hingham, MA: Charles River Media, Inc.,
2001, pp. 337-341.

[15] Evans, R. “AI in Games: A Personal View.”

Retrieved March 7, 2002, from
http://www.feedmag.com/templates/default.php3?a_
id=1694, 2001.

[16] Evans, R. “AI in Computer Games: The Use of AI

Techniques in Black & White.” Retrieved July 23,
2002, from http://www.dcs.qmul.ac.uk/seminars/
theory/abstract/EvansR01.html, 2001.

[17] Generation5. “AI in Gaming.” Retrieved July 16,

2002, from http://www.generation5.org/
app_game.shtml, 2002.

[18] Grub, T. “Flocking.” Retrieved March 7, 2002,

from http://www.riversoftavg.com/ flocking.htm,
2001.

[19] Hamilton, H. “Overview of Decision Trees.”

Retrieved July 18, 2002, from
http://www.cs.uregina.ca/%7Ehamilton/courses/831
/notes/ml/dtrees/4_dtrees1.html, 2002.

[20] Haykin, Simon S. “Neural Networks: A

Comprehensive Foundation.” New York: Maxwell
Macmillan International, 1994.

[21] Howland, G. “A Practical Guide to Building a

Complete Game AI.” Retrieved March 7, 2002,
from www.lupinegames.com/articiles/prac_ai.html,
1999.

[22] Hsiung, S., and Matthews, J. “An Introduction to

Genetic Algorithm and Genetic Programming.”
Retrieved July 16, 2002, from
http://www.generation5.org/ga.shtml, 2000.

[23] James, G. “Using Genetic Algorithms for Game

AI.” Retrieved July 18, 2002, from
http://www.gignews.com/gregjames1.htm, 2002.

[24] Keller, P. Pacific Northwestern Laboratory.

“Commercial Applications, Artificial Neural
Networks.” Retrieved June 5, 2002, from
http://www.emsl.pnl.gov:2080/proj/neuron/neural/p
roducts, 1997.

[25] LaMothe, A. “Tricks of the Windows Game

Programming Gurus.” Indianapolis, Indiana:
SAMS, 1999.

[26] LaMothe, A. “A Neural-Net Primer.” In M. Deloura

(Ed.), Game Programming Gems. Hingham, MA:
Charles River Media, Inc, 2000, pp. 330-350.

[27] Laramee, F. D. “Genetic Algorithms: Evolving the
Perfect Troll.” In S. Rabin (Ed.), AI Game
Programming Wisdom. Hingham, MA: Charles
River Media, Inc, 2002, pp. 629-639.

[28] Logan, B. “Intelligent Agents.” Retrieved July 16,

2002, from http://www.cs.nott.ac.uk/IPI/
agents.html, 2001.

[29] Logic Programming Associates, Ltd. “About Fuzzy

Logic”. Retrieved 8 March, 2002, from
http://www.lpa.co.uk/ind_pro.htm, 2002.

[30] Manslow, J. “Using a Neural Network in a Game: A

Concrete Example.” In M. Deloura (Ed.), Game
Programming Gems 2. Hingham, MA: Charles
River Media, Inc., 2001, pp. 351-357.

[31] Manslow, J. “Imitating Random Variations in

Behaviour Using a Neural Network.” In S. Rabin
(Ed.), AI Game Programming Wisdom. Hingham,
MA: Charles River Media, Inc., 2002, pp. 624-628.

[32] McCuskey, M. “Fuzzy Logic for Video Games.” In

M. Deloura (Ed.), Game Programming Gems.
Hingham, MA: Charles River Media, Inc., 2000, pp.
319-329.

[33] Neitz, J. & Lima, H. “Game Playing: Modern

Games.” Retrieved July 16, 2002, from
http://sern.ucalgary.ca/courses/CPSC/533/W99/pres
entations/L2_5B_Lima_Neitz/modern.html, 1999.

[34] NeuroDimension, Inc. “Genetic Algorithms:

Common Applications.” Retrieved July 18, 2002,
from http://www.nd.com/products/genetic/apps.htm,
2002.

[35] Poiker, F. “Creating Scripting Languages for

Nonprogrammers.” In S. Rabin (Ed.), AI Game
Programming Wisdom. Hingham, MA: Charles
River Media, Inc., 2002, pp. 520-529.

[36] Rabin, S. “Designing a General Robust AI Engine.”

In M. Deloura (Ed.), Game Programming Gems.
Hingham, MA: Charles River Media, Inc., 2000,
pp221-236.

[37] Rabin, S. “Implementing a State Machine

Language.” In S. Rabin (Ed.), AI Game
Programming Wisdom. Hingham, MA: Charles
River Media, Inc., 2002, pp. 314-320.

[38] Reynolds, C. “Flocks, Herds, and Schools: A

Distributed Behavioural Model.” Computer
Graphics 21(4), pp. 25-34, 1987.

[39] Reynolds, C. “Boids.” Retrieved 10 July, 2002 from

http://www.red3d.com/cwr/boids/, 2002.

[40] Scott, B. “Architecting an RTS AI.” In S. Rabin

(Ed.), AI Game Programming Wisdom. Hingham,
MA: Charles River Media, Inc., 2002, pp. 397-401.

[41] Stripinis, D. “The (Not So) Dark Art of Scripting

for Artists.” Game Developer Magazine 8(9), pp.
40-45, 2001.

[42] Woodcock, S. “Flocking: A Simple Technique for

Simulating Group Behaviour.” In M. Deloura (Ed.),
Game Programming Gems. Hingham, MA: Charles
River Media, Inc., 2000, pp305-318.

[43] Woodcock, S. “Flocking with Teeth: Predators and

Prey.” In M. Deloura (Ed.), Game Programming
Gems 2. Hingham, MA: Charles River Media, Inc.,
2001, pp. 330-336.

[44] Woodcock, S. “Games with Extensible AIs.”

Retrieved July 20, 2002, from
http://www.gameai.com/exaigames.html, 2002.

[45] Woodcock, S. “Games Making Interesting Use of

Artificial Intelligence Techniques.” Retrieved
March 7, 2002, from http://www.gameai.com, 2002.

[46] Woodcock, S. “AI Roundtable Moderator’s

Report.” Retrieved April 9, 2002, from
http://www.gameai.com, 2002.

[47] Zarozinski, M. “An Open-Source Fuzzy Logic

Library.” In S. Rabin (Ed.), AI Game Programming
Wisdom. Hingham, MA: Charles River Media, Inc.
2002.

