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Abstract

In previous research (Chung et al, 2009) the piatieot the Continuous Risk Profile (CRP) to proaety detect the systematic
deterioration of freeway safety levels was presknte this paper this potential is investigatedtifer, and an algorithm is
proposed for proactively detecting sites where ¢blision rate is not sufficiently high to be cldi&d as a high collision
concentration location but where a systematic dwstion of safety level is observed. The appropobposed compares the
weighted CRP across different years and uses thmilative sum (CUSUM) algorithm to detect the sitgsere changes in
collision rate are observed. The CRPs of the tidesites are then compared for reproducibilityhew high reproducibility is
observed, a growth factor is used for sequentipbthesis testing to determine if the collision pesfare increasing over time.
Findings from applying the proposed method usingignal data are documented in the paper togethién & detailed
description of the method.
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1. Introduction

The vast majority of existing approaches for détgchigh collision concentration locations on higitys are
reactive — they detect “hot spots” after observeltision rates exceed a predetermined thresholeth &pproaches
cannot proactively detect sites where safety islgally deteriorating due to adverse changes thatrogver time,
such as worsening of pavement skid resistance, iggowf vegetation that restricts sight distancepacity
constraints that lead to safety problems at loaatisuch as freeway off-ramps and intersection hays, and
negative influences from changes in nearby land.use

This paper proposes a method for proactively detgatites where the collision rate is systematycaltreasing
over time. The proposed approach uses the weigiaatinuous risk profile (CRP) (Chung et al, 2008)detect
sites where changes in collision rates are obseeel CRPs of the detected sites are normalizeccanmgared for
reproducibility. When high reproducibility is obsed, the growth factor (the factor used to norneailee CRP plots
of detected sites) is then used in a sequentiabthggsis testing (Wald, 1945) framework to evaluhtesystematic
changes in the collision profiles.

The description of the proposed method is provigledection 2. Findings from applying the methodhgs
empirical data are documented in section 3. Thjgep ends with future research plans and concludingarks in
section 4.

2. Description of the proactive detection approach

The objective of the proposed approach is tede site that displays systematic increase lirsimm rate, not
necessarily a site with significantly high collisicate; the proactive detection method is diffefemtn traditional
approaches in this aspect. The proposed approaspares the weighted continuous risk profile (CRBf
different years and uses an extension of the cumelaum (CUSUM) algorithm (Basseville and Nikiferd 993)
to detect sites where changes in collision ratehserved. The CUSUM algorithm is designed teatetbrupt
changes. When changes in the weighted CRP areajrdde CUSUM algorithm may not be effective. Hus
reason, the sites detected by the CUSUM algoritteriather evaluated using sequential hypothestanig A
detailed description of the proposed method isguiesl in this section.

Continuous Risk Profile
The CRP is fitted to the underlying true risk, aaflects a measure of risk interpretable as colisisk per unit
distance of roadway. Empirical analysis of traffalision data from previous research (Chung £2@09) found
that gradual deterioration of safety levels ofdllfiy are revealed through the peaks in CRP plods grow over the
years. Remarkably, the locations of these groywieaks did not deviate from year to year; only tteaainder the
curve and the size of the peak varied. Systeratiection of these gradually growing peaks candhéegsed by
monitoring the normalized sum of squared CRP gtots different years.

The proactive detection method starts by digtggteaks identified using the CRP whose locatiwh shape are
reproducible as the size of the peaks varies tneyears. Lef(d) denote the number of collisions per unit
distance observed in the vicinity of locatidiisee Figure-1) ankli(d) denote the weighted average number of
collisions over the windowdfL, d+L] (see equation (1)).
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Figure-1 Hypothetical Highway Segment showing thedow used for averaging
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Where,
do = beginning postmile of segmeidt,,s = ending postmile of segmenty < dg,g; | = increment
2L = size of the moving average window
k, |£ and M
The length of B in Figure-1 needs to be long enough to filter thet random noise in the data and should not be
too long to affect the location of the pronouncedls (i.e., hot spots). This statement can bbduexplained with
the aid of CRP plots constructed using differeme s3f 2. ranging from 0.1 to 0.4 miles in Figure-2. Noth
most critical points (i.e., where the slope of CRPzero) marked with white circles are smoothed asit2.
increased from 0.1 to 0.4 miles while the locatidnhe spots marked with black circles does noiatevmuch with
respect to the changes .2 This figure graphically illustrates how the wdl points created due to random
fluctuations in the data (see the white circle&igure-2) can be smoothed out as the sizeLad@eeds the domain
of the random fluctuations. However, the size &f @nnot be arbitrarily increased to eliminate thedom
fluctuations since largel2can change the location of some of the pronoupesds (see grey circles in Figure-2)
by including the peaks from adjacent sites in eating M(d).
Figure-3 displays how the number of critical poiotenged with respect to the changeslira@d shed light on
the optimal length of 2 Note how the number of critical points rapidgcdeases with the increase in®hile 2L
is less than 0.2 mile. The rate at which the nungberitical points decreases with respect toéase in R slows
down while 2 is between 0.2 and 0.5. The reduction in the rermolb critical points then becomes less affected by
the increase inl2 Empirical analysis of the data revealed thatrttped reduction in the number of critical poings i
due to smoothing out of the excessive number dtatipoints inM(d) created by random fluctuations. Als was
increased beyond 0.2 mile, the location of the pumted peaks started to deviate from their locatidentified
using smaller R: the locations of the hot spots were affected.r the purpose of proactively detecting high
collision concentration locations, one does nodrtefilter out all the random noise since there additional steps
in the procedure to identify sites that displaygressive deterioration of the safety level andhieirtremove the
threat of random events. Therefore, to filter the random noise as much as possible without affpdhe
locations of peaks, 0.2 mile was used as the opsina for 2.

are integers (they define the number of incremetittin the moving window)
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Figure-3 Changes in critical points with respecthanges in 2L

Proactive Detection

My(d) in equation (2) denotes the profile in year ypastmile d andM,.,(d) is the profile in the previous year. The
normalized sum of square(d) between year y and y-1 is shown in equation @pure-4(a) show8SM,.,(d) of
each year along I-880N between postmile 20 and BBe locations marked by sudden surges in slopesites
whose risk profile significantly increased or dexsed with respect to other sites along the corridioithe example
shown in Figure-4, postmile 20 and 32 were usdti@start pointS, and end point;, respectively.

[IM, (30 -M, ()]
SVI y,y—1(d) = g (2)

[IM, 00 =M, ()] dx

The logic behind normalizing the sum of squahédd) is to prevent changes in exogenous factors itraff
volume, rainfall intensity, etc.) from obscuringetliletection of progressive deteriorations of a. sitWhen the
changes in exogenous factors have a similar effieall sites along the route, monitoring only themges irvi,(d)
could produce high false positive rates since diverereases or decreases in collision rate in yedrcompared to
y cause the changes seen in year y to appear igoiécant than other years with no change in exuges factors.

The figure in the box (see Figure-4(b)) shows takie of In(h) with respect to its percentile, whbris the slope
of SMy.1(d). The enlarged view of the portion of the grapblesed in the dotted box labeled A are shown béfow
the same figure. Note how the distribution In@Yyeproducible from year to year. Such reprodiitfenables us
to apply the cumulative sum algorithm (CUSUM) (Basle and Nikiforov, 1993) using the same threshehlue,
h*, across years to detect sites where pronouncetyeban collision risk occur as shown in equatigh (

H (d)=1if M, (d)-SM, ,(d-1)>h’

=0 otherwise
h* is the threshold for detecting a site; the 9QFéincentile was used in this study.

(3)
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The shortcoming of applying only equations (2) &Bdis that it can also detect sites where theisioh rate is
minimal but display large fluctuations in collisioate compared to their magnitude. These sitedediitered out
by applying equation (4).

EC, (d) = Max(M (d) -r" 0) (4)

r’ is the parameter used to prevent sites with mihirolision rates but display large fluctuationswmared to
their rate, from being detecteHC,(d) is the positive difference betwesM(d) andr*. In practice, corridors are
comprised of different roadway sections that amsgified into different roadway groups depending toair
attributes (number of lanes, traffic volume andesteed speed distribution) (Chung et al, 2009).fdbént roadway
groups have different threshold collision ratesjclhis more appropriate than using one r* value tfar entire
corridor. r* needs to be replaced withi(d) in practice depending on the roadway group aatioo d. For
illustration purposes, the #ercentile oM,(d) was used as r* in the subsequent analysis.

Figure 5(a) shows the result of applying equati@)do (4). The grey boxes in Figure 5 (b) sholw-sagments
whose start and end locations are defined by nom&€,(x). Each sub-segment in year y is denote8yaés,, f1)
wheres; andf; are the start and end postmiles of the sub-segwiginh will be referred to as a bin from here on.

B, (s;, f;) =1if H (d) =1 anywhere betwees andf,

5
=0 otherwise ©)

Where, j is index for the bin, j=1,2..n
K,(d)=EC,(d)xB,,; (s;, f;) (6)

The resulting graph is shown in Figure-5 (c).
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Figure-5 Graphical illustration of the processdelecting peaks where changes in collision pratfieedetected
(data source: 1-880 northbound, year 1999)



3. Findings

Attributes of the bins

The value ofK,(d) within each bin marks the peaks M(d) whose value exceeds and displays significant
changes in CRP compared to the previous year. dinesK,(d) andK,.,(d) betweens andf; of B,;are normalized
as shown in equation (7) to estimate the crosstaiion betweer§,;(d) and S.;j(d). Equation (8) shows the
corresponding growth factoG,,.,,for thej™ bin and the change in area undigfd) in a bin compared to the
previous year. Since the growth factor is a rationitoring only the growth factor can be mislegdwhen the net
change in collision number is not considered siandbusly: even a small net change in collision remdould
cause a significant change in growth factor ofravbiien the area und&Xd) is small. The net change (see equation
(9)) in the number of excess collisions needs tonbaitored simultaneously. The distribution of tirewth factor
and the net change are shown in Figure 6. The tgréactor and net change followed log-normal andmed
distributions, respectively.

K, (d)
Sy’j (d) = sjy—
[ K, (9ax (72)
y
f
[(S,,(d) =S, ))(S,4,(d) = S,1)
Myya(l) =— . . (7b)
[8,,(@)=5,)% [8,4;(d)=5,.))°
f; f;
where
I,y (]) =cross-correlation between two successive valu&; ) andS,.;(d).
S, & S,_;= means of the corresponding series in thiaif.
[K,,; (9dx
Gyya = sjfi (8)
[Kyea; (90
fi
Nyya = [K, (0dx= K ()dx )
f. f.

J J
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The cross-correlation betwees);(d) and S.,;(d), the growth factor, and the net change togetledine the
attribute of a bin and they can be plotted on tui@eensional graph as shown in Figure-7(a). Thimtpoare
obtained from analyzing traffic collision data adp®2 miles of freeways in the San Francisco BayaArBlote that
all the points in the figure have cross correlaigneater than 0.75 since the proposed approaghdeticts sites
that display reproducible patternshit{d).

Figure-7(b) shows the points whose growth factat met change are greater than th& percentile projected
onto the cross correlation and growth factor plamese points are subsequently used to detedatididate sites
for proactive detection.

Net Increase (N.I.)
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Figure 7(a) Attributes of bins detected along 1-88@ -580 in 1999
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Sequential Hypothesis Testing

Typical hypothesis testing evaluates two altermetji\the result of the test is subject to both fplsstives (i.e.,
accepting the hypothesis when it is not valid) tadske negatives (i.e., rejecting the hypothesismihés valid).
When the cost associated with the false positiveegative is much greater than the cost of makinuogheer
observation, sequential hypothesis testing becamesful approach.

In sequential hypothesis testing, the deciimnis divided into three contiguous segmentse dhter two
segments correspond to accepting or rejecting ypethesis; the middle segment corresponds to thisida to
take an additional observation. If the hypothéseccepted (or rejected), no subsequent obsenvigtimken. If an
observation is taken, the decision-maker facesalnee choices in the following period. The thredbdiletween
regions are determined on the basis of the relatigts of accepting the hypothesis when it is fakgecting it
when it is true, and taking an additional obseprati

In the context of proactive detection of fregvbat spots, these costs are unknown and cannestheated from
field data. Instead of making assumptions aboeictists, our approach was to make reasonable judsmbout
the size of the middle segment. In Figure 7(b)rdépresents the point at which the decision-makeompletely
indifferent between accepting and rejecting thedtlgpsis. The middle segment is thus assumed ® &dangth of
2 A, and to be centered around P*.

The solid black line in Figure-7(b) represents 8% percentile and the two dotted lines labeled U &nd
represent the #0and 6" percentiles, respectively. The proposed meth@gtt® a site from further consideration
once it falls below L. When a site falls betweerahdl L, the site will be neither accepted nor rej@dut will be
re-evaluated in the subsequent time period. Whsitedies above U, the site will become a candidate to be
finalized in the following analysis period. Theegrhorizontal line in Figure-8 indicates tR&tA region shown in
Figure-7(b).

10
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Figure-8 Changes in growth factor of the four sgkewn in Figure-7(b)

A; and A in Figure-7(b) are the sites that were detected989 and confirmed in 2000 by the proposed
proactive detection, while £and A are sites that were detected in 1999 but not noefi in 2000. Figure-8 shows
how the growth factor of these four sites changest the years since 1998. The data displayeddguorEi8(a) and
(b) are from sites located on 1-880 N. The datatsdabeled D in both figures denote the year thatsite was
detected and the data points labeled C denotedahethat the site was confirmed. The growth fagict999 and
2000 is based on excess collision observed in {i988the area undét,(d)): the growth factor of the bin in 1998 is
1 (see data points labeled B in Figure-8) Thevtiidactor in 2001 and 2002 shows continued in@eas

Az was detected in 1999 due to a sudden increas®wntly factor, but, was rejected in 2001 (see théentircle
labeled R in Figure-8(c)). Although detailed sitsnditions that resulted in marked increase ingttwavth factor at
Az were not confirmed, investigation of empirical aldtom other routes revealed that sudden surgegawth
factor were often caused by construction or mabmer activities that require long term (several thenlane
closures. The ideal situation would be keepingkraf lane closure activities — not planned closubat
implemented closures - as part of the hot spottifieation procedure. However, these data are ymdtlinked
together in most states’ department of transpomati To reduce falsely detected sites due to coctibn or
maintenance activities, the procedure only repsites that were not rejected by the sequential tigsis testing
(Wald, 1945) in two or more consecutive years. uFégd(c) shows that this site would have been tedeagain in
2001 and rejected again in 2002. What was obseated; could be the due to the regression-to-the-mean



phenomenon. Awas detected in 1999 and its growth factor lietlvbenP*+A such that it was neither rejected nor
accepted in 2000 (see data point labeled W in Ei@gd)). The site was re-evaluated in 2001 andocgasrmed.

Notice how the changes in growth pattern displayelligure-8(b) and (d) are similar. B was set at a lower
value or a smallea was used, Acould have been confirmed in 2000 instead of 20Diere are two parameters in
the proposed method that will affect the numbebiat detected. Lower values of or r*(d) will generate more
bins and increase in the size of bins. The vafue* aised in the current study is based on empirica daserved
along 82 miles of freeways. Lower values of h wilrease the number of non-zétg(d) resulting in more bins to
be evaluated in the subsequent part of the analyBi®e criteria for detecting a site are basedhanattributes of
bins which indicate how reproducible the collisipattern was and the significance of the growthdiaeind net
changes.

4. Concluding Remarks

In an effort to remedy the shortcomings of existisgoactive hot spot identification proceduress thaper has
presented a method for proactively detecting aspot where its safety level slowly deterioratesraime. The
proposed method first compares normalized CRP fiiota previous years to detect sites with significehanges
in collision profile and uses sequential hypothésssing to identify the target sites.

To ensure that small peaks in CRP are not detettedto their large variance compared to their rte,
procedure only compares the peaks that have vgheager tham*. As explainedr* (d) needs to be used in practice
to account for differences in threshold values uleddifferent roadway groups. Using growth fast@nd net
changes together, the sites where significant dravets observed were detected; many of those sites eetected
as a result of construction activities that toolgal along the roadway. To minimize both false tpasind false
negative rates, the proposed method employed seglubgpothesis testing to detect sites whose dnofattor
remained above the #(ercentile for more than two years. However, Weetvaiting two years was an adequate
time period to properly address the issues thaearfrom the regression-to—the-mean phenomenone(Ha897)
was not investigated in the current study. The&k ta&ill remain the subject of future research.

The practical advantages of being able to prodgtigdetect a hot spot cannot be overstated. Preaditection
allows safety engineers to stay “one step aheaddatdty issues as they arise and before they beawrse and
claim lives and injure motorists. It also helpsnpensate for the long periods of time needed totifye procure,
and implement safety countermeasures once a hotsspientified in the present tense. The valusuwath a robust
hot spot forecasting approach is significant argltha potential to shape hot spot prediction metdtogies moving
forward.
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