
A TRANSPORT PROTOCOL FOR

REAL-TIME APPLICATIONS IN WIRELESS

NETWORKED CONTROL SYSTEMS

By

LI GUI

BEng

A THESIS SUBMITTED TO

FACULTY OF SCIENCE AND TECHNOLOGY,

QUEENSLAND UNIVERSITY OF TECHNOLOGY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER BY RESEARCH

September 2010

Copyright in Relation to This Thesis

c© Copyright 2010 by LI GUI. All rights reserved.

Statement of Original Authorship

The work contained in this thesis has not been previously submitted to meet require-

ments for an award at this or any other higher education institution. To the best of my

knowledge and belief, the thesis contains no material previously published or written

by another person except where due reference is made.

Signature

Date

iii

To my parents

Keywords

Transport Protocol, Wireless Network, Networked Control Systems,

Real-Time Systems, Time Delay, Packet Loss,

vii

Abstract

A Networked Control System (NCS) is a feedback-driven control system wherein the

control loops are closed through a real-time network. Control and feedback signals

in an NCS are exchanged among the system’s components in the form of information

packets via the network. Nowadays, wireless technologies such as IEEE802.11 are

being introduced to modern NCSs as they offer better scalability, larger bandwidth

and lower costs. However, this type of network is not designed for NCSs because it

introduces a large amount of dropped data, and unpredictable and long transmission

latencies due to the characteristics of wireless channels, which are not acceptable

for real-time control systems. Real-time control is a class of time-critical application

which requires lossless data transmission, small and deterministic delays and jitter. For

a real-time control system, network-introduced problems may degrade the system’s

performance significantly or even cause system instability. It is therefore important to

develop solutions to satisfy real-time requirements in terms of delays, jitter and data

losses, and guarantee high levels of performance for time-critical communications in

Wireless Networked Control Systems (WNCSs).

To improve or even guarantee real-time performance in wireless control systems,

this thesis presents several network layout strategies and a new transport layer protocol.

Firstly, real-time performances in regard to data transmission delays and reliability of

IEEE 802.11b-based UDP/IP NCSs are evaluated through simulations. After analysis

of the simulation results, some network layout strategies are presented to achieve

relatively small and deterministic network-introduced latencies and reduce data loss

rates. These are effective in providing better network performance without perfor-

ix

mance degradation of other services. After the investigation into the layout strategies,

the thesis presents a new transport protocol which is more efficient than UDP and TCP

for guaranteeing reliable and time-critical communications in WNCSs.

From the networking perspective, introducing appropriate communication schemes,

modifying existing network protocols and devising new protocols, have been the most

effective and popular ways to improve or even guarantee real-time performance to a

certain extent. Most previously proposed schemes and protocols were designed for

real-time multimedia communication and they are not suitable for real-time control

systems. Therefore, devising a new network protocol that is able to satisfy real-time

requirements in WNCSs is the main objective of this research project.

The Conditional Retransmission Enabled Transport Protocol (CRETP) is a new

network protocol presented in this thesis. Retransmitting unacknowledged data packets

is effective in compensating for data losses. However, every data packet in real-

time control systems has a deadline and data is assumed invalid or even harmful

when its deadline expires. CRETP performs data retransmission only in the case that

data is still valid, which guarantees data timeliness and saves memory and network

resources. A trade-off between delivery reliability, transmission latency and network

resources can be achieved by the conditional retransmission mechanism. Evaluation

of protocol performance was conducted through extensive simulations. Comparative

studies between CRETP, UDP and TCP were also performed. These results showed

that CRETP significantly: 1). improved reliability of communication, 2). guaranteed

validity of received data, 3). reduced transmission latency to an acceptable value,

and 4). made delays relatively deterministic and predictable. Furthermore, CRETP

achieved the best overall performance in comparative studies which makes it the most

suitable transport protocol among the three for real-time communications in a WNCS.

x

Acknowledgements

First and foremost, I owe my deepest gratitude to my supervisor, Associate Prof.

Yu-Chu (Glen) Tian, for his invaluable expertise, wisdom, patience, encouragement

throughout the course of this research project. Without his helpful guidance, this work

would not have been accomplished. Furthermore, his many refinements to this thesis

have been much appreciated.

Many thanks also go to my associate supervisors, Prof. Colin J. Fidge and Dr

Hasmukh Morarji for their generous support and comments on my working during this

candidature. I am also indebted to my fellow graduate students, Gus Tian and Mark

Miao for their support and friendship.

Special thanks to Discipline of Computer Science, Faculty of Science and Tech-

nology, Queensland University of Technology (QUT) for providing the support, work-

stations and software needed to produce and complete my thesis.

Finally, I wish to extend my appreciation to my family for their love and support

during the completion of the thesis.

xi

Contents

Keywords vii

Abstract ix

Acknowledgements xi

1 Introduction 1

1.1 Research Background . 1

1.2 Statement Gap and Motivation . 3

1.3 Aims of the Research . 5

1.4 Significance of the Study . 6

1.5 Contribution of the Thesis . 8

1.6 Thesis Organization . 8

1.7 Related Publications . 9

2 Previous and Related Work 11

2.1 Time Delay in Networked Control Systems 13

2.2 Packet Loss in Networked Control Systems 17

2.3 Compensation for Transmission Delay 19

2.4 Techniques for Packet Loss Compensation 24

2.5 Other Network Elements that Influence Network Performance 30

2.6 Summary of the Literature Review 33

xiii

3 Network Layout Strategies for WNCSs 35

3.1 Basic Network Configuration and Evaluation Metrics in Simulations . 36

3.2 Case One: Sensors with the Same Data Rate 37

3.3 Case Two: Sensors with Different Data Rates 41

3.4 Chapter Summary . 46

4 Design of the CRETP Protocol 49

4.1 Logical Design of CRETP . 50

4.1.1 Connectionless Services with Acknowledgment 51

4.1.2 Conditional Retransmission Service 52

4.1.3 Detection of Ineffective Data Packets 55

4.1.4 State Transitions . 55

4.2 CRETP Packet Format . 59

4.3 The Mechanisms in CRETP . 61

4.3.1 Mechanism for Data Effectiveness Detection 61

4.3.2 Acknowledgment Mechanism 62

4.3.3 Conditional Retransmission Mechanism 64

4.4 Protocol Implementation in NS-2 . 68

4.4.1 Main Operations in Source Mode 70

4.4.2 Main Operations in Destination Mode 72

4.5 Chapter Summary . 76

5 CRETP Performance Evaluation in NS-2 77

5.1 Network Specification . 78

5.2 Performance Metrics . 80

5.3 Simulation Case One . 82

5.3.1 Simulation Scenario Specifications 82

5.3.2 Simulation Results . 83

5.3.3 Comparative evaluations . 85

5.4 Simulation Case Two . 92

xiv

5.4.1 Simulation Scenario Specifications 92

5.4.2 Simulation Results . 93

5.4.3 Comparative evaluations . 94

5.5 Simulation Case Three . 100

5.5.1 Simulation Scenario Specifications 100

5.5.2 Simulation Results . 101

5.5.3 Comparative evaluations . 102

5.6 Chapter Summary . 107

6 Conclusions and Future Work 109

6.1 Limitations and Future Work . 111

A Integrating CRETP inside the NS-2 Simulator 113

A.1 Step one: Add C++ source code into NS-2 113

A.2 Step two: Tcl library . 114

A.3 Step three: Makefile . 114

B C++ source code for CRETP in NS-2 115

B.1 The header file for the source CRETP 115

B.2 The header file for the destination CRETP 117

B.3 The C++ file for the source CRETP 117

B.4 The C++ file for the destination CRETP 123

C Example Tcl script for simulation in NS-2 125

Bibliography 133

xv

List of Figures

2.1 Generic setup of an NCS . 12

2.2 Delays in an NCS . 14

2.3 Components of an end-to-end delay 14

3.1 Average delays when there are 4 sensors 42

3.2 Average delays when there are 8 sensors 43

3.3 Average delays when there are 10 sensors 43

3.4 Average delays when there are 20 sensors 44

3.5 Average delays when there are 30 sensors 44

3.6 Delays of data packets sent by sensor 6 in scenarios 2 and 3 46

3.7 Delays of data packets sent by sensor 22 in scenarios 2 and 3 47

4.1 Position of CRETP in the TCP/IP protocol suite 50

4.2 CRETP’s delivery of data packet and its acknowledgment 52

4.3 Retransmission of a lost packet . 53

4.4 Retransmission of a corrupted packet 53

4.5 Retransmission due to a lost ACK 54

4.6 Retransmission due to a delayed ACK 54

4.7 Source CRETP state transition diagram 56

4.8 Destination CRETP state transition diagram 58

4.9 Format of a CRETP packet . 59

4.10 Occurrence of an out-of-date packet 63

4.11 Packet effectiveness detection . 64

xvii

4.12 CRETP’s packet sending procedure 69

4.13 Data packet sending process in a source CRETP 70

4.14 Data packet generation in a source CRETP 71

4.15 Retransmission process in a source CRETP 72

4.16 ACK receiving and processing in a source CRETP 73

4.17 Data packet receiving process in a destination CRETP 74

4.18 ACK generation in a destination CRETP 75

5.1 Network topology in simulations . 80

5.2 Average end-to-end delays in Case One with different protocols . . . 84

5.3 Percentage of effective data received in Case One with different protocols 87

5.4 End-to-end delays for sensor 1 in Scenario 7 when using UDP 87

5.5 End-to-end delays for sensor 1 in Scenario 7 when using CRETP . . . 88

5.6 End-to-end delays for sensor 1 in Scenario 7 when using TCP 88

5.7 Average end-to-end delays in Case Two with different protocols . . . 94

5.8 Percentage of effective data received in Case Two with different protocols 97

5.9 End-to-end delays for sensor 1 in Scenario 3 when using UDP 97

5.10 End-to-end delays for sensor 1 in Scenario 3 when using CRETP . . . 98

5.11 End-to-end delays for sensor 1 in Scenario 3 when using TCP 98

5.12 Average delays in Case Three with control period of 70 milliseconds . 102

5.13 Average delays in Case Three with control period of 80 milliseconds . 103

5.14 Average delays in Case Three with control period of 90 milliseconds . 103

xviii

List of Tables

3.1 Basic configuration for wireless model in simulations 36

3.2 Layers and distances between sensors and the controller 38

3.3 Average end-to-end delays . 39

3.4 Data packet loss ratio . 39

3.5 Average delays and data loss rates in the case of 30 sensors 45

4.1 States for CRETP . 56

5.1 Wireless model used in simulations 80

5.2 Number of channel errors in each scenario 82

5.3 Average end-to-end delays in Case One when using different protocols 83

5.4 Number of dropped data packets in Case One when using different

protocols . 84

5.5 Consecutive dropouts in Case One with different protocols 85

5.6 Percentage of effective data received in Case One with different protocols 85

5.7 Consecutive losses of effective data in Case One with different protocols 86

5.8 Maximum number of consecutive data losses in Case One with differ-

ent protocols . 86

5.9 Control period in each scenario . 93

5.10 Average end-to-end delays in Case Two when using different protocols 94

5.11 Number of dropped data packets in Case Two when using different

protocols . 95

5.12 Consecutive dropouts in Case Two when using different protocols . . 95

xix

5.13 Percentage of effective data received in Case Two with different protocols 95

5.14 Consecutive losses of effective data in Case Two with different protocols 96

5.15 Maximum number of consecutive data losses in Case Two with differ-

ent protocols . 96

5.16 Number of sensors and control period in each scenario 101

5.17 Average end-to-end delays in Case Three when using different protocols 102

5.18 Number of dropped data packets in Case Three with different protocols 104

5.19 Consecutive dropouts in Case Three when using different protocols . . 104

5.20 Percentage of effective data received in Case Three with different pro-

tocols . 105

5.21 Consecutive losses of effective data in Case Three with different protocols105

5.22 Maximum number of consecutive data losses in Case Three with dif-

ferent protocols . 106

xx

Chapter 1

Introduction

This thesis, entitled “A Transport Protocol for Real-time Applications in Wireless

Networked Control Systems”, focuses on improving real-time performance of con-

trol systems that adopt wireless technologies such as IEEE802.11 standards. The

overall objective of the research project described in this thesis is to meet real-time

requirements by providing reliable data transmission and guarantee data timeliness

for real-time control applications. To achieve this objective, this thesis developed a

network protocol based on modification of User Datagram Protocol (UDP) and several

strategies for device deployment in WNCSs. This chapter introduces the research

background, the motivation and the aims of the project. It also highlights the research

significance and main contributions of this thesis.

1.1 Research Background

A networked control system (NCS) consists of sensors, actuators and controllers that

communicate over a network to exchange data for monitoring, controlling and syn-

chronizing industrial processes. This class of control system is important in man-

ufacturing and industrial process control. It began with the traditional centralized

1

2 Chapter 1. Introduction

point-to-point control system. A point-to-point network has the characteristics of small

transmission delay and deterministic variation of latency (jitter) which suits real-time

control systems very well. However, they do not scale well and require much effort

in maintenance. Later on, the common-bus network architecture was introduced in

NCSs. In this type of architecture, a wired fieldbus achieves higher flexibility, and

less installation and maintenance cost than a point-to-point network and still provides

deterministic and timely communications.

With the rapid developments in communication technologies, some data technolo-

gies such as Ethernet and the wireless IEEE 802.11 standard have been used in modern

NCSs as they offer better scalability, larger bandwidth and lower cost. When compared

with a wired NCS, a wireless networked control system provides fast deployment, and

low implementation and maintenance costs which make it very popular in industrial

process control [Nilsson, 1998]. However, there are significant differences between a

control network and a data network. In particular, wireless networks distinguish them-

selves by many additional characteristics such as interference, channel variations and

channel outage. These features introduce longer transmission delays as well as higher

rates of packet loss. This is not favourable for real-time control systems. Therefore,

a real-time and reliability requirements are the key issues that must be resolved in a

wireless NCS.

Generally speaking, there are two types of real-time communication that are re-

quired in real-time control systems [Stoina, 2008]. For the first type, the transmission

time is important but not crucial, while the variation of delay (jitter) is critical and has

to be within an acceptable bound to guarantee acceptable control performance. In the

second type of real-time communication, a control system must ensure that the end-to-

end delay of a packet transmission stays within the pre-defined processing time cycle,

or period, as the information carried by the packet has a limited validity. In addition,

solutions for data dropouts are needed to ensure the receiver always gets the control

signals sent. Therefore, making transmission delays deterministic and predictable,

reducing transmission latency to an acceptable value, and avoiding or compensating

1.2. Statement Gap and Motivation 3

for packet dropouts are essential for performance guarantees and reliability of time-

critical applications in wireless NCSs.

Recently, many methodologies have been developed to provide a guaranteed qual-

ity of service (QoS) in real-time networked control systems. Each of them focuses on

different aspects of QoS. However, it is still a new research area and a lot more work

needs to be done.

1.2 Statement Gap and Motivation

When wireless networks such as 802.11 networks are applied as replacements for hard-

wired ones in an NCS by many enterprises nowadays, a larger amount of dropped data,

and unpredictable and longer transmission latencies are introduced in the communica-

tion network due to the characteristics of wireless channels. These drawbacks may

degrade the system’s performance significantly or even cause system instability if the

applications in the NCS are real-time control applications. Real-time control is a class

of time-critical application which suffers more than others from unpredictable or long

transmission delays, and packet losses. It is therefore important to develop solutions

to satisfy real-time requirements and guarantee high levels of performance for time-

critical applications.

It is known that soft real-time applications are delay sensitive but can tolerate

isolated errors and losses and error/loss bursts. Usually, soft real-time focuses on

mean times and tries to reduce deadline miss ratios [Watteyne and Auge-Blum, 2005].

Therefore, the combination of low overheads and discarding packets rather than re-

transmitting them allows more frequent transmission of small packets, making UDP

a preferred choice for soft real-time applications in NCSs. It is not surprising that

most real-time applications use UDP as their transport layer protocol instead of TCP

since this kind of application cannot afford the latency caused by the retransmission

function. However, UDP is a connectionless protocol which cannot provide a reliable

packet delivery service. No acknowledgement is sent back by destination nodes and

4 Chapter 1. Introduction

the source nodes do not know whether packets are successfully received or not. This

could lead to excessive packet losses and result in a large dropout ratio which is not

favourable for soft real-time applications.

Dealing with packet dropouts, and reducing transmission delays and jitter are the

most important aspects in real-time requirements that will be focused on in this re-

search. Introducing appropriate communication schemes, modifying existing network

protocols and devising new protocols, have been effective and popular ways to improve

or even guarantee real-time performance to a certain extent.

Network protocols working on different network layers are developed to improve

performance of real-time communication. On the application layer, the real-time trans-

port protocol (RTP) is well known and in widespread use in communication and en-

tertainment systems. It has the ability to detect out-of-order arrival in data stream

and provides a strategy for jitter compensation in the application layer. Since RTP is

designed for real-time multimedia communications, it defines its standardized message

format for delivering video and audio over internet.

Some transport layer protocols based on modification of UDP, such as UDP-Lite

and CUDP, have been developed to compensate for the unreliable transmission of UDP.

UDP-Lite – a lightweight version of UDP with increased flexibility in the form of a

partial checksum [Larzon et al., 1999]– provides the flexibility of a partial checksum

and does not drop corrupted frames, thus minimizing the drop burst length and im-

proving throughput [Larzon et al., 1999]. Khayam et al [2003a] introduced MAC-Lite

to abandon retransmissions and pass partially corrupted frames to higher layers. It

functions together with UDP-Lite to achieve improvements in media quality. However,

UDP-Lite has two major drawbacks. One is backward incompatibility which makes

traditional UDP applications useless if UDP-Lite is employed in a system. The other

one is that there are no application layer protocols that can handle the corrupted packets

passed from UDP-Lite [Lam and Liew, 2004].

CUDP was proposed by Zheng and Boyce to use information of channel errors ob-

tained from the physical and link layers to help error recovery at the packet level [Zheng

1.3. Aims of the Research 5

and Boyce, 2001]. It outperforms the UDP and the UDP-Lite protocols. Unfortunately,

the advantage of CUDP reduces as the congestion packet loss rate grows.

New MAC layer protocols have been proposed for real-time applications in ad

hoc wireless networks with focus on achieving reductions in transmission latencies,

providing timely delivery guarantees, and scheduling channel accesses for real-time

sessions, respectively [Baldwin et al., 1999; Cunningham and Cahill, 2002; Pal et al.,

2002a; Zhou et al., 2003].

A Burst-oriented Transfer with Time-bounded Retransmission (BTTR) scheme

working on the link level was proposed by Wu [2001] which employs a large transmis-

sion window for sending and receiving a burst of time-critical data. It can be helpful

to meet the delay and throughput requirements; however, obvious degradation on the

packet loss rate occurs.

There are not any very effective methods that can reduce end-to-end packet loss

rates in wireless NCSs. Also it is worth considering if there is any strategy that would

satisfy the delay requirements without degradation of performance from other aspects

in network communication. These issues motivated our proposed research project with

regard to resolving these two problems:

1. How to achieve small transmission latency and jitter of data communication by

properly deploying devices in the WNCS;

2. How to develop a new transport layer protocol which would improve the reliabil-

ity of transmission for real-time applications by compensating for packet losses

while keep data timeliness in the WNCS.

1.3 Aims of the Research

When data networks are introduced into NCSs, many challenges turn up in the design

of real-time NCSs from both control and networking perspectives. The objective of

our research is to provide strategies that improve the network performance of real-

time wireless NCSs, implying that control related issues such as the dynamics of the

6 Chapter 1. Introduction

controller and processes to be controlled, are beyond the scope of our work. Several

aims are summarized below:

1. We aim to present strategies about how the network layout, transmission interval

of the sensor and other network characteristics affect the transmission latency

and jitter. A network deployed according to the proposed rules, should achieve

the minimum transmission delay and jitter;

2. We aim to design a transport protocol that has provision for packet retransmis-

sion. This new protocol must be capable of anglicizing current end-to-end round

trip latency and providing retransmissions within the present time limit. By doing

so, it will decrease the data loss ratio without violating data timeliness;

3. We then need to evaluate the performance of the proposed protocol by comparing

the protocol’s performance with performances of other transport layer protocols

used now.

The aims of our research are proposed based on network requirements specified

when designing a real-time wireless NCS. Network performance can be improved with

the achievement of those aims. However, the overall performance of an NCS is not

evaluated since the control performance determined by control methodologies is not

analysed in this research.

1.4 Significance of the Study

In real-time networked control systems, both network Quality-of-Service (QoS) and

controller’s Quality-of-Control (QoC) are expected to be guaranteed. On the network

side, throughput is not the most important aspect of network QoS. Instead, transmission

latency and reliability become more critical, especially when the control algorithm in

the NCS is delay sensitive. Real-time control is a class of time-critical application

which suffers more than others from unpredictable transmission delays and unreliable

data transmission. Reducing transmission latency to an acceptable value, making

1.4. Significance of the Study 7

delays deterministic and providing reliable communications are major focuses in this

research.

From the perspective of transmission latency, the challenges are caused by variable

and comparatively long times of data transfer between devices induced by introducing

a wireless network as the communication technology. In an NCS, a control packet

in a real-time application becomes worthless or even dangerous if it is not received

within the pre-defined deadline. Furthermore, the variation of delay (jitter) has to be

within an acceptable bound to guarantee stable control performance. From the aspect

of NCS deployment, proper design of the network layout can achieve better network

performance without performance degradation of other services. Several strategies of

device arrangement in WNCSs presented in our study can be effective in reducing the

time of data transmission, jitter and data dropout rate. When most data packets can be

successfully interchanged between devices within a small and certain time limit, the

performance of a real-time application can be improved.

From the perspective of transmission reliability, the challenge is caused by the User

Datagram Protocol used by most real-time applications in NCSs. UDP ensures a fast

transmission so that a small latency can be achieved. However, it is connectionless and

cannot provide reliable delivery. If many data packets are dropped during transmission

and no compensating methods are there to make up for the packets’ loss, the system’s

performance will significantly degrade or even worse, the system becomes unstable. In

our research, a new transport layer protocol is designed based on UDP but providing

a reliable delivery service. This protocol employs the concept of retransmission and

acknowledgement while keeping data timeliness in mind. Retransmission is one of the

most effective ways of compensating for lost packets. However, retransmission causes

unpredictable latency of delivery and uses extra resources such as memory and network

bandwidth. Therefore, the new protocol enables retransmission conditionally so that a

trade-off between delivery reliability, transmission latency and network resources can

be achieved. Evaluation of this protocol is done by a large number of simulations.

The results are evidence that this protocol significantly improves the reliability of

8 Chapter 1. Introduction

communication especially when the condition of the wireless channel is not good.

The proposed network deployment rules and the new protocol can be employed

together in a wireless NCS to improve system performance in terms of delay, jitter and

transmission reliability as they are designed from totally different aspects.

1.5 Contribution of the Thesis

As the aims of the research have been fully accomplished, the main contributions of

this thesis are listed as follows:

1. Strategies about how to deploy the network, taking into account the number of

sensors and sensors’ data rates, to achieve a better performance in regard to

transmission latency and jitter are developed;

2. A transport layer protocol for real-time communication in a wireless NCS is

developed. It enables conditional retransmissions so that the reliability of com-

munication can be significantly improved without violating data timeliness.

1.6 Thesis Organization

The rest of this thesis is structured as follows. Chapter 2 presents a detailed survey

of the existing literature and background information in related research areas. It

identifies the focuses and weaknesses of these previous papers. Chapter 3 discusses

the relationships between network layout, data rate and transmission latency based

on simulations. Several strategies for network deployment are proposed which can

help reduce transmission delays, jitters and data losses. As one of the main contri-

butions of this thesis, Chapter 4 presents the design of a new transport layer protocol

featuring conditional retransmission. Logical algorithms and protocol mechanisms

are elaborated. Evaluation of the new protocol through extensive simulation is done

in Chapter 5 which also includes comparative studies between the proposed protocol

and other transport protocols used now. Both advantages and disadvantages of this

1.7. Related Publications 9

protocol are analysed. Chapter 6 concludes this thesis and discusses the direction for

further research on this topic. The main part of the protocol implementation code is

given in an appendix.

1.7 Related Publications

• L. Gui, Y.-C. Tian and C. Fidge. Performance evaluation of IEEE 802.11b

wireless networks for networked control systems. In Proceedings of the 2007 In-

ternational Conference on Embedded Systems and Applications (ESA07), pages

121-126, Las Vegas, Nevada, USA, 25-28 June 2007.

• A journal paper “QoC Elastic Scheduling for Real-Time Process Control Sys-

tems” has been submitted to Real-Time Systems.

Chapter 2

Previous and Related Work

Networked control systems are a kind of computer-controlled system. Computers

began to control processes directly when the direct digital control (DDC) system was

developed [Zhang, 2001]. DDC systems use point-to-point wiring which is expensive

and difficult to maintain and scale. Later on, the distributed control system (DCS) came

out for fast deployment of computer technology and distribution of computation power.

When computers were able to control entire production plants, and network interfaces

were enabled with sensors and actuators, networked control systems (NCSs) were

formed carrying real-time mixed traffic. A Networked Control System is a feedback-

driven control system wherein the control loops are closed through a real-time network,

as illustrated in Figure 2.1. The defining feature of an NCS is that control and feedback

signals are exchanged among the system’s components in the form of information

packets through a network. The functionality of a typical NCS is established by the

use of four basic elements: sensors that acquire information, controllers that provide

decision and commands, actuators that perform the control commands and a commu-

nication network which is used to enable exchange of information [Ye, 2000].

Communication networks affect the dynamic behaviour of control systems in an

NCS [Baillieul and Antsaklis, 2007]. Traditionally, the communication network of an

11

12 Chapter 2. Previous and Related Work

Figure 2.1: Generic setup of an NCS

NCS is a local area network (LAN) or a wide area network (WAN). After wireless

technology came out, wireless local area networks (WLANs) were proposed as an ex-

tension to or as an alternative for LANs in situations where it is difficult or impossible

to install wireline connections [Jiang, 1998]. Compared with conventional point-to-

point control systems, modern NCSs have many advantages such as improvements

to system scalability, reduction of weight, space and wiring requirements. However,

signal delays, distortion and loss caused by finite bandwidth constraints and compe-

tition between multiple system components are drawbacks. More challenges exist

when designing and implementing a WLAN in an NCS such as interference caused

by collisions and multi-path fading, low bandwidth, time-varying throughput, limited

power and mixed traffic in communication channels [Ye et al., 2001].

Uncertain transmission delays and packet losses are unavoidable when random

access networks such as Ethernet and WLANs are applied in NCS. Real-time applica-

tions require the data transmitted between devices in NCSs to be accurate, timely, and

lossless. The worst case scenario in a real-time NCS is that the transmission time of

a control signal is large and unbounded, and even that packet losses occur. Therefore,

it is necessary and important to understand and improve the real-time performance

of network communications in NCS. The following sections elaborate two major pa-

rameters of network performance for real-time applications: transmission delay and

2.1. Time Delay in Networked Control Systems 13

reliability, and we then focus on research into delay/jitter reducing methods and re-

liability improvement schemes for real-time applications in wireless communication

respectively.

2.1 Time Delay in Networked Control Systems

For a real-time control system, two essential characteristics are that the control system

must produce correct computational results, called logical or functional correctness,

and that these computations have to be done within a predefined time cycle, called

timing correctness [Li and Yao, 2003]. Sometimes, timing correctness is more im-

portant and functional correctness may be sacrificed for it. Timing problems is divided

into control delays, jitter, and transient errors [Wittenmark et al., 1995]. From the point

of view of a network, jitter represents latency variation and occurs when delays are not

constant.

Generally speaking, a control delay contains three parts, illustrated in Figure 2.2.

They are the communication delay between the sensor and the controller (Tsc), the

communication delay between the controller and the actuator (Tca), and the com-

putation time in the controller (Tc). In this research, we focus on communication

delays between devices as the computation delay is not affected by networks in NCSs.

Communication latency of data exchanges between sensors, actuators and controllers

over the network is defined as network-induced delay in an NCS [Cervin et al., 2003].

In Figure 2.3, a message transmission delay in NCSs is defined more clearly when

divided into several different components. Hristu-Varsakelis and Levine [2005]pointed

out that the packet transmission delay (T) is composed of the pre-processing time at

source devices (T0); the packet’s waiting time in the queue at the sender’s buffer (T1),

the post-processing time at destination devices (T3), and the packet transmission time

in the network medium (T2). The relationship between these delays is as shown below:

T = T0 + T1 + T2 + T3

14 Chapter 2. Previous and Related Work

Figure 2.2: Delays in an NCS

Figure 2.3: Components of an end-to-end delay

Among all these timing components, the pre-processing time (T0) includes the time

to acquire data from the external environment and the data encoding time. Both T0

and T3 depend on the software and hardware characteristics of sending and receiving

devices which have little to do with networking [Wen et al., 2007]. T2 includes the

2.1. Time Delay in Networked Control Systems 15

propagation time between two devices and the frame transmission time. The propa-

gation time is negligible as it is usually a very tiny part of end-to-end delays. The

frame transmission time can be calculated given the size of the data, overhead and

padding and the data rate. Therefore, T2 is the most deterministic part. There are also

two parts of a waiting time (T1). One is the time a packet waits until it gets to the

top of the buffer. The second part is the time during which a packet is blocked from

transmission by other data on the network. It is affected by the amount of data being

sent at the source node, the network protocols and the network traffic load [Gupta

et al., 2007]. When devices in the NCS are connected with random access networks

such as Ethernet, or the IEEE standard 802.11, the transmission time of data between

devices is random and is generally considered non-deterministic. The significant parts

of uncertain network delays are the waiting time delays (T1) introduced by queuing

and collisions on the network [Tipsuwan and Chow, 2003].

Previous analysis of network transmission delays did not take into account the type

of network and the network protocols used in NCSs. Our research focuses on real-time

data transmission in a WNCS with IEEE 802.11 technology. Therefore, we elaborate

the waiting time (T1) on Mac layer and the transport layer with the protocols used in

the 802.11 standard.

The 802.11 standard specifies a medium access control (MAC) layer which coordi-

nates access to a shared wireless channel. Two forms of medium access functions are

defined and utilized. They are the point coordination function (PCF) and the distributed

coordination function (DCF). PCF is regarded as unsuitable for real-time data due to

the overhead in IEEE 802.11’s centralized access scheme [Hsu and Chen, 2006]. DCF

is mandatory and based on the CSMA/CA (carrier sense multiple access with collision

avoidance) protocol. With DCF, stations in an 802.11 network contend for medium

access and send packets when the channel is idle. A random back-off timer is used

by the station to detect the state of the medium before sending data. When a busy

channel is detected, the station must wait a random period of time and attempt to

access the medium again. This random back-off time can be affected by the number

16 Chapter 2. Previous and Related Work

of communication devices in the network, the transmission rates of active devices, the

channel’s condition, etc.

The Transport layer provides delivery of data to the appropriate application process

on the destination device, error checking mechanisms and data flow controls. TCP and

UDP are the most well known transport layer protocols and are used in both wired

and wireless networks. Retransmission is the key function of TCP which makes it a

reliable transmission protocol. TCP also rearranges out-of-order packets, and even

helps minimize network congestion through flow control with variable-size sliding

windows. However, all these functions incur relatively long transmission delays and

heavy packet loads. Therefore, TCP is optimized for accurate delivery rather than

timely delivery. As opposed to TCP’s complexity, UDP is light-weight with minimal

overhead and fast transmission as it does not implement reliable/ordered delivery or

flow control. Real-time applications apply UDP on the transport layer for its fast

transmission but this leaves reliability as the problem to be solved.

Delays in a control loop have harmful effects on a control system, as do the net-

work delays in an NCS. Liu and Goldsmith pointed out that control performance

degrades due to distributed medium access control in addition to the performance

degradation caused by random delays and frame losses [Liu and Goldsmith, 2004].

Another harmful effect of random delays in an NCS is system destabilization. System

performance degradation by delays in-the-loop and how the delays can reduce the

stability region of the system are illustrated by Wittenmark et al [1995]. More analysis

work of stability for NCSs with random network delays is presented by Cloostermann

et al [2008,2009]. Therefore, in order to prevent control performance degradation and

prevent destabilization of the control system, considerable research is being done to

minimize or compensate for random delays and jitter.

2.2. Packet Loss in Networked Control Systems 17

2.2 Packet Loss in Networked Control Systems

The term “packet loss” defines the failure of one or more transmitted packets to arrive

at their destination. A data packet may be dropped at any point across the network link

or could be discarded by the destination if it fails the checksum. Packet loss is one

of the main error types encountered in all types of digital communications especially

in media that are prone to transmission errors like a wireless medium [Hirano and

Murase, 2008]. The average packet loss rate for a network connection gives an overall

sense of the quality of the connection.

There are numerous reasons why packet loss occurs. Some key reasons are as

follows:

• Network congestion. For example, a certain period of network congestion makes

the router buffers saturate which at some point leads to a situation where there

is no room to store more packets in the buffers, so newly arriving packets get

dropped;

• Errors in physical network links (which is relatively common in wireless net-

works). Wireless networks introduce longer delays and higher rates of packet

loss when compared with wired networks due to their variable channel quality

over time and space. The variations are caused by either motion of the wireless

device, or changes in the surrounding physical environment, etc [Shakkottai

et al., 2003]. Signal degradation can easily happen over the network medium

due to a fading channel and a weak signal leads to packet dropouts;

• Router configuration. For example, some routers employ a mechanism called

random early detection (RED) in order to implement rate control by dropping

data packets. Such dropouts are a way of communicating back to the senders the

need to scale back the offered load on the network;

• Faulty networking hardware, normal routing routine failures or software corrup-

tion are common causes of packet loss.

18 Chapter 2. Previous and Related Work

Often more than one of these factors is involved in a packet dropout. In NCSs,

transmission delays can play a role in introducing dropouts. For example, long time-

delays may result in packet reordering, which amounts to a packet loss if the receiver

rejects the arrival of out-of-date packets [Hespanha et al., 2007]. From a networking

aspect, packet losses can be categorized as random losses or burst losses due to con-

gestion. According to the type, or pattern, of packet losses, there are at least two kinds

of loss that have been studied intensively: single loss and burst loss. Wu [2006] found

that the probability of losing a single packet is the largest.

The data loss ratio is a criterion of transmission reliability. Unreliable transmission

of data results in negative effects in different ways. In text and data, a packet loss

produces errors. In audio/video communications, it creates short-term gaps. When

packet loss occurs in a real-time control system, a sequence of harmful effects is

introduced. There is no doubt that the loss of a control related packet may lead to

the complete absence of a control signal which results in increasing data and control

delays. Jitter occurs if the time-delay varies. Increased delay and jitter degrade control

performance and may cause system instability. Packet loss is also the cause of transient

faults in an NCS. Wittenmark et al [1995] indicated that a temporary blackout of the

control system can be caused by a transient fault. This is a very serious system error

as the control system will behave in an unpredictable way for a period of time, such as

no action at all or erroneous action.

In a wireless network, packet losses are more likely to happen due to the compara-

tively unstable state of the medium when compared to a wired network. For example,

wireless medium contention and the hidden terminal problem at the MAC layer may

lead to link-layer packet dropping [Tsigkas and Pavudou, 2008]. In an NCS, UDP

is employed instead of TCP as it meets the requirements of delay-sensitive real-time

applications. However, UDP does not provide reliable transmission and does nothing

when packet loss happens. Therefore, packet loss is a serious problem to be solved in

wireless NCSs.

2.3. Compensation for Transmission Delay 19

2.3 Compensation for Transmission Delay

As the devices in an NCS are not point-to-point linked nowadays, the transmission

time is random and generally considered non-deterministic. When wireless technol-

ogy is introduced to network control systems, more effort must be put into real-time

guarantees for delay sensitive applications because wireless networks introduce longer

and random delays as well as higher rates of packet loss when compared with wired

ones. One challenge for the network in an NCS with real-time applications is to

provide deterministic and small delays, and another challenge is to provide reliable

transmission. Quality-of-Service (QoS) will not be guaranteed if these two challenges

cannot be fulfilled.

Yang and Wang [2005] identified two types of solutions to the reduction of network-

introduced delay and jitter. The first one is optimizing the Quality-of-Control of the

control system with methodologies from control theory that act against the harmful

impaction of transmission latency. The other solution is to improve the Quality-of-

Service of the network by employing a reliable communication protocol and adopting

devices with high performance.

From the aspect of Quality-of-Control optimization, much NCS research has been

conducted on controller design to provide sufficient stability margins in the presence of

the network-induced effects in a unified model [Cervin et al., 2006; Dermanovic et al.,

2004]. This type of methodology can be effective in compensating for transmission

delays and packet losses only if the plant dynamics are well understood and accurate

models of the plant and communication network are built. However, the complexity

of the controller design and communication network modelling increases with the in-

crease in control system complexity. When random access network technologies such

as Ethernet and IEEE 802.11 replace the traditional communication method in an NCS,

it is often difficult to model network delays and data dropouts with formulations based

on the characteristics and the probability theories of network devices [Dermanovic

et al., 2004].

In an NCS, controller design and network modelling to compensate for transmis-

20 Chapter 2. Previous and Related Work

sion delays need an understanding of delay behaviours in advance. Previous work on

network-induced delay analysis was usually done with the assumption that the delay is

constant, or time-varying but periodic, or random but bounded, or even known by the

controller.

Compensation for delays is simplified if the delay can be a fixed constant. Early

in the 1990s, a buffering procedure was introduced by Luck and Ray [1990]. The

network-induced delay was regarded as time-invariant by employing buffers longer

than the worst case delay. In this case, it is not difficult to maintain the system’s

stability as the system can be considered time-invariant. This idea was extended in

further research [Luck and Ray, 1994] and a delay-compensation algorithm using a

two-steps observer/predictor was formulated to handle the time-varying delays. Some

early work on compensation for time-varying delays in an NCS was done with the

assumption that delays are periodic as they are introduced by the communication

network due to deterministic scheduling and queuing [Zhang et al., 2001]. However,

neither constant nor periodic delays are a good model for an NCS with random access

networks, where random delays are generated.

Both Ethernet and WLAN are random access networks and are being widely used

as communication networks in NCSs. Various control methodologies have been dis-

cussed to provide timely transmission of control signals in an Ethernet based NCS

such as the queuing methodology [Tian et al., 2006]. As mentioned at the beginning

of this section, employing proper network communication protocols is another way to

compensate for delay and jitter. Protocols which enable hard real-time communication

on Ethernet have also been proposed [Loeser and Haertig, 2004; Ouni and Kamoun,

2002; Yiming and Eisaka, 2005].

If the communication network in an NCS is a wireless one with the IEEE 802.11

standard, it is still a challenging job to provide time constrained delivery of data for

real-time applications since a reasonable upper bound for transmission times cannot be

found. To provide timely transmission in a WLAN, modifications to the IEEE 802.11

protocols are necessary.

2.3. Compensation for Transmission Delay 21

Some new MAC layer protocols have been developed which reduce the missed

deadline ratio of real-time data in ad hoc wireless networks. In an ad hoc network with

the IEEE 802.11 standard, packet collisions and the transmission of packets that have

already missed their deadlines are two major factors that impact the missed deadline

ratio [Baldwin et al., 1999]. Sending an out-of-date packet wastes channel capacity and

could lead to failures of other packets meeting their deadlines. Packet collisions can be

avoided by selecting or deferring a proper back-off value (BV). Baldwin and his col-

leagues proposed a modified IEEE 802.11 protocol, RT-MAC, which uses additional

information to help a real-time WLAN meet packet deadlines [Baldwin et al., 1999].

These new pieces of information are: a transmission deadline of a packet and the

transmitting station’s next BV. The value of a packet’s deadline is examined three times

during its lifetime. A packet is first checked when it is in preparation for transmission

and it will be examined again after the back-off time expires. If the packet deadline has

not been exceeded, it is ready for transmission. The last examination happens when

this packet is not successfully transmitted (no acknowledgement is received). Once the

deadline is exceeded, the packet is discarded otherwise it will be retransmitted. This

transmission control algorithm for RT-MAC theoretically guarantees the timeliness of

a successfully received packet.

The enhanced collision avoidance algorithm (ECA) of RT-MAC reduces the prob-

ability of packet collisions and decreases the waiting time of packet transmissions in

the MAC layer. In the ECA algorithm, the contention window (CW) is no longer a

static value but eight times the number of stations in the network (the value of 8 is

based on the CW equation used by Bianchi et al [1996]. This comparatively large CW

causes less probability of two or more nodes selecting the same BV. Each packet that

is to be sent will have a BV in its header chosen by the transmitting station. Therefore,

other stations who hear the transmission will know that this BV is used. A station

must change to a new BV if its current BV is the same as the received one. Through

simulation, the missed deadline ratio, collision ratio and mean delay of successfully

received packets decreased dramatically when the IEEE 802.11 MAC layer protocol

22 Chapter 2. Previous and Related Work

was replaced by the RT-MAC. RT-MAC prevents different stations from choosing the

same BV to avoid packet collisions. However, it does not have any further control like

a smaller value of the back-off time should be given to a more urgent packet.

Pal et al [2002b] introduced a prioritized collision avoidance mechanism and a

deterministic collision resolution algorithm in the elimination by sieving protocol (ES-

DCF) that supports hard real-time data traffic in ad-hoc wireless networks. This novel

MAC layer protocol got its name in regard to the operation of a dynamic distributed

sieve-like mechanism in the collision avoidance phase of channel access.

A variable called the graded channel-free-wait-time is used in ES-DCF which is

suggested by Deng and Change [1999]. Each real-time packet has a graded channel-

free-wait-time that is used by the station to decide when to send its RTS. The closer

the deadline of the packet, the smaller is its graded channel-free-wait-time. Finer sub-

grades can be created if two or more packets fall into the same grade. The value of the

graded channel-free-wait-time decreases as the packet ages. By deploying this graded

variable, ES-DCF allows packets with higher priority access to the channel earlier

than those packets whose priority is lower. Collisions may still happen if two or more

packets get the same grade or sub-grade. In this situation, ES-DCF uses the method

of transmitting “black-burst” of signals. The length of the “black-burst” equals the ID

number of the real-time node and is unique. When a collision happens, a node with

a smaller ID number must defer its transmission attempt if it hears a black-burst of

longer duration. It is recommended that real-time nodes with higher data-generation

rates have greater node IDs. This collision resolution method is deterministic as the ID

number of each real-time station decides its transmission priority. A more complicated

window-splitting discipline proposed by Markowski and Sethi eat al [1998] can be

used in collision resolution.

As ES-DCF is designed to improve the performance of hard real-time traffic, Pal et

al extended their study by proposing the deadline bursting (DB-DCF) protocol which

works specifically for soft real-time traffic. The DB-DCF [Pal et al., 2002a] enables a

black-burst contention phase at the beginning of each channel access attempt. A node

2.3. Compensation for Transmission Delay 23

has to send a black-burst of length before its real-time packet transmission. The length

of the black-burst is affected by the deadline data packet. The closer the deadline, the

larger is the black-burst’s length. The node listens to the channel after its sending of

a black-burst. If a longer-duration black-burst is heard, it defers data transmission,

recalculates the burst length and starts a fresh black-burst contention cycle. If two or

more nodes have sent the same value of black-burst length, a collision occurs. In such

cases, a collision resolution phase is initiated. The collision resolution mechanism of

DB-DCF is the same as that of ES-DCF with the only exception that all nodes with

packets that experience collisions use the smallest channel-free-wait-time.

The specific distribution of channel-free-wait-time for each real-time packet makes

ES-DCF good at improving performance of hard real-time data traffic in terms of av-

erage transmission latency and throughput, while DB-DCF focuses on timely delivery

of soft real-time packets.

Besides these new MAC layer protocols, researchers also attempted to propose

protocols on other layers in order to satisfy real-time applications in wireless net-

works. A link layer protocol that meets timing requirements of real-time data transmit-

ted through high-speed link with non-negligible propagation delay was developed by

Wu [2001]. This Burst-oriented Transfer with Time-bounded Retransmission (BTTR)

scheme works on a burst-by-burst basis so that a large transmission window is em-

ployed for sending/receiving a burst of data. It adopted a Negative ACK instead of

the traditional ACK. A transmission is recognized as successful if the negative ACK

is not received within a predefined period. This scheme also limits the number of

retransmission trials to only one for each burst of data. Both the negative ACK and

limited retransmission are helpful to reduce transfer latency. However, on the other

hand, transmission reliability is affected. The decrease in delays is achieved by an

increase of the packet loss rate. Therefore, this burst-oriented transmission protocol is

only suitable for soft real-time applications such as video and voice.

QoS for a real-time application has many aspects. Besides transfer latency and

jitter, the reliability of transmission is also a key element. Some new methods fo-

24 Chapter 2. Previous and Related Work

cusing on improving reliability of real-time data transfer may result in degradation of

network performance in term of timing. Therefore, schemes are needed to optimize

the performance of these new methods in respect to transmission delays. Wang and

Zhen [2010] developed a reliable dynamic buffer UDP scheme (RDBUDP) to improve

the performance of Reliable UDP in the aspect of transmission delays and network

throughput. Reliable UDP is a UDP based protocol designed to guarantee the reli-

ability of UDP and is elaborated in the next section. The principle of RDBUDP is

that the sender identifies the buffer size that the receiver should reserve to store the

potentially disordered data before it receives the packets. When the buffer is full, the

receiver should rearrange the disordered packets and submit them to the upper layer

before it can start receiving new data packets. Unfortunately, Wang and Zhen [2010]

did not present any algorithm showing how the buffer size should be defined every

time. Lu [2001] gave an estimation of the buffer size using mathematical formula.

However, the formula is too complex and the estimation is not accurate enough. Some

other mechanisms designed to reduce the delay introduced by reliable transmission

schemes for real-time applications are presented by Afonso and Neves [2004; 2005].

2.4 Techniques for Packet Loss Compensation

Guaranteeing of transmission reliability is another challenge in providing QoS for

delay sensitive applications in a wireless NCS. However, network congestion and

wireless channel failure yields tremendous data dropouts. As real-time applications

can only afford a small number of packet losses, the performance of the system will be

improved if the data loss ratio can be reduced. Some techniques for avoiding packet

dropouts or taking appropriate action when a packet loss happens are proposed in

recent research.

It has long been understood that a communication protocol is an effective way of

maintaining and improving required performance of the whole network and individual

applications. At the transport layer, there is no doubt that TCP is the most famous

2.4. Techniques for Packet Loss Compensation 25

protocol for reliable data communications. The best explanation of TCP is documented

in the RFC 793 standard. It is a connection-oriented, end-to-end reliable protocol

designed over an unreliable network. One of TCP’s key functions is retransmission.

A positive ACK is expected from the receiving TCP for the sender’s successful data

transfer. If the ACK is not received within a timeout period, the data are retransmitted.

Lost or corrupted packets could be compensated for by retransmission. TCP also

has the responsibility to ensure the correct order of received packets. However, the

overhead of guaranteeing reliable and accurate data transfer reduces the network’s

throughput. Furthermore, TCP increases the average transmission delay and worsens

the jitter [Liu et al., 2002]. Thus, TCP is not suitable for applications where delay is

the first concern.

The UDP protocol is applied to delay sensitive applications instead of TCP for its

fast transmission and light weight. To overcome the unreliability of UDP, some new

protocols based on UDP were developed with schemes to reduce the data dropout ratio.

UDP-Lite is a novel version of UDP. It was proposed as some researchers found that

a number of “lost” packets had actually reached the in destination, but were discarded

by the UDP protocol stack as they failed the checksum [Larzon et al., 1999]. Using

UDP-Lite can reduce the number of discarded packets which makes the dropout ratio

decrease. The reason why packet discards do not happen very often for UDP-Lite is

that UDP-Lite allows for partial checksums. It only verifies the error-sensitive portion

of a UDP datagram. This portion is identified by the coverage field in the UDP-

Lite header. If the error-sensitive part of the datagram does not fail the checksum,

the whole datagram will be delivered to the applications. In this case, errors in the

insensitive portion of the datagram are ignored and the packets that are delivered to

the applications may have been partially corrupted. The applications may or may not

fix the errors. As UDP-Lite is designed for multimedia applications, a packet with

unfixable errors only causes a glitch and it not very harmful. Therefore, UDP-Lite is

able to improve the overall performance and quality of many UDP based soft real-time

applications [Singh et al., 2001].

26 Chapter 2. Previous and Related Work

However, there are obvious drawbacks of UDP-Lite that limit its effective use.

Larzon et al [2004] recognized the backward incompatibility problem of UDP-Lite.

The coverage field in a UDP-Lite header is essential for this protocol and it is changed

from the “UDP Length” field in a traditional UDP header. This replacement causes a

UDP-Lite header to be incorrectly interpreted by a traditional UDP application.

Also, without the cross-layer interaction between TCP/IP stacks and lower layers

such as the link layer, lower layers are not aware of the new checksum calculation

of UDP-Lite. Modern link layers with a strong cyclic redundancy check (CRC) will

discard damaged packets before these packets can be delivered to the transport layer.

Khayam et al [2003a] evaluated the suitability of a cross-layer design for UDP-Lite.

The authors suggested the combined use of MAC-Lite and UDP-Lite. The strategy

of MAC-Lite is to abandon retransmissions and pass partially corrupted packets to

higher layers. Simulation results verified that UDP-Lite with MAC-Lite did improve

the throughput and decreased the length of packet drop bursts for multimedia applica-

tions [Khayam et al., 2003a,b].

Lam and Liew [2004] mentioned another shortcoming of UDP-Lite: lack of flex-

ibility for the application layer to handle corrupted packets. They proposed a new

protocol which keeps the concept of UDP-Lite but has modifications that help to

overcome some of its drawbacks. This new protocol is named UDP-Liter. It uses

the traditional UDP header and does not change the checksum calculation. One major

function of UDP-Liter is that it has a run-time option not to discard data when a check-

sum fails. The other function is corruption notification (CN). Each packet delivered by

UDP-Liter has a CN through a parameter which can tell the application whether the

packet is corrupted or not. With the CN, the application can handle normal packets and

corrupted ones differently. Although UDP-Liter does not compensate for packets lost

in transmission between devices, it saves a number of discarded packets and makes the

data loss ratio decrease.

There are some other UDP based protocols intended to improve performance of

real-time multimedia communication by reducing the ratio of discarded packets. CUDP

2.4. Techniques for Packet Loss Compensation 27

(complete UDP) was proposed by Zheng and Boyce [2001] for video transmission

over internet-to-wireless networks. Instead of discarding error frames, CUDP passes

them to applications with the information of the location of erroneous frames. The

corrupted frame can be forced into an all “1” sequence so a media decoder can invoke

error concealment when it get this special sequence. The effect of error frames can

be minimized in this way. Zheng and Boyce [2001] also presented two FEC (forward

error correction) coding schemes at the packet level that can be used in combination

with CUDP. When employing FEC, CUDP erases corrupted frames and utilizes error-

free frames within the same packet to recover the lost information. If the packet loss

rate gets big due to network congestion or wireless channel errors, CUDP’s ability of

packet recovery shrinks. The advantage of CUDP also depends on the video quality

requirement.

Forwarding corrupted packets to the application rather than discarding them is

acceptable for certain types of real-time applications such as video and audio. More

packets can be received by applications so that the overall high-level throughput is

improved and the media quality is enhanced. For multimedia applications, many media

decoders have the right to decide whether to use or discard the corrupted packet.

However, it is a totally different story in NCSs. A damaged control signal may be

harmful to the whole system and has to be rejected. Therefore, this type of protocol is

not suitable for real-time control systems.

Relaying corrupted packets reduces the data discard ratio but cannot help if packets

are dropped before they reach the destination. Especially, for a wireless network, the

vulnerable wireless medium is more susceptible to errors and losses than a wired one.

There is no doubt that retransmission is the most well known and effective way to

provide reliable communications. TCP features its retransmission scheme but is not

able to be employed as the transport layer protocol for real-time applications. Many

researchers focus on developing protocols which provide retransmission when keeping

data timeliness in mind for delay sensitive applications.

The reliable UDP (RUDP) protocol was designed at Bell Labs to support reliable

28 Chapter 2. Previous and Related Work

transport of telephony signaling [Bova and Krivoruchk, 1999]. It rides on top of

UDP and adds some features that make packet delivery reliable and in-order. Ac-

knowledgement of received data, windowing and congestion control, retransmission

of lost packets, and overbuffering are four major characteristics of RUDP. According

to RUDP’s retransmission algorithm, the sender enables retransmission at the time-out

of the retransmission timer or when it receives an EACK (extended ACK) segment. If

an EACK segment is received, the sender checks this segment and determines which

segments should be retransmitted. An EACK segment contains the ACK number and

the last out-of-sequence ACK number. All segments between these two sequence

numbers that are on the unacknowledged sent queue are to be retransmitted. In the

condition of a retransmission time-out, all messages on the unacknowledged sent queue

are retransmitted. The time-out value is configurable in a retransmission timer. The

timer is initialized every time a segment is sent and will reset when receiving an

acknowledgement. 600 milliseconds is the recommended time-out value. Working

together with the retransmission timer is the retransmission counter. This counter

maintains the number of times a segment has been retransmitted. There is a con-

figurable maximum value for the counter. Once the counter exceeds its maximum, the

virtual connection is considered broken and a connection auto reset will be performed.

RUDP employs a SYN segment to establish the connection and synchronize se-

quence numbers between two hosts. Both the value of the retransmission timer and

the maximum number of the retransmission counter are specified in the SYN segment.

These two values are defined before the build of the connection and they are constant

over the connection’s lifetime. This implies that RUDP does not take into account

changes in the network’s condition. When the network’s condition turns bad, inappro-

priate retransmission will burden the link and cause a worse network condition, and

lead to degradation of the overall performance of communication.

The dynamic retransmission control for RUDP was proposed by Le et al [2009].

Their enhanced RUDP (E-RUDP) enables dynamic retransmission by employing the

data packet aging parameter, round-trip times (RTT) and the maximum cumulative

2.4. Techniques for Packet Loss Compensation 29

ACK count. Data packet aging specifies the maximum delay the application can

tolerate. Calculations of retransmission timeout and maximum retransmission count

are defined as below, where n is the max cumulative ACK count:

Retransmission T imeout =

(
n − 1

2
+ 1

)
Max Retransmission Count = d

Data Packet Aging
Retransmission T imeout

e

Their simulation results show that E-RUDP offers the highest average throughput

when compared with TCP, UDP and RUDP [Le et al., 2009]. However, E-RUDP is

designed for a typical airborne network environment to improve video quality; further

improvement to E-RUDP is needed to make it a more user friendly transport layer

protocol.

RUDP and a RUDP based protocol such as E-RUDP work well for certain real-

time applications whose emphasis is high throughput; however, they are not the most

suitable protocols for real-time applications in NCSs. In NCSs, throughput is no longer

the paramount element of system performance and data timeliness and reliability turn

out to be more important. It is known that the predominantly periodic traffic pattern

is a unique feature of industrial real-time control systems [Cena et al., 2008]. Under

normal conditions, the control frequency is fixed and the traffic load of the control

system is specified ahead. These characteristics mean that packets have fixed size and

are sent in a fixed period corresponding to the control frequency. Effectiveness of a

packet is very important. A packet turns ineffective when its control period ends and a

new packet arrives. Out-of-date packets could make devices perform vital actions that

lead to the failure of the whole system. A successfully received error-free packet may

be rejected if it does not arrive in time. In real-time control systems, the transmission

protocol should strictly direct both sender and receiver to discard a data packet if it is

ineffective.

Some researchers have attempted to develop methods of providing reliable data

30 Chapter 2. Previous and Related Work

transfer service with a guarantee of data effectiveness. Jonsson and Kunert [2008]

established a real-time scheduling analysis framework for real-time communication in

a wireless network. This framework combines ARQ (Automatic Repeat-reQuest) with

real-time scheduling analysis to achieve both reliability and real-time support. The

defined ARQ protocol in this framework is rather straightforward as both congestion

control and flow control is omitted. Retransmission is enabled as the technique to

compensate for packet loss. The allowed number of retransmissions and the length

of timeouts for retransmissions are calculated statically when they analyse the real-

time timing and scheduling, therefore the retransmitted packets are ensured to be

meaningful according to their deadlines. That is how both reliability and timeliness of

transmission can be guaranteed. However, as timing and scheduling analysis are done

before communication happens, the retransmission timeout duration and the number

of retransmissions are predefined and will not change after traffic starts. Thus, these

two values cannot be adjusted if the state of the network changes. It is well known

that wireless channel is not as stable as a wired one and varies easily. This framework

could not be suitable if the variation of channel is not taken into account. Another

drawback of this framework is that it can only be adapted to single-hop networks.

Further enhancements to this protocol are needed.

2.5 Other Network Elements that Influence Network

Performance

In the previous sections, the reviewed methods for network performance improvement

are either control methodologies or new network protocols. In fact, there are many

other network elements, such as data rates, packet sizes and even the number of com-

munication connections, which can affect the overall network performance. Research

in this area has been limited to date.

The time delay between the application layers of the client and the remote control

target under different sampling frequencies in an NCS has been measured and analysed

2.5. Other Network Elements that Influence Network Performance 31

by Cheng et al [2007]. Experiments were conducted in two different scenarios: 1. an

NCS including both the Ethernet and the CAN network (Controller Area Network);

2. an NCS using IEEE 802.11b technology with the CAN network. Their results

show that different sampling rates and environments will greatly affect the delay. In

scenario one, a lower sampling frequency will lead to a smaller mean delay around

2-3 ms, and the delay increases when the sampling frequency gets higher since the

transmission over the network becomes busy. In scenario two, the delay cannot be

solely determined by the sampling time. This is because the transmission efficiency in

a wireless network is not as reliable as in a wired one. Cheng et al [2007] also indicate

that the time-delay may become unacceptable in some cases where data transmission

rates are high.

Lee et al [2002] tried to figure out the relation between the maximum transmission

unit (MTU) and ad hoc network performance. In the case that all stations in the net-

work stay stable or have small movements, the throughput rate increases as MTU does.

Under bit error rate (BER)-base routing circumstances, MTU performs better if its size

is between 250bytes and 750bytes. Performance of the simulated ad hoc network was

found to reach its peak when MTU is set to 500bytes with 10-4 BER [Lee et al.,

2002]. W. H. He and his colleagues gave a formal description of UDP performance in

terms of end-to-end delays in ad hoc networks and theoretically analysed the optimal

UDP packet size [He et al., 2007]. They defined and used the concept of maximum

continuous throughput (MCT) [He et al., 2007]. It represents the maximum number

of packets sent along the same route by one single continuous transmission. Several

network scenarios with different values of MCT were set to analyse the performance

of UDP with different packet sizes. Hop numbers was also considered as a factor in the

analysis and it varied from 1 to 10. As the node’s mobility and traffic load are random

in real ad hoc networks, W. H. He proposed that the loose optimal range of packet size

for UDP is between 400bytes and 800bytes [He et al., 2007].

Itaya [2004] observed fluctuation of transmission latency during UDP packet ex-

change in ad hoc wireless groups. Simulation results show that the faster the packet

32 Chapter 2. Previous and Related Work

generation rate gets, the larger is the fluctuation of packet inter-arrival times. In the

low packet generation regime, the packet transmissions are stable with a minimal

fluctuation. In the high rate regime, where saturation of throughput happens, the delays

fluctuate wildly. The occurrence of large fluctuation is due to the intrinsic protocol

dynamics. Instead of modifying intrinsic protocols to minimize the fluctuation, Itaya

indicated that it is less complex to identify a rate regime in which the best trade-off

between fluctuation and throughput can be found. For those real-time applications that

prefer deterministic delays as well as relatively high throughput, a proper regime of

packet generation rate is appreciated. He used VOIP applications as examples and

applied his method for estimating the conditions of latency fluctuation to the design

of this type of fast data exchange applications. Given the number of nodes doing full

mutual communication in the network, Itaya can specify the suitable packet size and

data rate to achieve the best network performance (high throughput with rather small

latency fluctuations). John et al [2008] also believe that the influence of modes of

data transmission on the efficiency of wireless networks is worthy of analysis. Several

parameters were listed to help for the description of data transmission modes. They

are the size of the sent files, the number of connections and the duration between the

transmissions of the files.

For an IEEE 802.11 network, the primary source of packet losses is always con-

sidered to the errors in its physical medium. However, Salyers et al [2008] showed

that the wireless device itself plays an important role in packet loss. They analysed

occurrences of instantaneous loss and bursty loss for two receiving nodes respectively

in an ad hoc network [Salyers et al., 2008]. Experimental results show that the distance

between these two nodes and the data rate of packet reception influences the patterns

of loss.

Wang et al [2006] presented an optimized deployment strategy of mobile agents

in a wireless sensor networks which can efficiently decrease and stabilize the response

time of the central service node to requests from sensor nodes and improve real-time

performance. Parameters used in this deployment strategy are the creation sequence,

2.6. Summary of the Literature Review 33

the priority and the energy consumption of mobile agents. These three key factors are

synthesized to create an integrated metric which makes the deployment strategy user

friendly.

2.6 Summary of the Literature Review

As we have seen, in an NCS, providing reliable real-time transmission with deter-

ministic latency is the primary goal of a control network in order to guarantee high

performance of the system. When some data networks, such as Ethernet and WLANs,

are introduced to NCSs, for their advantages with respect to scalability, low cost and

high capacity, the performance of the control system is degraded due to network-

induced packet losses, non-deterministic delays and jitter. It is hard to model random

transmission delays accurately with mathematical formulations and compensate for

them through delay analysis in random access networks. This gets even harder in

wireless networks as they have additional transmission characteristics compared with

wired networks such as higher error rates, wireless link errors, host mobility, longer

delays, larger numbers of dropped packets and lower bandwidth.

In this literature review, time-delay and packet loss issues in control systems with

wireless networks were surveyed. Recent work on compensating for transmission

latency and data loss were studied. Many control methodologies have been developed

to make network-induced delays deterministic in NCSs. Such work is also conducted

from the aspect of the communication network by designing new protocols, especially

MAC layer protocols. One of the basic ideas for these MAC layer protocols is try to

control the random channel access and guarantee earlier access for packets with higher

timing priorities.

Research on reducing packet loss ratios in wireless networks was reviewed with the

focus on UDP protocol modification. Many UDP based protocols have been proposed

for real-time multimedia applications and their emphases are on the improvement of

network throughput and video/audio quality. However, technical gaps still remain to

34 Chapter 2. Previous and Related Work

be filled. Some methodologies can only work well when the channel congestion is

slight. Some protocols are incompatible with other protocols on the same layer and

higher layers. And there are also some schemes which achieve better performance in

delivering data timeliness but sacrificed the quality of other services such as the data

loss rate.

The most recent research described in Section 2.5 shows that network performance

can be affected by some other elements in a network apart from the network protocol.

It can be regarded as a supplementary effort to improve network performance in an

NCS while employing new control methodologies or network protocols.

The work presented in this thesis aims to fill the technical gaps which the literature

cited above has not bridged yet. As guaranteeing reliable and timely transmission for

real-time applications in a wireless NCS is a major challenge, a transport protocol that

provides for reliable transmission of typical data packets and keeps data timeliness

in mind is developed. Furthermore, strategies for network layout are also proposed

as they can be good supplements to network protocols or control methodologies to

achieve better overall network performance in an NCS.

Chapter 3

Network Layout Strategies for WNCSs

Wireless networks are being increasingly proposed as the basis for implementation

of real-time NCSs. However, they introduce unpredictable transmission latencies and

potential packet dropouts that can lead to system performance degradation or even

cause system instability. Most of the literature reviewed in Chapter 2 presented new

protocols or control methodologies to compensate for network introduced delays, jitter

and data losses. Although network protocols or new controller designs can help reduce

latency, jitter, or packet dropouts, they are not the only way to solve those network

introduced problems in WNCSs.

Network performance, especially wireless network performance, is affected by

many factors as a wireless channel is not as reliable as a wired one and is more

vulnerable to errors. The papers reviewed in Section 2.5 showed that many elements in

the network other than transmission protocols can be manipulated to improve network

performance. In this chapter, we analyse, through simulations, how sensors’ data rates

and network layouts affect network performance in terms of delays and data losses.

The data rate of sensors is one of the key factors that define traffic load in the network

and can greatly influence network performance.

Sensors in an NCS may or may not have the same data rate. Two case studies were

35

36 Chapter 3. Network Layout Strategies for WNCSs

conducted, with the first one for the case that all sensors in the NCS had the same data

rate, while the sensors in the second case study had different data rates. We aimed

to find a network layout that can help improve network performance for each case.

Strategies are proposed to reduce communication delays and the packet dropout rate

when sensors with different data rates are configured in one wireless network.

3.1 Basic Network Configuration and Evaluation Met-

rics in Simulations

The performance of data transmissions between multiple sensors and a central con-

troller in a wireless NCS was tested via simulation studies. Simulations were con-

ducted using the popular simulation tool, NS-2. A brief introduction to NS-2 can

be found in Section 4.4. An IEEE802.11b network was modelled with the basic

configuration listed in Table 3.1. The maximum range for a wireless network in NS-

2 is 250*250 square metres, and the networks in our simulations were set up to be

single-hop networks for simplicity. Since TCP traffic is not directly applicable for

real-time communication, UDP was employed as the transport layer protocol in our

investigation.

Table 3.1: Basic configuration for wireless model in simulations

Network standard IEEE 802.11b
Radio channel data rate 1.0 Mbps
Network area 250m * 250m square
Radio-propagation model Two-ray ground
Routing protocol Dynamic Source Routing
Wireless interface (MAC) buffer type Drop-tail priority queue
AntennaD OmniAntenna

In the wireless NCS we simulated, all communicating sensors were placed at fixed

locations within the network’s transmission range. The real-time application in each

sensor generated a data packet of 200bytes and transmitted it to the controller at the

3.2. Case One: Sensors with the Same Data Rate 37

sensor’s data rate. We assumed that all sensors start their communications when the

simulation starts. This means that sensors with different data rates may send packets at

different times provided the rates are not whole multiples of one another while sensors

with the same data rate may send a packet to the controller at the same time. Every

scenario in our simulations was conducted for 5 seconds. For performance evaluation,

the first 10 data packets was not counted because the nodes need some initial set-

up time for routing which would otherwise skew the measurements. The evaluations

performed were:

1. The relationship between the layout of the network, i.e., the network architec-

ture, and the communication delay and packet dropout rate;

2. The relationship between the data rate of sensors, and the communication delay

and jitter.

3.2 Case One: Sensors with the Same Data Rate

In this case study, the network’s performance was examined when all sensors have the

same data rate. Ten sensors communicate with the central controller in all scenarios.

As the data rate and packet size are fixed for all sensors, we could concentrate on

variations in the network layout to determine how to obtain the smallest transmission

latencies and packet loss rates.

Ten sensors were deployed in five different ways with the controller in the centre,

as shown in Table 3.2. These five different ways are named one layer, two layers, three

layers, five layers and ten layers, where each “layer” consists of one or more sensors

at the same distance from the controller. All the sensors are 100 metres away from

the controller when they are in one layer. Five sensors are 120 metres away from the

controller while the other 5 are 80 metres away from the controller in the situation

of two layers. For the situation of three layers, the distance between the controller

and sensors 1 to 3 is 70 metres; sensors 4 to 7 have a distance of 105 metres away

from the controller while the rest of the sensors are 140 metres away. In the five-layer

38 Chapter 3. Network Layout Strategies for WNCSs

setup, every two sensors have a certain distance to the controller: 60, 80,100, 120 and

140 metres. The setup of ten layers means each sensor has a different distance to the

controller, ranging from 60 metres to 150 metres.

Table 3.2: Layers and distances between sensors and the controller

Sensor Distance between sensors and the controller (metres)
Number 1 layer 2 layer 3 layer 5 layer 10 layer

1 60 60
2 70 70
3 80 80 80
4 90
5 100 100 100
6 105 110
7 120 120
8 120 130
9 140 140 140

10 150

After the five different layouts were set up, we generated different simulation sce-

narios with different values of data rates for all sensors. The data rate was changed

from 80kbps to 120kbps. For each scenario, the average delay of all received data

packets and the percentage of dropped packets was calculated. Tables 3.3 and 3.4

tabulate the simulation results.

Table 3.3 shows that the deployment of one layer produced the worst result in

most cases in terms of the end-to-end delay. This is not surprising because this layout

implies that the interference between sensors is the most severe. As all the sensors

have the same data rate, they attempt to send packets to the controller from the same

distance and at the same time. To avoid such strong interference, sensors should be put

at different distances to the controller (or, equivalently, they should all have different

fixed offsets from their common period).

Indeed, the results shown in Table 3.3 confirm that the 3-layer and 10-layer settings

perform better. However, it is still not clear which setting works best. For example, the

smallest average delay (8.84365 milliseconds) is obtained if sensors are deployed into

3.2. Case One: Sensors with the Same Data Rate 39

three layers when the data rate of sensors is 90kbps. If the data rate grows to 100kbps,

the minimum value of the average transmission latency is recorded in the case where

sensors are put into ten layers. Interference between sensors is thus the dominant cause

of transmission delays, rather than the physical distance, when the number of sensors

is large. Consequently, we can conclude that there is no preferred way of placing

sensors in order to get the smallest delay, given the short physical distances suitable for

wireless transmissions. Since the maximum transmission range for wireless sensors is

only 250 metres, the propagation delay is insignificant compared to interference from

other sensors. Nevertheless, the results still confirm our intuition that the worst case is

to put all sensors at the same distance from the controller, with the same data rate.

Table 3.3: Average end-to-end delays

Data rate Average end-to-end delay (milliseconds)
(kbps) 1 layer 2 layer 3 layer 5 layer 10 layer

80 8.83599 8.67104 8.73761 8.7821 8.75565
90 9.8784 9.20081 8.84365 8.82675 9.0127
95 11.382 11.361 13.807 10.235 12.556

96.97 32.8284 25.701 16.0296 20.0477 18.7519
100 95.7255 92.7384 89.43 102.765 72.4401
120 437.389 434.006 442.711 448.842 385.193

Table 3.4: Data packet loss ratio

Data rate Percentage of dropped data packets in communications)
(kbps) 1 layer 2 layer 3 layer 5 layer 10 layer
80 – 95 0% 0% 0% 0% 0%
96.97 0.56% 0% 0.07% 0.1% 0.03%
100 6.36% 6.43% 5.94% 6.33% 5.3%
120 19.0% 19.1% 19.0% 19.1% 18.3%

It can be observed from Table 3.3 that the transmission delay keeps growing sta-

tistically as the data rate gets higher. When the data rate increases to a certain value,

the time delay exceeds the transmission interval (period), which results in a packet

40 Chapter 3. Network Layout Strategies for WNCSs

“dropout”, i.e., a packet which arrives too late to be useful to the real-time computa-

tion, or not at all. Once the data rate exceeds this critical value, the delay increases

dramatically and a large number of dropouts can be seen. The percentage of dropped

packets to the total number of data packets transferred in the communication is listed

in Table 3.4 according to different data rates.

For simulations in this case study, with 10 sensors, the critical data rate is approx-

imately 96.97kbps (which means each sensor sends a data packet of 200 bytes every

16.5 milliseconds). At this point, the average delay begins to exceed the transmission

period and dropped packets begin to occur. Only when sensors are placed into three

layers can the average delay (16.03 milliseconds) be controlled within a transmission

interval (16.5 milliseconds). If the data rate is less than 96.97kbps, no dropouts will

happen, as seen in the first row of Table 3.4. However, when the data rate reaches

100kbps, the average delay is about 4 times more than the transmission period and the

percentage of dropouts ranges from 5.3% to 6.43%. The results get even worse if the

data rate reaches 120kbps, and even the smallest average delay could be 30 times as

long as the transmission period, besides which, more than 18.26% data packets are lost.

This is because packets are taking longer to reach their destinations than a transmission

interval, so there is a cumulative backlog of packets. Obviously, this is not acceptable

in real-time control. Thus the data rate must be carefully chosen to make sure that

almost every data packet can be received in a control period.

As a conclusion for case study one, we provide the following solutions for reducing

transmission delays and the packet dropout rate when all sensors in an IEEE802.11b

network have the same data rate:

• The data rate must be chosen with the maximum number of competing sensors

in mind; and

• Although the overall sensor layout is not a dominant factor in overall network

performance, sensors should not all be placed at the same distance to the con-

troller.

3.3. Case Two: Sensors with Different Data Rates 41

3.3 Case Two: Sensors with Different Data Rates

The previous case study was carried out without variations in data rate, i.e. all sensors

had the same data rate. Now we model and simulate the scenarios in which sensors

have different data rates. It is assumed that two different data rates exist in the network,

and the sensors are divided into two groups according to their data rates. Group 1 is

composed of the sensors with a higher data rate, while group 2 consists of the sensors

with a relatively low one. Both groups have the same number of sensors, and all sensors

communicate with the central controller. The packet size is still 200 bytes which is the

same for all sensors. Again, the simulation time of each run was carried out for 5

seconds, during which all stations stayed still without moving.

With the experiences obtained from case study one, we carefully chose data rates

for the sensors to guarantee that there was no severe transmission competition between

sensors. The total number of sensors was changed from 4 to 30 to generate different

scenarios. In each scenario, the average end-to-end delay of all successfully received

data packets was calculated in three situations:

1. Group 2 (composed of slow sensors) put closer to the controller;

2. Both groups placed at the same distance to the controller;

3. Group 2 (composed of slow sensors) deployed further away from the controller.

The delay performances are summarized in Figures 3.1 through 3.5. The dotted bar

represents the average delay in situation 1, while the lined bar records the average delay

in situation 2. The average delay in situation 3 is shown by the blank bar. As shown in

Figure 3.1, when there are only a few sensors, such as four, the best delay performance

is obtained when group 2, which has the lower data rate, is closer to the controller.

This happens because there is little interference between the sensors and their distance

is still the main cause of packet transmission latency. The closer all sensors are to the

controller, the smaller are the delays of packet transmissions. However, as the number

of sensors increases, the results change significantly.

42 Chapter 3. Network Layout Strategies for WNCSs

Figures 3.2 and 3.3 show that when there are 8 or 10 sensors, the shortest average

delay is recorded if group 2, with the lower data rate, is put further away from the

controller. The longest average delay occurs if group 2 is deployed closer to the

controller.

As shown in Figures 3.4 and 3.5, the smallest average delay can still be obtained by

deploying the sensors of group 2 at a further distance from controller. For 30 sensors,

the latency decreases significantly (by 5 milliseconds) if we put group 2 further away

rather than in the same area as group 1. The main difference in the results shown in

Figures 3.4 and 3.5, compared to those in Figures 3.2 and 3.3, is that the worst case

happens when the two groups are at the same distance to the controller.

Figure 3.1: Average delays when there are 4 sensors

Scenarios with 30 sensors are analysed in detail below. Group 1 consists of sensors

1 to 15. Sensors 16 to 30 are in group 2. Data rates were set to relatively small values

to reduce the interference among sensors as there were 30 sensors in these scenarios.

Sensors in group 1 had a data rate of 32kbps while sensors in group 2 had a data

rate of 20kbps. Three sub-scenarios were simulated according to the three situations

mentioned above. In scenario 1, group 2 is 25 metres away from the controller.

Distances between the controller and the sensors in group 2 are 50 metres in scenario

2 and 80 metres in scenario 3, respectively. Group 1 was always 50 metres away from

3.3. Case Two: Sensors with Different Data Rates 43

Figure 3.2: Average delays when there are 8 sensors

Figure 3.3: Average delays when there are 10 sensors

the controller in these scenarios. Therefore, the slow sensors were put closer to the

controller than the fast ones in scenario 1. In scenario 2, all sensors were at the same

distance to the controller, while fast sensors were deployed closer to the controller than

slow ones in the last scenario.

Table 3.5 lists the average delays of all successfully received data packets and the

percentages of dropouts in the three scenarios. Not only is the percentage of dropouts

44 Chapter 3. Network Layout Strategies for WNCSs

Figure 3.4: Average delays when there are 20 sensors

Figure 3.5: Average delays when there are 30 sensors

in scenario 3 three and four times smaller than those in scenarios 1 and 2, but also

the average end-to-end delay in scenario 3 is 5 milliseconds shorter than the latency in

scenario 2.

Sensor 6 and sensor 22 are chosen as the representatives of their groups and the

transmission behaviours of these two sensors can be seen in Figures 3.6 and 3.7.

Figure 3.6 depicts the end-to-end delay of every packet sent by sensor 6 (fast sensor)

in scenario 2 and 3. The delay performance of sensor 22 (slow sensor) is described in

3.3. Case Two: Sensors with Different Data Rates 45

Table 3.5: Average delays and data loss rates in the case of 30 sensors

Sub scenario Average delay Percentage of
(milliseconds) dropout

1 20.1664 0.12%
2 25.1165 0.16%
3 20.1130 0.04%

Figure 3.7. It was found that both the overall delay and jitter for the fast sensor and the

slow sensor decreased in scenario 3.

• For sensor 6, the average delay of all its data packets successfully received at

the controller is 26.498 milliseconds in scenario 2 and 17.945 milliseconds in

scenario 3, respectively. Also the jitter was reduced from 215.599 milliseconds

(scenario 2) to 73.0385 milliseconds (scenario 3).

• For sensor 22, the average end-to-end delay (jitter) is 27.0397 milliseconds

(120.546 milliseconds) in scenario 2 and 21.9447 milliseconds (75.448 millisec-

onds) in scenario 3, respectively.

The reduction of the communication delay allows us to allocate more time for

control computing, and the decrease in jitter enhances system stability and predictable

timing. Thus, according to these simulation results, the basic strategies for reducing

the time delay as well as jitter when sensors have different data rates are:

• Slow sensors should be placed farthest from the controller if there are a large

number of sensors in the wireless network;and

• Faster sensors should be put nearer to the controller.

46 Chapter 3. Network Layout Strategies for WNCSs

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 1 2 3 4 5

E
n

d
-t

o
-e

n
d
 d

e
la

y
 (

m
ill

is
e

c
o
n

d
s
)

Simulation Time (seconds)

scenario 2
scenario 3

Figure 3.6: Delays of data packets sent by sensor 6 in scenarios 2 and 3

3.4 Chapter Summary

NCSs suffer from long and random delays and data losses due to the introduction

of new networking technologies to control systems. Developing new network proto-

cols and control methodologies are two major ways of dealing with these network-

introduced problems. However, there also exist other methods for compensating for

end-to-end delays, jitters and packet dropout rates in an NCS. In this chapter, some net-

work layout strategies for IEEE 802.11b-based UDP/IP NCSs were developed based on

simulation analyses. End-to-end delays, jitters and data loss rates can be significantly

reduced by employing these strategies in the deployment of sensors.

Different sensors may have different data rates. In an NCS, there may be fast

sensors and slow sensors used together. Our strategies for reducing delays as well as

jitter in the case of sensors with different data rates are: to put faster sensors nearer

3.4. Chapter Summary 47

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 1 2 3 4 5

E
n

d
-t

o
-e

n
d
 d

e
la

y
 (

m
ill

is
e

c
o
n

d
s
)

Simulation Time (seconds)

scenario 2
scenario 3

Figure 3.7: Delays of data packets sent by sensor 22 in scenarios 2 and 3

to the controller while slower sensors are placed further away from the controller.

However, when all sensors have the same data rate, interference between sensors may

be a dominant factor in overall network performance. In this case, the data rate must be

chosen with the maximum number of competing sensors in mind, and sensors should

not all be placed at the same distance to the controller.

Strategies in this chapter are proposed from the perspective of network deployment

to improve real-time performance. From the aspect of communication scheme, a new

transport protocol is designed and presented in the following chapter which is more

efficient to provide reliable data transmission while guaranteeing data timeliness.

Chapter 4

Design of the Conditional

Retransmission Enabled Transport

Protocol

Providing reliable packet transmission as well as keeping data timeliness is a challeng-

ing problem in real-time wireless NCS research and development. The connectionless

UDP protocol transmits data at high speed and is usually chosen as the transport layer

protocol for real-time applications instead of TCP. However, reliable packet transfer

is not guaranteed due to UDP’s unacknowledged transmission. It is important to

make modifications to UDP to improve its reliability but keep its fast transmission

performance over wireless networks for real-time applications.

A transport layer protocol solving packet dropout related problem in wireless NCSs

is developed in this research. This Conditional Retransmission Enabled Transport

Protocol (CRETP) is based on modifications to UDP. It adds functions for retransmis-

sion and acknowledgment. The CRETP significantly improves transmission reliability

while maintaining average delay at an acceptable level.

49

50 Chapter 4. Design of the CRETP Protocol

4.1 Logical Design of CRETP

Fast transmission enabled protocols such as UDP usually lack reliability guarantees.

Protocols providing reliable and ordered data transfer, like TCP, often introduce long

and non-deterministic transmission latencies as they have to make sure that every

packet is correctly received by its destination. For those real-time systems requiring

both timeliness and reliability of data transmission, a trade-off between timeliness and

reliability must be considered.

The Conditional Retransmission Enabled Transport Protocol is a UDP based pro-

tocol with the ability to conditionally retransmit unacknowledged packets. Figure 4.1

shows the relationship of CRETP to the other protocols and layers of the TCP/IP

protocol suite. CRETP lies between the application layer and the IP layer and, like

UDP, serves as the intermediary between the application programs and the network

operations.

Figure 4.1: Position of CRETP in the TCP/IP protocol suite

CRETP enables a reliable transmission guarantee on the transport layer. Since this

protocol is designed for NCSs, the reliable transfer of a packet not only means the

4.1. Logical Design of CRETP 51

successful receipt of a packet at the receiving node, it also implies that the received

packet is effective. By “effective” we mean a data packet in a real-time control system

which satisfies both data correctness and data timeliness. A packet is considered

effective only if: 1. it does not fail the checksum; and 2. it is not out-of-date. A data

packet which fails its checksum is assumed to have been corrupted during transmission.

When a data packet reaches its destination after the arrival of fresher data sent by the

same source, it is recognized as an out-of-date packet. This could happen because

packets transmitted in a connectionless way are independent and may choose different

transmission routes. (Also see Section 4.3.1)

Our philosophy in the development of CRETP was based on the following aspects:

1. Keep the simplicity of UDP unchanged to maintain a similar level of fast trans-

mission;

2. Enable a conditional retransmission function to provide reliable transfer of pack-

ets. Retransmission in CRETP is dynamic and employs parameters such as the

current packet transmission latency in the network channel;

3. Check effectiveness of received packets to guarantee data timeliness.

Some feature services of CRETP that implement the above ideas are elaborated in

the next few sections.

4.1.1 Connectionless Services with Acknowledgment

CRETP inherits UDP’s connectionless service to the keep protocol simple. This means

that there is no need to establish a connection with three-way handshaking and each

packet is independent and can travel on a different path. There is no flow control in

CRETP either, and hence no window mechanism. These simplicities save network

resources and enable the fast data transmission of CRETP.

In order to provide reliable data transmission in an NCS, CRETP adds a sequence

number to each data packet and enables acknowledgment for every successful data

52 Chapter 4. Design of the CRETP Protocol

transmission. Sequence numbers represent the sending time order of a sequence of

control packets. The earlier the control packet is generated, the smaller is its sequence

number. For each control packet, there should be a corresponding acknowledgment

packet for its successful transmission. Figure 4.2 demonstrates the successful delivery

of data packet and the receipt of its acknowledgment.

Figure 4.2: CRETP’s delivery of data packet and its acknowledgment

4.1.2 Conditional Retransmission Service

Retransmission is the method used by CRETP to guarantee reliable data transfer. A

packet will be retransmitted if it is lost during transmission or discarded by the receiver.

Retransmission does not happen if a corresponding ACK of a data packet is received

in time at the sender. CRETP retransmits a data packet in the following situations:

• A data packet is lost during transmission.

• A data packet is discarded at the receiving end due to its ineffectiveness.

• The corresponding ACK is lost during transmission.

• The corresponding ACK arrives late at the sender (i.e., the retransmission timer

on the sending end expires before the corresponding ACK arrives).

4.1. Logical Design of CRETP 53

Figures 4.3 to 4.6 illustrate retransmissions due to different reasons.

Figure 4.3: Retransmission of a lost packet

Figure 4.4: Retransmission of a corrupted packet

54 Chapter 4. Design of the CRETP Protocol

Figure 4.5: Retransmission due to a lost ACK

Figure 4.6: Retransmission due to a delayed ACK

However, CRETP’s packet retransmission is different from TCP’s endless by re-

peating retransmission when an ACK is not received by the sending end. The occur-

rence of retransmission is constrained as CRETP is designed for real-time NCSs. In

4.1. Logical Design of CRETP 55

an NCS, a control packet is only effective within its control period. New information

will be generated when the next control period starts. It is useless and a waste of

network resources to retransmit a control packet when newer control data is ready to

be sent. Therefore, CRETP stops retransmitting a packet if the current control period

expires and new control data becomes available. A small number of retransmissions

can achieve a notably lower data drop rate without producing too much redundant

traffic.

4.1.3 Detection of Ineffective Data Packets

CRETP should have the ability to check the effectiveness of a received packet. Only

an effective packet will be relayed to the upper layer and the destination CRETP

will silently discard a packet that is considered ineffective. There are three types of

ineffective packets: out-of-date packets, duplicated packets and packets which fail

CRETP’s checksum.

If a control packet arrives later than a newer one, the old packet is out-of-date. As

mentioned in the previous section, a control packet is useless and ineffective if it is

out-of-date. Duplicated data packets are transmitted by the source CRETP due to the

loss of an ACK. Errors may happen during data transmission, and CRETP’s checksum

has the ability to detect a corrupted packet. These three types of packets will be refused

by the destination CRETP.

4.1.4 State Transitions

To keep track of all the different events happening during data transmission, CRETP

software can be implemented as a finite state machine. Table 4.1 shows the states for

implementing CRETP.

CRETP progresses from one state to another in response to events. Figures 4.7 and

4.8 illustrate the state transitions of a source CRETP and a destination CRETP network

node respectively.

In the source CRETP state transition diagram, the source can be in one of the

56 Chapter 4. Design of the CRETP Protocol

Table 4.1: States for CRETP

State Description
CLOSED Protocol is idle
WAIT The source CRETP is waiting for data from

the application layer
LISTEN The destination CRETP is waiting for data

from the source
PKT-GOT CRETP has data from the application layer to

send to its destination
PKT-SENT Waiting for acknowledgment of data sent
PKT-RCVD A CRETP packet has been received; checking

effectiveness of the packet
PKT-PSD Effective data is passed to the application

layer

following states: CLOSED, WAIT, PKT-GOT and PKT-SENT. The explanation of

Figure 4.7 is as follows.

Figure 4.7: Source CRETP state transition diagram

4.1. Logical Design of CRETP 57

• The source CRETP starts in the CLOSED state. While in this state, the source

CRETP can receive an active open request from the source application program

and goes to the WAIT state;

• While in the WAIT state, the source CRETP waits for data from the application

layer. Once the application data arrives, CRETP goes to the PKT-GOT state. If

CRETP is informed that the current data is the last one for this communication

between sender and receiver, it will returns to the CLOSED state when the last

control period expires;

• While in the PKT-GOT state, the data from the application layer is encapsulated

in a CRETP packet. Then, the source CRETP sends this packet to its destination

and goes to the PKT-SENT state. Note that this might be a retransmission of the

previous packet due to the time-out of the retransmission timer;

• In the PKT-SENT state, the source CRETP checks if there is any new data com-

ing from the application layer. Once new data arrives, the source CRETP cancels

the retransmission timer and goes back to the WAIT state directly. In the case that

there is no new data to be sent, CRETP may have the following actions. It starts

a retransmission timer and waits for the acknowledgment. If an effective ACK is

received before the time-out of the retransmission timer, CRETP considers the

previous data transmission to be successful. Then it cancels the retransmission

timer and returns to the WAIT state. If no ACK arrives and the timer expires, the

source CRETP resets the retransmission timer and goes back to the PK-SENT

state to retransmit the lost packet.

In the destination CRETP state transition diagram, the destination can be in one of

the following states: CLOSED, LISTEN, PKT-RCVD and PKT-PST. The explanation

of Figure 4.8 is as follows.

• The destination CRETP starts in the CLOSED state. While in this state, the

CRETP can receive a passive open request from the application layer. It then

goes to the LISTEN state;

58 Chapter 4. Design of the CRETP Protocol

• While in the LISTEN state, the destination CRETP may receive packets from the

source CRETP. Once the packet arrives, CRETP goes to the PKT-RCVD state to

check the effectiveness of the received data;

• In the PKT-RCVD state, the destination CRETP can have two different actions.

If the received data is not effective, CRETP simply discards it and returns to the

LISTEN state. Otherwise, CRETP transmits this packet to the application layer

for further processing and goes to the PKT-PST state;

• While in the PKT-PST state, an ACK is prepared to send to the source CRETP. If

the received packet is the last one of this communication sequence between the

sender and receiver, a LAST ACK is sent, and the destination CRETP returns to

the CLOSED state to end the communication. Otherwise, a normal ACK is sent

and CRETP goes to the LISTEN state to continue receiving data.

Figure 4.8: Destination CRETP state transition diagram

4.2. CRETP Packet Format 59

4.2 CRETP Packet Format

A CRETP packet has a fixed-size header of 16 bytes. Its header is an extension of

the traditional UDP header. It can be seen in Figure 4.9 that CRETP keeps the first 8

bytes of its header the same as a UDP header. The following part of a CRETP header

is divided into three fields. They are the sequence number field, the flag field and the

timestamp field. The fields in a CRETP header are elaborated as follows:

Figure 4.9: Format of a CRETP packet

• Source port number. This is the port number used by the process running on the

source host. It is 16 bits long, which means that it can range from 0 to 65535.

• Destination port number. This is the port number used by the process running

on the destination host. It has the same length as the source port number field.

• Total length. This is a 16-bit field that defines the length of the CRETP packet,

header plus data. The minimum length is 16 bytes, which indicates a CRETP

packet with only a header and no data.

• Checksum. This field is used to detect transmission errors over the entire CRETP

packet (header plus data). The CRETP checksum calculation is exactly the same

60 Chapter 4. Design of the CRETP Protocol

as UDP’s. When the receiver detects an error through the checksum, the packet

is silently discarded.

• Sequence number. This 16-bit field contains the sequence number of a packet.

Once a source CRETP is called by an application to start a series of data trans-

fers, it will create a sequence number for each packet according to the incoming

sequence. The earlier a packet comes, the smaller is its sequence number. Thus,

the sequence number can show the age of a packet in a certain communication.

In an NCS, the control packets are often fixed in size and are typically short,

e.g., a few hundreds or even tens of bytes. The size of a CRETP data field is

more than enough for a control packet. Therefore, each control packet can be

encapsulated in one CRETP packet and gets a unique sequence number for the

current communication between two nodes in an NCS. CRETP can handle the

situation when a data packet is too big for a single CRETP packet. It divides the

data packet into small segments and encapsulates these segments into different

CRETP packets. However, this situation seldom happens in an NCS. For a

CRETP ACK packet, the sequence number field records the sequence number

of the data packet this ACK acknowledges.

• Flag. The flag field is provided to identify the type of a CRETP packet because

CRETP uses two different kinds of packets. The value of a flag can only be 0 or

1. If the packet is a CRETP ACK message, the flag is 1. Otherwise, the flag is

set to be 0 to denote a data packet.

• Timestamp. The timestamp is the last field in a CRETP header and it is 32 bits

long. For a data packet, the timestamp records the time when this packet is sent.

For a CRETP ACK, this field records the sending time of the data packet which

this ACK corresponds to.

4.3. The Mechanisms in CRETP 61

4.3 The Mechanisms in CRETP

CRETP is a reliable transport layer protocol, which means that an application program

that delivers data to CRETP relies on CRETP to transmit those data to the application

program on the other end without error, and without any packet loss or duplication.

For real-time applications, there is an additional requirement for the arrival of packet

at the destination. The packet should be time effective.

CRETP provides reliability using error control. Error control includes mechanisms

for detecting corrupted packets, lost packets, out-of-date packets, and duplicated pack-

ets. Error detection and error correction are two aspects of error control.

Error detection in CRETP is achieved through the use of three methods: check-

sums, acknowledgments, and time-outs. Each CRETP packet has the checksum field in

its header, which is used to check for corruption in the whole packet (header plus data).

If a packet is corrupted, it is discarded. The destination CRETP also discards packets

that are out-of-date no matter whether the packet is corrupted or not. Both corrupted

packets and out-of-date ones are considered as ineffective packets. CRETP uses the

acknowledgment method to confirm the receipt of those effective packets that have

arrived at the destination. If a packet is not acknowledged before the retransmission

time-out, it is considered to be either ineffective or lost.

Error correction in CRETP is conducted using a conditional retransmission mecha-

nism. The source CRETP starts the retransmission of a packet if the ACK of this packet

is not received before the retransmission timer expires. Mechanisms used in CRETP

for error detection and error correction are elaborated in the following sections.

4.3.1 Mechanism for Data Effectiveness Detection

Not all the packets that reach the receiver will be accepted by the destination CRETP

node at the transport layer. Effectiveness of an arrived packet is detected before CRETP

conducts further actions.

There are several processes in the data effectiveness detection. Firstly, the received

62 Chapter 4. Design of the CRETP Protocol

packet cannot fail the CRETP checksum. This error detection method is used by most

TCP/IP protocols. The checksum protects against corruption that may occur during the

transmission of a packet. A packet that fails the checksum is considered as a corrupted

packet and will be refused by CRETP. The CRETP checksum is exactly the same as

the UDP checksum. Please refer to the UDP checksum if detailed specification is

needed [Forouzan and Fegan, 2003]. Figure 4.4 demonstrates the situation when the

receiver gets a corrupted packet.

When a packet successfully goes through the checksum, the destination CRETP

checks its sequence number. In an NCS, data timeliness is an important element that

can affect the overall system’s performance. An expired packet has to be detected and

rejected even if it does not fail the checksum. The sequence number in a data packet

header is the identifier that tells the age of the data. The smaller the sequence number

is, the older is the packet. CRETP compares sequence numbers of the current received

packet with the value in its sequence number identifier. The sequence identifier is a

variable which saves the sequence number of the latest effective packet. If the current

received packet has a smaller sequence number, it is regarded as out-of-date and will

be discarded. Figure 4.10 describes the occurrence of an out-of-date packet.

A duplicated packet is also ineffective and should not be relayed to the application

layer. If the sequence number of the current received packet equals the value in the

sequence identifier, this packet is defined as a duplicated one. CRETP simply discards

duplicated packets. The arrival of a duplicated packet is illustrated in Figures 4.5 and

4.6, while Figure 4.11 is the flow chart for CRETP’s mechanism for data effectiveness

detection.

4.3.2 Acknowledgment Mechanism

CRETP uses the acknowledgment method to confirm the arrival of an effective data

packet at the receiving end. The destination CRETP generates a corresponding ACK

packet for each effective data packet it receives. Usually, a CRETP ACK is a CRETP

packet with zero bytes of data. CRETP tells the type of a CRETP packet by checking

4.3. The Mechanisms in CRETP 63

Figure 4.10: Occurrence of an out-of-date packet

the flag field in the packet header. When the flag equals 1, it indicates that this packet

is a CRETP ACK.

Despite the flag field, there are other two fields in the ACK header that play im-

portant roles in CRETP. They are the sequence number field and the timestamp field.

CRETP does not specify sequence numbers for its ACKs. When generating an ACK

packet, CRETP saves the sequence number of the corresponding data packet into the

ACK’s sequence number field. By doing so, the source CRETP can tell which data

packet this ACK acknowledges. The timestamp field in the ACK header provides key

information for RTT calculation at the source CRETP. When an effective data packet

is accepted by the destination CRETP, the value in its timestamp field is copied and

saved in the timestamp field of its corresponding ACK packet.

The source CRETP will check the effectiveness of the receiving ACK. An ACK is

only effective when its sequence number equals the sequence number of current data

packet in source CRETP. It implies that a delayed ACK is considered to be effective

and will be discarded. Negative acknowledgments are not used in CRETP.

64 Chapter 4. Design of the CRETP Protocol

Start

Receive a data packet

Packet fails

checksum?

Discard corrupted

packet

Y

A duplicated packet or an

out-of-date packet?

N

Discard the packet

Y

Packet

processing
N

Send an ACK

End

Figure 4.11: Packet effectiveness detection

4.3.3 Conditional Retransmission Mechanism

To compensate for lost or discarded packets, the source CRETP has the ability to

retransmit those packets to their destinations. This conditional retransmission mecha-

nism is the key feature of CRETP.

Since CRETP is designed for real-time data transmission in an NCS, it must achieve

data timeliness while providing reliable transmission. A unique feature of real-time

control systems is the predominantly periodic traffic pattern, and the traffic load for

each control loop is known in advance with a fixed control frequency [Cena et al.,

2008]. A control packet is effective within its control period, and it becomes useless

when a new control packet becomes available at the start of a new control period.

Therefore, retransmission of the current control packet has to be stopped when a

new control period starts and the new control packet is ready to be sent. This is the

4.3. The Mechanisms in CRETP 65

constraint of retransmission in CRETP.

Like other retransmission enabled protocols, CRETP employs a retransmission

timer that handles the waiting time for an acknowledgment of a data packet. When

the source CRETP sends a data packet, it creates a retransmission timer. Then, three

situations may occur:

1. If an acknowledgment is received for this particular data packet before the timer

expires, the timer is cancelled;

2. If the timer expires before the acknowledgment arrives, the data packet is re-

transmitted and the timer is reset;

3. If CRETP is called by the application layer to send new data, the timer is can-

celled and CRETP starts transmission of the new data.

However, there is a problem: how to choose the time-out value of a retransmission

timer? CRETP is a connectionless protocol, which means that each CRETP packet is

independent and may travel on different paths. Different paths have different lengths.

Selecting a fixed retransmission time for all data packets in a certain communication

sequence can result in serious consequences. For example, if the time period between

sending a data packet and receiving the corresponding ACK is much longer than the

retransmission time, it may result in retransmission of a redundant data packet. Trans-

mitting redundant packets wastes network resources. Conversely, if the retransmission

time is much longer than necessary for a short path and a retransmission is needed,

it can cause the delay of data retransmission which is not in favour of delay sensitive

applications. Even in the case where all sending data packets choose the same path,

the retransmission time should not be constant when the network’s condition is taken

into account. A packet can be transmitted much faster during non-traffic periods than

in a congested period.

In order to provide efficient retransmission, CRETP uses a dynamic retransmis-

sion time that may be different for each data packet and can be changed during the

communication. In CRETP, the retransmission time is made dynamic by basing it on

66 Chapter 4. Design of the CRETP Protocol

the average value of the round-trip time (RTTe). Formula 4.1 shows how the RTTe is

applied in the calculation of the retransmission time.

Retransmission time = β × RTTe (4.1)

In the above equation, factor β must be larger than 1. β’s value is usually set based

on the network’s condition or past experience. When β is small, e.g., β is just a little

over 1; CRETP can know about packet loss as soon as possible and starts retransmis-

sion immediately. However, it may cause a relatively large number of retransmissions

and burden the network. If β has a large value, CRETP has to experience a long

waiting time. Due to CRETP’s constraint of retransmission, a lost packet can not

be retransmitted if new data becomes available before the retransmission time-out.

Therefore, a long waiting time may result in unreliable data transmission. The most

common value of β is 2, and we recommend that the value of β is in the range from 1.5

to 2.

Calculation of RTTe should be dynamic as well. CRETP measures the time be-

tween the sending of the first data packet and the receipt of its acknowledgment. This

time is the first round-trip time of a communication between the source and destination.

The value of RTTe used in the calculation of the retransmission time of the following

data packet is then updated according to Formula 4.2.

RTTe = α × RTTp + (1 − α) × RTTc (4.2)

RTTp is the previous RTTe and RTTc is the round-trip time of the latest data packet.

The source CRETP calculates RTTc as soon as it receives an effective ACK for the

current data packet. Constant α is a smoothing factor between 0 and 1. It affects the

reaction of RTTe to changes of the network’s condition. When α is chosen to be close

to 0, like 0.001, RTTc plays the dominant role in the calculation of RTTe. This implies

that the current network condition may significantly affect the average round-trip time

of the communication, which is not preferred. For example, the present RTTc might be

4.3. The Mechanisms in CRETP 67

very large due to a transient error in the network channel. With a small α, the updated

RTTe is exaggerated, which reduces the efficiency of retransmission if network channel

recovers very soon. Therefore, our recommended value of α is in the range from 0.8

to 0.9.

In the estimation of the present RTTc, a problem would occur in the situation

described as follows. Suppose that the data packet is not acknowledged before the

expiry of the retransmission timer, and it is therefore resent. When the source CRETP

node receives an ACK for this data packet, it does not know if the acknowledgment

is for the original data or for the retransmitted one. If the original data was lost or

discarded and the ACK is for the retransmitted one, the value of RTTc should be

calculated based on the departure time of the resent data packet. Conversely, if the

original data was accepted by the receiver and the ACK is for the original one, the

value of RTTc should be calculated based on the departure time of the original data

packet. This dilemma was solved by Karn [Forouzan and Fegan, 2003]. Under Karn’s

algorithm, the RTT of a retransmitted packet is simply not measured. The value of

RTTe should not be updated until the CRETP node receives an acknowledgment for

the current data packet without any retransmission. This completely eliminates the

problem of acknowledgment ambiguity.

However, when Karn’s algorithm is used, increased delays due to retransmissions

are not detected, which cannot be used to update the average round-trip time. Hence,

further modification is needed for the calculation of retransmission time. A timer

back-off scheme is applied along with Karn’s algorithm in CRETP to prevent retrans-

missions from being sent too frequently. When a packet retransmission occurs, the

retransmission timer is rescheduled to a back-off value rather than the same value it was

set for the initial retransmission. The back-off value is set to be twice as much as the

previous retransmission time when a “back off” happens for the first time. There exists

the probability that retransmission for a particular data packet happens several times.

In this circumstance, the back-off value continues to grow every time a retransmission

happens using a multiplier (typically 2) until a retransmission is successful or it reaches

68 Chapter 4. Design of the CRETP Protocol

its maximum. In our simulations, the maximum of a back-off value is 6 times that of

the present RTTe by constraining the maximum number of retransmission to be 3 for

each packet.

Figure 4.12 shows the packet sending procedure at the source CRETP. The dashed

block represents a retransmission loop. CRETP will terminate the on-going process in

a retransmission loop if it receives new directions from the application layer. This

implies that retransmission for the current packet is only allowed before new data

comes.

4.4 Protocol Implementation in NS-2

Experimentation and simulation are two different methodologies suitable for protocol

evaluation. However, a large-scale experiment, e.g., tens of hosts communicating

with each other in an area of 250 square meters, can be labour intensive, costly and

logistically difficult.

Simulation is a cheaper and easier-to-implement assessment method for protocol

design and evaluation. A well designed simulation tool can provide comprehensive

and precise simulations. NS-2 is a well-known and widely-used discrete event-driven

simulator with a very rich library of network and protocol objects [Groups, 2007]. It

provides a split-level programming model in which the detailed definition and opera-

tion of protocols is done in the C++ programming language while simulation setup,

such as the network topology and the specific protocol that we wish to simulate, is

done in an object oriented scripting language (OTcl) [Altman and Jimenez, 2003].

There are many advantages when NS-2 is used as the simulation tool for CRETP.

Due to NS-2’s class hierarchy, it is easy to implement the interface that lets upper

layer protocols call CRETP. The protocol itself is implemented as a protocol agent in

NS-2 using C++, and testing this new protocol under appropriate network conditions

is achieved by developing Tcl scripts. The simplicity of the Tcl scripting language

makes it easy to generate different simulation scenarios, while C++’s richness makes

4.4. Protocol Implementation in NS-2 69

Figure 4.12: CRETP’s packet sending procedure

CRETP efficient to run.

Figures 4.13 to 4.18 present detailed sub algorithms for CRETP’s main operations

when it is implemented in NS-2. CRETP’s working mode depends on how it is invoked

by an application. If it is an active open call from an application, CRETP works as a

70 Chapter 4. Design of the CRETP Protocol

source sending data. Conversely, CRETP works as a destination receiving data when

it gets a passive open call. The following two sections elaborate the implementation

algorithms of CRETP’s operations in NS-2 from the view of a source CRETP and the

view of a destination CRETP respectively.

Set retransmission time

 = (rtt / 1000.0) * 1.5

Create retransmission timer

Send packet

Start retransmission timer

TCL tracing process

End

Start

Figure 4.13: Data packet sending process in a source CRETP

4.4.1 Main Operations in Source Mode

CRETP is invoked and gets data from applications when the sendmsg() function is

called. When CRETP works as the source in a communication, the packet type is

initialized as a CRETP data packet. Several parameters must be initialized before

the start of communication. For instance, the sequence number is initialized as −1.

When selecting the initial value for variable rtt which represents the average RTT ,

4.4. Protocol Implementation in NS-2 71

Generate a CRETP packet

Access packet header

Specify packet type as data packet

Set packet sequence number

Save current time to timestamp field

End

Encapsulate application data

Start

Figure 4.14: Data packet generation in a source CRETP

some elements, such as the network scale’s and condition, can be taken into account to

improve CRETP’s efficiency. During our simulations, rtt was usually initialized to 10

milliseconds, so the initial retransmission time was 20 milliseconds.

After initialization, CRETP starts the communication with the addressed destina-

tion. The main operations of a source CRETP node include sending the data packet,

retransmitting the current data packet if necessary, and receiving and processing ac-

knowledgements from the destination.

Figure 4.13 shows that algorithm for the transfer of a new packet, while Figure 4.15

describes CRETP’s retransmission process. Note that the retransmission process may

be terminated if an effective ACK is received or a new direction from the application

arrives. The sub process of data packet generation in Figure 4.13 is elaborated in

Figure 4.14. CRETP has the ability to divide application data into small parts if the

72 Chapter 4. Design of the CRETP Protocol

Retransmit current packet

Retransmission

time-out?

Has packet been retransmitted

for 3 times

rtt * 2

N

Updata retransmission time = rtt

Start retransmission timer

End

Y

Y

N

Start

Figure 4.15: Retransmission process in a source CRETP

data is too big for a CRETP packet. However, since a real-time control packet is

typically much smaller than a CRETP packet, Figure 4.14 only shows the case where

the entire application packet is sent within a single CRETP packet. Besides sending

data packets, the source CRETP receives ACKs from the destination. Figure 4.16

shows the process for receiving and handling ACKs in the source CRETP node.

4.4.2 Main Operations in Destination Mode

The recv() function in CRETP will be called by an application to start receiving CRETP

data packets from a sender. When CRETP acts as the destination in a communication,

4.4. Protocol Implementation in NS-2 73

Receive packet

Access packet header

An ACK?

effective ACK?

Free ACK

End

N

Y

N

TCL tracing process

Cancel retransmission

timer

Get time from timestamp field

Calculate rtt

Y

Start

Figure 4.16: ACK receiving and processing in a source CRETP

the returned packet type is initialized as a CRETP ACK packet. The initial value for

seq (the variable for sequence number checking) is 0.

The main behaviours of a destination CRETP includes receiving data packets from

the source, checking data effectiveness, and acknowledging effective packets. Fig-

ure 4.17 shows CRETP’s packet receiving process. Data effectiveness detection is

included in this flow chart. It can be observed that CRETP only recognizes the effective

74 Chapter 4. Design of the CRETP Protocol

 Effective Data ?

Get packet sequence number

End

Y

Receive packet

Access packet header

A data packet?

Y

ACK generation process

Get application data

Relay data to the application layer

Free data packet

N

N

Update value of seq

Start

Figure 4.17: Data packet receiving process in a destination CRETP

data. It ignores the difference between duplicated data and an out-of-date packet, and

simply discards both of them. This is implemented by comparing the sequence number

of the current data packet with the value of seq. Variable seq records the next sequence

4.4. Protocol Implementation in NS-2 75

Generate an ACK packet

Access ACK header

Set ACK flag

Set ACK sequence number

Fill ACK timestamp field

with value of sendtime

Sent ACK

End

Start

Save sending time of data

packet to sendtime

Figure 4.18: ACK generation in a destination CRETP

number that is expected by a CRETP node. A packet is considered effective only when

its sequence number is not less than seq.

The receiving action for the first effective data packet is a bit different from the

receiving process for others. When the first uncorrupted data packet arrives, CRETP

does not check its sequence number. Instead, CRETP saves its sequence number in

seq and increases seq by 1.

The process of ACK generation is illustrated in Figure 4.18. In our simulation, the

size of a CRETP ACK packet is set to be 64 bytes.

The source code of CRETP with explicit comments is given in Appendix B. Please

76 Chapter 4. Design of the CRETP Protocol

refer to them for detailed CRETP implementation in NS-2.

4.5 Chapter Summary

A transport layer protocol compensating for data losses with data timeliness in mind

was presented in this chapter. This conditional retransmission enabled protocol, CRETP,

is designed for real-time communications in NCSs where every data packet has a

deadline. A data packet becomes ineffective when its deadline expires or newer data

becomes available. CRETP is able to check the effectiveness of real-time data and

will not retransmit an invalid data packet. It guarantees data timeliness as well as

saving network resources. In order to improve the efficiency of retransmission, CRETP

also employs a dynamic calculation of retransmission time by updating the average

measured round trip time (RTTe) every time when a retransmission occurs.

Performance evaluation of CRETP was done through extensive simulations and is

presented in the following chapter. Comparative studies of simulation results between

CRETP, UDP and TCP are also performed to show CRETP’s advantages when used

for wireless real-time communications in an NCS.

Chapter 5

CRETP Performance Evaluation in

NS-2

In order to provide a comprehensive performance evaluation for CRETP, extensive

simulations were conducted. Since CRETP was designed as a network protocol for

real-time control systems, delay performance and transmission reliability are two es-

sential criteria. An NCS requires small and deterministic delays. Also there is no doubt

that the more reliable the data transmission is, the better is the network performance of

an NCS. As mentioned in Chapter 1, the overall performance of a real-time wireless

NCS is not evaluated because the control performance, which is another aspect of NCS

performance, is beyond our research scope.

Evaluation of CRETP was conducted through comparative studies for the behaviour

of all three protocols, UDP, TCP and CRETP. This is because we want to see:

• if CRETP can perform better than UDP and TCP in real-time control systems in

terms of reliability; and

• if CRETP can keep its delay performance at an acceptable level for real-time

applications. For example, are the delays introduced by CRETP smaller than

77

78 Chapter 5. CRETP Performance Evaluation in NS-2

TCP’s and are close to UDP’s ?

Only if the above questions get positive answers, can we claim that CRETP has

the ability to greatly improve transmission reliability and keep data timeliness for real-

time applications in NCSs. It will also mean that CRETP distinguishes itself among

the three protocols by showing the best overall performance, which would make it

more suitable than UDP and TCP for real-time control systems.

Our simulations were conducted for three case studies. The performance of a

protocol depends on many elements in a wireless network. Traffic load and wireless

channel condition are two major factors that influence the overall performance of

a protocol. More specifically, traffic load varies with the change in the number of

communicating nodes and the control period. Therefore, in our simulations, variations

in channel conditions, the number of communicating sensors and the control period,

were investigated as the three primary parameters to define three different case studies.

Usually, the control period is pre-determined in control algorithm design and it is used

as a constraint in this work.

For all the scenarios in Case One, the number of communicating devices and

the control period were the same, leaving the channel’s condition the only variable

parameter. In the simulation scenarios of Case Two, the wireless channel condition was

kept fixed, while the control period was set with different values in different scenarios.

Case Three employed the number of sensors as the new parameter which affects traffic

load significantly.

5.1 Network Specification

The aim of simulations was to test CRETP’s performance for real-time applications

in wireless NCS. Therefore, we simulated communications between sensors and the

controller in control loops. Compared with other wireless network applications, the

number of sensors, controllers, actuators, and other devices interconnected within a

physical subtask in a wireless NCS is typically low, e.g., a few tens or less [Cena et al.,

5.1. Network Specification 79

2008]. The maximum number of communicating devices in our simulation scenarios

is 11.

All together twenty-six scenarios were simulated. For the consistency of the com-

parative studies, all scenarios have to share some basic settings. Table 5.1 lists basic

configurations of the wireless network model that was used in all scenarios. Besides

using the same basic wireless model, all the simulated scenarios have some common

presumptions specified as follows:

• All sensors and the controller are fixed in the network field with sensors dis-

tributed in a circle around the controller, which implies that distances between

the controller and sensors are the same and constant as the circle’s radius is

always 50 metres. Figure 5.1 demonstrates the network layout used in the simu-

lations.

• The simulation time for each scenario is 16.0 seconds.

• All sensors start their communications with the controller at 1.0s and stop at

16.0s.

• With respect to an NCS’s predominantly periodic traffic pattern, all sensors

generate data packets periodically. Sensors are designed to generate a control

data packet at the beginning of each control period.

• The traffic type on the application layer in sensors is Constant Bit Rate (CBR).

• As application data packets in an NCS are usually fixed in size and are typically

short, e.g., a few hundreds or even tens of bytes, the application data in the

simulations has a fixed size of 200 bytes.

The aim of simulations was to test the performance of our newly designed transport

layer protocol. Therefore, communication between sensors and the controller was

simulated other than the whole control loop.

80 Chapter 5. CRETP Performance Evaluation in NS-2

Figure 5.1: Network topology in simulations

Table 5.1: Wireless model used in simulations

Network standard IEEE 802.11b
Radio channel data rate 1.0 Mbps
Network area 250m * 300m square
Radio-propagation model Two-ray ground
Routing protocol Dynamic Source Routing
Wireless interface (MAC) buffer type Drop-tail priority queue
AntennaD OmniAntenna

5.2 Performance Metrics

Comparative studies of dynamic behaviour among these three protocols were con-

ducted for four performance metrics: end-to-end delay, the data loss ratio, the per-

centage of effective data received at the controller and the occurrence of consecutive

dropouts. All these metrics are chosen from the networking aspect as we aim to

investigate protocols’ influences on network performance of a wireless NCS.

Each packet generated from a sensor has a non-zero travel time if it is sent to its

destination through a network. The travel time begins the moment when the packet

is delivered at the source sensor from the application layer to the transport layer. It

ends when an effective copy of the packet is relayed by the transport layer protocol at

the destination to the application layer. This travel time is known as a packet’s end-to-

5.2. Performance Metrics 81

end delay. In our protocol evaluations, both the individual end-to-end delay for each

received data packet and the average delay for all data packets were used as metrics

for protocol performance since one of an NCS’s main requirements is a small and

deterministic delay. The average delay is obtained by summing up the individual data

packet delays in the network, and dividing the sum by the total number of received

data packets.

Packet dropouts happen in network communications due to many reasons and can

be compensated for by employing proper network protocols. When the network’s

condition gets worse, packet dropouts may occur often. The number of dropped

packets is a criterion of transmission reliability and represents a protocol’s ability to

provide reliable data transfer.

In real-time control systems, data timeliness is essential as a data packet is only

useful during its control period and becomes ineffective when a new data packet for

the next control period arrives. Therefore, the data loss ratio is not the most accurate

metric for transmission reliability. Instead, the percentage of effective data packets

received in the network has to be measured as it is the most appropriate metric for

demonstrating reliability of a protocol in real-time communications.

System performance is also sensitive to the pattern of packet dropout. For the same

percentage of effective data, if dropouts happen consecutively, the control performance

may degrade to be an unacceptable level due to the continuous misses of control

law updates. It implies that the occurrence of consecutive data dropouts has to be

minimized to enhance system stabilization. Therefore, the numbers of occurrence of

two or more consecutive dropouts in each simulation were recorded as the fourth metric

examining protocol performance.

82 Chapter 5. CRETP Performance Evaluation in NS-2

5.3 Simulation Case One

5.3.1 Simulation Scenario Specifications

A feature of current wireless networks is that the radio signal is always subject to

physical conditions like interference and signal attenuation, which makes it difficult

for a wireless network to meet the communication requirements in real-time control

applications [Cena et al., 2007]. As a major factor in network protocol performance,

the channel’s condition was employed as the only variable parameter to draw distinc-

tions between simulation scenarios in the first case study.

Eleven different wireless channel conditions were simulated separately in scenarios

one to eleven. The difference between these wireless conditions was the number

of irregular run-time channel errors happening during the simulation, as shown in

Table 5.2. An irregular run-time channel error means the error occurs at a random time

with an independent duration. Due to wireless channel errors, packet transmissions can

be delayed and even packet dropouts can occur. Generally speaking, the greater the

number of errors, the worse the channel condition. The network condition in Scenario

11 was the worst among all scenarios.

Table 5.2: Number of channel errors in each scenario

Scenario 1 2 3 4 5 6 7 8 9 10 11
Number of

channel 4 7 9 10 12 15 18 20 22 25 28
errors

As mentioned in the previous section, the network traffic load was constant in all

scenarios in Case One. The number of sensors was 5 while the control period was 50

milliseconds. Given the number of sensors and the control period, we can figure out

that there are 1500 different data packets to be sent from the sensors during a 16.0-

second simulation (traffic starts at 1.0 second). In the case of retransmission, more

data packets are sent, of course.

5.3. Simulation Case One 83

All eleven scenarios were simulated three times. For the first time, the transport

layer protocol used was the TCP protocol. Then, UDP was substituted for TCP when

all scenarios were tested for the second time. Finally, CRETP acted as the transport

protocol in all communications.

5.3.2 Simulation Results

Table 5.3 records the average end-to-end delays for all successfully received data

packets in the different scenarios when using different transport layer protocols. These

results are also shown graphically in Figure 5.2. The numbers of dropped data packets

in communications are listed in Table 5.4, while Table 5.5 records times of occurrences

of consecutive dropouts in each simulation scenarios. Table 5.6 summarises the per-

centage of effective data packets received at the controller in different scenarios with

different protocols. The results in Table 5.6 are graphed in Figure 5.3. Table 5.7 shows

numbers of two or more consecutive losses of effective data packets at the controller

while Table 5.8 lists maximum number of consecutive data losses in each scenario.

Table 5.3: Average end-to-end delays in Case One when using different protocols

Scenarios Average end-to-end delay (milliseconds)
UDP CRETP TCP

1 10.061991 11.636312 12.291061
2 10.085596 12.107675 16.319366
3 10.055195 11.968628 18.127047
4 10.070746 12.216363 19.050467
5 10.057896 12.104100 20.709423
6 10.065880 12.465714 22.270711
7 10.040047 12.566186 23.382781
8 10.064531 12.719966 23.346436
9 10.081729 12.732849 24.231340

10 10.064618 13.306682 30.518884
11 10.089902 12.529813 37.585497

Besides the overall simulation results in Case One, specific illustrations of delays

for each scenario were recorded. As a specific example, Figures 5.4, 5.5 and 5.6

84 Chapter 5. CRETP Performance Evaluation in NS-2

Figure 5.2: Average end-to-end delays in Case One with different protocols

Table 5.4: Number of dropped data packets in Case One when using different protocols

Scenarios Number of dropped data packets)
UDP CRETP TCP

1 4 2 0
2 32 16 0
3 46 28 0
4 50 22 0
5 70 46 0
6 80 43 0
7 88 42 0
8 92 43 0
9 93 46 0
10 148 85 0
11 143 113 0

illustrate delays for all successfully received data packets sent by sensor 1 in Scenario

7 when using UDP, CRETP or TCP, respectively.

5.3. Simulation Case One 85

Table 5.5: Consecutive dropouts in Case One with different protocols

Scenarios Number of occurrences of consecutive dropouts
UDP CRETP TCP

1 0 0 0
2 11 0 0
3 15 5 0
4 19 2 0
5 13 6 0
6 15 3 0
7 18 7 0
8 16 3 0
9 20 5 0

10 36 18 0
11 49 23 0

Table 5.6: Percentage of effective data received in Case One with different protocols

Scenarios Percentage of effective data packet)
UDP CRETP TCP

1 99.733% 99.867% 99.8%
2 97.867% 98.933% 97.933%
3 96.933% 98.133% 96.933%
4 96.667% 98.533% 96.667%
5 95.467% 96.933% 95.333%
6 94.667% 97.133% 94.6%
7 94.133% 97.2% 94%
8 93.867% 97.133% 93.733%
9 93.8% 96.933% 93.467%

10 90.133% 94.333% 90.2%
11 90.267% 92.467% 90.933%

5.3.3 Comparative evaluations

When we look at the average end-to-end delay (Table 5.3 and Figure 5.2), everything

seems in favour of a UDP connection: It yields the smallest average delay among the

protocols. CRETP is in second place providing average delays with slightly higher

values, while TCP acts worst.

86 Chapter 5. CRETP Performance Evaluation in NS-2

Table 5.7: Consecutive losses of effective data in Case One with different protocols

Number of occurrences of
Scenarios consecutive losses of effective data

UDP CRETP TCP
1 0 0 0
2 11 0 11
3 15 5 14
4 19 2 18
5 13 6 14
6 15 3 17
7 18 7 20
8 16 3 17
9 20 5 22
10 36 18 37
11 49 23 46

Table 5.8: Maximum number of consecutive data losses in Case One with different
protocols

Scenarios Maximum number of consecutive data losses
UDP CRETP TCP

1 0 0 0
2 3 0 3
3 3 3 3
4 3 3 4
5 3 3 4
6 3 3 3
7 3 3 4
8 3 3 3
9 3 3 3
10 3 3 3
11 4 3 4

When UDP was used in Case One, the average delays under this amount of traffic

load were limited within 10.09 milliseconds, regardless of the channel’s condition.

As for CRETP, the average delays are just slightly longer than the average delays

provided by UDP, with an upper bound of 13.31 milliseconds. It also can be seen

5.3. Simulation Case One 87

Figure 5.3: Percentage of effective data received in Case One with different protocols

Figure 5.4: End-to-end delays for sensor 1 in Scenario 7 when using UDP

from Figure 5.2, for UDP or CRETP, that the average delays are almost constant as

the network’s condition gets worse. Small and deterministic delays are desirable for

88 Chapter 5. CRETP Performance Evaluation in NS-2

Figure 5.5: End-to-end delays for sensor 1 in Scenario 7 when using CRETP

Figure 5.6: End-to-end delays for sensor 1 in Scenario 7 when using TCP

real-time applications. According to these simulation results, both UDP and CRETP

are suitable for real-time communication in terms of end-to-end delay.

However, when TCP is employed, the average delay increases almost linearly

5.3. Simulation Case One 89

with the number of channel errors. The 37.585497 milliseconds ceiling is reached in

Scenario 11. Almost 75.2% of a control period is spent on the successful transfer of a

single data packet, leaving the time available for other operations very limited. Another

unfavourable characteristic of these relatively long delays is the indeterminism. All

these results suggest that TCP is not a suitable network protocol for real-time control

systems.

Figures 5.4 to 5.6 give close-ups of the delay performances for the three protocols

in Scenario 7. Each dot in the figures represents the arrival of a data packet at the

controller. It can be observed that almost every effective data packet is received within

30% of a control period when UDP is the transport protocol. As for CRETP, most

packets arrive at the controller before half of their control period elapses. The rest

of the packets reached their destination later but still within their control period (50

milliseconds). As for TCP, many packets spent more than one control period travelling

from the sensor to the controller. Some of them even took more than twice a control

period to finish their transmission. All these packets are therefore ineffective.

The reason why TCP cannot perform well is because of its endless retransmission

scheme. A packet will be retransmitted until its corresponding ACK arrives at the

sender. Repeated retransmission leads to long end-to-end delays. In the case of a

channel error, retransmission occurs more frequently than in a normal channel condi-

tion. The delay difference between a packet successfully transferred in one step and

a packet being retransmitted several times can be very obvious. Therefore, both the

average end-to-end delay and jitter for TCP produced comparatively large values.

Although CRETP has the ability to retransmit a packet if needed, the retransmis-

sion is conditional. If a new application data packet is passed to CRETP when a new

control period starts, CRETP will stop retransmitting the old data packet. This implies

that each data packet will be retransmitted only during its control period. For real-time

applications, expired data is useless and will be dropped by the receiving end even if

it is received. In this case, a high delay could be translated to a high packet loss rate.

CRETP’s restriction on the number of retransmissions prevents the packet end-to-end

90 Chapter 5. CRETP Performance Evaluation in NS-2

delay from becoming excessive and keeps delays within a certain range.

UDP distinguishes itself in terms of its transmission latency. However, when it

comes to transmission reliability, UDP’s performance degrades. The UDP column in

Table 5.4 shows that packet loss starts to grow without bound as the network’s condi-

tion gets worse. CRETP also introduces dropouts due to its conditional retransmission

scheme. The dropped data packets counted for CRETP include packets which failed

to reach the receiver and packets tested as ineffective. Dropout numbers were smaller

when compared with those provided by UDP, however.

CRETP did not only introduce less packet losses than UDP, it also reduced the

frequency of occurrence of consecutive dropouts. Table 5.5 shows that in most cases,

consecutive dropouts only happened several times when CRETP is used. However, in

the case of UDP, consecutive dropouts occurred more than ten times in all simulations

except in the first scenario when channel’s condition was good.

No dropouts occur when TCP is the transport layer protocol. However, when data

effectiveness is taken into account, TCP does not provide the most reliable transmission

for real-time applications. Table 5.6 and Figure 5.3 demonstrate percentage values

of the ratio of effective data packets received at the controller to the total number

of sent data packets. Although TCP’s retransmission ensured that all data packets

were received at their destinations, it cannot guarantee the effectiveness of received

data. No matter what transport protocol is used, the ratio of effective data decreases

as the network’s condition deteriorates. CRETP’s conditional retransmission scheme

enhances communication reliability while keeping data timeliness in mind, which

means it always, had the highest value of percentage of effective data packets among

the three protocols and guaranteed a percentage of 92.467 in the worst case scenario.

In Table 5.7, it also can be found that CRETP’s conditional retransmission scheme

protects data effectiveness and guaranteed no consecutive data losses when both UDP

and TCP started to fail in continuously reliable transmission of data packets. However,

if channel condition gets worse, consecutive data losses occur no matter which protocol

is in use. In the cases of consecutive dropouts, CRETP provides the smallest number of

5.3. Simulation Case One 91

occurrence of consecutive effective data losses at the controller among three protocols.

The maximum number of consecutive data losses is 3 when CRETP is employed. Con-

secutive losses of 4 effective data packet can be found in simulations with UDP/TCP

acting as the transport protocol. The more consecutive data loss, the less reliable is

the transmission. Records in Tables 5.6 to 5.8 evidenced that CRETP is in lead among

three protocols in terms of transmission reliability.

Overall, the simulation results in Case One showed that TCP’s delay performance

continuously gets worse when the channel state deteriorates. Although its endless re-

transmission algorithm compensates for all dropouts, it fails to satisfy data timeliness,

which makes TCP produce even smaller rates of effective data than UDP does in some

scenarios. TCP’s performance exposes its inappropriateness as a network protocol for

real-time control systems.

UDP provides the smallest average end-to-end delay in all scenarios while CRETP

introduces slightly larger delays due to its retransmission algorithm. For both UDP

and CRETP, the transmission latency is small and relatively deterministic.

However, in terms of transmission reliability, UDP has no transmission error con-

trol which makes it perform the worst among the three protocols in some cases. CRETP

produces the most reliable communication as the number of dropped packets is less

than half of UDP’s in most scenarios and occurrence of consecutive dropout is also

much less frequent. CRETP’s conditional retransmission significantly improves com-

munication reliability while keeping delays small and relatively deterministic.

Comparative study of the performance of these protocols demonstrates that CRETP

best satisfies the requirements of data timeliness as well as transmission reliability for

real-time applications in an NCS with wireless networks that are vulnerable to errors.

92 Chapter 5. CRETP Performance Evaluation in NS-2

5.4 Simulation Case Two

5.4.1 Simulation Scenario Specifications

In the previous section, the performance of UDP, CRETP and TCP in different wire-

less channel conditions was analysed. As another major factor influencing protocol

performance, traffic load is employed as the parameter in case studies two and three.

The wireless channel condition is the same in all scenarios.

As mentioned before, the overall traffic load in a network used in an NCS is defined

by many elements. The control period and the number of communicating nodes are

two major factors. It is obvious that the overall traffic load will increase when the

number of communicating nodes in the network grows. And with a decrease of the

control period, more data packets will be sent to the controller within the same time

frame. Although both of these factors can affect traffic load, they may have different

effects on the performance of CRETP. At the beginning of each control period, a new

application data packet is generated and is about to be sent. The arrival of this new data

forces CRETP to give up retransmission of the previous data packet. Theoretically,

CRETP can retransmit an old packet more times in the case of a longer control period.

Therefore, decreasing the control period not only produces less traffic but also gives

CRETP more opportunities to conduct retransmissions. We therefore decided to use

the control period and the number of sensors as parameters in case studies two and

three respectively.

In Case Two, the control period was used as the only parameter for all simulation

scenarios while the number of sending nodes (sensors) was set to be a constant value

of 5. The only difference between the six simulation scenarios was the length of the

control period. The longer the control period is, the smaller is a sensor’s data rate as

the size of each data packet was a fixed value of 200 bytes for all simulations. Given

the number of sending sensors and the control period, we can figure out the number of

different data packets that should be sent in each scenario. Table 5.9 lists the control

period and the number of data packets sent by sensors, excluding retransmitted ones,

5.4. Simulation Case Two 93

in each scenario in Case Two. It is obvious that the traffic load is on the rise from

Scenario 1 to Scenario 6.

Table 5.9: Control period in each scenario

Scenario 1 2 3 4 5 6
Control period (milliseconds) 90 80 70 60 50 40

Number of data packets to be sent 835 940 1075 1250 1500 1880

All scenarios in Case Two were simulated three times. For the first time, the

transport layer protocol used was the TCP protocol. Then, UDP was substituted for

TCP when all scenarios were tested for the second time. Finally, CRETP acted as the

transport protocol in all communications.

5.4.2 Simulation Results

Table 5.10 records average end-to-end delays for all successfully received data packets

in different scenarios when using different transport layer protocols. These results

are also shown graphically in Figure 5.7. Numbers of dropped data packets in com-

munications are listed in Table 5.11, while Table 5.12 records times of occurrences

of consecutive dropouts in each simulation scenarios. Table 5.13 summarises the

percentage of effective data packets received at the controller in different scenarios

with different protocols. The results in Table 5.13 are graphed in Figure 5.8. Table 5.14

shows numbers of two or more consecutive losses of effective data packets at the

controller while Table 5.15 lists maximum number of consecutive data losses in each

scenario.

Besides the overall simulation results, specific illustrations of delays for each sce-

nario were recorded. The delay performance for sensor 1 in Scenario 3 (control

period is 70 milliseconds) is randomly chosen as an example and displayed in Fig-

ures 5.9, 5.10 and 5.11. These three graphs illustrate delays of effective data packets

received at the controller when using UDP, CRETP or TCP as the transport protocol.

94 Chapter 5. CRETP Performance Evaluation in NS-2

Table 5.10: Average end-to-end delays in Case Two when using different protocols

Scenarios Control period Average end-to-end delay (milliseconds)
(milliseconds) UDP CRETP TCP

1 90 10.037630 15.033824 25.238436
2 80 10.131140 13.494351 24.022764
3 70 10.055708 12.758372 22.437320
4 60 10.065637 12.576783 23.442542
5 50 10.040047 12.566186 23.382781
6 40 10.044697 12.151133 23.189041

Figure 5.7: Average end-to-end delays in Case Two with different protocols

5.4.3 Comparative evaluations

When looking into delay performance, UDP still produces the smallest delays among

the three protocols. As shown in Table 5.10 and Figure 5.7, CRETP also keeps the

average delay small, at less than 37.5% of the smallest control period. The delays

almost doubled when TCP was used.

It is easy to understand that the larger the number of data packets in a transmission,

5.4. Simulation Case Two 95

Table 5.11: Number of dropped data packets in Case Two when using different
protocols

Scenarios Control period Number of dropped data packets
(milliseconds) UDP CRETP TCP

1 90 53 6 0
2 80 54 11 0
3 70 53 23 0
4 60 72 35 0
5 50 88 42 0
6 40 112 82 0

Table 5.12: Consecutive dropouts in Case Two when using different protocols

Scenarios Control period Number of occurrences of consecutive dropouts
(milliseconds) UDP CRETP TCP

1 90 0 0 0
2 80 2 0 0
3 70 2 0 0
4 60 8 0 0
5 50 18 7 0
6 40 31 34 0

Table 5.13: Percentage of effective data received in Case Two with different protocols

Scenarios Control period Percentage of effective data packet
(milliseconds) UDP CRETP TCP

1 90 93.653% 99.281% 93.533%
2 80 94.255% 98.830% 93.936%
3 70 95.070% 97.860% 94.698%
4 60 94.24% 97.2% 94.32%
5 50 94.133% 97.2% 94%
6 40 93.883% 95.638% 94.043%

the busier the network. Network congestion happens if there are too many packets to be

sent in the same period. Long end-to-end delays and even data losses can occur in the

case of network congestion. However, even in the scenario with the smallest control

96 Chapter 5. CRETP Performance Evaluation in NS-2

Table 5.14: Consecutive losses of effective data in Case Two with different protocols

Control Number of occurrences of
Scenarios period consecutive losses of effective data

(milliseconds) UDP CRETP TCP
1 90 0 0 0
2 80 2 0 2
3 70 2 0 3
4 60 8 0 7
5 50 18 7 20
6 40 31 34 35

Table 5.15: Maximum number of consecutive data losses in Case Two with different
protocols

Scenarios Control period Maximum number of consecutive data losses
(milliseconds) UDP CRETP TCP

1 90 0 0 0
2 80 3 0 3
3 70 3 0 3
4 60 3 0 3
5 50 3 3 4
6 40 4 4 4

period (40 milliseconds), the network capacity utilization is low, with a maximum

value of 27.2939% for UDP, 40.6144% for CRETP and 45.3154% for TCP. This means

that the traffic loads in different scenarios are still within a range in which there is

no significant network congestion. Also, UDP’s end-to-end delay does not ascend

linearly as the number of sending packets increases but fluctuates within a range; see

Table 5.10 and Figure 5.7. TCP produced the shortest delay in Scenario 3 and the

longest delay in Scenario 1. The delay performance is different from UDP’s due to

TCP’s retransmission mechanism.

Importantly, in CRETP the average delay decreased as the control period shrank.

This phenomenon should be understood together with CRETP’s conditional retrans-

mission algorithm. CRETP will not disable retransmission until the start of a new

5.4. Simulation Case Two 97

Figure 5.8: Percentage of effective data received in Case Two with different protocols

Figure 5.9: End-to-end delays for sensor 1 in Scenario 3 when using UDP

control period with the arrival of new control data. Therefore, retransmission may

be conducted more times in the case of a longer control period than in the case of a

98 Chapter 5. CRETP Performance Evaluation in NS-2

Figure 5.10: End-to-end delays for sensor 1 in Scenario 3 when using CRETP

Figure 5.11: End-to-end delays for sensor 1 in Scenario 3 when using TCP

shorter control period. As the opportunities for retransmission grows, CRETP is able to

save more data packets from being dropped. Table 5.11 shows the number of dropped

data packets in different scenarios. It can be observed that, for CRETP, the longer

5.4. Simulation Case Two 99

the control period is, the fewer are the number of dropped data packets. Only six data

packets failed to reach the controller when the control period was 90 milliseconds. The

number of dropouts jumps to 82 when the control period is reduced to 40 milliseconds.

However, retransmission causes relatively long end-to-end delays. An increase in the

average delay is the price paid for a reduction of dropouts. This is the reason why

the average delay introduced by CRETP reduces but the number of dropouts increases

when the control period shrinks. Fortunately, the average delay increases less than 3

milliseconds when the control period extends from 40 milliseconds to 90 milliseconds.

This implies that only 16.7% of a control period is spent on data packet transfer when

the control period is 90 milliseconds, while 30.4% of a control period is spent on data

packet transfer when the control period is 40 milliseconds. So, the overall performance

of CRETP, including delays and reliability, gets better as the control period gets longer.

Delay performances for sensor 1 using different protocols in a randomly chosen

scenario, Scenario 3, are graphed in Figures 5.9, 5.10 and 5.11, respectively. These

results are similar to the results in Case One. In this scenario, the control period is 70

milliseconds. Many TCP packets have delays even longer than a control period. Both

UDP and CRETP provide small and relatively deterministic delays. Only a few delays

exceed 40 milliseconds in the case of CRETP.

Table 5.11 lists dropout numbers in the simulations. TCP again distinguishes

itself by guaranteeing zero dropouts in all scenarios while UDP still gives the poorest

performance with a worst case of 112 dropped packets. The number of dropouts stays

stable if the control period is larger than 70 milliseconds, which means that UDP will

not perform better in this wireless network model no matter how long the control period

is. However, consecutive dropouts happened more frequently with the decrease of the

control period. As for CRETP, dropouts shrink dramatically, from 82 to 6, as the

control period increases from 40 milliseconds to 90 milliseconds. A larger control

period gives CRETP more chances to compensate for data losses. When the control

period is larger than 50 milliseconds, there were not any consecutive dropout.

As we know, the ratio of effective data packets received at the controller to the total

100 Chapter 5. CRETP Performance Evaluation in NS-2

number of sent data packets is the proper criterion to define a protocol’s transmission

reliability. Table 5.13 and Figure 5.8 show the ratios of effective data in the different

scenarios. CRETP always provides the most reliable transmission among the three

protocols. TCP’s advantage in dropouts disappears and it performs no better than UDP.

When examining the occurrence of consecutive losses of effective data at the con-

troller (see Tables 5.14 and 5.15), we found that the occurrence of consecutive dropouts

can be avoided if the control period is relatively long. When the control period reduced

and reached a certain value, UDP and TCP failed to provide continuous reliable data

transmission while CRETP still guaranteed no consecutive data losses at the controller.

In terms of maximum number of consecutive data losses, Table 5.15 demonstrates that

results provided by CRETP are no worse than those provided by UDP or TCP. There-

fore, in our observations, CRETP always performs the best in guaranteeing consecutive

successful reliable data transmissions among three protocols when the control period

is relatively long, and it does not act worse than UDP and TCP in most cases when the

control period gets short.

After analysing the delay and reliability performance of these protocols in Case

Two, we can conclude that CRETP has better overall performance than UDP and

TCP. With a small increase in the end-to-end delay, but keeping the delay within a

certain range, CRETP can significantly improve transmission reliability. Both delay

and reliability performances of CRETP become better along with an increase in the

control period.

5.5 Simulation Case Three

5.5.1 Simulation Scenario Specifications

In Case Three, we tested protocol performance through adding sensors into the network

in the cases of the three control periods. Table 5.16 demonstrates differences between

the settings for the nine scenarios in this case study. Scenarios 1 to 3 use the same

value of the control period, while the control period in Scenarios 4 to 5 stays fixed.

5.5. Simulation Case Three 101

90 milliseconds is set to be the control period for Scenarios 7 to 9. With the same

control period, a larger number of sensors leads to heavier traffic in the network. Based

on previous simulation results, we assumed that CRETP may perform slightly worse

when more sensors are moved into the network, but can recover if the control period

increases.

Table 5.16: Number of sensors and control period in each scenario

Scenario 1 2 3 4 5 6 7 8 9
Number of sensors 5 8 10 5 8 10 5 8 10

Control period 70 70 70 80 80 80 90 90 90
(milliseconds)

All scenarios in Case Three were simulated three times. For the first time, the

transport layer protocol used was the TCP protocol. Then, UDP was substituted for

TCP when all scenarios were tested for the second time. Finally, CRETP acted as the

transport protocol in all communications.

5.5.2 Simulation Results

Table 5.17 records the average end-to-end delays for all successfully received data

packets in the different scenarios when using different transport layer protocols. The

nine scenarios were divided into three groups with scenarios in the same group having

the same control period. Figures 5.12, 5.13 and 5.14 are bar graphs that illustrate the

average delays in different groups for different protocols. The numbers of dropped

data packets in communications are listed in Table 5.18, while Table 5.19 records

times of occurrences of consecutive dropouts in each simulation scenarios. Table 5.20

summarises the percentage of effective data packets received at the controller in the

different scenarios with different protocols. Numbers of two or more consecutive losses

of effective data packets at the controller are recorded in Table 5.21 while Table 5.22

lists maximum number of consecutive data losses in each scenario.

102 Chapter 5. CRETP Performance Evaluation in NS-2

Table 5.17: Average end-to-end delays in Case Three when using different protocols

Scenarios Control period Number Average end-to-end delay (milliseconds)
(milliseconds) of sensors UDP CRETP TCP

1 70 5 10.055708 12.758372 22.437320
2 70 8 15.297292 19.984371 28.685036
3 70 10 19.504138 26.757464 33.362177
4 80 5 10.131140 13.494351 24.022764
5 80 8 15.405479 20.602708 29.720261
6 80 10 19.550121 27.912518 33.933053
7 90 5 10.037630 15.033824 25.238436
8 90 8 15.366677 21.147166 31.729083
9 90 10 19.520751 26.400619 35.993659

Figure 5.12: Average delays in Case Three with control period of 70 milliseconds

5.5.3 Comparative evaluations

In this case study, we wanted to see how protocol performance would be affected

when more sensors are added to the network to communicate with the controller. The

number of sensors has three different values in the case study. The minimum value

was 5 which is the same as the value in Case Two. The medium value was 8 and the

5.5. Simulation Case Three 103

Figure 5.13: Average delays in Case Three with control period of 80 milliseconds

Figure 5.14: Average delays in Case Three with control period of 90 milliseconds

maximum number was 10 which is twice the minimum value. If the control period

is kept constant, the number of sending data packets, excluding retransmitted ones,

104 Chapter 5. CRETP Performance Evaluation in NS-2

Table 5.18: Number of dropped data packets in Case Three with different protocols

Scenarios Control period Number Number of dropped data packets
(milliseconds) of sensors UDP CRETP TCP

1 70 5 53 23 0
2 70 8 99 41 0
3 70 10 123 65 0
4 80 5 54 11 0
5 80 8 86 23 0
6 80 10 108 17 0
7 90 5 53 6 0
8 90 8 82 18 0
9 90 10 104 21 0

Table 5.19: Consecutive dropouts in Case Three when using different protocols

Control Number Number of occurrences of
Scenarios period of consecutive dropouts

(milliseconds) sensors UDP CRETP TCP
1 70 5 2 0 0
2 70 8 7 8 0
3 70 10 12 13 0
4 80 5 2 0 0
5 80 8 1 1 0
6 80 10 2 3 0
7 90 5 0 0 0
8 90 8 0 0 0
9 90 10 3 3 0

doubles when number of sensor changes from 5 to 10. Consequently, the traffic load

increases dramatically which may result in network congestion. Unlike the smooth

and slow rising of traffic in Case Two, traffic increased sharply and reached a rather

high value in Case Three, which makes the delay performance of the three protocols

very different. As for UDP and TCP, the average delays no longer fluctuate but keep

increasing when the number of sensors rises from 5 to 10. It can be observed from

Figures 5.12, 5.13 and 5.14, that UDP still guarantees the smallest average delay while

TCP introduces the longest. CRETP performs not as well as UDP with respect to

5.5. Simulation Case Three 105

Table 5.20: Percentage of effective data received in Case Three with different protocols

Scenarios Control period Number Percentage of effective data packet
(milliseconds) of sensors UDP CRETP TCP

1 70 5 95.070% 97.860% 94.698%
2 70 8 94.244% 97.616% 94.419%
3 70 10 94.279% 96.977% 94.233%
4 80 5 94.255% 98.830% 93.936%
5 80 8 94.282% 98.471% 94.016%
6 80 10 94.256% 99.096% 93.989%
7 90 5 93.653% 99.281% 93.533%
8 90 8 93.862% 98.653% 93.488%
9 90 10 93.772% 98.743% 93.593%

Table 5.21: Consecutive losses of effective data in Case Three with different protocols

Control Number Number of occurrences of
Scenarios period of consecutive losses of effective data

(milliseconds) sensors UDP CRETP TCP
1 70 5 2 0 3
2 70 8 7 8 10
3 70 10 12 13 14
4 80 5 2 0 2
5 80 8 1 1 1
6 80 10 2 3 4
7 90 5 0 0 0
8 90 8 0 0 0
9 90 10 3 3 2

delays; however, the average delays are still small when compared with TCP’s. There

is no doubt that no matter what protocol is used, delays will continue increasing if

there are more sensors entering the network.

When we consider the reliability of the protocols, CRETP shows the best results

in all scenarios. Table 5.20 demonstrates that TCP performs even worse than UDP in

most scenarios. The smallest rate of effective data packets for CRETP was 96.977%

while the best result for UDP was only 95.07%. Table 5.18 lists dropout numbers

for the three protocols. Due to CRETP’s conditional retransmission scheme, dropped

106 Chapter 5. CRETP Performance Evaluation in NS-2

Table 5.22: Maximum number of consecutive data losses in Case Three with different
protocols

Control Number Maximum number of
Scenarios period of of consecutive data losses

(milliseconds) sensors UDP CRETP TCP
1 70 5 0 0 0
2 70 8 3 3 3
3 70 10 3 3 3
4 80 5 0 0 0
5 80 8 3 3 3
6 80 10 3 3 3
7 90 5 0 0 0
8 90 8 0 0 0
9 90 10 3 3 3

packets occur less often when the control period increases. Longer control period also

leads to fewer occurrence of consecutive dropout no matter whether UDP or CRETP

is used. Generally speaking, CRETP still provides fewer consecutive dropouts than

UDP.

In this case study, three protocols provide similar results in terms of consecutive

losses of effective data at the controller (see Tables 5.21 and 5.22). They all introduce

the same maximum number of consecutive dropouts in simulations. Longer control

period leads to fewer occurrences of consecutive dropouts for all three protocols and

in that case, CRETP can always guarantee a zero consecutive data loss if there are a

small number of sensors in simulations, such as 5 sensors.

Simulation results in this case study show that CRETP performs the best among the

three protocols when both the transmission delay and reliability are taken into account.

This conclusion is the same as those in Case One and Two. New information found

in this case study is that although all protocols perform worse when more working

sensors are put into the network, CRETP can recover and even improve its reliability

if a longer control period is applied.

5.6. Chapter Summary 107

5.6 Chapter Summary

Three case studies were conducted to evaluate the performance of CRETP. Compara-

tive studies among CRETP, UDP and TCP were also done. The aim of our simulations

was to test if CRETP can provide the best overall performance among the three proto-

cols for real-time applications in an NCS.

Due to UDP’s simplicity, it always presents the smallest average end-to-end delay

among the three protocols in all simulation scenarios. However, when it comes to

reliability, UDP performs much worse than CRETP. There is no doubt that TCP intro-

duces the longest average delay every time. All these large delays are caused by TCP’s

retransmission algorithm which guarantees zero dropouts in all simulations. Although

all data packets can be received by the controller if TCP is used, the received data may

be useless and discarded by applications as data timeliness is one of the key issues

in a real-time NCS. Therefore, TCP sometimes performs worse than UDP when data

effectiveness is considered. There is no doubt that TCP is not suitable for real-time

control systems.

As for CRETP, it greatly improves transmission reliability while keeping data

timeliness in mind. This implies that CRETP’s conditional retransmission algorithm

helps guarantee the effectiveness of a successfully retransmitted packet. Since CRETP

was designed based on UDP, it maintains UDP’s simplicity in some aspects. Therefore,

when CRETP is used, the end-to-end delay of a data packet is still a small part of a

control period. Although CRETP’s delay performance is not as good as UDP’s, it still

keeps delays at an acceptable level.

After analysing the simulation results, we can positively answer the questions

posed at the beginning of this chapter. Our comparative studies demonstrate that only

CRETP can guarantee data effectiveness of compensated packets and keep the delay

performance at an acceptable level at the same time. These advantages make CRETP

a proper transport protocol which can greatly improve the overall performance of real-

time applications in an NCS.

Chapter 6

Conclusions and Future Work

Wireless networked control systems (WNCSs) are being increasingly investigated for

industrial process control due to their good scalability, fast deployment, and low im-

plementation and maintenance costs. Since a wireless network is not designed with

real-time control in mind, it cannot satisfy the communication requirements of NCSs.

For instance, a real-time control system requires timely and lossless data transmission.

Unfortunately, many distinguishing features of wireless networks, such as channel

variation, channel outages and interference, introduce longer transmission delays, big-

ger jitter and higher rates of packet loss. These network-introduced problems could

result in unpredictable system behaviors that lead to system performance degradation

or even cause system instability. Therefore, the main objective of our study is to

improve network performance in terms of delays, jitters and data loss, so that real-

time requirements for WNCSs can be met.

From a networking perspective, modifying existing network protocols, presenting

new protocols and introducing appropriate communication schemes, are effective and

popular approaches applied in recent research to guarantee real-time performance to a

certain extent. One major contribution of our research is the design of a new transport

protocol for WNCSs which deals with data dropouts, reducing transmission latency

109

110 Chapter 6. Conclusions and Future Work

and jitter, and improving data timeliness. This protocol is named the Conditional

Retransmission Enabled Transport Protocol (CRETP), so-called because it includes a

conditional retransmission mechanism which significantly improves data transmission

reliability. Unacknowledged data packets will be re-transferred by CRETP for a certain

amount of times to compensate for data losses. As every data packet in real-time

control systems is useful only within a certain deadline, CRETP has the ability to check

data effectiveness and guarantee that every data packet delivered to the application

layer is valid.

The performance of CRETP was evaluated through extensive simulations, and

comparative studies between CRETP, UDP and TCP were also conducted. The results

demonstrate that CRETP had the best overall performance for data communications

among the three protocols in WNCSs. It provides the most reliable data transmission

and maintains relatively small and deterministic delays, which achieves the require-

ments of real-time control systems in terms of transmission reliability and delays.

From the aspect of network deployment, some strategies about how network layout

and the data rate of sensors affect network-introduced latency and data losses were also

presented in the thesis. We have evaluated the time delay, jitter and dropout rate for

wirelessly connected sensors and controllers for IEEE 802.11b-based UDP/IP NCSs.

Solutions for reducing time delays, jitter, and data loss rates were identified through

analysis of the simulation results. In particular, when all sensors have the same data

rate, the data rate should be chosen with the maximum number of competing sensors

in mind; and sensors should not all be placed at the same distance to the controller.

However, when sensors have different data rates, slow sensors should be deployed

farthest from the controller if there are a large number of sensors communicating in

the WNCS.

6.1. Limitations and Future Work 111

6.1 Limitations and Future Work

This research work has demonstrated the effectiveness of the proposed communication

protocol and network layout strategies in wireless real-time control systems. However,

it was found that there were some limitations in the current work that need to be

improved and further developments are expected in future studies.

• The proposed protocol was implemented in a network simulator (NS-2), and pro-

tocol performance evaluations were done through extensive simulations. How-

ever, this is a major limitation of this research project because simulations imitate

certain key characteristics and behaviours of a protocol but do not include the

full complexity of real systems. In order to see the real-world performance

of the protocol, CRETP needs to be implemented into the system kernels of

actual devices in WNCSs so that in site measurements of its performance can be

conducted.

• For the protocol’s performance evaluation, the number of communicating sen-

sors in every simulation scenario was no more than 10. Although it is a distin-

guishing feature of a control system that the number of interconnecting sensors,

controllers, actuators, and other devices is typically low, e.g., a few tens or less,

the number of sensors in simulations should be extended to a larger value such

as 30. This is because through the simulations conducted so far we found that

an increase in the number of communicating devices in a network could have

negative effects on both network performance and protocol performance.

However, we have been unable to get any results when simulating a WNCS with

more than 10 sensors each with a practical data rate because the NS-2 simulator’s

core has always been dumped in our attempts. This is not a problem of the

CRETP protocol because simulation of TCP has shown the same problem. It

would be worthy to find a way to use NS-2 to simulate WNCSs with a large

number of sensors and actuators.

• In this project, the network layout strategies and the new protocol were presented

112 Chapter 6. Conclusions and Future Work

respectively. Since they were developed from different aspects but are for the

same purpose, they can be applied together in a WNCS for system performance

improvement.

Further research on a combination of CRETP and proposed network layout

strategies should be considered in a future study.

Appendix A

Integrating CRETP inside the NS-2

Simulator

After implementing the CRETP source and destination agents inside NS-2, we need to

perform the following steps in order to integrate our code inside the simulator.

A.1 Step one: Add C++ source code into NS-2

To allocate CRETP code we firstly need to create a new directory called cretp inside

the NS-2 base directory. All CRETP source code files should be put into this new

directory. Four files for CRETP implementation are:

• cretp-snd.h This is the header file which defines all necessary methods, timers

and source CRETP agents which perform the protocol’s functionality.

• cretp-ack.h This is the header file which defines all necessary methods, and

destination CRETP agents which perform the protocol’s functionality.

• cretp-snd.cc In this file we implement the timers, source CRETP agents and Tcl

hooks.

113

114 Appendix A. Integrating CRETP inside the NS-2 Simulator

• cretp-ack.cc In this file we implement the destination CRETP agents and Tcl

hooks.

A.2 Step two: Tcl library

Some changes have to be done in Tcl files in order to specify the default sizes for

our packets. Default values for binded attributes have to be given inside tcl/lib/ns-

default.tcl. We must go to the end of the file and add something like the next code into

the ns-default.tcl file:

1 Agent/sndCRETP set packetSize 512

2 Agent/ackCRETP set packetSize 64

A.3 Step three: Makefile

To complie the result we must edit the Makefile file by adding our object files inside

OBJ CC variable as in the following code.

1 OBJ CC = \

2 tools/random.o tools/rng.o tools/ranvar.o common/misc.o common/timer−handler.o \

3 #...

4 cretp/cretp−snd.o cretp/cretp−ack.o \

5 #...

6 $(OBJ STL)

After this, we can execute make or run makeclean before make

Appendix B

C++ source code for CRETP in NS-2

B.1 The header file for the source CRETP

1 cretp−snd.h

2

3 #ifndef ns sndcretp h

4 #define ns sndcretp h

5

6 //include header files required by source CRETP agent

7 #include ”agent.h”

8 #include ”tclcl.h”

9 #include ”packet.h”

10 #include ”address.h”

11

12 #define SAMPLERATE 10000

13

14 class sndCRETPAgent; //forward declaration

15

16 //declare the retransmission timer

17 //this timer class inherits from TimerHandler class

18 //and it has a reference to the source CRETP agent

115

116 Appendix B. C++ source code for CRETP in NS-2

19 class OutTimer : public TimerHandler {

20 public:

21 OutTimer(sndCRETPAgent ∗a) : TimerHandler() { a = a; }

22 protected:

23 virtual void expire(Event ∗e);

24 sndCRETPAgent ∗a ;

25 };

26

27 //define the source CRETP agent which inherits from Agent class

28 class sndCRETPAgent : public Agent {

29 public:

30 sndCRETPAgent(); //constructor

31 int seq; //sequence number of a CRETP data packet

32 char recordfile[256],agentid[256]; //arrays for results recording

33 int displaystyle,recordstyle; //style of TCL’s display

34 double rtt,sendovertime,resendovertime;

35 //rtt is the round−trip−time (ms)

36 //sendovertime represents the sending time of a packet (s)

37 //resendovertime represents the retransmission waiting time (s)

38 int resendnumber,lastpacketsize;

39 //resendnumber recordes how many times a packet has been retransmitted

40 OutTimer out timer ; // retransmission timer

41 void resendcretpdata(); //function for packet retransmission

42 void sendcretpdata(int newdata, int nbytes, AppData∗ data);

43 //source CRETP’s sending function

44 //when newdata equals to 0, it is a retransmission

45 //when newdata equals to 1, it is a transfer of new data

46 virtual int command(int argc, const char∗const∗ argv);

47 //command() methods that inherits from the Agent class

48 virtual void recv(Packet∗, Handler∗); //source CRETP’s receiving function

49 virtual void sendmsg(int nbytes, AppData∗ data, const char ∗flags =0) {

50 sendmsg(nbytes, NULL, flags);

51 } //interface for the application layer to send data to CRETP

52 };

53

B.2. The header file for the destination CRETP 117

54 #endif

B.2 The header file for the destination CRETP

1 cretp−ack.h

2

3 #ifndef ns ackcretp h

4 #define ns ackcretp h

5

6 //include header files required by destination CRETP agent

7 #include ”agent.h”

8 #include ”tclcl.h”

9 #include ”packet.h”

10 #include ”address.h”

11

12 //define the destination CRETP agent which inherits from Agent class

13 class ackCRETPAgent : public Agent {

14 public:

15 ackCRETPAgent(); //constructor

16 int seq; //sequence number of a CRETP data packet

17 virtual int command(int argc, const char∗const∗ argv);

18 //command() methods that inherits from the Agent class

19 virtual void recv(Packet∗, Handler∗);

20 //destination CRETP’s receiving function

21 };

22

23 #endif

B.3 The C++ file for the source CRETP

1 cretp−snd.cc

2

3 #include ”rtp.h”

4 #include ”fstream.h”

5 #include ”CRETP−snd.h”

118 Appendix B. C++ source code for CRETP in NS-2

6

7 //Tcl hooks: bind the source CRETP agent class to Tcl interface

8 static class sndCRETPClass : public TclClass {

9 public:

10 sndCRETPClass() : TclClass(”Agent/sndCRETP”) {}//class constructor

11 TclObject∗ create(int, const char∗const∗) {

12 return (new sndCRETPAgent());

13 //implement a function called create() which returns a new sndCRETPAgent instance as a TclObject

14 }

15 } class sndCRETP;

16

17 //constructor implementation

18 sndCRETPAgent::sndCRETPAgent() : Agent(PT UDP), seq(−1), rtt(10), displaystyle(0) , recordstyle

(0) , out timer (this)

19 //PT UDP is the packet type

20 //rtt is the round−trip−time (ms)

21 //seq represents the sequence number of a CRETP data packet

22 //displaystyle indicates how TCL displays simulation results

23 //recordstyle indicates how TCL records simulation results

24 //create the retransmission timer: out timer

25 {

26 bind(”packetSize ”, &size);

27 //bind packetSize as an integer which now may be read and written from Tcl

28 }

29

30 //retransmission function implementation

31 void sndCRETPAgent::resendcretpdata()

32 {

33 sendcretpdata(0,lastpacketsize,lastpacketdata);

34 //call the packet sending function and specify it is the transmission of an old data packet as newdata

35 //equals to 0

36 }

37

38 //packet sending function implementation

39 void sndCRETPAgent::sendcretpdata(int newdata, int nbytes, AppData∗ data)

B.3. The C++ file for the source CRETP 119

40 {

41 if (newdata) { //do transmission of new data when newdata equals to 1

42 seq++;

43 resendnumber=0;

44 lastpacketsize=nbytes; //packet size

45 lastpacketdata=data; //application layer data

46 }

47 else //do retransmission of an old data packet

48 {

49 resendnumber++;

50 if (resendnumber<=3) rtt∗=2;

51 //retransmission time doubles if a packet has not been retransmitted for more than three times

52 }

53

54 Packet∗ pkt = allocpkt(); //create a CRETP packet

55 if (nbytes<=0) nbytes=size ;

56 hdr cmn::access(pkt)−>size() = nbytes; //record packet size

57 hdr rtp∗ hdr = hdr rtp::access(pkt); //access packet header

58 hdr−>flags() = 0; //fill out the flag field

59 hdr−>seqno() = seq; //fill out the sequence number field

60 hdr cmn::access(pkt)−>timestamp()=(u int32 t)(SAMPLERATE∗Scheduler::instance().clock());

61 //fill out the timestamp field with current time

62 pkt−>setdata(data); //encapsulate data from application layer

63 send(pkt, 0); //send packet

64 resendovertime=(rtt/1000.0)∗2; //set retransmission time

65 out timer .resched(resendovertime); //start the retransmission timer

66

67 if (displaystyle==1){

68 //Tcl display the sequence number and the sending time of a data packet

69 //and the current round−trip−time if displaystyle equals to 1

70 char out[100];

71 if (newdata)

72 sprintf(out, ”puts \”sendnew seq=%d rtt=%.1fms time=%3.1fms\””,seq,rtt,Scheduler::instance().

clock()∗1000);

73 else

120 Appendix B. C++ source code for CRETP in NS-2

74 sprintf(out, ”puts \”sendold seq=%d rtt=%.1fms time=%3.1fms\””,seq,rtt,Scheduler::instance().

clock()∗1000);

75 Tcl& tcl = Tcl::instance();//obtain a reference to the class Tcl instance

76 tcl.eval(out); //invoke Tcl GlobalEval() to execute out

77 }

78

79 if ((recordstyle==1 && !newdata) || (recordstyle==2 && newdata) || (recordstyle==3)) {

80 //Tcl records information for retransmitted packets

81 char out[100];

82 if (newdata)

83 sprintf(out, ”%s sendnew seq=%d rtt=%.1fms time=%3.1fms kind=cbr”,agentid,seq,rtt,Scheduler::

instance().clock()∗1000);

84 else

85 sprintf(out, ”%s sendold seq=%d rtt=%.1fms time=%3.1fms kind=cbr”,agentid,seq,rtt,Scheduler::

instance().clock()∗1000);

86 ofstream filerecord;

87 filerecord.open(recordfile,ios::app);

88 filerecord<<out<<endl;

89 filerecord.close();

90 }

91 }

92

93 //implementation of command() methods that inherits from the Agent class

94 int sndCRETPAgent::command(int argc, const char∗const∗ argv){

95 //argv[0] contains the name of the method being invoked

96 //argv[1] is the requested operation

97 //argv[2..argc−1] are the rest of the arguments which were passed

98 if (argc == 3) //the case where there are three arguments{

99 if (strcmp(argv[1], ”display”) == 0) {

100 if (strcmp(argv[2], ”screen”) == 0) displaystyle=1;

101 //Tcl displays according to the first sytle

102 return (TCL OK); //return with success

103 }

104 if (strcmp(argv[1], ”clear”) == 0) {

105 sprintf(recordfile,”%s”,argv[2]);//erase records in the specified file

B.3. The C++ file for the source CRETP 121

106 ofstream fileclear(recordfile);

107 fileclear.close();

108 return (TCL OK); //return with success

109 }

110 }

111 if (argc == 5) //the case where there are five arguments{

112 if (strcmp(argv[1], ”record”) == 0) {

113 sprintf(recordfile,”%s”,argv[2]);

114 sprintf(agentid,”%s”,argv[3]); //agented records the id of sending node

115 if (strcmp(argv[4], ”resend”) == 0) recordstyle=1;

116 //Tcl records information of retransmitted packets into a file

117 if (strcmp(argv[4], ”send”) == 0) recordstyle=2;

118 //Tcl records information of packets sent for the first time into a file

119 if (strcmp(argv[4], ”all”) == 0) recordstyle=3;

120 //Tcl records information of packets sent every time into a file

121 return (TCL OK); //return with success

122 }

123 }

124 return (Agent::command(argc, argv));

125 //delegate the responsibility to base class if the requested command

126 //is not processed by sndCRETPAgent()::command

127 }

128

129 //function for receiving data from the application layer

130 //it is invoked whenever the source CRETP agent receives a packet from the application layer

131 void sndCRETPAgent::sendmsg(int nbytes, AppData∗ data, const char∗ flags){

132 int n;

133 if (size) //divide application data if it is too big for one CRETP packet

134 n = nbytes / size ;

135 else

136 printf(”Error: sndCRETP size = 0\n”);

137 if (nbytes == −1) {

138 printf(”Error: sendmsg() for sndCRETP should not be −1\n”);

139 return;

140 }

122 Appendix B. C++ source code for CRETP in NS-2

141 if (data && nbytes > size) {

142 printf(”Error: data greater than maximum sndCRETP packet size\n”);

143 return;

144 }

145 while (n−− > 0) sendcretpdata(1,size ,data); //call sendcretpdata() to send data

146 n = nbytes % size ;

147 if (n > 0) sendcretpdata(1,n,data);

148 idle();

149 }

150

151 //source CRETP’s receiving function for ACKs

152 //it is invoked whenever the source CRETP agent receives a packet

153 void sndCRETPAgent::recv(Packet∗ pkt, Handler∗)

154 {

155 hdr rtp∗ hdr = hdr rtp::access(pkt); //access packet header

156 if ((hdr−>flags()!= 1) || (hdr−>seqno() != seq)) return; //check if it is the wanted ACK

157 rtt=rtt∗7/8.0 + (Scheduler::instance().clock()−hdr cmn::access(pkt)−>timestamp()∗1.0/

SAMPLERATE)∗1000/8.0

158 //updata RTT: rtt=rttold∗7/8+rttnew∗1/8

159 out timer .force cancel(); //cancel the retransmission timer

160 if (displaystyle==1) //TCL displays according to display style 1

161 {

162 char out[100];

163 sprintf(out, ”puts \”receive seq=%d rtt=%.1fms time=%3.1fms\””,hdr−>seqno(),rtt,Scheduler::

instance().clock()∗1000);

164 Tcl& tcl = Tcl::instance();

165 //obtain a reference to the class Tcl instance

166 tcl.eval(out); //invoke Tcl GlobalEval() to execute out

167 }

168 Packet::free(pkt); //free ACK

169 }

170

171 //expire() method for the retransmission timer

172 void OutTimer::expire(Event∗) {

173 a −>resendcretpdata(); //enable retransmission when a time out happens

B.4. The C++ file for the destination CRETP 123

174 }

B.4 The C++ file for the destination CRETP

1 cretp−ack.cc

2

3 #include ”rtp.h”

4 #include ”cretp−ack.h”

5

6 //Tcl hooks: bind the destination CRETP agent class to Tcl interface

7 static class ackCRETPClass : public TclClass {

8 public:

9 ackCRETPClass() : TclClass(”Agent/ackCRETP”) {} //class constructor

10 TclObject∗ create(int, const char∗const∗) {

11 return (new ackCRETPAgent());

12 //implement a function called create() which returns a new ackCRETPAgent instance as a TclObject

13 }

14 } class ackcretp;

15

16 //constructor implementation

17 ackCRETPAgent::ackCRETPAgent() : Agent(PT ACK), seq(0)

18 //packet type is PT ACK

19 //seq represents the sequence number of a CRETP data packet

20 {

21 bind(”packetSize ”, &size);

22 //bind packetSize as an integer which now may be read and written from Tcl

23 }

24

25 //implementation of command() methods that inherits from the Agent class

26 int ackCRETPAgent::command(int argc, const char∗const∗ argv){

27 return (Agent::command(argc, argv)); //delegate the responsibility to base class

28 }

29

30 //destiantion CRETP’s receiving function for data packets

31 //it is invoked whenever the destination CRETP agent receives a packet

124 Appendix B. C++ source code for CRETP in NS-2

32 void ackCRETPAgent::recv(Packet∗ pkt, Handler∗) {

33 hdr rtp∗ hdr = hdr rtp::access(pkt); //access packet header

34 if (hdr−>flags()!= 0) return; //check if it is a data packet

35 if (hdr−>seqno() < seq) return; //check data effectiveness

36 u int32 t sendtime = hdr cmn::access(pkt)−>timestamp();

37 //acquire the sending time of this data packet

38 int rcv seq = hdr−>seqno(); //acquire the sequence number of this data packet

39 seq = rcv seq + 1; //set the expected sequence number for the next time

40 if (app) { //process user data

41 hdr cmn∗ hdrcmn = hdr cmn::access(pkt);

42 app −>process data(hdrcmn−>size(), pkt−>userdata());

43 }

44 Packet::free(pkt); //free this packet

45

46 Packet∗ pktret = allocpkt();//create corresponding ACK

47 hdr rtp∗ hdrret = hdr rtp::access(pktret);//access ACK header

48 hdrret−>flags() = 1; //ACK’s flag field should be 1

49 hdrret−>seqno() = rcv seq; //set ACK’s sequence number

50 hdr cmn::access(pktret)−>timestamp() = sendtime;

51 //save the sending time of data packet for RTT calculation

52 send(pktret, 0); //send ACK

53 }

Appendix C

Example Tcl script for simulation in

NS-2

Here is one of the Tcl scripts for the simulations in Chapter 5. It gives an example of

how CRETP is used in NS-2 simulations. This script corresponds to the scenario of 10

sensors with the same control period of 80 milliseconds.

1 10s80msCretp.tcl

2

3 # simulation of ten sensors and a controller

4 # define options

5 set val(chan) Channel/WirelessChannel ;# channel type

6 set val(prop) Propagation/TwoRayGround ;# radio−propagation model

7 set val(netif) Phy/WirelessPhy ;# network interface type

8 set val(mac) Mac/802 11 ;# MAC layer type

9 set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

10 set val(ll) LL ;# link layer type

11 set val(ant) Antenna/OmniAntenna ;# antenna model

12 set val(ifqlen) 50 ;# max packet in ifq

13 set val(bandwidth) 1.0e6 ;# bandwidth of network

14 set val(nn) 11 ;# number of mobilenodes

125

126 Appendix C. Example Tcl script for simulation in NS-2

15 set val(rp) DSR ;# routing protocol

16 set val(x) 300 ;# x dimension

17 set val(y) 300 ;# y dimension

18 set val(r) 50 ;# radius of the circle

19 set val(tr) w.tr ;# trace file

20 set val(nam) w.nam ;# nam trace file

21 set val(procstart) 1.99 ;# first call of detach proc

22 set val(initialdetach) 2.00 ;# first time of breakdown

23 set val(procendafter) 15.00 ;# end time of unstable connection

24 set val(basic) 0.45 ;# basic time period between breakdowns

25 set val(stop) 18 ;# simulation time

26

27 # other default settings (optional)

28 LL set bandwidth 0

29 Agent/Null set sport 0

30 Agent/Null set dport 0

31 Agent/CBR set sport 0

32 Agent/CBR set dport 0

33 Agent/TCPSink set sport 0

34 Agent/TCPSink set dport 0

35 Agent/TCP set sport 0

36 Agent/TCP set dport 0

37 Queue/DropTail/PriQueue set Prefer Routing Protocols 1

38

39 # unity gain, omni−directional antennas

40 # set up the antennas to be centered in the node and 1.5 meters above it

41 Antenna/OmniAntenna set X 0

42 Antenna/OmniAntenna set Y 0

43 Antenna/OmniAntenna set Z 1.5

44 Antenna/OmniAntenna set Gt 1.0

45 Antenna/OmniAntenna set Gr 1.0

46

47 # initialize the SharedMedia interface with parameters to make it work

48 # like the 914MHz Lucent WaveLAN DSSS radio interface

49 Phy/WirelessPhy set CPThresh 10.0

127

50 Phy/WirelessPhy set CSThresh 1.559e−11

51 Phy/WirelessPhy set RXThresh 3.652e−10

52 Phy/WirelessPhy set Rb 2∗1e6

53 Phy/WirelessPhy set Pt 0.2818

54 Phy/WirelessPhy set freq 914e+6

55 Phy/WirelessPhy set L 1.0

56 Phy/WirelessPhy set bandwidth 1.0e6

57 Mac/802 11 set dataRate 1.0e6

58 Mac/802 11 set PLCPDataRate 1.0e6

59 Mac/802 11 set basicRate 1.0e6

60

61 # Get random numbers from files

62 # rdm1 is for start time; rdm2 is for down period

63 set infile1 [open ”rdarray1.dat” r]

64 set infile2 [open ”rdarray2.dat” r]

65 gets $infile1 rdmnum1

66 set number 1 [llength $rdmnum1]

67 gets $infile2 rdmnum2

68 set number 2 [llength $rdmnum2]

69 for {set i 0} {$i < $number 1} {incr i} {

70 set rdm1 ($i) [lindex $rdmnum1 $i]

71 }

72 for {set i 0} {$i < $number 2} {incr i} {

73 set rdm2 ($i) [lindex $rdmnum2 $i]

74 }

75

76 # main program

77 # initialize global variables and create simulator instance

78 set ns [new Simulator]

79

80 set topo [new Topography] # setup topography object

81 $ns use−newtrace # create trace object for ns

82 set tracefd [open $val(tr) w]

83 $ns trace−all $tracefd

84

128 Appendix C. Example Tcl script for simulation in NS-2

85 $topo load flatgrid $val(x) $val(y) # define topology

86 create−god $val(nn) # Create God

87

88 # global node setting, configure node

89 $ns node−config −adhocRouting $val(rp) \

90 −llType $val(ll) \

91 −macType $val(mac) \

92 −ifqType $val(ifq) \

93 −ifqLen $val(ifqlen) \

94 −antType $val(ant) \

95 −propType $val(prop) \

96 −phyType $val(netif) \

97 −topoInstance $topo \

98 −agentTrace ON \

99 −routerTrace ON \

100 −macTrace ON \

101 −movementTrace OFF \

102 −channel $chan 1

103

104 for {set i 0} {$i < $val(nn) } {incr i} {

105 set node ($i) [$ns node]

106 $node ($i) random−motion 0 ;# disable random motion

107 }

108

109 # provide initial (X,Y, for now Z=0) co−ordinates for wireless nodes

110 # controller

111 $node (0) set X 100.0

112 $node (0) set Y 100.0

113 $node (0) set Z 0.0

114

115 # sensors

116 $node (1) set X 150.0

117 $node (1) set Y 100.0

118 $node (1) set Z 0.0

119

129

120 $node (2) set X 100.0

121 $node (2) set Y 150.0

122 $node (2) set Z 0.0

123

124 $node (3) set X 50.0

125 $node (3) set Y 100.0

126 $node (3) set Z 0.0

127

128 $node (4) set X 100.0

129 $node (4) set Y 50.0

130 $node (4) set Z 0.0

131

132 $node (5) set X 60.0

133 $node (5) set Y 70.0

134 $node (5) set Z 0.0

135

136 $node (6) set X 60.0

137 $node (6) set Y 130.0

138 $node (6) set Z 0.0

139

140 $node (7) set X 140.0

141 $node (7) set Y 70.0

142 $node (7) set Z 0.0

143

144 $node (8) set X 140.0

145 $node (8) set Y 130.0

146 $node (8) set Z 0.0

147

148 $node (9) set X 130.0

149 $node (9) set Y 60.0

150 $node (9) set Z 0.0

151

152 $node (10) set X 130.0

153 $node (10) set Y 140.0

154 $node (10) set Z 0.0

130 Appendix C. Example Tcl script for simulation in NS-2

155

156 # Define traffic model

157 puts ”Setting traffic connection...”

158

159 # CRETP and CBR connections between nodes

160 for {set i 1} {$i < $val(nn) } {incr i}

161 {

162 set sndcretp ($i) [new Agent/sndCRETP]

163 $ns attach−agent $node ($i) $sndcretp ($i)

164

165 set ackcretp ($i) [new Agent/ackCRETP]

166 $ns attach−agent $node (0) $ackcretp ($i)

167

168 $ns connect $sndcretp ($i) $ackcretp ($i)

169 $ns at 1.0 ”$sndcretp ($i) record rtt ($i).tr sndcretp ($i) all”

170

171 set cbr ($i) [new Application/Traffic/CBR]

172 $cbr ($i) set packetSize 200

173 $cbr ($i) set interval 0.08s

174 $cbr ($i) set random 0

175 $cbr ($i) attach−agent $sndcretp ($i)

176 $ns at 1.0 ”$cbr ($i) start”

177 $ns at 16.0 ”$cbr ($i) stop”

178 }

179

180 set timesofdetach 0

181 set n 1

182 set m 30

183 set detach time $val(initialdetach)

184 $ns at $val(procstart) ”de and reattach”

185 proc de and reattach {} {

186 global ns detach time node n m val timesofdetach ackcretp rdm1 rdm2

187 for {set i 1} {$i<$val(nn)} {incr i} {

188 $ns at $detach time ”$ns detach−agent $node (0) $ackcretp ($i)”

189 }

131

190 set current time [$ns now]

191 set retach time [expr $detach time+$rdm2 ($n)]

192 for {set i 1} {$i<$val(nn)} {incr i} {

193 $ns at $retach time ”$ns attach−agent $node (0) $ackcretp ($i)”

194 }

195 set next time [expr $val(basic)∗ [expr 1.0 + $rdm1 ($m)]]

196 set detach time [expr $next time+$current time]

197 $ns at $detach time ”if {$detach time < $val(procendafter)} {de and reattach}”

198 set timesofdetach [expr 1+$timesofdetach]

199 set n [expr 1+$n]

200 set m [expr 1+$m]

201 }

202

203 # define node initial position in nam

204 for {set i 0} {$i < $val(nn)} {incr i} {

205 # 20 defines the node size in nam, must adjust it according to your scenario

206 # the function must be called after mobility model is defined

207 $ns initial node pos $node ($i) 20

208 }

209

210 # tell nodes when the simulation ends

211 for {set i 0} {$i < $val(nn) } {incr i} {

212 $ns at $val(stop).0001 ”$node ($i) reset”;

213 }

214

215 $ns at $val(stop).0000 ”finish”

216 proc finish {} {

217 global ns tracefd

218 $ns flush−trace

219 close $tracefd

220 exit 0

221 }

222

223 $ns at $val(stop).0001 ”puts \”NS EXITING...\” ; $ns halt”

224 puts ”Starting Simulation...”

132 Appendix C. Example Tcl script for simulation in NS-2

225 $ns run

226 }

Bibliography

Afonso, J. A. and Neves, J. E. (2004). Scheduling of real-time traffic in IEEE

802.11 networks. In European conference on the use of modern information and

communication technologies, pages 113–120, Ghent, Belgium.

Afonso, J. A. and Neves, J. E. (2005). Fast retransmission of real-time traffic in

HIPERLAN/2 system. In Advanced Industrial Conference on Telecommunication-

s/Service Assurance with Partial and Intermittent Resources Conference/E-Learning

on Telecommunications Workshop, pages 34–38, Lisbon, Portugal.

Altman, E. and Jimenez, T. (2003). NS simulator for beginners.

Baillieul, J. and Antsaklis, P. J. (2007). Control and communication challenges in

networked real-time systems. Proceedings of the IEEE, 95(1):9–28.

Baldwin, R. O., IV, N. J. D., and Midkiff, S. F. (1999). A real-time medium access

control protocol for ad hoc wireless local area networks. ACM SIGMOBILE Mobile

Computing and Communications Review, 3(2):20–27.

Bianchi, G., Fratta, L., and Oliveri, M. (1996). Performance evaluation and

enhancement of the CSMA/CA MAC protocol for 802.11 wireless LANs. In

Seventh IEEE International Symposium on Personal, Indoor and Mobile Radio

Communications (PIMRC’96), volume 2, pages 392–396, Taipei, Taiwan.

Bova, T. and Krivoruchk, T. (1999). RELIABLE UDP PROTOCOL.

Cena, G., Bertolotti, I. C., Valenzano, A., and Zunino, C. (2007). Evaluation of

133

134 BIBLIOGRAPHY

response times in industrial WLANs. IEEE Transactions on Industrial Informatics,

3(3):191–201.

Cena, G., Valenzano, I. C. B. A., and Zunino, C. (2008). Industrial applications of

IEEE 802.11e WLANs. In IEEE international Workshop on Factory Communica-

tion Systems (WFCS08), pages 129–138, Dresden, Germany.

Cervin, A., Arzen, K. E., Henriksson, D., Lluesma, M., Balbastre, P., Ripoll, I., and

Crespo, A. (2006). Control loop timing analysis using truetime and jitterbug. In

Computer Aided Control System Design, 2006 IEEE International Conference on

Control Applications, 2006 IEEE International Symposium on Intelligent Control,

pages 1194–1199, Munich, Germany.

Cervin, A., Henriksson, D., Lincoln, B., Eker, J., and Arzen, K. E. (2003). How

does control timing affect performance? Analysis and simulation of timing using

Jitterbug and TrueTime. Control Systems Magazine, IEEE, 23(3):16–30.

Cheng, C. W., Lai, C. L., Wang, B. C., and Hsu, P. L. (2007). The time-delay effect of

multiple-network systems in NCS. In SICE Annual Conference 2007, pages 929–

934, Takamatsu, Kagawa, Japan.

Cloosterman, M., van de Wouw, N., Heemels, W. P. M. H., and Nijmeijer, H.

(2009). Stability of networked control systems with uncertain time-varying delays.

Automatic Control, IEEE Transactions on, 54(7):1575–1580.

Cloosterman, M. B. G., Wouw, N. V. D., Heemels, W. P. M. H., and Nijmeijer,

H. (2008). Stabilization of networked control systems with large delays and

packet dropouts. In 2008 American Control Conference, pages 4991–4996, Seattle,

Washington, USA.

Cunningham, R. and Cahill, V. (2002). Time bounded medium access control for

ad hoc networks. In Proceedings of the second ACM international workshop on

Principles of mobile computing, pages 1–8, Toulouse, France.

BIBLIOGRAPHY 135

Deng, D. J. and Chang, R. S. (1999). A priority scheme for IEEE802.11 DCF access

method. IEICE Transactions on Communications (Inst Electron Inf Commun Eng),

E82-B(1):96–102.

Dermanovic, B., N. Peric, N., and Petrovic, I. (2004). Modeling of transport

delay on Ethernet communication networks. In Proceedings of the 12th IEEE

Mediterranean Electrotechnical Conference (MELECON 2004), volume 1, pages

367–370, Dubrovnik, Croatia.

Forouzan, B. A. and Fegan, S. C. (2003). TCP/IP protocol suite. In Lupash, E. J.,

editor, McGraw-Hill Forouzan networking series. E. A. Jones, second edition.

Groups, U. (2007). The Network Simulator NS-2. http://www.isi.edu/nsnam/ns/doc/,

Accessed on 28 June, 2007.

Gupta, V., Spanos, D., Hassibi, B., and Murray, R. (2007). Optimal LQG control across

packet-dropping link. Systems & Control Letters, 56(6):439–446.

He, W. H., Ge, Z. H., and Hu, Y. P. (2007). Optimizing UDP packet sizes in ad hoc

networks. In International Conference on Wireless Communications, Networking

and Mobile Computing (WiCom2007), pages 1617–1619, Shanghai, P. R. China.

Hespanha, J. P., Naghshtabrizi, P., and Xu, Y. G. (2007). A survey of recent results in

networked control systems. Proceedings of the IEEE, 95(1):138 – 162.

Hirano, Y. and Murase, T. (2008). Evaluation of packet loss effect on throughput

unfairness between TCP upflows over IEEE 802.11 wireless LAN. In 7th

Asia-Pacific Symposium on Information and Telecommunication Technologies

(APSITT2008), pages 258–262, Bandos Island.

Hristu-Varsakelis, D. and Levine, W. S. (2005). Handbook of Networked and

Embedded Control Systems (Control Engeering). Birkhauser, Boston, New York,

USA. R. Alur and K. -E Arzen and J. Baillieul and T. A. Henzinger.

136 BIBLIOGRAPHY

Hsu, M. C. and Chen, Y. C. (2006). Enhanced PCF Protocols for Real-time

Multimedia Services over 802.11 Wireless Networks. In Proceedings of the 26th

IEEE International ConferenceWorkshops on Distributed Computing Systems, pages

56–56, Lisboa, Portugal.

Itaya, S., Kosuga, M., and Davis, P. (2004). Evaluation of packet latency and

fluctuation during UDP packet exchange in ad hoc wireless groups. In Proceedings

of the 24th internation conference on Distributed Computing Systems Workshops

(ICDCSW’04), pages 684–689, Hachioji, Tokyo, Japan.

Jiang, S. (1998). Wireless communications and a priority access protocol for multiple

mobile terminals in factory automation. IEEE Transactions on Robotics and

Automation, 14(1):137–143.

John, S. N., Ibikunle, F. A., and Adewale, A. A. (2008). Performance improvement

of wireless network based on effective data transmission. In IET International

Conference on Wireless, Mobile and Multimedia Networks, pages 134–137,

Mumbai, Inidia.

Jonsson, M. and Kunert, K. (2008). Meeting reliability and real-time demands in

wireless industrial communication. In The 13th IEEE International Conference

on Emerging Technologies and Factory Automation (ETFA 2008), pages 877–884,

Hamburg, Germany.

Khayam, S. A., Karande, S., Krappel, M., and Radha, H. (2003a). Cross-layer

protocol design for real-time multimedia applications over 802.11 b networks. In

Proceedings of 2003 International Conference on Multimedia and Expo, volume 2,

pages 425–428, Baltimore, Maryland, USA.

Khayam, S. A., Karande, S., Radha, H., and Loguinow, D. (2003b). Performance

analysis of errors and losses over 802.11b LANs for High-Bitrate Real-Time

Multimedia. Signal Processing: Image Communication, 18(7):575–595.

BIBLIOGRAPHY 137

Lam, P. P. K. and Liew, S. C. (2004). UDP-Liter: an improved UDP protocol for

real-time multimedia applications over wireless links. In The 1st International

Symposium on Wireless Communication Systems (ISWCS2004), pages 314–318,

Mauritius.

Larzon, L., Degermark, M., and Pink, S. (1999). UDP-Lite for Real Time Multimedia

Applications.

Larzon, L., Degermark, M., and Pink, S. (2004). The Lightweight User Datagram

Protocol (UDP-Lite).

Le, T., Kuthethoor, G., Hansupichon, C., Sesha, P., Strohm, J., Hadynski, G., Kiwior,

D., and Parker, D. (2009). Reliable User Datagram Protocol for airborne network.

In IEEE Military Communications Conference (MILCOM2009), pages 1–6, Boston,

Massachusetts, USA.

Lee, J. Y., Kim, G. Y., and Park, S. K. (2002). Optimum UDP packet sizes in ad hoc

networks. In 2002 Workshop on High Performance Switching and Routing, pages

214–218, Kobe, Hyogo, Japan.

Li, Q. and Yao, C. (2003). Real-Time Concepts for Embedded Systems. CMP Books.

editor: R. Ward and M. Briand.

Liu, P. X., Meng, M., Ye, X. F., and Gu, J. (2002). An UDP-based protocol for

internet robots. In Proceedings of the 4th World Congress on Intelligent Control

and Automation, volume 1, pages 59–65, Shanghai, P.R.China.

Liu, X. and Goldsmith, A. (2004). Wireless medium access control in networked

control systems. In Proceedings of the 2004 American Control Conference,

volume 4, pages 3605–3610, Boston, Massachusetts, USA.

Loeser, J. and Haertig, H. (2004). Low-latency hard real-time communication over

switched Ethernet. In Proceedings of the 16th Euromicro Conference on Real-Time

Systems (ECRTS 2004), pages 13–22, Catania, Sicily, Italy.

138 BIBLIOGRAPHY

Lu, H. W. (2001). How to process the packet lost and out of order based on UDP

transport protocol. Computer Engineering and Applications, 2:48–50.

Luck, R. and Ray, A. (1990). An observer-based compensator for distributed delays.

Automatica, IFAC, 26(5):903–908.

Luck, R. and Ray, A. (1994). Experimental verification of a delay compensation

algorithm for integrated communication and control systems. International Journal

of Control, 59(6):1357–1372.

Markowski, M. J. and Sethi, A. S. (1998). Fully distributed wireless MAC transmission

of real-time data. In Proceedings of the 4th IEEE Real-Time Technology and

Applications Symposium, pages 49–57, Denver, Colorado, USA.

Nilsson, J. (1998). Real-time control systems with delays. PhD thesis, Department of

Automatic Control, Lund Institute of Technology, Lund, Sweden.

Ouni, S. and Kamoun, F. (2002). Hard and soft real time message scheduling on

Ethernet networks. In 2002 IEEE International Conference on Systems, Man and

Cybernetics, volume 6, pages 378–382, Hammamet, Tunisia.

Pal, A., Dogan, A., and Ozguner, F. (2002a). MAC layer protocols for real-time traffic

in ad-hoc wireless networks. In Proceedings of the 2002 International Conference

on Parallel Processing (ICPP2002), pages 539 – 546, Vancouver, British Columbia,

Canada.

Pal, A., Dogan, A., Ozguner, F., and Ozguner, U. (2002b). A MAC layer protocol for

real-time inter-vehicle communication. In Proceedings of the IEEE 5th International

Conference on Intelligent Transportation Systems, pages 353–358.

Salyers, D. C., Striegel, A. D., and Poellabauer, C. (2008). Wireless reliability:

Rethinking 802.11 packet loss. In International Symposium on a World of Wireless,

Mobile and Multimedia Networks (WoWMoM2008), pages 1–4, Newport Beach,

CA, U.S.A.

BIBLIOGRAPHY 139

Shakkottai, S., Rappaport, T., and Karlsson, P. (2003). Cross-layer design for wireless

networks. IEEE Communications Magazine, 41(10):74–80.

Singh, A., Konrad, A., and Joseph, A. D. (2001). Performance evaluation of UDP Lite

for cellular video. In Proceedings of the 11th international workshop on Network

and operating systems support for digital audio and video, pages 117–124, Port

Jefferson, New York, United States.

Stoina, P. (2008). Transport protocol for a real-time communication in wireless

sensor actor networks. Master’s thesis, Genie Informatique, Networking,Universite

Montreal.

Tian, Y. C., Levy, D., Tade, M. O., Gu, T. L., and Fidge, C. (2006). Queuing packets in

communication networks for networked control systems. In The 6th World Congress

on Intelligent Control and Automation (WCICA’06), volume 1, pages 205–209,

Dalian, P. R. China.

Tipsuwan, Y. and Chow, M. Y. (2003). Control methodologies in networked control

systems. Control Engineering Practice, 11(10):1099–1111.

Tsigkas, O. and Pavudou, F. N. (2008). Providing QOS support at the distributed

wireless MAC layer: a comprehensive study. Wireless Communications, IEEE,

15(1):22–31.

Wang, L. and Zhen, K. (2010). Performance analysis of reliable dynamic buffer UDP

over wireless networks. In Second International Conference on Computer Modeling

and Simulation (ICCMS ’10), volume 1, pages 114–117, Sanya, Hainan, P. R. China.

Wang, X., Wang, S., and Jiang, A. G. (2006). Optimized deployment strategy of

mobile agents in wireless sensor networks. In Sixth International Conference on

Intelligent Systems Design and Applications (ISDA’06), volume 2, pages 893–898,

Jinan, Shandong, P.R.China.

140 BIBLIOGRAPHY

Watteyne, T. and Auge-Blum, I. (2005). Proposition of a hard real-time MAC protocol

for wireless sensor networks. In 13th IEEE International Symposium on Modelling,

Analysis, and Simulation of Computer and Telecommunication Systems, page 533

536, Atlanta, Georgia, USA.

Wen, P., Cao, J., and Li, Y. (2007). Design of high-performance networked real-time

control systems. Control Theory and Applications, IET, 1(5):1329–1335.

Wittenmark, B., Nilsson, J., and Torngren, M. (1995). Timing problems in real-time

control systems. In Proceedings of the American Control Conference, volume 3,

pages 2000–2004, Seattle, Washington, USA.

Wu, C. X. (2006). Practical models and control methods with data packets loss on

NCS. In 2006 IET International Conference on Wireless, Mobile and Multimedia

Networks, pages 1–4, Hangzhou, P. R. China.

Wu, J. C. S. (2001). A real time transport scheme for wireless multimedia

communications. Mobile Networks and Applications, 6(6):535–546.

Yang, Y. and Wang, Y. J. (2005). Modeling and control for NCS with time-varying long

delays. In Proceedings of 2005 International Conference on Machine Learning and

Cybernetics, volume 3, pages 1407–1411, Guangzhou, P. R. China.

Ye, H. (2000). Research on networked control systems. PhD thesis, Department of

Mechanical Engineering, University of Maryland, USA.

Ye, H., Walsh, G., and Bushnell, L. G. (2001). Real-time mixed-traffic wireless

networks. IEEE Transactions on Industrial Electronics, 48(5):883–890.

Yiming, A. and Eisaka, T. (2005). A switched Ethernet protocol for hard real-time

embedded system applications. In 19th International Conference on Advanced

Information Networking and Applications (AINA 2005), volume 2, pages 41–44,

Taipei, Taiwan.

BIBLIOGRAPHY 141

Zhang, W. (2001). Stability analysis of networked control systems. PhD thesis,

Department of Electrical Engineering and Computer Science, Case Western Reserve

University, Cleveland, Ohio, USA.

Zhang, W., Branicky, M. S., and Phillips, S. M. (2001). Stability of networked control

systems. IEEE Control Systems Magazine, 21:84–99.

Zheng, H. and Boyce, J. (2001). An improved UDP protocol for video transmission

over Internet-to-wireless networks. IEEE Transactions on Multimedia, 3(3):356–

365.

Zhou, Y., Ananda, A., and Jacob, L. (2003). A QoS enabled MAC protocol

for multi-hop ad hoc wireless networks. In Proceedings of IEEE International

Performance, Computing, and Communications Conference (IPCCC2003), pages

149–156, Phoenix, Arizona, USA.

	Keywords
	Abstract
	Acknowledgements
	Introduction
	Research Background
	Statement Gap and Motivation
	Aims of the Research
	Significance of the Study
	Contribution of the Thesis
	Thesis Organization
	Related Publications

	Previous and Related Work
	Time Delay in Networked Control Systems
	Packet Loss in Networked Control Systems
	Compensation for Transmission Delay
	Techniques for Packet Loss Compensation
	Other Network Elements that Influence Network Performance
	Summary of the Literature Review

	Network Layout Strategies for WNCSs
	Basic Network Configuration and Evaluation Metrics in Simulations
	Case One: Sensors with the Same Data Rate
	Case Two: Sensors with Different Data Rates
	Chapter Summary

	Design of the CRETP Protocol
	Logical Design of CRETP
	Connectionless Services with Acknowledgment
	Conditional Retransmission Service
	Detection of Ineffective Data Packets
	State Transitions

	CRETP Packet Format
	The Mechanisms in CRETP
	Mechanism for Data Effectiveness Detection
	Acknowledgment Mechanism
	Conditional Retransmission Mechanism

	Protocol Implementation in NS-2
	Main Operations in Source Mode
	Main Operations in Destination Mode

	Chapter Summary

	CRETP Performance Evaluation in NS-2
	Network Specification
	Performance Metrics
	Simulation Case One
	Simulation Scenario Specifications
	Simulation Results
	Comparative evaluations

	Simulation Case Two
	Simulation Scenario Specifications
	Simulation Results
	Comparative evaluations

	Simulation Case Three
	Simulation Scenario Specifications
	Simulation Results
	Comparative evaluations

	Chapter Summary

	Conclusions and Future Work
	Limitations and Future Work

	Integrating CRETP inside the NS-2 Simulator
	Step one: Add C++ source code into NS-2
	Step two: Tcl library
	Step three: Makefile

	C++ source code for CRETP in NS-2
	The header file for the source CRETP
	The header file for the destination CRETP
	The C++ file for the source CRETP
	The C++ file for the destination CRETP

	Example Tcl script for simulation in NS-2
	Bibliography

