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Abstract—In this article we describe in detail a design
method that assures that the designed product satisfies a setof
prescribed demands, while at the same time providing a concise
representation of the design that facilitates communication in
multi-disciplinary design teams. This Demand Compliant Design
(DeCoDe) method was in itself designed to comply with a set of
demands. The demands on the method were determined by an
analysis of some of the most widely used design methods and
from the needs arising in the practice of Design for Quality.We
show several modes of use of the DeCoDe method and illustrate
with examples.

I. I NTRODUCTION

Modern communication and transport technologies have
made the world a single market. This global market attracts
many competitors and the stakes for each competitor are
high. To compete, producers have to offer their customers
more features and greater variety, which keeps the com-
plexity of products escalating. In the face of this, speed
and effectiveness in conceiving and bringing products and
services to market are paramount for business success. New
or improved products originate in design. Therefore those
producers who can design effectively and efficiently have a
competitive advantage. The provision of effective and efficient
design methods is the challenge for design science.

Design Science postulates two main activities:build and
evaluate, which parallel discovery and justification in the
natural sciences [1]. Like discovery in the natural sciences,
the build activity is a cognitive activity that is not well
understood, and this makes the development of effective
design methods difficult. Design method are also difficult
to evaluate. A design method must not only beuseful in
itself, it must be justified by being superior in some way
to pre-existing methods. Such comparison, strictly speaking,
should be conducted in the same way as the clinical trial of
a therapy. This is practically impossible because of the huge
effort, with little financial incentive, that would be required
to complete the design of the same product following, in total
separation, two different methods. Even if such a comparison
was done the result would only be applicable within the same
application context [1]. Despite the many design methods
proposed over the years (Pahl et al. [2] list 130 of them)
and because of the difficulties mentioned before, a strong
demand persists for evaluating and extending the effectiveness
of design methods and their scope.

Evaluation of a design method has two parts: One is the
direct evaluation of the process of applying the method,
according to a set of performance criteria such as e.g. resource
requirements. The second is indirect evaluation through the
quality of the designed product. Both the product and the
design method can be evaluated in the same way. Let us
consider first the evaluation of the product or artifact.

The Usability (or Utility) of a product is an evaluation
criterion often quoted in the design literature [3]. Where
usability is defined as ”the extend to which a product can
be used by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a specific context
of use” (ISO 9241-11). This definition is similar to the notion
of quality.

Most industrial standards define quality asthe totality of
features and characteristics of a product or service that bear
on its ability to satisfy stated and implied needs(ANSI/ASQC
Standard A 3-1987, DIN 55 350, part 11). We shall prefer this
formulation because it suggests at once a way of evaluating
the quality of a product by assessing the degree to which it
satisfies each of the demands placed on it.

The purpose of design is the production of useful artefacts
[4]. To be useful an artifact must satisfy some specific
demands or requirements. These demand must be stated at
the start to give direction to the design process. Every design
method should lead to a product that satisfies the demands
placed on it. The Demand Compliant Design (DeCoDe)
method to be described in this article has its root in Design
for Quality [5] [6] [7] and has the goal of facilitating the
design of artifacts that meet all the specified demands.

In Quality Engineering the primary focus is on customer
demands. A product design needs to consider all the stages
in the product life cycle, from the initial design to manufac-
turing, through its useful life, and to its final disposal. Over
the product’s life cycle there are other stakeholders besides
the customer (user) that have their own demands on the
product, such as the various members of the organisation that
manufactures the product (owners, shareholders, employees)
and the persons and organisations in the community affected
by the product. Therefore the DeCoDe methods requires that
the demands from all the stakeholders be regarded [8]. These
demands have to be made explicit and met in an effective way.
When we refer to demands throughout this article we always
assume that they include the demands from all stakeholders.



The discipline of Requirement Engineering (RE) provides
techniques for eliciting, prioritisation and administration of
requirements [9]. DeCoDe takes the requirements obtained by
RE techniques as inputs to guide the design process to achieve
a demand compliant product. It achieves this by making the
relations between the demands, functions, components and
processes explicit and maintaining consistency and complete-
ness at all stages of the design.

Once a working set of demands has been determined there
are usually a multitude of solutions that satisfy the individual
demands to different degrees, making design a multi-objective
optimization problem. The experienced designer carries out
the optimization intuitively based on his/her knowledge and
experience. Occasionally, a designer may resort to the help
of quantitative optimization techniques but final quality of the
product depends directly on the designer’s grasp of the main
demands on the product system and his/her understanding
how to best utilise the available components. Designers that
have reached such a high level of familiarity with the product
system may not feel the need for a method that makes explicit
things that he/she already knows. It is not until a new designer
has to take over or when a new designer joins a team or
when design information has to be communicated to persons
outside the team that the need of a disciplined approach to
design realisation is felt. Anyway, many of the contemporary
design task can no longer be carried out by a single designer.
Products are increasingly of cross-disciplinary nature combin-
ing hardware, software and service elements. Design methods
need to foster a common understanding of the product across
the discipline specific idiosyncrasies and procedures [10].

A design method is in itself an artifact that can be evaluated
by the degree to which the method meets the stated demands
on the method. Therefore, we begin in Section II with a
review of the capabilities of some widely applied design
methods. From assessing the explicit and implicit demands
fulfilled by these method we formulate in Section III a set of
demands that design methods appropriate for the complexities
of contemporary designs should meet. Section IV describes
the DeCoDe method and its elements. The three main De-
CoDe application modes are explained, with examples, in
Section V. In Section VI we conclude by reviewing how the
DeCoDe Method stacks up against the demands formulated
in Section III .

II. CAPABILITIES OF CURRENT DESIGN METHODS

From the many design methods that have been proposed we
selected nine for reviewing their capabilities. These methods
were found to be the most used according to a recent survey
[11].

We observe in general that these methods:

1) Originate from the specific design domains of me-
chanics, electronics or computer software, and are not
directly transferable to other domains. Examples are
the VDI Directive 2221 based on the Pahl/Beitz con-
struction method [12], Y-method from circuit design
[13] and software engineering methods such as the

waterfall method, evolutionary development or extreme
programming. [14]

2) None of the methods specifies a system description,
leading to a variety of incomplete descriptions that
impede the comparison of the effectiveness of the
methods. One of the main shortcomings of existing
design methods is that they do not require, or assist in
obtaining, a description of the whole product system.
We need one design method for a product that contains
mechanical, electronic and informatics components, and
that interdisciplinary teams can use to develop a com-
plex product.

Among the discipline specific design methods, design au-
tomation is most advanced in the electronic circuit design
domain, where it automates the detailed work of converting
circuit schematics to VLSI (Very Large Scale Integration)
circuit masks.

The Y-method is primarily an elegant conceptual model
to guide the design process, rather than a prescriptive design
method. The Y symbolises the representation of the electronic
system along three design dimensions: functional, structural
and geometrical. For each of the three representations there
are series of levels that progress from the higher abstraction
level to the detailed realisation. The selection of the three
axes and their levels are specific to electronic system design.
Current trends in electronic systems design strive towardsthe
automatic generation of the final electronic circuit from a
high level specification. These methods assume that a set of
specifications have already been produced and that no human
intervention will be necessary beyond the high level system
specification. The designer will not need to have any specific
knowledge of circuits and embedded software. However the
success of these methods relies on the special characteristics
of software-hardware design and is thus not transferable to
other domains. Electronic system design automation only
addresses the electronic hardware-software components ofa
product and as such lacks a complete product description.

As the complexity of technical systems grows, especially
due to the progressive intertwining of information process-
ing, electronic, electrical and mechanical components, the
number of requirements and the number of stakeholders also
increases. It is no longer sufficient to attend only to the
customer requirements, as mainly practised by modern quality
management. The requirements of all stakeholders, including
employees, suppliers and company owners, and those that the
enterprise poses on itself for strategic reasons, have to be
stated and met. At the same time the interactions among the
components of a product and with the environment need to
be mapped systematically.

Although there are methods that consider all stakeholder
demands they are domain specific, fragmented and only
partially address the design problem.

The following modern quality management techniques that
deal with customer demands are applicable to all kinds of
artifacts:

QFD (Quality Function Deployment) focuses on the cus-
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tomer [15].
FMEA(Failure Mode and Effect Analysis) focuses on faults

[16].
FTA Fault Tree Analysis focuses on cause and conse-

quence of chaining of faults [17].
However they only address partial aspect and consider only
the demands from the customer [18] [19] [7] [20]. Although
FMEA and FTA deal with faults, faults can be directly linked
to demands because a fault causes that one or more demands
are not met.

QFD is the most widely applied demand based design
method and has evolved to make it easier and less costlier
to apply [21]. QFD links the demands of the customer to the
technical characteristics of the product with a matrix. This
quickly shows which demands of the customer have already
been realised and which demands of the customer have yet
to be realised. If there is no link between a demand and
the attributes of a component then the product needs to be
redesigned. We used this idea of the QFD for the DeCoDe-
method, but we include the demands of all stakeholders.
Linking the demands with the components is one way of
using the QFD. The QFD is also useful for comparing how
various products meet customer demands. QFD allows a
comparison of different products with regards to their degree
of satisfaction of the demands. Thus the method tells designer
what he has to develop during the product design. The main
deficiency of this method is that it does not collect demands
from all stakeholders. Normally the functioning of a product
shows very quickly if demands are met or not. QFD does not
describe functions. Therefore functions are not linked with the
demands and the components and the design space lacks some
essential variables. The demands must have a connection to
the functions, the components and the processes characteristic
of the product. Because, if a demand is not met with a at least
one function, component and a process, then there must be a
mistake.

A positive aspect of the QFD is that it contains a pair-wise
comparison between the demands (The roof of the house of
quality) This relative weighing process allows determining the
order of importance of the demands for the customers. The
designer can then evaluate how his product design realised the
most important demands of the customers. The definitions of
the demands, their detailed description and the statement of
their interrelation, is necessary for the design process.

FMEA searches for faults during the design process but
does the fault analysis without reference to the requirements.
FTA shows the logical possibilities of mistakes. When there
is a fault there is an unfulfilled demand.

Therefore requirement fulfilment could be checked by the
FMEA. During the design process the possibilities of faults
and their consequences have to be checked. However there
is no connection between the QFD and the FMEA and the
same is true for the connection between FMEA and FTA.

The FTA and the FMEA never show directly the demands
and their connection to all aspects of a product. When
mechanical, electrical or software engineers describe faults

of the same product, they do it in different ways and the
characteristics of the same fault may appear completely
different. Therefore the communication between members
in an interdisciplinary team of designers can become very
difficult and we need to describe a product in way that is
helpful for the interdisciplinary design team. This means that
all professional experts must describe the product with the
components, the function the processes and the demands, in
the same way. This product description has to be checked
during the design process at special key points.

Basically we must ascertain that the results of the QFD, the
FMEA or the FTA can be wrong, if there is no description of
the product system that links the demands, the components,
the functions and the processes of the product. This descrip-
tion is absolutely necessary for an interdisciplinary design
team.

There are still other methods that, like those mentioned
above, only a focus on the demands and their satisfaction
during the design process. For example Axiomatic design uses
axioms to generate design solutions. [22], Kansei Engieering,
incorporates emotional reactions of the of user into the
development strategy [17] or Requirement Engineering (RE)
[23] that focuses on strictly establishing and meeting the
demands.

Kansei Engineering and Axiomatic Design also only focus
on the customers and not on all stakeholders of a product.
These two methods link the customer demands with the
function and the components of the product but not with
the processes. Requirement Engineering looks after how the
demands from all stakeholders are met through the technical
characteristics of the product. The functions and the processes
are not included. Requirement Engineering has no connection
to FMEA, to FTA or QFD etc. At present there exist no prac-
tical methods that systematically reveal the interrelations in
complex systems and consequently support a full exploration
of the design space [15], [16] [24].

Originally, Requirement Engineering was defined in soft-
ware engineering as a systematic, collection, evaluation and
documentation of demands trough a general iterative proce-
dure [25] [24]. Requirement Engineering relates customers’
and other stakeholders’ demands to products and processes.
Yet the relations of product components and processes, as
well as their functions are hardly ever considered.

In a recent review of the requirement engineering literature
Berkovich et al. found that the deficiencies are greatest
for hybrid products that combined hardware, software and
service aspects [9]. Such hybrid products, which include
mechatronic products, are becoming an ever larger fraction
of the product palette. In recent times Software Engineering
has contributed strongly with concepts, methods and tools for
requirement elucidation, analysis, negotiation, documentation
and validation. The need of a clear requirement specification
is acute in software engineering because of the complexities
of designing a software product that is essentially intangi-
ble and that reveals itself only partially at a time through
its usage. Because of this nature, Software Requirement
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Engineering predominantly focuses onuser requirements.
However, irrespective of the nature the product, demands arise
not only from the user but also form the other stakeholders of
the product. We need a method that is universally applicable
across all industries, and not like Requirement Engineering,
that is been primarily intended for Software Design [26].
The method must foster the generation of new product ideas,
the detection of faults or uncover unrecognised relations
between the individual views. In addition to handling the
demands of all the stakeholders a systematic design method
has to expose the interrelationships between the components,
processes and functions, which constitute the dimensions of
a product system. Furthermore, each of these dimensions
(requirements, functions, components and processes) should
be structured hierarchically to allow the narrowing down of
the design space. From the above review one notices that
the current design methods comprehensive and only address
particular aspects.

An early step in the method has to be the systematic com-
parison of the multitude of demands so that equal or similar
requirements can be identified and unified. This unification
has to be done in such a way that each demand can still
be traced back to the originating stakeholder. Contradictory
demands need to be assessed and weighted.

It is likely that new requirements arise during the design
process, therefore it must be possible to insert new demands
into the existing catalogue at the right place, anytime. Design
knowledge should be stored systematically while guarantee-
ing knowledge base transparency. Product liability laws also
make it imperative that traceability and effective documenta-
tion are an integral part of the method.

All the methods specify a process in that they prescribe
a series of steps that will lead to the final design. However
these steps are not specified clearly enough to allow a unique
realisation by different designers and designs.

III. D EMANDS ON THE DESIGN METHOD

A design method consists of collection of activities (pro-
cesses), sequential and/or concurrent, whose final result is a
prescription of how to build an artifact. Following the design
method should assure that the built artifact meets the demand
set out at the start of the design, irrespective of whether the
artifact is a material product, an organisational structure or a
service. There is no great difference between a product and
a service from the design point of view. A service consists
of a collection of processes that realise the functions that
fulfil a set of demands. The functions are performed by a
service system consisting of artefacts (equipment) and people.
Likewise, a material product, once it is in use, also executes,
driven by an operator, a collection of processes to provide the
functions it was designed for.

Furtehrmore, a method is the result of a purposeful design,
and as such it is an artifact expected to meet a set of demands.
Therefore the evaluation of a method consists of assessing
how well it meets those demands.

From the general analysis and the review of the design
methods in the previous section we formulate the following
set of demands that a design method suitable for the com-
plexity of contemporary designs must satisfy:

• Provide a systematic procedure for the discovery and
precise formulation of demands.

• Include the demands from all the stakeholders.
• Encompass the demands from all phases of the product

life cycle.
• Produce a product description in terms of the functions,

components and processes and their relations to the
demands and the relations among themselves.

• Provide a common product description amenable to be
developed and used by all the disciplines participating
in the design.

• Represent the design knowledge in a concise way that
is easy to communicate.

• At all times maintain the consistency between the de-
mands and the function, components and processes in-
tervening in the design.

• Continuously detect omissions in the demands, func-
tions, component and processes in the progress of the
design.

• Identify potential product faults at design time.
• Document all changes in the demands, functions, com-

ponents and processes over the design period.
• Allow back and forward traceability of all design

changes.
• Be universally applicable to all kinds of artifacts.
• Prescribe a structured design process that can be auto-

mated.
• Be able to interface with design methods from different

disciplines.
• Foster the generation of new product ideas.

Table I summarises to what extent the design methods
discussed in the previous section meet these demands.

None of the methods examined in the table meet the
demands 4, 7 and 8, which relate to the objective of assuring
a demand compliant design, which indicates the need for a
method that also meets these demands.

IV. T HE DECODE METHOD

Figure 1 represents Demand Compliant Design (DeCoDe)
as adesign methodthat comprises a model, a set of tools
and a procedure. The model consist of the three views of a
product: the functional view that describes product by the
function it performs, the component (structural) view that
describes the product by its parts and their relations, and
the process view that describes the product by the processes
executed by and on the product during its life-cycle. The tools
consist of the various dependency matrices and the demand,
function, component and process catalogues that specify the
design. Finally DeCoDe specifies an iterative series of steps
(procedure) that based on the model use the tools to evolve
the design.
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No. Demand QFD AD DSM VDI 2221 V-Model RE Kansei FTA FEMA
1 Provide a systematic procedure for the discovery and

precise formulation of demands
! ! ! ! ! ! !

2 Include the demands from all the stakeholders ! ! !

3 Encompass the demands from all phases of the product
life cycle

! ! ! ! !

4 Produce a product description in terms of the functions,
components and processes and their relations to the
demands and the relations among themselves

5 Provide a common product description amenable to be
developed and used by all the disciplines participating in
the design.

! ! ! ! ! ! ! !

6 Represent the design knowledge in a concise way that is
easy to communicate

! ! ! !

7 At all times maintain the consistency between the de-
mands and the function, components and processes in-
tervening in the design

8 Continuously detect omissions in the demands, functions,
component and processes in the progress of the design

9 Identify potential product faults at design time ! !

10 Allow back and forward traceability of all design changes ! ! !

11 Be universally applicable to all kinds of artifacts. ! ! ! ! ! ! ! ! !

12 Prescribe a structured design process that can be auto-
mated.

! !

13 be able to interface with design methods from different
disciplines

! ! ! ! !

14 Foster the generation of new product ideas ! ! ! ! ! !

TABLE I
COMPARATIVE SATISFACTION OF DEMANDS BY THE MAIN DESIGN METHODS.

DeCoDe ToolsDeCoDe Model
com ponen ts

p ro ce sse s

fun ct io n s
Demands

DeCoDe Procedure

DeCoDe Method

Main matrices

Processes

Demands

Functions

Components

Demands

Functions

Components

Processes

Fig. 1. DeCoDe is a design method that comprises a model, a setof tools
and a method.

The DeCoDe method is based on simple ideas for organ-
ising the design information and capturing essential relations
between the main design problem elements. It provides a
framework for design knowledge documentation and for
tracking the evolution of the design. It describes the whole
of a complex product, finds out the gaps or the failures of a
design and may create new solutions that are assessed against
the demands for the selection of the best design. The DeCoDe
method is a first step towards a formal description of the
design task that will allow the application of quantitative

techniques for solving the multi-objective design problem.
The hallmark of the DeCoDe is the linking of the demands on
the product with three complementaryviewsof the product
and the maintenance of consistency at all times as the design
evolves.

A. Demands and Product Views

Demands on a product express either a function or a
constraint on one or more functions, components or processes.
The product or artifact needs to perform these functions under
the specified constraints. The performance of the required
functionswill be the result of the running of a collection of
processes. In turn, the processes result from the dynamic inter-
action of the physical components of the artefact. Accordingly
the DeCoDe method takes three complementary views of a
product. These views see the product as a collection of func-
tions, a collection of processes or a collection of components,
all linked to the demands. Each view is represented by the
corresponding list, or catalogue, of functions, processesor
components. The DeCoDe method uses matrices to capture
and manipulate the relations between the demands and the
elements of the three product views. There are relations
among the elements in each of the catalogues and there
are relations between the elements of different catalogues.
These relations are captured inAdjacencymatrices [27]. The
rows of an adjacencymatrix correspond to the entries in
one catalogue and the columns to the entries in the same
or another catalogue. There are 10 such adjacency matrices
as shown in as shown in Figure 2.
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ComponentsFunctions ProcessesDemands

Demands

Functions

Processes

Components

Main matrices

Fig. 2. Theadjacencymatrices of the DeCoDe method capture the relations
between the elements of the catalogues. There are 10 possible matrices.

Referenece 

architecture

x1

x2

x
3

Compliance  

region

Fig. 3. Designs correspond to points in the design space spanned by the
design variables that influence the satisfaction of the demands.

B. Navigating Design Space with DeCoDe

The notion of design space is useful for exploring design
alternatives. Each design solution is a point in the space
of design variables. Product design variables are those that
influence the satisfaction of the demands on the product. The
design space is determined by the nature of the product, and
the demands placed on it.

Each design solution (design point) will satisfy the de-
mands to a certain degree. Design optimisation searches for
the design point that has the highest degree of satisfaction
of demands. The solution space consists of those regions in
design space that have a high degree of satisfaction of the

demands.1

For example a digital camera can be characterised by the
focal length of the lens assemblyf , the lens diameterφ, width
dx and heightdy of a pixel and the number of pixelsnr in
a row and a columnnc of the sensor array. Although this is
a highly simplified characterisation of digital camera, it may
be sufficient for evaluating the image quality produced by
the camera. Any digital camera, real or imagined will have
specific values of these five variables and the designer is free
to choose from among a range of possible values. Thus a
particular camera can be represented by a point in this five-
dimensional design space

~C = (f, φ, dx, dy, nr, nc) (1)

In general a design can be described by a vector of values of
the design variablesui

~u = (u1, u2, ...uN )T i = 1..N (2)

Because a camera is inherently defined by the function of
projecting a 3D scene on a 2D image recording medium, there
are clearly regions in design space where the correspond-
ing construct no longer meaningfully provides the function
expected from a camera. For example a camera with focal
length of 1 m will still provide the desired function but will
be useless in taking a group photo of some friends. Thus,
although in principle a camera could be anywhere in the
design space defined by the range of the variables, useful
designs will only occur in particular regions of design space.
These useful regions will be defined by the demands on
the product. High magnification tele-cameras will occupy a
different region in design space than pocket cameras.

C. Evaluation of Designs

Demands have to be formulated in a way that they can
be evaluated quantitatively, even if only on a coarse scale.
Demands for which no operational procedure of measurement
of their degree of satisfaction can be specified, are largely
useless for the design. With properly specified demands the
goodnessof the design can be evaluated. For that purpose
we introduced the Comprehensive Quality Function (CQF)
[8] which, for simplicity, is taken as a weighted sum of the
degree of satisfaction of the individual demands

Q =
∑

i

viQi(~u) (3)

Where Qi(~u) is a function that measures the degree of
satisfaction of demandi at the design point~u. The factorvi
weighs the importance of demandi. These weighting factors
may be different for different usage contexts of the product.
How the weighting factors can be obtained is explained in
section IV-D below. With the CQF the design problem can
be formulated as maximisation of the CQF over design space.
The CQF describes the artefact by a scalar value, and in this

1A different notion of solutions space is used by Gries [28] where the axes
are the measures of satisfaction of the individual demands.To find the optimal
solution multi-objective optimization is used (Pareto optimal surface).

6



way approximates what is essentially a multi-objective design
problem by a single objective optimisation. Of course nothing
precludes to use of multi-objective optimisation techniques.

D. The DeCoDe Adjacency Matrices

Matrices have been widely used in design methods [10]
because they can succinctly represent relationships between
a large number of elements. Adjacency matrices represent
graphs. In DeCoDe each element of a catalogue is a node in
a graph and each element of a matrix quantifies an edge.

The edges (lines connecting the nodes) of the graph
represent the relations between the elements. Depending
on the chosen relation these graphs may be undirected or
directed. The matrices between different lists represent bi-
partite graphs. In a bipartite graph there are two sets of nodes
and links exist only between nodes belonging to different sets.

In general DeCoDe uses weighted edges to not only express
the existence or not of a relation but also to quantify that
relation.

Assigning a binary value to a matrix element simply ex-
presses the existence or not of some relation. For example, in
the component-component matrix, a binary value can indicate
the direct physical connectedness of two components. The
relation is symmetrical and the adjacency matrix represents
the block diagram (graph) of the product. Apart from tellingto
which other component a particular component is connected,
other useful information can be directly extracted from this
matrix. For example by summing the rows, or columns, the
total number of adjoining components can be determined for
any given component.

Sometimes demands are classified as essential or as desir-
able demands. DeCoDe does not make this distinction, instead
it ranks the demands according to perceived importance. One
can find many different relation between the elements of
catalogues beyond the simple adjacency. For example, not
all demands are of equal importance and the relation:more
important thancan be applied to the list of demands. The
degree of satisfaction of the relationship can be expressed
on a scale of from−M to M . M indicates that the relation
is fully satisfied and−M is that the antagonistic relation is
fully satisfied. To evaluate the relationB is more important
than A between two demandsA and B, we ask ourselves
would we sacrifice some conformance toA in favour of B.
For example, if demandA requires the robot to be smaller
than 100 mm diameter and demandB requires the robot to
be cheap, then would I rather have a larger robot if it were
cheaper? How strong is that preference? Note that a smaller
robot can be more expensive than a larger robot because it is
more difficult to fit the same functions in a smaller space. If it
were strong then we would accept a size increase even if the
cost were only cheaper by a modest amount. Conversely if
we evaluate the importance ofA in relation toB then ifA is
less important (opposite) we would evaluate the relation toa
negative number. If it is much less important then one would
accept a large size increase for a small increase in cost.

This relation allows the ranking of the demands as follows:
Let us assume that there is a functionv(q) that weights
the importance of a demand. The value of this function is
generally not known. However, we are only interested in the
relative values between demands and these can be estimated
by the design team. The relative importance can be measured
as a real value or as an integer in a specified range. If demand
j is more important than demandi then the difference in
importanceri,j of two demands is

ri,j = v(j)− v(i) (4)

and
v(j) = v(i) + ri,j (5)

whereri,j is positive.
We now fill the values in the demand-demand adjacency

matrix with estimates of the relative importanceri,j , and take
the sum over rowi

n∑

j=1

ri,j =

n∑

j=1

(v(j)− v(i)) =

n∑

j=1

v(j) − nv(i) (6)

Solving for v(i)

v(i) =
1

n
(

n∑

j=1

v(j)−

n∑

j=1

ri,j) (7)

v(i) = c−
1

n

n∑

j=1

ri,j (8)

We find that the importance of item (demand)i is the average
importance of all items, which is a constant, minus the
average of the elements in rowi of the matrix. If that average
is negative then the importance of itemi is greater than the
average importance and if it is positive then itemi is less
important than the average. By rearranging the rows of the
matrix so that

∑n

j=1
r(i, j) increases from the top to the

bottom the rows will be ordered indecreasingimportance
from the top to bottom. Applied to the demands this means
that we have a prioritised list of demands. The values of∑n

j=1
r(i, j) can be used, after normalisation, as weighing

factorsvi in the CQF.
When making the estimates we must not forget that the

relative importance matrix is antisymmetric

r(i, j) = v(j)− v(i) = −(v(i)− v(j)) = −r(j, i) (9)

The values of the relative importance cannot be assigned
freely to the upper triangular part of the matrix because they
are constrained by the following consistency requirement:

r(i, k) = r(i, j) + a (10)

v(k)− v(i) = v(j)− v(i) + a (11)

v(k)− v(j) = a (12)

r(j, k) = a (13)

In words this means that if itemk has an amounta more
relative importance to itemi than itemj has to itemi, then
item k also hasa more relative importance to itemj. This

7



can be seen as a kind of transitivity condition that has to be
satisfied by the relative importance estimates.

To see how it works consider that the first row of the
adjacency matrix has been filled in until column m. Then the
values in column m from row2 to m are already determined
by the set ofm− 1 conditions:

r(1,m) = r(1, 2) + (r(1,m)− r(1, 2)) (14)

r(1,m) = r(1, 3) + (r(1,m)− r(1, 3) (15)

· · · (16)

r(1,m) = r(1,m− 1) + (r(1,m)− r(1,m− 1)(17)

(18)

that require

r(2,m) = (r(1,m)− r(1, 2)) (19)

r(3,m) = (r(1,m)− r(1, 3)) (20)

· · · (21)

R(m− 1,m) = (r(1,m)− r(1,m− 1)) (22)

(23)

By the symmetry condition the values of rowm are also
determined up to elementm − 1. By definition r(m,m) is
zero. Thus we see that as we fill in the first row from left to
right all the remaining values of the square matrix underneath
the filled first row are determined. The task is thus to fill in
the first row in such a way that al the relative importances in
the matrixmake sense.

Specifying the direction and strength of the interaction
between nodes gives rise to another useful adjacency matrix
called theinfluencematrix. This is again a directed (asym-
metric) relation because the influence of itemi on item j

can be stronger than the influence of itemj on item i. For
example the designers choice of the size of any image buffers
will be strongly influenced by the number of pixels in an
image sensor. But the designer is unlikely to let the size
of the image buffer determine the choice of the resolution
of the image sensor. The mutual influence of components
may be obtained from a technical analysis of the design.
For products already deployed the influence matrix may be
inferred from statistical fault data. Let values of the elements
in row i represent the influence of componenti on all the other
components. The sum of the values in rowi gives a measure
of the total influence of componenti on the design. Likewise
the sum of the values in a columnj of the influence matrix
gives a measure on how much componentj is influenced
by all the other components. We call this the sensitivity of
componentj. Plotting the sensitivity against the influence
for each components provides a graphical representation of
the criticality of the components in the design (see example
in Figure 8). In the lower right of the graph we find the
components with low influence and low sensitivity. These are
not critical components. In the upper left of the graph we find
components with high influence and high sensitivity. These
are critical components. They will be strongly affected by
changes elsewhere in the design while at the same time a

change in the component will strongly affect the rest of the
design.

The same method can also be applied to finding the influ-
ence of a function, process or component on the satisfaction
of a demand, and vice-versa the effect of a demand on a
function, process or component. This is very helpful when
the demands on a product change. The row of the demand
reveals which function, process or component will be affected.

The matrix that relates the demands to the component
can capture some essential information that is not easy to
express otherwise. Each row corresponds to a demand and
each column to a component. An element of this matrix can
represent an estimate of how much a component contributes
to the satisfaction of a demand. Thus if a change is made
to a component, by checking the values in the corresponding
column one can immediately see which demands are affected
and even how much; and vice-versa,

Often variations of an artifact are needed where the require-
ments vary somewhat around a set of core requirements. In
this situations it is useful to develop a reference architecture
for the artifact (Example family home, mobile phone camera
or robot vision) The reference architecture will list a series of
essential components, functions and processes of the artifact
and a description of their interrelations so that the resulting
artifact meets the core requirements.

V. DECODE APPLICATION MODES

The DeCoDe method can be applied to a design task in
different ways according to the maturity level of the current
state of the design.

A. The Direct Mode

This mode is appropriate when most of the demands have
already been specified. The steps in the method are illustrated
in Fig. 4.

B. The Constructor’s Mode

The constructors believe they have an overview of the
requirements and thus immediately begin thinking about
the essential components of which the new product should
consist. Because constructors are not inclined to change their
ways, we show how the DeCoDe method can be used to fit
their approach. In the following we describe a variant of the
DeCoDe method for constructors and illustrate it with the
example of the design of a logistics installation consisting of
a conveyor line.

One of the demands for the conveyor line was that it must
be able to restart under full load after an emergency stop. This
is clearly the most stressful process. The demand component
matrix allowed the identification of the components involved
in this process with the asynchronous motor being the key
component. To discover the required motor characteristics
it proved necessary to simulate the process. Following the
DeCoDe method allowed to target the simulation to the
essential parts.

Th constructors mode is appropriate when an existing
product has to be changed or improved. In this section we use
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Fig. 4. Steps in the DeCoDe method.

the wordconstructorinstead of designer, to emphasise that
the constructor is a designer working close to the engineering
side of the fabrication of the product. Constructors visualise
the product. When they design a new product they:

• already have a vision of the product in their mind.
• are aware of some wishes form the customer or
• have some understanding of the market and competing

products.

The DeCoDe method can accommodate the constructors
approach by making the selection of components and their
interrelations via the components-components matrix the first
step in the DeCoDe method as shown in figure 5.

The relation of the functions to the components is cap-
tured in the function- components-matrix. This matrix will

reveal which functions are missing or which components
are missing. The interdependence between the functions is
expressed in the function-function matrix. Only in the 3-rd
step the designer turns to clarifying the demands by relating
them to the functions in the demand-function matrix. From
this matrix the constructor can see which functions already
fulfil which requirements, which new requirements originate
from the functions and which requirements are not fulfilled
yet. Constructors primarily think in terms of components
and functions. however, while the components are detailed in
drawings and technical specifications, the functions are often
not even listed.

By following the DeCoDe method, the functions of the
product are made clear to outsiders for the first time in
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Fig. 5. Steps in the DeCoDe method adapted to the Constructor’s approach.

the early stages of the birth process of the product. Up to
now the ideas of the designer were manifest only in the
drawings. Drawing give details of components but do not
make explicit the functions of the components. However, it
is only through the functions that their degree of fulfilment
of the stakeholders’ wishes can measured. That is why the
functions must be made absolutely clear.

Only when the constructor has compared the requirements
to the functions, by which new requirements may have
originated, is he ready, to prioritise the requirements. The
DeCoDe method requires this in the 4-th step by filling in
the demand-demand matrix through the pair-wise comparison
and relative weighting of demands.

In the 5-th step the weighted requirements are once more

compared to the components and functions. This comparison
checks to what extent the requirements are already fulfilled
by the components and functions of the new product, which
in turn points to the directions the new product must be
developed further. Exactly those components and functions
that fulfil the most important requirements either not at allor
only partially are filtered out by this matrix. At the same time,
new requirements that have not been recognised up to now,
can be also determined by the interaction of components and
functions. This allows the constructor attain a better design
process that leads to a product of better quality. All these steps
can be iterated as many times as needed in the judgement of
the constructor.

Only when the constructor has a more precise image about
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the new product, he is ready to think about how this can
be produced. In this phase of the development process the
constructors consider how the components can be produced
by which processes. To realise this systematically and com-
prehensively the DeCoDe method offers the components to
process matrix in step 6.

By assigning possible process to every component is be-
comes clear whether the components can really be manu-
factured. If it cannot be produced, a new component must
be chosen or a new processes must be conceived. New
requirements can arise again from this consideration. These
are again compared with the functions, components and
processes, as shown in step 7. With the demand-function,
demand-components and demand-process matrices it becomes
clear which demands are already fulfilled and which demands
must still be fulfilled by changing components, functions or
processes in the future.

With this basis it can be decided in step 8, which require-
ments are the most important to be fulfilled. The relative
importance of the demands determined in step 4 provides
the weight coefficients of the demands in the Comprehensive
Quality Function (CQF). In step 9 the degree of fulfilment of
the requirement is determined by the components, functions
and processes which allows the evaluation of the CQF. The
10-th step encompasses the representation of all cross depen-
dencies between the requirements, components, functions and
processes with the remaining matrices as in figure 2.

If new ideas originate or the customers have new demands
or the processes change, then all 10 steps can be executed
again.

The result of executing the steps just described was tested
on the design of a new logistics installation comprising a
roller conveyor line. Conveyor lines are key logistic systems
in today’s industrial infrastructure, for example baggagecon-
veyors in airports. Their failure immediately causes substan-
tial financial loss and disruptions. The goal of the design was
to optimise performance on several indicators, among them
energy consumption. Conveyor lines are mostly driven by
asynchronous electric motors. Because of low efficiency of
these motors on starting and stopping these motors are typi-
cally over-dimensioned in conveyor systems. Figure 6 shows
the experimental conveyor systems with its main components.
Because of the complex interactions between the motors,
rollers, belts, support structure and load to be transported,
an interdisciplinary team of designers was appointed. The
various specialists initially had their own ways of describing
the components and functions of the conveyor system. After
a first agreement on the components of the system it was
necessary to conduct several brainstorming sessions to reach
a common understanding and description of the functions of
the conveyor line.

The relation of the components to the functions were
analysed and represented in the Function-Component matrix
shown in figure 7. In this form the dependencies are easy to
see and to communicate to team members and third parties.
The rollers, the belt and the goods that must be transported

Fig. 6. Components of the conveyor line mechatronic system.The
components are the straight segments, curved segments and drive mechanism.

Fig. 7. The Function-Component matrix for a section of the conveyor
system. The components related to the asynchronous motor and the safeguard
function are highlighted and can be identified easily.

influence substantially the impulse to be provided by the
drives. In summary, the application of the DeCoDe method
gave the design process a clear structure, facilitated the com-
mon understanding of the design issues by the team members
and mistakes could be minimised. Also the manufacturability
of the logistic installation and the resulting demands were
considered early.

C. The Progressive Mode

This mode is appropriate when starting a new design
and only very general and vague demands are given. The
method builds a demand list iteratively and concurrently with
the functions, components and processes lists. Here we will
illustrate the method with the design of an educational and
entertainment soccer playing robot. A autonomous soccer
playing robot is an advanced mechatronic product involving
leading embedded systems technology. We chose to use it as
an example artifact to illustrate the main steps of the DeCoDe
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procedure on a new design.
1) Demands:The first thing to do is to phrase a brief

overall description of the product. In this case we choose:

An inexpensive robot that can participate as a
player in a team of one or more robots in a soccer
style game as specified by the AMiRE 2008 rules.

We will call this thezero-th orderdemand or system specifi-
cation.

Designing a robot for the AMiRE 2008 game rules allows
us to use these rules to derive a set of specific demands for the
robot. The rules prescribe the maximum diameter of robot,
size and markings of the playing field and the duration of the
match. We will add other demands that derive from marketing
considerations.

Therewith we arrive at an initial demand set. The robot
must:

1) fit into a cylinder of 100 mm inner diameter.
2) move and manoeuvre across the playing field with a

speed of up to 1 m/s
3) detect and locate the stationary objects in the playing

field such as markings, goals and boundaries.
4) detect, identify and locate mobile objects in the envi-

ronments such as the ball (a white 40 mm diameter
squash ball) and other robots.

5) distinguish between the various robots on the playing
field.

6) perceive the various referee whistling signals for start-
ing and stopping the game.

7) allow the user to change the robot’s behaviour (pro-
grammable).

8) have sufficient on board computing capacity for imple-
mentation of game winning behaviours.
and

9) have a cost that is affordable to tertiary students, schools
and university departments.

This list of demands should suffice at this early stage. The
demands could be ordered by doing pair-wise comparison.
However, this is better done after having determined the
functions, components and processes in a first round as there
may arise additional demands or modifications.

A mutual influence matrix of the demands could also be
build. For demands the mutual influences should be very small
as we want the demands to be orthogonal [22].

Next we need to identify the functions the robot has to
perform to meet the demands.

2) Functions: The first demand is aconstrainingdemand
and as such does not translate into a function. The next de-
mand: Move and manoeuvre across the playing field requires
several functions. Just moving needs two functions:

1) Vary the speed of motion (accelerate/decelerate).
2) Change direction of motion.

Manoeuvring, such as moving towards a desired position on
the playing field while avoiding other players and remaining
within the play field, requires the perception of objects and
features of the environment, their relative location in relation

to the robot, and the capability of moving appropriately in
response to these perceptions;

3) Recognise and locate goals (angle and approximate
distance)

4) Recognise and locate playfield boundaries
5) Recognise and locate other robots
6) Recognise and locate the ball

For the management of the game it is necessary that the robot
be able to switch between behaviours, such as: dont move and
wait for signal, play, or move to designated position on the
field, in response to referee whistle signals. The corresponding
function is:

7) Interpret whistle signals and select behaviour.

The next demand:allow the user to change the robots
behaviour (programmable)can be realised by a function:

8) Replace current behaviour program on the robot by
another one and/or modify settings for hardwired be-
haviour

Demands 8 and 9 are constraining demands that do not
generate a function.

At this stage we notice that if we have a function that
changes the behaviour of the robot we also need a function
that:

9) enacts a soccer playing behaviour that is stored in the
robot as a computer program and/or is hard wired.

Having gone through all the initial demands we have a
first list of functions and we can proceed with filling in
the demand-function adjacency matrix. Not every demand
generates a function, but clearly every function needs to
contribute to meeting at least one demand. This can be
tested by filling in a demand-function adjacency matrix that
values the contribution of each function to each demand.
Constraining demands may be more difficult to meet if certain
functions have to be present. This is the case for the cost
and may also be the case for the size. In this case we need
to assign some negative value to the contribution of these
functions to the constraining demands.

By filling in the demand-function adjacency matrix we
see that although we have a function that enacts a selected
behaviour, the kind of behaviour is left open. The zero-th
order demand of playing a soccer style game autonomously
is not reflected in the current demand list. The need for
specifying this ability is clear, as different behaviours will
require different functional capabilities. Such kinds of mis-
takes and oversights are common occurrence in early designs.
The inherent consistency requirement of the DeCoDe method
facilitates the early detection of errors and omissions.

3) Components:The next step is to list potential compo-
nents required to provide the functions identified so far. Going
through each function leads to the need of the following
components:

1) Motors
2) Gearbox/transmission
3) Motor controller
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Fig. 8. Mutual influence of mobile robot components. The components in
the upper left quadrant are critical in the sense that they have strong influence
but also are highly susceptible to other components.

4) Wheels
5) Body
6) Power supply (battery)
7) Computer
8) Proximity sensors (infrared)
9) Camera

10) Microphones
11) Wireless transceiver

For realising the functions 3 to 6 a camera and infrared
proximity sensors are proposed. For long range object de-
tection a camera offers lower cost and higher flexibility than
alternative sensors such as ultrasound or laser range finders.
For short range obstacle detection infrared sensors are a low
cost choice.

Now the function-component matrix and the component-
component influence matrix can also be built. Figure 8
shows the influence vs. sensitivity plot for the soccer robot
components.

The main matrices encapsulate some of the design knowl-
edge at this state. This information can be recovered by
reading the matrices. In particular the row and column sums
provide an easy interpretation. In the demand-component
matrix for example the sum of a row indicates the influence
of the corresponding demand on the whole design. We see
that the demands for controlling the motion are the ones that
have the most influence on the whole robot design.

The sum of the columns indicate how much influence the
demands, taken together, have on the corresponding compo-
nent. Not surprisingly the component most susceptible to the
demands is the computer. In the demand component matrix
the row corresponding to the demand on cost can be filled
with the relative cost of each component providing directlya
cost estimate.

D. Processes

As mentioned earlier there are two classes of processes:
those related to the life cycle of the product (its design,
manufacture, deployment and disposal and those processes
that realise the purpose of the product. Here we will only
consider the latter type.

The components provide the physical substrate for the
processes that perform the functions that satisfy the demands.
Therefore a good starting point for listing the processes that
are required is by going through the component catalogue and
visualise in what processes they participate. Going through
the list we can easily build the component-process matrix.
On a first pass we came up with the following processes:

1) Execute behaviour
2) Activate new behaviour
3) start computer
4) power-on self test POST
5) move under remote control
6) emergency stop
7) recharge battery
8) Monitor sensors

The first process identified:execute behavioursimmedi-
ately points to a serious omission in the component cata-
logue. The computer is a component required for executing
behaviours, but to do so it also requires software. So far we
had not listed software in the component catalogue. Clearly
there are many software components required for the robot
to play a soccer game. This deficiency becomes very clear
when we build the demand-processes matrix and observe
that this matrix is very sparse with few processes relating
to the demands. This cannot be. Either important processes
are missing and/or demands are still missing.

The processes of loading a new program, move under
remote control and monitor sensors suggest another demand,
namely that these processes, being directed by the robots
master (owner) must be easy to do for the human master.
The demand can be formulated as:

Intuitive and easy to learn user interface and behaviour
generation

E. Demand Refinement

During the firstround of DeCoDe several matters arose.
One was the lack of a demand that specified that the robot
be capable of soccer playing behaviour. This omission can
be corrected by adding a demand that could be formulated,
for example, as:Execute a soccer playing behaviour au-
tonomously for the duration of a game. Formulated in this
way the demand implies the existence of enough computing
capacity to do so. This makes the demand forhave sufficient
on board computing capacity for implementation of game
winning behavioursredundant. However it expresses the
knowledge of the designer that some of the actions in the
robot soccer game may require intense computations and that
these must not take too long to complete. Therefore it seems
that this latter demand is ill formulated as it puts a vague
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constraint on the robot’s capabilities of executing behaviours
that has an effect on many, if not all, functions. Maybe the
demand should emphasise that the robot has to react quickly
to sensory input to win a game. This would be a complement
instead of a redundancy to the demand for the ability of
playing a soccer game.

Intuitively as designers we know of the key role of the
main processor has in determining the capabilities of the
robot. However so far we have not been able toput the
finger on the issue. After further analysis we arrived at a
different formulation of the demand that still reflects our
intuitive concern about processor performance while allowing
an operational evaluation of it. The new formulation is that:

the delay of the response to perceptions, the reaction time,
must be less than a specified value.

What that value is can be estimated, for example, on
the maximum allowed displacement of the ball during the
reaction delay. This demand is still broad in the sense that it
leaves open the technical means of generating the reaction.It
could be generated by a single high performance conventional
von Neumann sequential processor or by several less capable
processors or by a distributed network of many low cost
processors. In the case of a single central processor an
estimate of the processing speed can be obtained by making
use of the simple model for the program execution time that
says that the total execution time is the number of instructions
N times the average number of processor clock cycles per
instructioni times the duration of a clock cyclec.

T = NIc (24)

N is mainly determined by the task,i and c are processor
characteristics. Thus in our first approximation the demand
can be quantified

NIc < δmax (25)

The maximum delay can be estimated from the demand that
the robot can move with a speed of up to 1 m/s. If we
allow a maximum displacement of the robot of 5 cm before
responding to a sensory stimulus then maximum delay will
be 0.05 seconds (50 ms). The robot’s most complex response
must be generated within these 50 milliseconds. To translate
this into processor specification we first need to estimate the
numberN of instructions to be executed for the response in
order to obtain

Ic <
δmax

N
(26)

For a vision system this requires capturing a new image
at least every 50 ms, which means there must be a sustained
frame rate of not less than 20 frames/second.

At this point a first DeCoDe design cycle is the next
refinement cycle could be started. Stepping through a full
cycle illustrates the application of DeCoDe from the initial
rough concept and how DeCoDe reveals weak points in the
design and forces the designer to address these points at an
early stage.

VI. CONCLUSION

Products and services that fail to meet stakeholder demands
will quickly fall prey to competitors in the global market
place. The fate of a product is largely decided during its
design phase. Design is a cognitive activity that is not well
understood. The consequence is that design activity so far
has been loosely structured and some demands on the artifact
subject of the design may be neglected or are addressed too
late in the design cycle causing expensive redesigns or an
unsatisfactory product. The main goal of the DeCoDe design
method is to conduct the design activity in such a way that
it leads to a demand compliant product. This is achieved
mapping an initial set of demands to three different but
complementary views of the product: the functional view, the
structural (component) view and the process view. The main
tool of the Decode method are matrices that capture in a clear
and easy to manipulate way the multitude of relations between
these elements. Discovering and recording these relations,
and keeping them consistent as the design progresses assures
that all functions, components and processes in the artifact
are justified by the demands and that there are no demands
left that are not served by some functions, components and
processes. The DeCoDe method can be adapted to designs of
various levels of maturity as we have illustrated by discussing
three main application modes with examples.

The measure of success for a design is the degree to
which the designed artifact meets the stated demands. This
applies to design methods as well, as they are also artifacts
product of a purposeful design. Based on are review of some
of the most widely used design methods and observations
form the practice of design for quality we formulate a set of
demands that a design method should meet. A design method
should not only assure that the designed artifact meets the
demands but the method needs to meet other demands as well.
There are demands on design such as clearly structured and
complete documentation, backward traceability of the design
evolution, ease of communication the design to design team
members and third parties.

Assessment of the degree of satisfaction of the demands
allows the evaluation and comparison of the DeCode method
with other design methods. By design, DeCoDe meets all the
demands stated in section III to a high degree, except the
first demand for which it relies on Requirement Engineering
techniques.

The DeCoDe method has been applied to industrial and
advanced engineering design. DeCoDe was chosen by the
design team in the KitVes project [29], after conducting
a survey of design methods, because of the ease of com-
municating the design, creating a common language, and
understanding of the key design issues by designers for
multiple disciplines. KitVes is an European Union project
aiming at harvesting high altitude wind power by maritime
vessel for on board usage. In the Promesys project [30] aimed
at determining the reliability of mechatronic systems DeCoDe
was used for obtaining the reliability data for a particular
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drive mechanisms. By describing drive mechanisms in use
in different industrial application using the DeCoDe views,
components that fulfilled similar demands as the target design
were identified. Actual reliability data of these deployed
components could be used for estimating the reliability of
the target design, instead of having to rely on estimated
probabilities.

When initially proposed the DeCoDe method seemed to
require too much extra work from the designer. An early
application of the method in an industrial problem [20]
suggested that it may not be necessary to carry out the method
in its full detail to obtain benefit of the time savings obtained
by designing a better quality from the start. In such cases it
can be applied with the help of commonplace software tools
like spreadsheets and matrix manipulation packages.
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